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Title 

Exploration and application of machine learning algorithms to functional connectivity data 

 

Abstract 

Methods for the study of the functional connectivity in the brain have seen several 

developments over the last years, however not yet in a fully realized manner. Machine learning and 

complex network analysis are two promising techniques that together can help the process of better 

exploring functional connectivity for future clinical applications. 

Machine learning and pattern recognition algorithms are helpful for mining vast amounts 

of neural data with increasing precision of measures and also for detecting signals from an 

overwhelming noise component (Lemm, Blankertz, Dickhaus, & Müller, 2011). Complex network 

analysis, a subset of graph theory, is an approach that allows the quantitative assessment of 

network properties such as functional segregation, integration, resilience, and centrality (Rubinov 

& Sporns, 2010). These properties can be fed into classification algorithms as features. This is a 

new and complex approach that has no standard procedures defined, so the aim of this work is to 

explore the use of fMRI-derived complex network measures combined with machine learning 

algorithms in a clinical dataset. 

In order to do so, a set of classifiers is implemented on a feature dataset built with brain 

regional volumes and topological network measures that, in turn, were constructed based on 

functional connectivity data extracted from a resting-state functional MRI study. The set of classifiers 

includes the nearest neighbor, support vector machine, linear discriminant analysis and decision 

tree methods. A set of feature selection methods was also implemented before the classification 

tasks. Every possible combination of feature selection methods and classifiers was implemented 

and the performance was evaluated by a cross-validation procedure. 

Although the results achieved weren’t exceptionally good, the present work generated 

knowledge on how to implement this recent approach and allowed the conclusion that, for most 

cases, feature selection improves the performance of the classifier. The results also showed that 

the decision tree algorithm produces relatively good results without being associated with a feature 

selection method and that the SVM classifier, together with RFE feature selection method, produced 

results on the same level as other work done with a similar approach. 
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Título 

Exploração e aplicação de algoritmos de aprendizagem computacional em dados de 

conectividade funcional 

Resumo 

Métodos para o estudo de conectividade funcional têm sofrido vários progressos ao longo 

dos últimos anos, no entanto, as suas potencialidades não estão a ser completamente exploradas. 

Aprendizagem computacional e análise de redes complexas são duas técnicas promissoras que, 

em conjunto, são capazes de auxiliar no processo de melhor explorar conectividade funcional para 

futuras aplicações clínicas. Aprendizagem computacional e reconhecimento de padrões permitem 

a extração de conhecimento a partir de imensas quantidades de informação neuronal, cada vez 

com melhor precisão de medidas e são capazes de encontrar sinal de interesse, mesmo na 

presença de uma grande componente de ruído (Lemm et al., 2011). A análise de redes complexas 

é uma abordagem que permite a avaliação quantitativa das propriedades de rede (Rubinov & 

Sporns, 2010). Estas propriedades podem ser usadas em classificação como atributos, o que é 

considerado uma a abordagem recente e complexa, pelo que não existem ainda procedimentos-

padrão definidos. Deste modo, o objetivo deste trabalho é explorar o uso de medidas de redes 

complexas derivadas de conectividade funcional e combinadas com algoritmos de aprendizagem 

computacional em dados clínicos.  

Para tal, um conjunto de classificadores foi implementado, tendo como atributos volumes 

de regiões cerebrais e medidas de rede que, por sua vez, foram construídas a partir de dados de 

conectividade funcional extraídos de um estudo de Ressonância Magnética funcional de repouso. 

Um conjunto de métodos para a seleção de atributos também foi implementado antes de realizar 

as tarefas de classificação. Todas as possíveis combinações destes métodos com os 

classificadores foram testadas e o desempenho foi avaliado através de cross-validation. 

Apesar dos resultados obtidos não serem excecionalmente bons, o presente trabalho 

gerou conhecimento sobre a implementação desta nova abordagem e permitiu concluir que, na 

maioria dos casos, a seleção de características melhora o desempenho do classificador. Os 

resultados também demonstram que o algoritmo de árvore de decisão produz relativamente bons 

resultados quando não está associado a um método de seleção de características e que o 

algoritmo de máquina de suporte vetorial, juntamente com o método de seleção de atributos RFE, 

deu origem a resultados ao mesmo nível de outro trabalho, realizado com uma abordagem similar. 
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1 Introduction 

 

Medical Informatics (MI), as a discipline, is considered young and multidisciplinary. The 

first use of Information Technology (IT) dates back to the 50’s and since then it has been rapidly 

expanding and evolving. Thus, it establishes one of the grounds of medicine and health care and, 

consequently, is responsible for improving the health of people. MI contributes to a better and more 

efficient health care as well as encourages groundbreaking research in biomedicine and health-

related computer sciences (Haux, 2010). Given its multidisciplinary character, MI is hard to define, 

nonetheless it follows a possible definition: 

 

Definition | Medical informatics is the science that underlies the academic 

investigation and practical application of computing and communications technology to healthcare, 

health education and biomedical research. This broad area of inquiry incorporates the design and 

optimization of information systems that support clinical practice, public health and research; 

modeling, organizing, standardizing, processing, analyzing, communicating and searching health 

and biomedical research data; understanding and optimizing the way in which biomedical data and 

information systems are used for decision-making; and using communications and computing 

technology to better educate healthcare providers, researchers and consumers. Tools and 

techniques developed from health informatics research have become and will remain integral 

components of the best strategies in biomedical research and the best practices in healthcare 

delivery and public health management (University of Virginia, n.d.). 

 

Nowadays, MI is part of a hospital’s daily life, either in recording and storing patient 

information on hospital database, monitoring patients’ vital signals or in medical imaging diagnosis. 

Given the fact that this discipline is multidisciplinary, MI can have a role in different areas such as 

Medical Imaging, Intelligent Systems, Electronic Health Record and Clinical Decision Support 

Systems. Besides that, this discipline also shows its worth in information processing in order to 

extract useful knowledge from the massive amount of information that today’s technology 

produces. Picturing medicine without technology allows us to realize how valuable this discipline is 

(Haux, 2010). 
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In Portugal, the Associação Portuguesa de Informática Médica was established in the city 

of Coimbra in November 5th, 1979. This association was created with the intent to promote the use 

of Informatics in the public health, medical practice and medical investigation domains, as well as 

the propagation of this discipline (APIM, 2012). Despite their efforts and the increasing number of 

work and investigation done at academic level, in practice, this discipline still has a lot of space to 

grow. Portuguese hospitals have information systems implemented in some departments. An 

information system is an integrated set of components – hardware, software, infrastructure and 

people – designed to store, process, and analyze data, as well as report results on a regular basis 

(Zwass, n.d.). Usually, each department has its own information system. Portuguese health 

institutions are investing in IT systems, such as information systems, however this investment is 

not coordinated, resulting in advanced small islands that unfortunately are incapable of 

communicating with each other (Fonseca, 2011). 

Still concerning MI and regarding the present work, there’s an area that stands out – 

Medical Imaging. This area provides the methods and techniques that allow visual representation 

of human organs and tissue. Neuroimaging is the subset of Medical Imaging in charge of the 

application of such procedures to study brain structure and function. These methods and 

techniques include Computerized Tomography (CT), Positron Emission Tomography (PET), 

Magnetic Resonance Imaging (MRI), Magnetoencephalography (MEG), and 

Electroencephalography (EEG). 

 

 

1.1 Neuroimaging 
 

It has long been an interest of the human being to figure out how the brain works, 

particularly how it encodes information and interacts with the environment. In order to explore the 

brain, more and more advanced techniques have arisen for the task, such as functional Magnetic 

Resonance Imaging (fMRI), EEG and others. EEG is a technique with poor spatial resolution, making 

it unsuitable for the study of high-level cognitive activities involved with multiple cortices. In its turn, 

fMRI allows to further explore the brain function as a whole and with a reasonable spatial resolution 

(Norman, Polyn, Detre, & Haxby, 2006; S. Song, Zhan, Long, Zhang, & Yao, 2011). 
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fMRI is a non-invasive medical imaging technique used to detect neural activation of 

different brain regions (Ogawa, Lee, Kay, & Tank, 1990). In the mid-90’s, Ogawa discovered that 

oxygen-poor hemoglobin and oxygen-rich hemoglobin were affected by the magnetic field in 

different ways. This discovery allowed him to take advantage of this contrast in order to map images 

of brain activity (Stephanie Watson, 2008), so this technique takes advantage from the fact that a 

local variation in the oxygen levels happens when a brain region is active. Therefore, fMRI allows 

us to study patterns of brain activity during the performance of tasks (Josephs, Turner, & Friston, 

1997) or at rest  (B. Biswal, Yetkin, Haughton, & Hyde, 1995) which in turn can be used to 

characterize various pathological conditions such as schizophrenia (Cohen, Gruber, & Renshaw, 

1996), Alzheimer’s disease (Greicius, Srivastava, Reiss, & Menon, 2004), Parkinson’s disease 

(Haslinger et al., 2001) and non-pathological ones, like healthy aging (Hesselmann et al., 2001). 

The brain is often seen as a network, built with several regions, anatomically apart but 

functionally connected, that share information continuously between each other. Using fMRI to 

study the brain has led to a new concept described below: 

 

Definition | Functional Connectivity (FC) is the temporal dependence of neuronal 

activity patterns of anatomically separated brain regions (M. P. van den Heuvel & Hulshoff Pol, 

2010). 

 

When two or more distinct and anatomically apart brain regions show synchronous 

neuronal activity or react in the same way to a common stimulus or task, it is then possible to 

claim that there is FC between them. This synchrony is usually measured by dependencies between 

blood oxygen-level dependent (BOLD) signals obtained for different anatomical regions.  

Since the mid-90’s, the study of FC has drew the attention of neuroscientists and 

computer scientists as it opens a new window to the network that is the human brain (Li, Guo, Nie, 

Li, & Liu, 2009). Once in possession of a large amount of FC data, it becomes essential and 

relevant to extract useful information and knowledge from it. Different methods have been adopted 

since then and they range from brain activity mapping, FC analysis through exploratory techniques 

such as Independent Component Analysis (Comon, 1992) to network analysis via graph theory 

applied to FC data (J. Wang, Zuo, & He, 2010). A relatively new approach in this area is the use of 

machine learning, mainly classification algorithms, using measures extracted from neuroimaging 

data. Such methodologies can be valuable in relation to the development of diagnostic support 
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tools and possible forecast of the occurrence of several diseases (Castro, Gómez-Verdejo, Martínez-

Ramón, Kiehl, & Calhoun, 2013; Dosenbach, Nardos, Cohen, Fair, & Al., 2010; Long et al., 2012; 

Nouretdinov et al., 2011; Wee et al., 2012). Classification through machine learning allows the 

extraction of useful knowledge from large amounts of data in a more automatic way, hence 

speeding up the process and reducing the human error fraction. 

 

 

1.2 Machine Learning 
 

The fundamental goal of a learner is to generalize from its experience. In this context, 

generalization is the ability to give good and accurate results on unseen new data, based on the 

experience acquired along the learning process.  

 

Definition | Machine Learning is a branch of computer science that, allied with 

statistics, is focused on the development and study of algorithms that can learn from data instead 

of simply following programmed instructions. Or, as Arthur Samuel said in 1959, machine learning 

is a field of study that gives computers the ability to learn without being explicitly programmed 

(Samuel, 1959). 

 

A classifier, given a training set, is able to learn the association between an examples’ 

set of attributes (or features) and its corresponding label. This way, it’s possible to perceive the 

classifier as a function that, for a given example, returns a prediction of its corresponding label. 

There are many classifiers, however, the ones frequently used in fMRI data are the Nearest 

Neighbor (kNN), Logistic Regression (LR), Support Vector Machine (SVM), Gaussian Naïve Bayes 

(GNB) and Fisher’s Linear Discriminant Analysis (LDA) (Pereira, Mitchell, & Botvinick, 2009). 

In particular, the classifier used in (Long et al., 2012) to tell apart between patients with 

early Parkinson’s disease and control subjects was obtained from the SVM method applied to 

structural and functional images of the participants. This classification method was also used in 

(Wee et al., 2012) to identify patients with Mild Cognitive Impairment (MCI) and in (Dosenbach et 

al., 2010) to predict the maturity of the brain from fMRI images. Less frequently used methods 

include the Multiple Kernel Learning (MKL) described in (Castro et al., 2013) to distinguish between 

individuals with schizophrenia and control subjects and also the Transductive Conformal Predictor 
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(TCP) algorithm that can calculate the degree of confidence of the prediction given and is described 

in (Nouretdinov et al., 2011). 

 

Machine learning and pattern recognition are becoming more and more frequent 

between the chosen techniques to perform fMRI analysis. These techniques allow to detect subtle, 

non-strictly localized effects that may be invisible to conventional analysis with univariate statistics 

(Haynes & Rees, n.d.; Martino et al., 2008; Norman et al., 2006). This technique enables the 

investigator to take into account the pattern of activity from the whole brain. This activity, in its turn, 

is measured in several points at the same time (i.e. simultaneously). This technique also allows 

exploring the inherent multivariate nature of fMRI data. 

Multivariate pattern analysis is the application of machine learning techniques to fMRI 

data and typically involves four steps: (Martino et al., 2008) 

1. The selection of voxels (features); 

2. The representation of brain activity as points in a multidimensional space; 

3. The training of the classifier, with a subset of examples, to define the decision 

boundary; 

4. The performance evaluation of the model created.  

 

 

1.3 Graph Theory 
 

Today’s techniques, whether in the Neuroscience context or in other scientific fields, can 

provide very large datasets. In the Neuroimaging field, these datasets usually contain anatomical 

and/or functional connections patterns. In the attempt to characterize these datasets, a new 

approach has been developed over the last 15 years. This multidisciplinary approach is known as 

Complex Network Analysis (CNA) and has its origin in the mathematical study of networks, known 

as Graph Theory (Berge & Doig, 1962). However, this analysis deals with real-life networks above 

all, which are large and complex (not uniformly random nor ordered) (Rubinov & Sporns, 2010). 

This method describes complex systems’ relevant properties by quantifying topologies of their 

respective network representations. 
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Definition | Graph Theory is a branch of mathematics that deals with the formal 

description and analysis of graphs. A graph (see Figure 1) is defined simply as a set of nodes 

(vertices) linked by connections (edges), and may be directed or undirected. When describing a 

real-world system, a graph provides an abstract representation of the system’s elements and their 

interactions (Bullmore & Sporns, 2009). 

 

Figure 1 - Graphic representation of a graph. The blue circles are the nodes and the lines are the 

edges that connect the nodes, making a network. [Adapted from (Boyd, n.d.)] 

 

In the context of brain networks, the analogy between the brain and a graph is more than 

useful, it’s intuitive. Since the brain consists of several different areas that are believed to be 

connected between each other, one good way to depict a brain is by representing it as a complex 

network, i.e., a graph (Sporns & Zwi, 2004). The areas of the brain can be seen as nodes and the 

connections between those areas as the edges of the graph. 

 

A graph can be either weighted or unweighted. In the first case, the edges are attributed 

a value – weight – representing their importance/significance to the network. A more important or 

prominent connection should have a higher value. In the opposite case, the unweighted graph has 

no value assigned to each edge. It can be seen as a weighted graph, only every edge has the same 

value. There are several measures one can obtain in order to characterize a graph and they can 

be local – referring to a specific node – or global – referring to the network as a whole. 

 

As said, a network is made by nodes and links. In large-scale brain networks, nodes 

represent brain regions and links can represent anatomical, functional or effective connections. So, 

in Neuroscience’s context we can find three types of connectivity (Rubinov & Sporns, 2010): 

Structural Connectivity: consists of white matter tracts between pairs of brain regions 

(Greicius, Supekar, Menon, & Dougherty, 2009); 
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Functional Connectivity: consists of temporal correlations of activity between pairs of 

brain regions, which may be anatomically apart (M. P. van den Heuvel & Hulshoff Pol, 2010); 

Effective Connectivity: represents direct or indirect influences that one region causes on 

another (K. J. Friston, Harrison, & Penny, 2003). 

The characterization of structural connectivity and FC as a network is increasing 

(Bullmore & Sporns, 2009). This is a result of a combination of reasons. The method previously 

mentioned, CNA, quantifies brain networks in a reliable way and using only a small number of 

neurobiological meaningful and easy to compute measures (Hagmann et al., 2008; Sporns & Zwi, 

2004). The definition of anatomical and functional connections on the same brain map helps to 

better investigate relationships between structural connectivity and FC (Honey & Sporns, 2009). 

Also, by comparing structural or functional network topologies between different subject 

populations it’s possible to detect connectivity abnormalities in neurological and psychiatric 

disorders (Leistedt et al., 2009; C J Stam, Jones, Nolte, Breakspear, & Scheltens, 2007; Cornelis 

J Stam & Reijneveld, 2007; L. Wang et al., 2009). 

 

 

1.4 Problem 
 

Graph theory and machine learning, individually, are not recent fields of investigation, 

however the combination of both is, especially when applied to FC data. Given the fact that this 

combination is recent, there isn’t much knowledge available on how to better take advantage of 

them together. The “know-how” is still very limited. 

The use of machine learning in neuroimaging data is already a step ahead of statistical 

inference, because it allows to identify which features are relevant to distinguish two groups instead 

of just knowing that a significant difference exists between the groups. The arrangement of these 

three fields of investigation - machine learning, graph theory and FC - is a complex process that 

has a lot of potential. 

The more knowledge there is about this combination, the easier is to build user-friendly 

software with graphical and/or command line interfaces, which are more accessible to researchers 

and allows them to focus on their research questions (Hanke et al., 2009). Besides investigation, 

these tools can also be relevant for diagnosis purpose, in a way that they might help detecting 
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neurological and psychiatric disorders at an early stage, thus bringing the application of functional 

neuroimaging to clinical settings. 

 

 

1.5 Goals 
 

The present work is mainly aimed to explore the use of machine learning algorithms 

applied to FC data in order to explore their suitability to neuroimaging studies. To this end, a 

selection of classification algorithms is proposed, as well as the implementation of such selection 

to the obtained FC data. Furthermore, the FC data will be used to create complex networks. 

Topological measures of these networks together with the FC data and brain regional volumes will 

be used as attributes to perform the classification tasks. Finally, a study of the accuracy of these 

algorithms on the distinction between a group of healthy subjects and subjects with a properly 

diagnosed neurological pathology, in this case, Obsessive Control Disorder (OCD), will be 

performed.  

 

One of the issues of FC analysis is the consequential large amount of data. And since 

data is definitely not the same as knowledge, the need to “dig” for useful knowledge urges. 

Classification algorithms are somewhat similar to data mining and its use in neuroimaging is 

increasing, although there isn’t much knowledge on how to implement them. Thus the goal of the 

present work is to investigate the best way to apply machine learning algorithms to FC data derived 

from graph theory analysis. There are many classifiers that can be used, and for each one of them, 

there are several parameters that can be adjusted in order to obtain a better performance. Knowing 

this, it’s impossible to state that one classifier is better than the rest. There is no absolute truth 

about this matter, because it depends on the context of the classification problem, the data’s nature 

and, of course, the combination of the parameters. Hence the purpose of this work is to explore 

the best combination of parameters and which classifiers to implement in the context of 

neuroimaging, particularly, FC data. 

Other approaches could have been the focus of the present work. Instead of machine 

learning, for instance, statistic inference could have been used. This approach consists in the 

process of drawing conclusions about populations or scientific truths from data that is subject to 

random variation (George Casella & Berger, 2001). Still, since machine learning is somewhat 
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relatively new to the field of neuroscience and appears to be promising in its results, it was, in fact, 

the path chosen for the present work. 

 

 

1.6 Structure of the document 
 

This document can be roughly divided in two parts, the first being of introductory and 

theoretical background while the second comprises the procedures performed throughout the 

development of this work and the discussion of the obtained results. 

 Besides the present chapter, chapters 2 and 3 constitute the first part of the document. 

Chapter 2 introduces the neuroimaging technique that allows the data used, which is fMRI. This 

technique was discovered by (Ogawa et al., 1990) and is the mother of a relatively new concept 

that is FC. This technique also allows the investigation of brain activity patterns that can be analyzed 

through a series of methods, including CNA. This method models the brain as a complex network, 

where the nodes are brain regions and the edges are connections, functional or anatomical, 

between the brain areas. 

Chapter 3 presents the concept of Machine Learning, which allows to generalize the 

structure of a certain dataset to unseen data points, given that they are of the same nature as the 

dataset. In this chapter, the classification algorithms used in the development of the present work 

are described in detail, as well as some applications of these algorithms to FC data. 

Regarding the second part of the document, chapter 4 describes every step and 

procedure performed throughout the development of this work, starting with the fMRI images and 

finishing with the attributes and classifiers. This chapter also explains how the correlation matrices 

were achieved, as well as the complex networks and how the dataset was built. 

Chapter 5 presents the results obtained for each combination of classifier and feature 

selection algorithm, as well as the results for each classifier without feature selection. Here, values 

of accuracy, sensitivity and specificity are presented for each classifier implemented in the 

development of this work. Comparisons and contextualization with previous results in the 

neuroimaging field are also presented. 

Finally, chapter 6 outlines the conclusions drawn from the results obtained. At this point, 

is possible to infer which classifier produces the best results, as well as the influence feature 
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selection methods have on the results. Moreover, this chapter presents the main limitations of the 

work and proposes some improvements that can be made in future works in the field. 
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2 Functional Connectivity 

 

Medical technology has benefited from evolution, so much that it is now possible for 

imaging scans to create 3D models of organs and tissues of the human body. Moreover, the use 

of IT in the medical environment has facilitated the recording, analysis and modeling of systems 

consisting of several interacting elements. These interactions happen in a structured way, resulting 

in complex and organized patterns that also portray an intrinsic connectivity network. The brain 

can be seen as one of these systems, constituted by nerve cells that interact with each other and 

form networks. 

Being the brain a target of curiosity and interest as well as an object of study, methods 

to investigate intrinsic connectivity in this organ have been developed. One of this methods is fMRI, 

derived from the more conventional MRI, which is a recent technique of imaging that can help 

diagnose brain diseases, but also investigate human’s mental processes. Both fMRI and MRI are 

based on the same technology, regarding some differences. 

 

2.1 Magnetic Resonance Imaging 
 

MRI is a noninvasive technique that uses a strong magnetic field and radiofrequency 

waves to create detailed images of the body. The first time it was used in humans was in July 3, 

1977 and it took almost 5 hours to produce one image (Gould & Edmonds, 2010).  

This technique takes advantage of the hydrogen atom – abundant in the human body - 

and its magnetic properties. Initially, the hydrogen atoms are spinning and become aligned when 

under the influence of a magnetic field. Afterwards, the atoms are hit by a specific radio-frequency 

pulse, causing them to absorb energy and change their spinning direction, i.e., they are no longer 

aligned. When the pulse is ceased, the atoms return to the initial alignment, releasing the energy 

previously absorbed which is picked up by the machine. The signal is then converted into an image 

by means of the Fourier Transform. 

Usually, a superconducting magnet is used. It consists in many coils of wire passed by a 

current of electricity, thus creating a magnetic field (Gould & Edmonds, 2010). The most common 

MRI machines yield a 3 Tesla magnetic field, which is equivalent to 50 000x the Earth’s magnetic 

field. In Tallahassee, vertical widebore magnets are capable of performing MRI with 21.1 Tesla 
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(“National High Magnetic Field Laboratory,” 2014). However, this is not yet used in humans. 

Stronger magnet fields produce better images but also more noise, making the acquisition much 

more uncomfortable for the patient, so the typical magnetic field used is of 3 Tesla. 

 

 

2.2 Functional Magnetic Resonance Imaging 
 

In its turn, fMRI focus on blood flow and detects oxygen levels in the brain, thus providing 

an indirect measure of neural activity. 

Neural activity is an aerobic process, i.e. consumes oxygen 𝑂2. Given this fact, it’s safe 

to say that the cerebral metabolic rate of 𝑂2 consumption and neural activity go side by side, so 

it’s possible to measure the latter indirectly by means of the former. A healthy brain arterial blood 

is saturated with oxygen and when this blood arrives to a brain area with increased neural activity 

and, therefore, with increased 𝑂2 local consumption, the oxygen gradient across the vessels in 

that area intensifies. This means that the 𝑂2 molecules are abandoning the hemoglobin, i.e., 

increasing the concentration of deoxyhemoglobin. A higher concentration of deoxyhemoglobin 

denotes a shorter decay time 𝑇2
∗, because it provokes faster de-phasing of excited spins, which, in 

turn, implies a smaller BOLD signal measured at the echo time. However, studies from the 

beginning of neural activity research with fMRI showed the exact opposite result – the BOLD signal 

increases with neural activity, hence the deoxyhemoglobin concentration decreases (Ogawa et al., 

1992). This divergence can be explained by a phenomenon called neurovascular coupling. Given 

the 𝑂2 demand, parallel with increased neural activity, the human body reacts by increasing the 

cerebral blood flow (CBF), i.e., the vessels dilate locally to enlarge the volume of oxygen-rich blood 

reaching the area with increased neural activity (see Figure 2). The result of the coupling 

mechanism overlaps the 𝑂2 consumption, disguising the increase of deoxyhemoglobin 

concentration and producing a stronger BOLD signal. 
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Figure 2 - Representation of the organism’s response to an activated brain region. As one can 

see in the second picture, when an area is activated, the blood vessel is dilated, increasing the 

blood flow in that specific area. [Adapted from (Devlin, 2007)] 

 

 

2.2.1 BOLD 
 

The imaging method most used when dealing with brain function is the BOLD contrast. 

This method is based on MRI images made sensitive to changes in the state of oxygenation of the 

hemoglobin. The BOLD signal results from the fact that oxyhemoglobin is diamagnetic and 

deoxyhemoglobin is paramagnetic. This means that oxyhemoglobin has no unpaired electrons in 

its outer layer and is not affected by the magnetic field. However, deoxyhemoglobin is affected by 

the magnetic field because it has at least one unpaired electron (Helmenstine, 2014). 

Following, Eq. 1 describes the BOLD signal (Murphy, Birn, & Bandettini, 2013): 

 

𝑆 =  𝑀0 exp (−
𝑇𝐸

𝑇2
∗)  Eq.1 

Where: 

𝑆 = BOLD signal strength 

𝑀0 = Initial magnetization 

𝑇𝐸 = Echo time (at which the image is acquired) 

𝑇2
∗ = Decay time 

 

The initial magnetization (𝑀0) depends on the number of excited spins in a voxel and the 

changes in the decay time (𝑇2
∗) are the basis for the BOLD signal. 𝑇2

∗ is the inverse of the relaxation 

rate (𝑅2
∗) of the magnetization caused by local susceptibility-induced magnetic field gradients. 𝑇𝐸 
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is chosen to maximize the BOLD contrast and, for a 3 Tesla magnetic field, is usually 30 ms 

(Murphy et al., 2013). 

The brain volume consists in several voxels – a volume unit that can be portrayed as a 

pixel with a third dimension. For each voxel, the BOLD signal is measured over a period of time, 

resulting in a timeseries for each voxel. In Figure 3, a schematic representation of the BOLD signal 

is presented. 

 

 

Figure 3 – Schematic representation of the BOLD hemodynamic response function (HRF). The 

first vertical dashed line is the stimulus beginning. The response initially takes the form a dip that 

is only seen at high magnetic field strengths. Afterwards, the response hits a peak, about 4 to 8 

seconds after the stimulus and then a negative overshot that dips below the baseline. [Adapted 

from (Kornak, Hall, & Haggard, 2011)] 

 

 

2.2.2  Task-related fMRI 
 

Task-related fMRI is the most common of fMRI acquisition and is used to detect neural 

activity in response to a determined event, by means of the BOLD signal. When performing a task-

related fMRI, the patient must perform an a task, whether talk, answer questions via response 

pads, move a finger or simply visualize images (Josephs et al., 1997). There is a wide range of 

fMRI study designs available for neuroscientists who investigate cognition and other brain 

processes and different acquisition schemes can be used, such as block design or event-related 

(Amaro & Barker, 2006). 

The strategy of a task-related fMRI experiment is to perform some sort of interference in 

a system (the brain, in this case) and observe the modulation of the system response. In other 

words, the experimenter executes an action and observes the reaction. Usually the interference 

caused or the action made is a cognitive task or a stimulus presented to the subject under study 
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and the reaction is measured by the BOLD signal that shows the hemodynamic response to that 

specific stimulus. The set of structured, temporal organized and ordered tasks or stimulus is called 

a paradigm. 

In early days, fMRI studies consisted of stimuli presented in sequence within blocked 

conditions. The reason for this is the historical influence of PET, because this technique studies 

had investigated changes in blood flow measured over time periods of up to 1 min, while the 

subjects had to maintain their cognitive engagement (Amaro & Barker, 2006). Over the years, fMRI 

has evolved to implement several stimulus presentation schemes, such as block and event-related 

designs, as well as a combination of both (see Figure 4). Minimum degree of complexity is advised 

when building a paradigm. Also, the experimenter must formulate a hypothesis, preferably with 

neuroanatomical background. 

 

Figure 4 – (A) Block design: stimulus of the same condition are presented subsequently; (B) 

event-related design: each stimulus’ hemodynamic response is detected, and can be analyzed in 

detail; (C) mixed design: combination of block and event-related. [Adapted from (Amaro & Barker, 

2006)] 

 

Regarding block design, this type of paradigm is based on maintaining cognitive 

engagement in a task by presenting stimuli sequentially within a condition, alternating this with 

other moments (epochs) when a different condition is presented. When two conditions are used, 

the design is called an “AB block” and two epochs of each condition form a “cycle”. The BOLD 
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response is composed from individual hemodynamic responses from each stimulus and is 

generally higher in magnitude. 

In its turn, event-related design is based on the observation that changes in 

hemodynamics are rapid and occur within seconds after a neuronal event. These events can be 

the result of presentation of a stimulus, delay period and response.  In this case, stimuli are not 

presented in a set sequence; the presentation is randomized and the time between stimuli can 

vary.  This paradigm design has emerged to better exploit fMRI, which has good temporal resolution 

and is sensitive to transient signal changes of brief neuronal events (Buckner, 1998), allowing the 

temporal characterization of the hemodynamic response. For each stimulus, the matching 

response is collected by the fMRI scanner. 

As shown in Figure 4, both block and event-related designs can be used together as a 

mixed design. In this case, a combination of events closely presented, intermixed with control 

condition, provides the technical needs for event-related analysis as well as cognitive state 

information. 

 

 

2.3 Resting-State fMRI and FC 
 

Resting-state fMRI aims to investigate the brain’s functional connections between 

different regions of the brain when it is “at rest”. In this case the patient is asked to close his/her 

eyes and try to think about nothing, instead of performing a task in a task-related fMRI. Resting-

state fMRI aims to study the spontaneous synchronous neural activity that happens in the human 

brain when the subject isn’t particularly focused, i.e., not performing a task, not thinking in 

something specific. 

Although the mechanisms behind this neural activity are yet to be known, many resting-

state networks have been discovered. The most known is the default mode network (DMN) – see 

Figure 5. DMN was first discovered using an imaging technique called PET (Raichle et al., 2001), 

however, fMRI is the preferred tool to further investigate this and other resting-state networks. Its 

better spatial resolution, compared to EEG and MEG, allows the localization and separation of the 

various resting-state networks simultaneously (Murphy et al., 2013). 
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Figure 5 –The Default Mode Network includes areas in the medial pre-frontal cortex, precuneus, 

and bilateral parietal cortex. [Adapted from (Graner, Oakes, French, & Riedy, 2013)] 

 

Compared with task-related fMRI, resting-state fMRI has a downside: since all the voxel’s 

timeseries are acquired at the same time, the resulting measure of FC can be a spurious result, 

because one or both timeseries of the brain region in cause could be affected by any non-neural 

activity at that time. Everything that might affect the FC and is not neural activity related is 

considered noise and, whenever possible, should be omitted or reduced. This includes the cardiac 

frequency, as well as the patient breathing movements. This is why the patients are asked to stay 

as still as possible during the acquisition period. 

 

 

2.3.1 Functional Connectivity 
 

FC has its foundation in the assumption that temporal similarity between BOLD signals 

of brain regions denotes that they are connected, thus forming a functional network (M. P. van den 

Heuvel & Hulshoff Pol, 2010). In order to find these temporal similarities, the BOLD signals from 

all the brain regions must be correlated against each other to find which areas are active. If two 

given areas are highly correlated, it means they are active at the same time (or during the same 

task, in task-related fMRI) and are, presumably, functionally connected. 

FC is believed to be vital in complex cognitive processes by allowing a continuous 

integration of information. Thus, regarding the study and investigation of the human brain structure 

and organization, the analysis of FC shows to be very important. In neuroimaging, FC depicts the 

level of communication between anatomically apart brain regions, by describing the neuronal 

activity patterns of those regions. 
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2.3.2 Resting State Networks 
 

Several resting-state networks (RSNs) have been identified over time. RSNs is the 

designation of a set of brain regions identified in FC studies as being anatomically apart but 

functionally connected when the brain is at rest. These sets of brain regions can also be designated 

as low frequency networks, because these networks mostly consist of low frequency spectrums. 

These networks can be seen in Figure 6, where a schematic representation of the brain areas 

active in each RSN is shown. In spite of different test subjects, different methods and even different 

imaging techniques, the results converge to the same resting-state networks (B. B. Biswal, 2012; 

J. Damoiseaux, 2006; M. P. van den Heuvel & Hulshoff Pol, 2010). 

 

 

Figure 6 - Resting-state networks. Adapted from (M. P. van den Heuvel & Hulshoff Pol, 2010). 

 

These networks are alleged to be the reflection of intrinsic demands of energy from brain 

cells - neurons - which go off together with a common functional purpose (Cole, Smith, & 

Beckmann, 2010; Saini, 2004). It is possible to reliably detect and to reproduce results of the 

detected RSNs both at individual and group level across a range of analysis techniques (J. 

Damoiseaux, 2006; Greicius et al., 2004; J. Wang et al., 2010). Moreover, a determined set of co-

activating functional systems is consistently found across subjects (C. F. Beckmann, DeLuca, 

Devlin, & Smith, 2005; J. Damoiseaux, 2006), stages of cognitive development (Cole et al., 2010; 

Horsch et al., 2007) and degrees of consciousness (Cole et al., 2010; Greicius et al., 2008). Thus 
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enforcing the assumption of RSNs as core functional networks that support perceptual and 

cognitive processes in the human brain. 

 

 

2.4 Methods for the investigation of FC 
 

Several methods to analyze fMRI data are described in literature (Li et al., 2009). In fMRI 

studies, a method called General Linear Model (GLM) is often used (K. Friston & Holmes, 1995). 

Concerning FC, other approaches are available and include Principal Component Analysis (PCA) 

(K. Friston & Frith, 1993), Independent Component Analysis (ICA) (C. F. Beckmann et al., 2005; 

Calhoun, Adali, Pearlson, & Pekar, 2001), clustering  (Cordes, Haughton, & Carew, 2002; M. van 

den Heuvel, Mandl, & Hulshoff Pol, 2008) and seed methods (Cordes et al., 2002; M. Song et al., 

2008). These approaches can be divided in model-dependent methods and model-free (also known 

as data-driven) methods (M. P. van den Heuvel & Hulshoff Pol, 2010). A flow chart representing 

an organized view of current methods is visible in Figure 7. 

 

 

Figure 7 - Methods developed for functional connectivity MRI study. [Adapted from (Li et al., 

2009)] 
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STATISTICAL PARAMETRIC MAPPING 

This is a model-based method used to find activation patterns consequential from 

cognitive tasks. Over the years, statistical parametric mapping (SPM) has come to refer to the 

conjoint use of the GLM and Gaussian Random Field (GRF) theory to make typical inferences about 

spatially extended data through statistical parametric maps (Li et al., 2009). In few words, SPM 

uses GLM to estimate the parameters that could explain the data and uses GRF to resolve the 

multiple comparison problems in making statistically powerful inferences (K. Friston & Holmes, 

1995). This method was initially used for FC detection in a resting-state data set by (Greicius, 

Krasnow, Reiss, & Menon, 2003). All brain voxels go through a scaling and filtering process and 

are then averaged in a certain seed, which is considered as a covariate on interest in the first-level 

SPM analysis. Afterwards, the contrast images corresponding to this regressor are determined 

individually for each subject and enter into a second-level random effect analysis, so to determine 

the brain areas that show significant FC across all subjects belonging to the dataset. SPM is an 

extremely univariate approach since a statistic (e.g. t-value) is calculated for every voxel, using the 

general linear model (Fumiko Hoeft, 2008). 

 

SEED-BASED CORRELATION ANALYSIS 

This model-based analysis starts with the a priori selection of a voxel, cluster or atlas 

region from which the timeseries data is extracted; this is called a seed. This selection can be done 

based on literature or functional activation maps from a localizer experiment. Afterwards, the data 

is used as a regressor in a linear correlation analysis or in a GLM analysis so to calculate whole-

brain, voxel-wise FC maps of correlation with the seed region. This process is considered univariate 

because each voxel’s data is regressed against the model apart from the other voxels (Cole et al., 

2010; Jo, Saad, Simmons, Milbury, & Cox, 2010). In other words, the correlation between the 

seed’s timeseries and every other voxels’ timeseries is calculated. The correlation coefficient 𝑟 can 

be calculated by the Eq. 2. 

 

𝑟 =
∑(𝑋−𝑋̅)(𝑌−𝑌̅)

√∑(𝑋−𝑋̅)2∑(𝑌−𝑌̅)2
   Eq.2 
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In the previous expression, 𝑋 is the timeseries from the voxel under the scope and 𝑌  is 

the timeseries from the seed voxel. In its turn,  𝑋  ̅̅ ̅̅ and   𝑌 ̅̅ ̅ are averaged timeseries, respectively. 

 The areas with bigger correlation index are the ones activated at the same time as the 

seed and are hence functionally connected. This results in a FC map that depicts the functional 

connections of the predefined brain region (seed) and provides information about which areas are 

connected to the seed and to what extent. Given that this method is considerably straightforward 

and simple, some researchers prefer it. However, the information retrieved by the FC map is limited 

to the seed selected, which makes it more difficult to perform an analysis on the whole-brain scale, 

because it requires to perform every step for each voxel (M. P. van den Heuvel & Hulshoff Pol, 

2010). Another downside concerns the noise that might be present in the seed voxel or region that 

can influence the timeseries and thus confound the results. 

 

PRINCIPAL COMPONENTS ANALYSIS 

This is a technique widely used for data analysis and its fundamental goal is to represent 

the fMRI timeseries by way of a combination of orthogonal contributors. Each contributor consists 

in a temporal pattern – a principal component – multiplied with a spatial pattern, called an Eigen 

map. Next, Eq.3 shows how a timeseries 𝑋 can be represented with principal components. 

 

𝑋 =  ∑ 𝑆𝑖𝑈𝑖𝑉𝑖
𝑇𝑝

𝑖=1   Eq.3 

 

In Eq.3, 𝑆𝑖 denotes the singular value of 𝑋,  𝑈𝑖 denotes the ith principal component and 

𝑉𝑖 represents the corresponding eigen map. 𝑃 represents the number of components. Typically, 

the vectors which contribute less to the data variance are excluded, resulting in refined signal data 

with most of the signal preserved. The generated eigen maps depicts the connectivity between 

different brain regions and the bigger the absolute eigen value is, the bigger is the correlation 

between those brain regions (Li et al., 2009). 

This FC technique has been applied to some studies (Baumgartner et al., 2000) but its 

application has some constrains regarding FC because it fails to identify activations at lower 

contrast-to-noise ratios when other sources of signal are present, such as physiological noise. In 

addition, there isn’t a consensus about the optimum number of components. In spite of these 

disadvantages, this method is good at detecting the extensive regions of correlated voxels. Still, this 
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method can be used as a preprocessing step to achieve dimensionality reduction since it reduces 

second-order dependency between each component. 

 

COMPLEX NETWORK ANALYSIS 

Complex network systems and neuroscience are two study fields that meet to create this 

new perspective of FC analysis (Bullmore & Sporns, 2009; Onias et al., 2013). In this kind of 

analysis, commonly, several brain regions are defined as nodes of a network and connections 

(edges) between regions are modeled as the FC between each pair of regions. 

The first step of CNA comprises the selection of the nodes. This can be done by one of 

three ways, being image voxels, segregation based on brain functional division and anatomical 

brain divisions. The latter is the most common approach and uses brain atlases to segment the 

brain in a number of regions that will be the nodes. On the other hand, the links constitute 

measures of functional or effective connectivity between pairs of nodes. These values have their 

origin in the timeseries computed from the average hemodynamic response at each node. These 

timeseries will be correlated against each other for all the nodes, yielding a 𝑁 × 𝑁 symmetric 

correlation matrix. This matrix can be used to create a network straight way, however it is commonly 

thresholded in order to obtain a binary matrix or to obtain the 𝑥 percentage of strongest connections 

(being 𝑥 a value determined by the experimenter). When all matrices are thresholded at the same 

value for all subjects, it is possible to calculate the desired metrics. Every subject will have a specific 

value, hence, group averages may be computed and a statistical comparison between different 

groups can be performed. 

This approach has been used by numerous studies that have found complex network 

changes related to different conditions in basic neuroscience (Schröter et al., 2012), neurology (C 

J Stam et al., 2007) and psychiatry (Liu et al., 2008). 

 

INDEPENDENT COMPONENT ANALYSIS 

Unlike the model-based methods, data-driven methods allow the exploration of whole-

brain FC patterns without having to previously define a region of interest or seed. ICA, used in 

several RSNs studies (C. Beckmann, 2005; Calhoun et al., 2001), is one of these methods. 

Starting with a signal that is a combination of several sources mixed together by an 

unknown process, this method tries to find the unknown signal sources. Particularly, in FC analysis, 

ICA tries to find a combination of sources that might explain RSNs’ patterns, based on the 
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assumption that the signal sources are statistically independent from non-Gaussian distributions. 

Iteratively, this method finds the components by maximizing the degree of independence amongst 

them. ICA analysis can be spatial, when the components are independent in the space domain, or 

they can be temporal, when the components are independent in the time domain (Sui, Adali, 

Pearlson, & Calhoun, 2009). 

 

 

2.5 Other Applications 
 

MRI is not only notable for the flexibility of the image contrast between tissues that it 

permits but also for the range of anatomical and physiological studies that can be undertaken with 

this technology. Despite its relative maturity, MRI technology is still very dynamic and new 

applications are being developed and adopted into clinical practice at an impressive rate. 

In cancer patients, MRI is still an essential method to establish the staging of cancer and 

preferred over CT for specific sites of the body including the uterus and bladder, prostate, ovaries, 

and head and neck cancer. Contrast-enhanced MRI can reduce the number of biopsies in women 

with abnormal mammograms; and in difficult cases it can reveal residual cancer and help in 

treatment planning. 

Regarding Magnetic Resonance Angiography (MRA), the increased speed of newer MRI 

systems, together with improved resolution and software processing methods, allows impressive 

angiographic imaging results through all of the human body. Given the high quality of MRA images, 

physicians are able to make clinical decisions based on these images. This way, it’s possible to 

avoid invasive procedures that would have return the same diagnosis and also to perform a better 

planning of the treatment procedures. 

On the subject of cardiac MRI, recent studies have demonstrated that cardiac magnetic 

resonance (CMR) can produce images of myocardial perfusion that compare positively with those 

obtained using positron emission tomography and single photon emission computed tomography 

(Ibrahim et al., 2002).  

As for the central nervous system, the use of perfusion and diffusion imaging is becoming 

a clinical standard in addition to regular MR imaging to help guide the early treatment of stroke. 

Furthermore, improvements have been observed in MR spectroscopy for the characterization of 

brain tumors and the follow-up treatment. 
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Software for the coregistration of fMRI data with images from other radiological modalities 

continues to be developed. This technology is particularly important for stereo-tactical surgical and 

radio-surgical treatment planning. (A. Maidment, Seibert, & Flynn, n.d.).
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3 Machine Learning 

 

Machine learning can be found in a numerous amount of applications, such as spam 

filtering, optical character recognition, search engines and computer vision (Cortes & Vapnik, 1995; 

Wernick, Yang, Brankov, Yourganov, & Strother, 2010).  

 

The learning algorithm or classifier must learn a number of parameters called features 

from a set of examples. After the learning process, the classifier is a model that represents the 

relationship between the features and the class (or label) for that specific set of examples. Later, 

the classifier can be used to verify if the features used contain information about the class of an 

example. This relationship is tested by applying the classifier in another set. The training and testing 

examples are independently drawn from an “example distribution”; when judging a classifier on a 

test set, we are obtaining an estimate of its performance on any test set from the same 

distribution. Quote from (Pereira et al., 2009). 

These sets are organized in a matrix where each row is an example and, since an example 

is a row of features, each column is a feature. The testing set has one column missing – the label. 

The features can have different weight values (𝑤) amongst them, meaning that some features can 

be more important than others to the result. 

A classifier can be seen as a function that receives an example and returns a class label 

prediction for that example. The various types of classifiers are distinguished by the specific kind 

of function they learn (Pereira et al., 2009).  

Usually, the data from a classification problem is divided in two sets – the train and test 

set – and both these sets are constituted by examples. In their turn, these examples are an instance 

of the problem’s population and each one of them has a group of attributes or features. These 

features are common for all examples, i.e. all the examples have the same features. However the 

value of the feature varies amongst the examples. In a simple, yet effective, explanation, please 

consider the mock data set depicted in Table 1. 
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Table 1 – Mock data set that embodies a typical representation of data concerning 

classification problems 

Car Brand Color Year Condition 

Car_1 Opel Grey 2010 Good 

Car_2 Nissan Red 2003 Bad 

Car_3 BMW Blue 2003 Average 

 

This dataset has 3 examples, identified in the first column. The second, third and fourth 

columns – Brand, Color, and Year – are the features that characterize the objects. All three objects 

have the same features, however, not all have the same values. The last column is the attribute 

that depends from the other three and is considered the target value, i.e., the label. Regarding the 

test set, the last column is omitted, because that is the value intended to predict by the learner. All 

5 columns are considered attributes, however they aren’t all the same. The first and last columns 

are special attributes because they have a role. The former uniquely identifies each one of the 

examples and the latter is the target value, i.e., the value that identifies the examples in any way 

and must be predicted for new examples (Akthat & Hahne, 2012). 

 

The more examples used in the training set, the better the classifier will be. When using 

voxels in the whole brain, it usually results in a few tens of examples and, at least, a few hundreds 

of features. A possible outcome of this is a phenomenon called over-fitting, which is the likelihood 

of finding a function that will produce good results in the training set, however it’s not guaranteed 

that it will do well in the test set (Pereira et al., 2009). It’s very important to avoid this phenomenon 

in machine learning because it means the trained classifier, i.e. the obtained model, is not 

appropriate to use in new data. This happens usually when the number of training examples is low 

and so the learner may adjust to a specific subset of features that have no causal relation to the 

target function. Despite the increasing performance in the training examples, the model will deliver 

bad performance results on unseen (new) data sets. 

To avoid this problem, from among the functions with good results, one must chose a 

simple one. A simple function is one where the prediction depends on a linear combination of the 

features that can reduce or increase the influence of each one of them. When working with linear 

classifiers, one can be sure that each feature only affects the prediction with its weight and it 

doesn’t interact with other features, thus giving us the measure of its influence on that prediction. 

Learning a linear classifier is equivalent to learning a line that separates points in the two classes 
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as well as possible (Pereira et al., 2009). A representation of a linear classifier is shown in Figure 

8. 

 

 

Figure 8 - Representation of a linear classifier that separates objects from two different 

classes, red and green. 

 

 

3.1 Supervised vs. Unsupervised 
 

Usually, machine learning tasks can be divided in two categories - supervised and 

unsupervised learning. 

Concerning supervised learning, the algorithm receives as input a set of data examples 

as well as their respective output (i.e., label), and the goal is to learn the rule that explains the 

relationship between the examples and their label. This way, when new examples are supplied to 

the algorithm, it can predict the label, based on the learned rule. 

As for unsupervised learning, the algorithm receives only the data examples and no 

labels. In this case, trying to find natural groups (or clusters) in the input data is the goal. This can 

also be used to detect patterns in the input data examples. 

 

 

3.2 Types of Algorithms 
 

Regarding the classifiers that learn a classification function, these fall into two categories, 

discriminative or generative models. The first ones’ goal is to learn how to predict straight from the 

training set of examples. Usually, this requires learning a prediction function with a given 

parametric form by setting its parameters. In the second case, a statistical model of the join 

probability, 𝑝(𝑥, 𝑦), of the inputs 𝑥 and the label 𝑦 is learned. This model is capable of generating 

an example that belongs to a given class. The distribution of feature values on the example is 
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modelled like 𝑝(𝑥|𝑦 = 𝐴) and 𝑝(𝑥|𝑦 = 𝐵), where A and B are two distinct classes. Afterwards, 

this is inverted via Bayes Rule to classify and the prediction result is the class with the largest 

probability (Ng & Jordan, 2002). 

General consensus shows that discriminative classifiers are almost always preferred over 

the generative ones. One of the reasons for this is that “one should solve the [classification] 

problem directly and never solve a more general problem as an intermediate step [such as 

modeling  𝑝(𝑥|𝑦)]” as Vapnik said (Vapnik, 1998). 

 

 

3.2.1 Algorithms  
 

Numerous learning algorithms are available nowadays, including neural networks, SVM 

and as well as simpler ones, such as the kNN, amongst others. Each learning algorithm is unique 

and requires a specific set of parameters in order to perform. Hence, the performance results may 

vary with the algorithm used, apart from the dataset used. 

From the vast range of learning algorithm existing, some discriminative approaches for 

machine learning algorithms are described ahead. In these descriptions, the definition of the 

parameters is included, as well as some theory about each algorithm. 

 

 

NEAREST NEIGHBOR 

kNN is one of the simplest classification algorithms and it doesn’t need to learn a 

classification function (Pereira et al., 2009), i.e., there is no model to fit. The basis behind this 

classifier is that close objects are more likely to belong to the same category. 

Examples from the test set are classified according to the 𝑘 closest examples - the 

neighbors - from the training set. Being 𝑛 the number of features, all objects are set in the 𝑛-

dimensional space. A new, unlabeled object is also set in the same 𝑛-dimension space and each 

object in the surroundings adds a vote to one of the possible label classifications. The new object 

is classified according to the most similar and close objects. This similarity can be measured by 

the lowest Euclidian distance, for instance. However, there are several ways to measure this 

distance. When dealing with binary classification problems, i.e. when there are two possible labels 

to assign, it’s better to choose an odd 𝑘, to avoid tied votes. 
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Euclidean distance – the Euclidean distance between two points is the length of the line 

segment that links them. If 𝐴 = (𝑎1, 𝑎2, . . . , 𝑎𝑛) and 𝐵 = (𝑏1, 𝑏2, . . . , 𝑏𝑛) are two points in a 

𝑛-dimension space, then the distance 𝑑 between them is calculated by Eq.4. 

 

𝑑(𝐴, 𝐵) = 𝑑(𝐵, 𝐴) =  √(𝑎1 − 𝑏1)2 + (𝑎2 − 𝑏2)2 +⋯+ (𝑎𝑛 − 𝑏𝑛)2   Eq.4 

 

Manhattan distance – the distance between two points in a grid based on a strictly 

horizontal and/or vertical path (i.e., the diagonals aren’t used as path) is called the Manhattan 

distance when is the result of the sum of the horizontal and vertical components, whereas the 

diagonal distance might be calculated by means of the Pythagorean Theorem. 

 

Chebychev Distance – this metric is defined on a vector space where the distance 

between two vectors is the greatest of their differences along any coordinate dimension. The 

Chebychev distance between two vectors (or points) is shown in Eq.5 

 

𝑑 = max
𝑖
(|𝑎𝑖 − 𝑏𝑖|)      Eq.5 

 

 

SUPPORT VECTOR MACHINE 

SVM is a method that performs classification tasks by constructing hyperplanes in a 

multidimensional space that separates objects of different class labels. SVM supports both 

regression and classification tasks and can handle multiple continuous and categorical 

variables (Cortes & Vapnik, 1995). 

As mentioned before, a linear classifier uses a straight line to separate objects in their 

respective groups, however, most cases aren’t this simple and require a more complex structure 

in order to optimally separate the objects in their class. 

SVM is considered a hyperplane classifier because it uses lines (or planes) to distinguish 

objects from different classes. The basic idea behind SVM algorithms is the use of a kernel 

(mathematical function) to rearrange the original objects. After this process called mapping, the 

objects can then be linearly separated. This way, it is not necessary to “draw” a more complex 

structure, because a straight line is now able to separate the objects in their respective classes. 
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There are 4 kernel functions that can be used – Linear, Polynomial, Radial Basis Function (RBF) 

and Sigmoid – and their expression are represented in Eq.6. 

 

𝐾(𝑋𝑖 , 𝑋𝑗) =

{
 
 

 
 
𝑋𝑖 ⋅ 𝑋𝑗                                    𝐿𝑖𝑛𝑒𝑎𝑟

(𝛾𝑋𝑖 ⋅ 𝑋𝑗 + 𝐶)
𝑑             𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙

𝑒𝑥𝑝 (−𝛾|𝑋𝑖 − 𝑋𝑗|
2
)                  𝑅𝐵𝐹

𝑡𝑎𝑛ℎ(𝛾𝑋𝑖 ⋅ 𝑋𝑗 + 𝐶)           𝑆𝑖𝑔𝑚𝑜𝑖𝑑}
 
 

 
 

 where 𝐾(𝑋𝑖, 𝑋𝑗) = 𝜙(𝑋𝑖) ⋅ 𝜙(𝑋𝑗) Eq.6 

 

The kernel function represents a dot product of input data points mapped into the higher 

dimensional features space by transformation 𝜙. The parameters 𝛾 and C are defined by the user 

and 𝑑 from the polynomial function is the degree. 

 

In order to construct an optimal hyperplane, SVM runs an iterative training algorithm 

aimed to minimize an error function. The form of this error function distinguishes SVM models 

between one of four groups. Two are used for classification tasks, such as C-SVM classification; 

Nu-SVM classification; and the other two for regression tasks, being Epsilon-SVM regression; Nu-

SVM regression. 

 

 

The first type presented above, C-SVM classification, is described by Eq.7. 

 

1

2
𝑤𝑇 + 𝐶 ∑ 𝜉𝑖  

𝑁
𝑖=1 where  𝑦𝑖(𝑤

𝑇𝜙(𝑥𝑖) + 𝑏) ≥ 1 − 𝜉𝑖  and 𝜉𝑖 ≥ 0, 𝑖 = 1,… ,𝑁  Eq.7 

 

The parameter 𝐶 is the capacity constant, 𝑤 is the vector of coefficients, 𝑏 is a constant 

and 𝜉𝑖 represents parameters for handling nonseparable data (inputs). The index 𝑖 labels the 𝑁 

training cases. Note that  𝑦 ∈ ±1  represents the class labels and 𝜉 represents the independent 

variables. The kernel  𝜙 is used to transform the input data to the feature space. It should also be 

noted that the larger the 𝐶, the more the error is penalized. Thus, 𝐶 should be chosen carefully to 

avoid over-fitting. 
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The second type, nu-SVM classification, minimizes the function in Eq.8. 

 

1

2
𝑤𝑇𝑤 − 𝑣𝜌 +

1

𝑁
∑ 𝜉𝑖  
𝑁
𝑖=1  where   {

 𝑦𝑖(𝑤
𝑇𝜙(𝑥𝑖) + 𝑏) ≥ 𝜌 − 𝜉𝑖 

𝜉𝑖 ≥ 0
𝑖 = 1,… ,𝑁
𝜌 ≥ 0

  Eq.8 

 

Before using a dataset as input to a SVM learner, it’s necessary to ensure the data is pre-

processed for such learner. SVM requires that each example is represented as a vector of real 

numbers, hence, any nominal attributes must be converted to numerical data. It’s considered a 

good practice to normalize the dataset. This prevents attributes with bigger ranges from dominating 

over the ones with smaller ranges. It also helps to avoid calculation problems during the algorithm 

process (Hsu, Chang, & Lin, 2003). A possible manner to perform this is by the transformation of 

the data into z-scores. 

The best first choice for the kernel function is the RBF, because it maps the samples 

nonlinearly into a higher dimensional space. Unlike the linear kernel, it can handle cases where 

the relation between the class labels and the attributes in nonlinear. Besides, RBF has less 

numerical difficulties (Hsu et al., 2003). 

 

 

DECISION TREE 

This learner assumes the form of an upside-down tree: the root is at the top and the 

leaves grow downwards. One of the principal advantages of the representation of data in this model 

is its simple and easy comprehension. 

 

This classifier, although simple to represent, has several parameters defining it (Akthat 

& Hahne, 2012). 

Criterion is used to decide if a node is declared a leaf or if a sub-tree is created 

underneath it, i.e., if the attribute is split. It also determines the number of branches that a sub-

tree is allowed to have. This criterion can take form of one of the following values: 

 Information gain: the attribute with minimum entropy is split. This 

method tends to select attributes with a large number of values 



Chapter 3 
 

32 
 

 Gain ratio: adjusts the information gain for each attribute in a way 

that enables the extent and uniformity of the attribute values 

 Gini index: measures the impurity of a dataset. By splitting a 

determined attribute, the average gini index of the resulting subsets decreases 

 Accuracy: selects an attribute to split so the accuracy of the entire 

tree is maximized. 

Minimal size for split is the number of examples a node must have in order for to create 

a new branch. If a new branch isn’t created then it means that node becomes a leaf, ie, the end 

of its respective ramification. When a new example arrives to a leaf, a label is assign to it, because 

it reaches the end of the algorithm. 

Minimal leaf size sets the minimum number of examples classified by a leaf in a tree. If 

there are a big number of leaves with only a few examples, this value should be increased. 

Minimal gain determines if a node is split. In order to be split, a node’s gain must be 

higher than this parameter. If the value set is too high, the harder it is to split a node, resulting in 

a tree with a single node. 

Maximal depth restricts the size of the decision tree, which means that when the tree 

depth is equal to this value, the tree generation process will be stopped. In order to run the 

algorithm without this bound, the user should set the value to -1 (in RapidMiner software) 

Confidence is the parameter that specifies the confidence level used for the pessimistic 

error calculation of pruning. Pruning is a technique to reduce the size of decision trees, that, in 

order to do that, removes sections that have low influence in the classification process. This 

technique reduces the final classifier’s complexity and improves the predictive accuracy by 

removing sections that may be based on noise or erroneous data. 

Number of prepruning alternatives is the number of alternative nodes where splitting will 

be tried after the prepruning prevented a certain node from splitting. Prepruning is a parallel 

process running along with the tree generation process and prevents splitting from happening to a 

node when the discriminative power of the entire tree doesn’t benefit from it. 

Usually, the decision tree algorithm runs together with the prepruning and pruning 

processes, however the user can disable one or both this processes. 
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FISHER’S LINEAR DISCRIMINANT ANALYSIS 

This method’s goal is to find a linear combination of features that together are able to 

separate, in the best way, two or more classes of examples. The resulting combination is then used 

as a linear classifier. 

This method resembles PCA in the fact that both search for linear combinations of 

variables that explain the data better, i.e., it tries to find naturally occurring groups. LDA is also 

closely related to analysis of variance ANOVA and regression analysis, in the way that they also try 

to express one dependent variable as a linear combination of other features. The difference 

between these two methods and LDA is the fact that the dependent variable is numeric in the 

former ones while in the latter method is a categorical variable (i.e., the class label) (Akthat & 

Hahne, 2012). 

This method can be used to serve one of two purposes. It can be used to assess the 

adequacy of classification or it can be used to assign objects to one of a certain number of known 

groups. 

 

 

ARTIFICIAL NEURAL NETWORK 

An artificial neural network, usually mentioned as simply neural network, is a simplified 

mathematical model of the human central nervous system. It consists in an interconnected 

structure of computational elements, frequently called neurons or nodes. The connections between 

these nodes are sometimes referred to as synapses. During the learning process, this algorithm 

adjusts the weight of the connections between nodes to achieve the desired state for the classifier. 

Usually, this algorithm is used to model complex relationships between inputs and outputs or to 

find patterns in data (Akthat & Hahne, 2012). 

The connections between the nodes can be of different arrangements. A node can be 

connected to other nodes, forming a divergent connection; or several nodes can be connected to 

one single node, thus forming a convergent connections. Moreover, nodes can form chains or cyclic 

structures. Several learning algorithms can be used to train the neural network, back propagation 

being one of them. This algorithm is divided in two steps, propagation and weight update, which 

are repeated until the performance of the network reaches a determined value. Then, the output 

values are compared to the correct answers in order to determine the error. Afterwards, this error 

is fed back into the network, so the algorithm can use this information to adjust the weights of each 
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connection and to reduce the error percentage. This process is repeated for a determined number 

of training cycles, usually making the network converge to a state where the error is considered 

small. 

 

 

3.3 Large Datasets 
 

Many types of data analysis and classification problems have become significantly harder 

because of the increasing dimensionality of data. This is called the curse of dimensionality (Warren 

Powel, 2008) in the literature. Regarding supervised classification, the available training set might 

be too small (i.e., very few examples) which prevents the creation of a reliable model. In spite of 

the small training set, the number of features can be very high and some might not be relevant to 

the model concerned. 

As a consequence of this phenomenon, classification accuracy might suffer, not to 

mention high computational cost and memory usage from the learning algorithms (Janecek, 

Gansterer, Demel, & Ecker, 2008). In order to avoid these problems, feature selection and 

dimensionality reduction methods have been developed. Some of this method are described ahead. 

 

 

3.3.1 Feature Selection 

The two basic and significant steps to the process of fMRI analysis aimed at classification 

are feature selection and feature based classification (S. Song et al., 2011). 

Feature selection is a task performed to test if all the attributes belonging to a certain 

dataset are effectively relevant or to see if it’s possible to obtain a better model by omitting some 

of the original attributes (“Data Mining and Rapid Miner,” 2010). Nowadays, several methods are 

available to perform feature selection. These methods can be divided in two categories: filters and 

wrappers. Methods based on statistical tests are considered filters. On the other hand, wrappers 

use a learning algorithm to search and report optimal feature subsets (Saeys, Inza, & Larrañaga, 

2007). 
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FORWARD SELECTION 

This is considered a wrapper approach and an iterative method. It starts with no attributes 

and, in each iteration, temporarily adds each one of the attributes unused (in the first iteration, 

adds all of them). Afterwards, for each of the attributes added, it calculates the performance (of a 

classifier) and permanently adds the attribute that results in the highest increase of performance. 

The following iteration starts with the modified selection of attributes. The user can set a number 

of speculative rounds to define how many times the stopping criterion should be ignored. If the 

performance increases during a speculative round, the selection continues. However, if the 

performance never increases during the speculative rounds, all attributes added will be removed. 

A downside of this approach is the fact that it tends to overfit to the learning scheme 

used in this feature selection method. Although it increases the performance of the learner used, 

it doesn’t retrieve the best, generally relevant subset of features (Schowe, 2011) 

A related approach is the Backwards Elimination, which follows the same logic but 

applied in an opposite way. Instead of adding attributes in each iteration, the Backward Elimination, 

as the name suggests, temporarily removes all attributes and calculates the performance of a 

classifier. Afterwards, definitely removes the attribute with the least decrease of performance. 

 

 

RECURSIVE FEATURE ELIMINATION 

Recursive Feature Elimination (RFE) is a method that trains an SVM and repeatedly 

discards the features with the lowest weights and retrains. Instead of discarding all features with 

small influence at once or discarding all but the largest, this method works in an iterative way 

(Schowe, 2011): 

1. A linear SVM is trained on all remaining features, yielding 𝛽 (the feature’s 

importance); 

2. The fraction 𝑟 or fixed number 𝑐 of features with smallest |𝛽𝑖| is discarded 

3. If only 𝑘 features are left, finish; else go to 1. 

 

For example, a determined feature would have been discarded if only the importance 

(beta) from the first run had been considered. But since the importance is recalculated in each 

iteration, and maybe some features that shared some information with this specific feature were 

removed in the first run, this particular feature receives a higher ranking. 
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PRINCIPAL COMPONENTS ANALYSIS 

First of all, PCA is not a feature selection method, in a way that it doesn’t select a subset 

of features from the original one. However this method is able to reduce the number of features, 

by grouping in the same component attributes or features that explain the variance in the dataset. 

In order to do this, this method uses a mathematical procedure, orthogonal transformation, to 

convert a set of observations of possibly correlated attributes into a set of values of uncorrelated 

attributes called principal components. This transformation assures that the first principal 

component’s variance is as high as possible and that each succeeding component has the highest 

variance possible given the constraint that it must be orthogonal to the preceding components, i.e., 

they must be uncorrelated (Akthat & Hahne, 2012). 

The PCA algorithm can be used to linearly transform the data while both reducing the 

dimensionality and preserve most of the explained variance at the same time. 

 

 

FILTERS 

Another approach to feature selection is the use of filters. These methods use a measure 

to score a feature subset and only a determined number of features, with a determined score, is 

selected. This measure, typically, is chosen so to be fast to compute, without losing the meaning 

and usefulness of the dataset. Mutual information and Pearson product-moment correlation 

coefficient are two measures that are most frequently used in this type of methods for feature 

selection (Estévez & Tesmer, 2009). 

Some filters, instead of a feature subset, deliver a feature ranking, allowing to choose the 

top most important features. In spite of being faster and less memory consuming as wrapper 

methods, the result of a filter method is not adjusted to a specific type of classification model. 

 

 

3.4 Performance Evaluation 
 

Several criteria can be used to evaluate the performance of classification algorithms and, 

usually, different measures evaluate different characteristics of the classifier. This is a matter of 

on-going research (Costa, Postal, Lorena, & Ad, 2007). 
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The conventional measure of classifier performance is accuracy, which is the probability 

of a correct answer. Still, other measures are available, such as the Receiver Operating 

Characteristic (ROC) curve. The area under this curve (AUC) can be a measure of classifier 

performance since it represents the probability that a randomly chosen positive example is correctly 

rated with greater doubt than a randomly chosen negative example. Other methods include F-

score, average precision, precision/recall break-even point, square entropy and cross-entropy and 

can be divided in three groups, threshold metrics, ordering/rank metrics, and probability metrics 

(Caruana & Niculescu-Mizil, 2006). 

Inside threshold metrics, it is possible to find accuracy and F-score. The performance of 

a classifier, when evaluated by these methods, is defined whether the prediction is above or below 

the threshold; it does not matter how close it is to the threshold. 

The ordering/rank metrics depend on the order of the cases and not the actual predicted 

values. These metrics measure how well the positive cases are ordered before negative cases and 

can be seen as a summary of model performance across all possible thresholds. This category 

includes AUC, average precision and precision/recall break-even point. 

As for the probabilistic measures, these interpret the predicted value of each case as the 

conditional probability of that case being in the positive class. The square entropy and cross entropy 

fall inside this group of metrics. 

 

 

3.4.1 Cross-Validation 

As previously mentioned, the more examples used in the training of the algorithm, the 

better the classifier will be, however, in order to obtain a good estimate of the classifier, one should 

not use just a few examples for testing. Meanwhile, it’s not possible to train and test on the same 

data example, because the goal is to obtain an estimation of the true accuracy of the classifier. To 

solve this problem, an iterative procedure called Cross-Validation (or n-fold cross-validation) can be 

implemented. 

The dataset is divided in 𝑛 subsets of equal size, afterwards one subset is used as test 

set and the other  𝑛 − 1 subsets are used to train the classifier in order to obtain a model. There 

is one particular application of this procedure that allows to take the most advantage of the dataset. 

This is called leave-one-out cross-validation and happens when the number of subsets 𝑛 is the 

same as the number of examples belonging to the dataset. Considering a dataset with 𝑚 examples, 
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in each iteration, one example will be used as the new unseen example (with the label omitted) to 

test the classifier, while the remaining 𝑚 − 1 examples are used to train the classifier and obtain. 

This process has as many iterations as examples, in this case, 𝑚 iterations. 

This is also used to estimate the statistical performance of a classifier, which means, it’s 

used to estimate how accurately a classification model will perform in practice (Akthat & Hahne, 

2012). Since cross-validation allows the learner to train with more examples, this procedure also 

avoids the over-fitting problem. 

 

 

3.5 Software 
 

RapidMiner is an environment for Machine Learning and Data Mining processes. It 

follows a modular operator concept that allows the design of complex nested operator chains and 

it also allows for the data handling to be transparent to the operators. RapidMiner introduces 

concepts of transparent data handling and process modeling in a way that facilitates the 

configuration for end users. This tool also permits the user to create plugins (“Data Mining and 

Rapid Miner,” 2010). 

This software contains a large range of operators. These operators are grouped by the 

tasks they perform. Some operators deal with data, whether to import or export, as well as to 

access the repository. The user can import his or her data to the RapidMiner program and use an 

operator to access it every time it’s necessary. Other operators are in charge of data transformation, 

such as sorting, filtering and conversion. The most important feature is the modelling. Operators 

under this category are the ones that allow the classification tasks. Moreover, some operators can 

evaluate performance and significance.  

A group of operators, set in an ordered, structured and logical manner, is called a 

process. The RapidMiner user can build a process by simply dragging and dropping operators in 

the process window. Each operator has defined input and output ports and, for instance, an 

operator output can be another operator input. The user can link these two ports in order to make 

the data flow throughout the process. Besides the process view, the user can see the final output 

of the process in the results view. These results can be saved into the repository to latter be used 

in another process or they can be exported. This software also lets the user install plugins, for 
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instance, within the present work, a Feature Elimination Extension was installed in order to perform 

the RFE-SVM algorithm. 

 

 

3.6 Applications to neuroimaging 
 

Classifier-based analysis was first used to investigate neural representations of faces and 

objects in ventral temporal cortex and showed that the representations of different object categories 

are spatially distributed and overlapping. Plus, it also revealed that they have a similarity structure 

related to stimulus properties and semantic relationships (Haxby et al. 2001; Hanson et al. 2004; 

O’Toole et al. 2005). 

In 2012, (Long et al., 2012) developed a non-invasive technology intended to be used in 

the diagnosis of early Parkinson’s disease. In this work, the authors used resting-state fMRI and 

structural brain images. Features were extracted for functional and structural images. Regarding 

the functional ones, characteristics were extracted at three different levels, including amplitude of 

low-frequency fluctuations, regional homogeneity and regional FC strength. As for the structural 

images, volumes of white matter (WM), grey matter (GM) and cerebrospinal fluid (CSF) structures 

were also extracted. In order to reduce the number of features, a two sample t-test was performed 

and only the features with significant differences between the two groups, controls and patients, 

were selected. Later, SVM algorithm was implemented as a classifier for early Parkinson’s disease 

patients and control subjects. To evaluate the performance of this classifier, the leave-one-out 

cross-validation method was used. 

Nouretdinov and colleagues (Nouretdinov et al., 2011) proposed a general probabilistic 

classification method to produce measures of confidence for MRI data, by applying transductive 

conformal predictor to MRI images. This predictor was applied to both structural and functional 

MRI data in patients and healthy controls to investigate diagnostic and prognostic prediction of 

depression. The motivation for this work is based on the crucial requirement of predictions’ quality 

for clinical applications of machine learning, also known as the confidence of the classification 

output. This method benefits the determination of the risk of error associated to machine learning 

application in the clinical environment. 

A different approach was developed by Chong-Yaw Wee and colleagues (Wee et al., 

2012), using multi-spectrum FC networks to identify MCI patients. The goal is to accurately 
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distinguish MCI patients from subjects with normal aging and it uses multi-spectrum networks to 

characterize BOLD signal changes. The timeseries from several defined regions of interest (ROIs) 

were averaged and subsequently band-pass filtered. Afterwards, these timeseries were 

decomposed into 5 frequency sub-bands and five connectivity networks were built, one from each 

frequency sub-band. Clustering coefficient of each ROI against every other ROI was used as feature 

and leave-one-out cross-validation was used to evaluate the SVM classifier performance. This 

classification framework allows the early detection of functional brain abnormalities and positively 

contributes to the treatment of potential Alzheimer’s disease patients. 

Usually, the typical fMRI study generates more features than examples, which is not the 

best scenario when dealing with machine learning. Frequently, a large dataset includes features 

that do not contribute to the classification task, because they carry no useful information. On the 

other side, the bigger the number of examples, the better model the classifier will be. But to avoid 

this problems, several mechanism are accessible, including feature selection methods and cross-

validation procedures. 
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4 Materials and Methods 

 

As mentioned before, the main purpose of this work is to produce knowledge on how to 

combine machine learning and complex network analysis and to see how well learning algorithms 

perform with network topological measures as features. In order to solve the problem – lack of 

knowledge – a set of learning algorithms was used with FC data to see which combination of 

parameters and feature selection methods produced better results. 

Typical neuroscience/neuroimaging studies focus on characterizing and describing 

differences between groups of patients with a certain condition and healthy controls. Hence, the 

approach described above was applied to FC data from an fMRI study with OCD patients and 

healthy subjects as controls. 

 

With the intention of being applied to classification, the dataset must have, inherent to 

itself, the target value. In other words, the dataset must contain useful information to answer the 

classification question “to which of this classes does the example belongs to”.  In order to obtain 

useful information from raw neuroimaging data, several processing procedures need to be applied. 

For the present work, images from all subjects needed to be preprocessed in order to increase the 

quality of the data. Then, for the network analysis, the functional networks of the subjects needed 

to be created and network metrics calculated. Afterwards several datasets were built according to 

the feature selection method applied. Next, classification algorithms were implemented and the 

performance was measured for each combination of classifier and feature selection method. 

 

 

4.1 Sample and Image Acquisitions 
 

In this study, a total of 62 individuals participated, 19 males and 43 females. All the 

participants were right-handed and had no history of neurological or comorbidity disorders. Out of 

the 62 participants, 24 were patients that had been diagnosed with Obsessive Compulsive Disorder 

and the remaining participants were controls. OCD patients were evaluated regarding duration of 

illness, obsession and compulsion’s types, as well as medication taken. To all participants, the aim 

of the study was explained and they participated as volunteers and gave written informed consent. 
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The subjects were scanned on clinical approved 1.5 T Siemens Magnetom Avanto TIM-

system MRI scanner at Hospital de Braga. Concerning the structural analysis, a T1 3D MPRAGE 

(magnetization prepared rapid gradient echo) scan was performed with the following parameters: 

176 sagital slices, repetition-time (TR) = 2730, echo-time (TE) = 3.48 ms, slice thickness = 1 mm, 

slice gap = 0 mm, voxel size = 1x1 mm2, field-of-view (FoV) = 256×256 mm, flip angle (FA) = 7°. 

Functional images were collected axially using an echo-planar imaging (EPI) sequence sensitive to 

BOLD contrast. The acquisition parameters were: 30 slices, TR = 2000 ms, TE = 30 ms, slice 

thickness= 3.5 mm, slice gap = 0.48 mm, voxel size = 3.5 x 3.5 mm2, FoV = 1344×1344 mm, FA 

= 90° and 180 volumes. During the resting state scan, the subjects were instructed to remain still, 

with their eyes closed, but still awake, to remain as motionless as possible and think of nothing in 

particular. None of the participants fell asleep during the acquisition. Foam pads were used in both 

head sides in order to reduce head motion during the acquisition. 

 

 

4.2 Preprocessing 
 

The first stage of the preprocessing work flow was entirely done with the BrainCAT tool 

(Marques, Soares, Alves, & Sousa, 2013). This software performs an automated and standard 

multimodal analysis of combined fMRI/Diffusion Tensor Imaging (DTI) data, resorting to open 

source tools. The standard pipeline for fMRI images is implemented by this tool and includes the 

following steps: 

1. Format Conversion: the first step is to convert the DICOM images 

obtained from the MRI to the NIfTI (Neuroimaging Informatics Technology Initiative) 

format. This is accomplished with the open source tool dcm2nii (“DICOM to NIfTI 

conversion,” n.d.).  

2. Initial Volumes Removal: after that, the initial volumes of the 

acquisition are removed. In this work, the first 5 volumes (out of 180) were removed, 

in order to assure the magnetic field was stable. 

3. Motion Correction: this guarantees that all anatomical key-places stay 

in the same site across all the acquisition’s volumes through a rigid alignment. This 

step also outputs two graphic representations of the translational and rotational 
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movement and subjects that surpassed the limits of 2 mm in translation and 2º in 

rotation were considered to present too much movement and were excluded. 

4. Slice Timing Correction: this corrects timing differences between 

slices, since they are acquired in different points in time and the fMRI analysis 

assumes the complete volume as a one-time acquisition. 

5. Skull Stripping: this step removes the non-brain structures. 

6. Normalization: is performed to put all subject’s data in the same 

standard space (in this case, MNI 152), so the acquisitions are transformed, space-

wise, to force anatomical key-points to be in the same position across all the subjects. 

7. Smoothing:  this step helps reduce some noise and correct some 

problems introduced by the previous step (normalization). However, in the present 

work, this step was not performed because the images acquired were already 

smoothed. 

8. Band-pass Filtering: the images were filtered between the frequencies 

of 0.01 Hz and 0.08 Hz because RSNs are related with low frequency BOLD 

fluctuations and high frequency ones are, generally, associated with cardiac beating 

and respiratory movements. 

 

This preprocessing workflow is the recommended for analysis of RSNs using ICA. 

However, for network analysis some other preprocessing steps are recommended. As so, it was 

necessary to take some steps back and perform an additional step to remove possible confounding 

influence from WM and cerebrospinal fluid CSF. In order to do so, the FMRIB Software Library 

(FSL) was used. This software is a library with tools to analyze fMRI, MRI and DTI brain images. 

Most of the tools provided can be run both from the command line and in GUI (i.e., Graphical User 

Interfaces) (“FMRIB Software Library,” 2014). 

To remove WM and CSF signal confounds, it was decided to regress out the signals 

coming from these sources, by means of a GLM. First, brain segmentation was performed with 

FSL’s fast command to obtain WM and CSF. Afterwards, these masks were eroded to guarantee 

that grey matter signals would not be included in the nuisance regressors. Afterwards, the WM and 

CSF masks were used with the FSL’s fslmeants command to obtain the average timeseries for 

each signal. These timeseries were then fed to the GLM as regressors, using FSL’s fsl_glm 

command and the residuals of the model were used as data of interest. 
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After this step, the preprocessing pipeline was resumed at step number 6 and 

normalization was performed, as well as the band-pass filtering.  

 

In order to remove the noise coming from WM and CSF signals, other approaches were 

investigated. One of those approaches consisted in Independent Components labeling for artifact 

removal (Tohka, Foerde, Aron, & Tom, 2008). Although promising, this approach was abandoned 

because it required the user to specifically tell the classifier which components are considered 

noise before the training step. To do that, the user must visually identify the noise components, 

which is hard for the unexperienced user. Besides, some components can be very ambiguous, 

making the choice very uncertain and user dependent, thus not fully exploratory. Other reason for 

the rejection of this approach was the lack of data. After using data to show the classifier noise 

components examples and using data to train the classifier, very few was left to actually test the 

classifier. 

 

 

4.3 Correlation Matrices 
 

For this work, 160 brain areas were chosen as ROIs to be the nodes of the network. A 

sphere was created for each one of these ROIs, and each sphere was centered in the center of 

gravity of each ROI. In other words, each ROI had a determined shape and size, usually irregular, 

so the center of gravity for each one of these ROIs was calculated. A sphere was then created for 

each one of the 160 ROIs and it was centered at the same point as the center of gravity of the 

corresponding ROI. These spheres are an approximation of the ROIs. Then, FLS’s fslmeants 

command was used to obtain the average timeseries for all the 160 ROIS. All the voxels inside a 

sphere were averaged together to obtain the average timeseries of all 160 ROIs. And, with this 

step, the preprocessing is complete. This pre-processing procedure was necessary to perform 

before building the correlation matrices in order to assure their quality. 

 

Given that part of this work’s goal is to build a complex network having the brain as 

model, i.e., construct a graph where the nodes are brain regions and the edges are the connections 

between the brain regions, it is mandatory to obtain the edges between the previously defined 160 

nodes. In order to do so, it is necessary to correlate each one of the 160 timeseries acquired with 
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each other and build a correlation matrix for each subject. This is also called an adjacency matrix. 

The result is 62 160x160 correlation matrices, by the end of this step. 

This step was performed using Python libraries, such as Nitime (“Nitime: Time-series 

Analysis for Neuroscience,” n.d.), as resource. For each subject, the text file with the ROIs average 

timeseries was used as input to obtain the correlation matrix. By means of the CorrelationAnalyzer 

method, the correlation matrix was assembled through the calculation of the correlation coefficient 

between every pair-wise combination of timeseries contained in the file. This matrix is of dimensions 

160x160 and is symmetric, i.e., the diagonal is 1, since it represents the correlation of one brain 

region with itself and the top triangle has the same exact information as the bottom one. 

Afterwards, since some areas were negatively correlated and network metrics are 

computed only with positive values, the matrix was converted to its absolute version in order to 

make all correlation values positive. Now, this matrix is the starting point to build a graph and 

subsequently calculate topological network metrics. Network metrics are known to vary according 

to network density (J. S. Damoiseaux & Greicius, 2009; Liang et al., 2012; Rubinov & Sporns, 

2010; van Wijk, Stam, & Daffertshofer, 2010). Consequently, in order to compare these metrics 

across subjects, it is mandatory that the networks have the same density. So, in order to 

accomplish this, all matrices were thresholded at the values of 5, 10, 15, 20 and 25% of strongest 

correlations. In other words, having a matrix thresholded at 5% means that only the 5% strongest 

correlations remain, while the others are cancelled. This means that, for each one of the 62 

subjects, 5 matrices were created. 

These thresholded matrices were created by means of a Python function created within 

this work, based on an existing Matlab function (MathWorks, n.d.). Given the threshold desired, 

this function calculates how many connections correspond to that value. Next, it orders all 

connections in a decreasing order and selects the number of connections that belong above the 

threshold by annulling the ones remaining. 

An example of these matrices can be visualized in Figure 9. To simplify, brain regions 

names were shortened, but the correspondence to the full brain areas can be seen in the 

Appendices section, at the end of the document. 
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Figure 9 – Example of a correlation matrix acquired via Nitime Python package. The 

scale ranges from blue to dark-red, being blue a strong negative correlation and dark-red a strong 

positive correlation. As one can see in the zoomed-in circle, the LPUT area is less correlated to 

LPT than it is to LCAU. 

 

These matrices showed that some subjects had very strong correlations (the dark red 

color of the image). After careful examination it was observed that these high correlations were due 

to the presence of a common signal to all regions, known to be the global brain signal. In order to 

try to correct these matrices, another step back was taken and another regressor was added to the 

regression of the WM and CSF signals. This regressor represents the average timeseries of the 

whole brain over the acquisition. This means that Global Signal Regression was performed. This is 

a controversial process. Some people claim that it should never be performed because it removes 
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important part of the neural signal, which is the focus in study and it also introduces, undoubtedly, 

negative activation measures in standard fMRI analysis (Murphy, Birn, Handwerker, Jones, & 

Bandettini, 2009). On the other hand, some defend that this procedure enhances ‘true’ negative 

relationships existing between cognitive control RSNs (Weissenbacher et al., 2009). 

 

 

4.4 Network Metrics 
 

Once the matrices were complete, everything was set to create graphs from them. 

Although different structures, both a correlation matrix and a graph represent the same information 

and so, they are equivalent. To create the graphs, a method called mkgraph was used from the 

Nitime library. This method requires an adjacency matrix (correlation matrix) as an input and 

returns a NetworkX graph object. NetworkX is another Python library that allows the creation, 

manipulation and study of the structure, dynamics and functions of complex networks (“NetworkX 

- High productivity software for complex networks,” 2014). This library was used to calculate the 

network metrics that would be used as features, with exception to the network measure Global 

Efficiency, which was determined by a Python function made within this work. 

From the large number of metrics that can be extracted from a network, only a few were 

chosen for the present work. Amongst these metrics, some are calculated locally, in the scope of 

a node while other are calculated globally, considering the whole network. The criterion for metric 

selection was based on the metrics that are more commonly reported in neuroimaging studies 

involving network analyses. 

Regarding the global ones, the following metrics were obtained (Bullmore & Sporns, 

2012; Rubinov & Sporns, 2010): 

 Global Efficiency: is calculated as the average inverse of the shortest path 

length; regarding brain networks, this measure usually represents the overall capacity 

for parallel information transfer and integrated processing; 

 Clustering Coefficient: represents the occurrence of clustered connectivity 

around individual nodes; 

 Transitivity: is a normalized variant of the clustering coefficient that avoids 

being disproportionately influenced by nodes with a low degree; 
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 Assortativity: measures the similarity of connections in the graph with 

respect to the node degree. 

 

As for the local ones, these were the ones extracted: 

 Degree: the number of edges connected to a node. If a node has a high 

degree, i.e., if a lot of edges “visit” him this might mean that it’s an important node; 

 Betweenness Centrality: is an indicator of a node’s centrality in the 

network; a node with high betweenness centrality has a large influence in the 

transportation of items through the network, assuming that the shortest path is 

preferred to transport items; 

 Triangles: is the number of triangles that a node belongs to. 

 

As mentioned above, network measures can either be local or global. Local measures of 

individual network elements, such as nodes and links, usually depict how these elements are 

integrated in the network. As for global measures, these ones provide an overall description of the 

network. However, network measures can also be grouped by the characteristics they measure. 

This way, measures of functional integration estimate how easily brain regions communicate and 

share information with distributed areas and are based on shortest path lengths measures, such 

as global efficiency. In its turn, measures of segregation quantify the existence of densely 

interconnected groups of brain regions, which suggests an organization of statistical dependencies 

pointing to a segregated neural processing, when these clusters are found in functional networks. 

One such metric is the clustering coefficient based on a vertex neighborhood triangle count. 

Measures of centrality are based on node degree or on the length and number of shortest paths 

between nodes. A high degree node interacts with many other nodes in the network and might be 

import in the information transportation. As for measures of resilience, they can quantify the 

vulnerability of the network. The assortativity coefficient, one of those measures, represents the 

correlation between the degrees of all nodes on two opposite ends of a link (Rubinov & Sporns, 

2010). 
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4.5 Dataset 
 

Segmentation of structural images was already done, and as part of the present work, 

this segmentation was revised to make sure they presented sufficient quality. In order to do so, 

FreeSurfer recommended reconstruction (Moreau, 2014) was performed to make sure the WM 

and pial surfaces were correctly defined, as well as the segmentation of anatomical brain regions 

for all subjects. 

Volumes for different brain regions were calculated. In order to do that, segmentation 

from two distinct brain atlases were used: the subcortical segmentation of FreeSurfer and cortical 

segmentation according to the Destrieux Atlas (Destrieux, Fischl, Dale, & Halgren, 2010). It was 

decided to include volumes of brain regions as features because it is known that some structural 

changes may occur in OCD patients (Pujol et al., 2004; Radua & Mataix-Cols, 2009). 

The previously mentioned metric values, together with brain region volumes and 

demographic values resulted in the feature dataset used for this work. This dataset contained 2531 

attributes. From the local measures, 2400 attributes (160 nodes x 5 densities x 3 network metrics); 

from the global measures, 20 attributes (4 network measures x 5 densities); 109 from brain regions 

volumes and 2 demographic values (sex and age). 

This dataset also includes two special attributes, the label, which identifies each one of 

the 62 subjects as control (C) or as OCD patient (O) and the identification of the subjects, ID. Every 

attribute is numerical, with exception to the ID, which is polynomial, and the label, that is binomial. 

 

 

4.6 Feature Selection 
 

For the present work, the feature selection methods used were described earlier in the 

document, particularly in Chapter 3, namely, the RFE, forward selection and PCA. Apart from PCA, 

which is a dimensionality reduction method, the methods used are considered wrapper 

approaches, because they use a learning algorithm in order to find the optimal subset of features. 

In the present work, this choice was taken because, although filters are suitable to large datasets, 

they have not been proved as effective as wrappers (Abraham, Simha, & Iyengar, 2007). 
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These algorithms were implemented via RapidMiner, which allows the user to take 

advantage of structured operators, ready to use, that only require the parameters input. 

Whenever the PCA operator was used for the dimensionality reduction, it was decided to 

keep the variance of 0.999 because the aim was to keep the components that explained the most 

of the variance. As a result, 61 components were used as features. 

Regarding the RFE operator, the parameter defining the number of attributes to select 

was set to 30, because it’s thought to be a reasonable number of attributes to keep, considering 

the original number of attributes and the classification process. The parameter of the cost was set 

to zero so the software would estimate the best value. 

As for forward selection, the number of attributes was also set to 30, so to keep uniformity 

throughout this work’s course. The number of rounds performed after the stop criterion is reached 

was set to 5. This value is higher than the default value proposed by the software because of the 

intention to avoiding a locally optimal value. This way, the selection of the best features is better 

assured. This operator is a nested operator, which means it runs a subprocess. In this subprocess, 

a classifier is used to evaluate performance of the features. This classification task also requires 

the use of cross-validation, but, in this case, it was decided not to perform leave-one-out cross 

validation because it was very time consuming. Instead, 8 fold-validation was performed, meaning 

that 8 groups were created and the classifier ran 8 times, having one group as test set and the 

remaining 7 as train sets. For the cross-validation operator of the main classifier, leave-one-out 

cross-validation was still performed. 

 

 

4.7 Algorithms and Parameters 
 

The selection of algorithms to implement in the present work consists in two variations 

of kNN (3NN and 5NN), as well as SVM, LDA and decision tree algorithms. The kNN approaches 

prevailed because of its simplicity. SVM is a frequent appearance regarding neuroimaging studies 

allied with FC. As for decision tree, this method was chosen because of its similarity with medical 

guidelines, which depict a reasoning and decision making flow. As for the LDA, this method was 

selected because it was convenient, relatively to time and implementation.  

Regarding the SVM classification process, from all available operators from RapidMiner 

software, the choice went to the libSVM implementation (Chang & Lin, 2011). This decision was 
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taken because it’s the most common implementation used in fMRI data (Cox & Savoy, 2003; 

Fekete et al., 2013; Long et al., 2012; Sato et al., 2013; Weygandt et al., 2012). 

Still concerning the SVM classifier process, in order to find the best parameter values of 

𝐶 and 𝛾, a grid search should be performed according to (Hsu et al., 2003). After defining a set of 

possible values for both parameters, several combinations of those values were tested and the 

classifier produced best results at 𝐶 = 1.000001 and 𝛾 = 0.00000032. 

As for the Nearest Neighbor algorithms, since these operators run considerably fast, 

every possible distance measure was tested for the dataset in question, without feature selection, 

to see which one performed the best. In result, 3NN was used with the Euclidean Distance and the 

5NN with the Manhattan Distance. 

LDA operator had no parameters to define and so it was run as is. 

Regarding the decision tree, the procedure adopted was to perform a small scale grid-

search. As an outcome, this operator was used with the criterion Accuracy, minimal size for split 

of 4, minimal leaf size of 3, minimal gain of 0.2 and confidence of 0.25. The maximal depth 

parameter was set to -1, which implies that no bound was set. 

 

Before the dataset enters the classifiers operators, sometimes it’s necessary to perform 

a preprocessing step. In this case, the operator Normalize was used to perform normalization, 

particularly, z-transformation. This is helpful in cases where the dataset values are of different units 

and scales. This z-transformation converts data into Normal Distribution with mean of 0 and 

variance of 1. A z-score 𝑧 is calculated by the formula described by Eq. 9. 

 

𝑧 = (𝑋 −  𝜇)/𝜎 Eq. 9 

 

In Eq. 9, 𝑋 denotes the value, 𝜇 denotes the mean and 𝜎 denote the variance or 

standard deviation. 

This step was performed due to recommendations from (Akthat & Hahne, 2012) and 

(Hsu et al., 2003) when dealing with SVM classifiers and methods that use the Euclidean distance, 

such as kNN. It was additionally performed in the processes that included PCA as feature 

dimensionality reduction method. 
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4.8 Performance Measures 
 

Every one of the 5 classifiers was tested with all the feature selection methods selected 

and without any feature selection approach. To achieve these combinations, 20 processes were 

constructed. The performance of the classifiers was evaluated by the Performance operator, which 

delivers a list of performance criteria values, automatically determined to fit the learning task type 

(Akthat & Hahne, 2012).  

An example of a process’ result in a confusion matrix, as shown in Figure 10. 

 

 

Figure 10 – Example of the results outcome by RapidMiner software. 

This table provides the accuracy (first row), as well as precision and recall for each class. 

The recall values for C (control) and for O (OCD patients) are, in fact, the values of specificity and 

sensitivity, respectively. Sensitivity and specificity are the statistical measures of the performance 

of a binary classification test. 

Sensitivity, also known as the true positive rate, is calculated as the fraction of the number 

of correctly classified OCD patients over the number of true OCD patients, in this case is equal to 

14/(14+10). This value corresponds to the recall value for the class O. 

As for specificity, also known as the true negative rate, is the fraction of the number of 

correctly classified Controls over the total number of controls, in this case is 30/(30+8). This value 

corresponds to the recall value for the class C. 
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5 Results 

 

In the scope of the present work, 5 classification algorithms were tested, together with 3 

feature selection methods. Besides, every classification algorithm was tested with the complete 

dataset, i.e., without any feature selection method associated. 

In order to evaluate performance, accuracy, sensitivity, specificity, and precision 

measures were calculated. Accuracy is an overall measure of the classifier’s performance, 

however, all the measures as a whole must be taken into consideration when evaluating the 

performance of a classifier. 

Accuracy is the percentage of correct predictions, for both controls and OCD patients 

together. Sensitivity is the proportion of correctly classified OCD patients, i.e., is the percentage of 

OCD patients that are correctly identified as having this disorder. As for specificity, it is the 

proportion of correctly classified control patients or, in other words, the percentage of healthy 

people who is correctly identified as not having the disorder. The precision, which, in this case, is 

presented for the OCD label, is the percentage of actual OCD patients, amongst all OCD predicted 

cases. Ideally, a classifier is 100% sensitive and 100% specific, however, in theory, any classifier 

has a minimum error bound. Consequently, the best case scenario is to find a good balance 

between sensitivity and specificity. 

 

 

5.1 3NN 
 

Concerning the 3NN classifier, which uses the Euclidean distance to find an examples 

label, Table 2 shows the obtained results for this classifier. In this case, no difference is seen 

between the classifier without feature selection and with PCA. Both Forward Selection and RFE 

improve the algorithm’s performance, being Forward Selection the best result, with an accuracy 

value of 64.52% ± 47.85%. This means that 64.52% of all subjects were correctly classified. The 

deviation value, 47.85%, is considerably high, but it’s justified by the leave-one-out cross-validation 

step. An accuracy value was calculated at each iteration step, and the final result is the average of 

the accuracy values calculated in every iteration step. Some iterations might have had higher 
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accuracy values, while others might have had lower values, resulting in a very wide standard 

deviation value. 

 

Table 2 – Results of 3NN classifier without feature selection, with PCA, Forward Selection 

and RFE methods. The performance values calculated include Accuracy, Sensitivity, Specificity and 

Precision measures 

 
No Feature 

Selection 
PCA 

Forward 

Selection 
RFE 

Accuracy 61.29% ± 48.71% 61.29% ± 48.71% 64.52% ± 47.85% 59.68% ± 49.05% 

Sensitivity 12.05% 12.50% 54.17% 29.17% 

Specificity 92.11% 92.11% 71.05% 78.95% 

Precision 50.00% 50.00% 54.14% 46.67% 

 

 

5.2 5NN 
 

The 5NN algorithm used the Manhattan distance to determine an example’s label. Here, 

the pairing with Forward Selection resulted in the best performance values for this classifier with 

accuracy of 70.97% ± 45.39%, sensitivity of 62.5% and specificity of 76.32%. The remaining feature 

selection algorithms, Forward Selection and RFE, did not introduce improvements to the classifier’s 

performance as one can see in Table 3. In fact, the combination of these feature selection methods 

with 5NN even deteriorated the results, which means that this classifier doesn’t benefit from these 

feature selection methods. 

 

Table 3 - Results of 5NN classifier without feature selection, with PCA, Forward Selection 

and RFE methods. The performance values calculated include Accuracy, Sensitivity, Specificity and 

Precision measures 

 
No Feature 

Selection 
PCA 

Forward 

Selection 
RFE 

Accuracy 69.35% ± 46.10% 62.90% ± 48.31% 70.97% ± 45.39% 59.68% ± 49.05% 

Sensitivity 37.50% 33.33% 62.50% 33.33% 

Specificity 89.47% 81.58% 76.32% 76.32% 

Precision 69.23% 53.33% 62.50% 47.06% 
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5.3 SVM 
 

As for the SVM algorithm, PCA dimensionality reduction made no difference when 

compared to without any feature selection approach as is shown in Table 4. This singularity only 

happened to the 3NN classifier as well. One possible explanation is the normalization step 

performed for both these classifiers, however, no evidence of this was found. In its turn, the RFE 

method significantly improved the results, as well as forward selection, that also improved the 

performance of SVM relatively to without feature selection. The best results of accuracy being 

67.74% ± 46.75%, sensitivity 70.83%, specificity 65.79% and precision 56.67% belong to the 

combination of SVM and RFE algorithms for classification and feature selection, respectively. Given 

the fact that RFE uses a SVM classifier to evaluate the performance of the dataset, it can be 

considered that the resulting dataset, after feature selection, is tuned for this specific classification 

algorithm, thus resulting in better performance values. 

 

Table 4 - Results of SVM classifier without feature selection, with PCA, Forward Selection 

and RFE methods. The performance values calculated include Accuracy, Sensitivity, Specificity and 

Precision measures 

 
No Feature 

Selection 
PCA 

Forward 

Selection 
RFE 

Accuracy 51.61% ± 49.97% 51.61% ± 49.97% 56.45% ± 49.58% 67.74% ± 46.75% 

Sensitivity 16.67% 16.67% 50.00% 70.83% 

Specificity 73.68% 73.68% 60.53% 65.79% 

Precision 28.57% 28.57% 44.44% 56.67% 

 

 

5.4 LDA 
 

Table 5 shows the results of LDA performance. It’s possible to see that this classifier 

doesn’t perform well without some feature selection approach because it predicted all examples 

as controls. This results in a very good measure of specificity, because the examples that are actual 

controls were all correctly classified, however, none of the OCD patients was rightly predicted, 

which resulted in an extremely low sensitivity result. In this case, all the feature selection methods 

used in combination with LDA have improved its performance, being RFE the one with bigger 
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positive impact. RFE together with LDA lead to an accuracy value of 59.68% ± 49.05%, sensitivity 

of 41.67% and specificity of 71.05%. The precision of the class O was of 47.62%, meaning that 

from all the subjects classified as having the condition of OCD, more than half of them weren’t, in 

fact, OCD patients. 

 

Table 5 - Results of LDA classifier without feature selection, with PCA, Forward Selection 

and RFE methods. The performance values calculated include Accuracy, Sensitivity, Specificity and 

Precision measures 

 
No Feature 

Selection 
PCA 

Forward 

Selection 
RFE 

Accuracy 61.29% ± 48.71% 60.04% ± 12.27% 51.61% ± 49.97% 59.68% ± 49.05% 

Sensitivity 0.00% 16.67% 25.00% 41.67% 

Specificity 100.00% 86.84% 68.42% 71.05% 

Precision 0.00% 44.44% 33.33% 47.62% 

 

 

5.5 Decision Tree 
 

Regarding the decision tree classifier, this algorithm was the one that did not benefit from 

the combination with feature selection approaches. None of the feature selection approaches used 

improved this classifier’s results. However, this classifier shows relatively good results when 

implemented by itself only, with and accuracy of 70.97% ± 45.39%, meaning that more than 2 

thirds of the subjects were correctly classified. As for the sensitivity value of 58.33%, one can 

confirm that more than half the OCD patients was correctly classified and nearly 80% of the controls 

were identified as such. As is visible in Table 6, PCA was the method with the bigger negative 

influence, resulting in a 0% sensitivity, which means that no OCD patient was correctly classified. 

The specificity value of 94.74% means that not all the controls were classified as such, in other 

words, some controls were wrongly classified as OCD patients. 
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Table 6 - Results of Decision Tree classifier without feature selection, with PCA, Forward 

Selection and RFE methods. The performance values calculated include Accuracy, Sensitivity, 

Specificity and Precision measures 

 
No Feature 

Selection 
PCA 

Forward 

Selection 
RFE 

Accuracy 70.97% ± 45.39% 58.06% ± 49.35% 69.35% ± 46.10% 61.29% ± 48.71% 

Sensitivity 58.33% 0.00% 45.83% 33.33% 

Specificity 78.95% 94.74% 84.21% 78.95% 

Precision 63.64% 0.00% 64.71% 50.00% 

 

 

From an overall perspective, one of the best results are from the decision tree classifier 

without feature selection with accuracy of 70.97%, sensitivity of 58.33%, and specificity of 78.95% 

and class O precision of 63.64%. The other considered good result is from the SVM classifier 

combined with RFE. This combination resulted in an accuracy of 67.74%, sensitivity of 70.83%, 

specificity of 65.79% and class O precision of 56.67%. When evaluating a classifier’s performance, 

one should take into consideration all the measures presented. Focusing on only one of them may 

lead to wrong conclusions. For instance, regarding Table 5, if one only takes into consideration the 

accuracy value, the results of LDA without feature selection appear to be better than the remaining 

ones, because 61.29% is a higher number than all the other ones achieved for this classifier. Yet, 

it is not true that this case is better than the others, because it did not classified any OCD patient 

correctly. 

 Forward Selection seems to improve the results achieved relatively to the case without 

feature selection, except for the decision tree algorithm that didn’t improve from any feature 

selection method. PCA use shows to be irrelevant when combined with 3NN and SVM classification 

algorithms. RFE also improved the results obtain, except for the decision tree and 5NN algorithms.  

The classifier with the poorest overall results is the LDA one. This classifier showed to be unable 

to correctly classify any OCD patient when performed without a feature selection method combined. 
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5.6 Discussion  
 

Other studies have been conducted in order to distinguish OCD patients from healthy 

controls by means of machine learning. Moreover, studies that combine the use of machine 

learning and graph theory applied to neuroimaging have also been developed. Some of these 

studies will be concisely described ahead. Results from these studies will also be compared to the 

results from the present work. 

 

A study by (Weygandt et al., 2012) performed two analysis for pattern recognition in OCD 

patients. In the first one, the researchers used a SVM classifier to decode the category of a currently 

viewed image from fMRI patterns for several pairs of categories. The purpose was to investigate 

whether fear-inducing, disgust-inducing and neutral stimuli could be decoded from brain patterns 

of fMRI time samples from both OCD patients and healthy controls. As a result, neurobiological 

markers were identified for a reliable diagnosis of OCD. 

The second analysis performed used a searchlight approach to predict a subject’s 

diagnostic status based on local brain patterns. To do so, the researchers used discriminating 

volumes to separate fear-inducing pictures from neutral ones and disgust-inducing from neutral 

pictures, for each subject. These discriminating volumes were determined in pattern recognition 

analysis from the first analysis mentioned above. The researchers accomplished a diagnostic 

accuracy of 100% for three specific regions (two coordinates of the right orbitofrontal cortex and on 

in the left caudate nucleus) for the separation of fear-inducing vs. neutral pictures. For the 

diagnostic classification based on discriminating volumes calculated for the separation of disgust-

inducing vs. neutral pictures no significant results were obtained. 

Focusing on the 100% accuracy result, which is the optimal result, it is possible to infer 

that discriminating volumes for the separation of fear-inducing vs. neutral pictures are an adequate 

measure to perform this classification task. Considering the present work’s results, none of the 

results presented above are comparable to the ones from this study performed by Weygandt and 

colleagues, because the dataset used in both cases is of different nature. The present work includes 

FC data as well as demographic values, besides structural volumes. As for Weygandt study, fMRI 

data was used in the first analysis, which allowed the determination of brain regions of interest, 

whose volumes were then used for the second analysis. One aspect that coincides for both studies 

is the use of SVM to perform the classification task. 
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Another study regarding OCD patients’ identification has been developed by (Soriano-

Mas et al., 2007). Here, Soriano and colleagues assessed the feasibility of identifying OCD patients 

through whole-brain anatomical alterations. 

After computing the whole-brain pattern of structural difference between OCD patients 

and healthy controls, an expression value representative of this difference was calculated for each 

subject to express their similarity to typical OCD anatomical alterations. Afterwards, a univariate 

statistical analysis was performed to characterize the whole-brain pattern of differences between 

the two groups. The resulting statistical map of the between-group differences was then multiplied 

by the GM image of each subject to obtain their individual expression values. The average value 

was calculated for each group, and classification was performed by the calculation of the distance 

between each subject’s individual value and each one of the groups’ mean expression value. In 

other words, for each subject, two distance measures were calculated, for both OCD and healthy 

controls mean value. These distances were then converted into complementary probabilities of 

being an OCD patient or a healthy control. OCD patients were considered wrongly classified when 

the complementary probability of being an OCD patient was less than 0.5. 

In order to evaluate performance, two methods were implemented by these researchers. 

First, leave-one-out cross-validation was performed, by omitting one subject at a time from the 

original study sample and then computing a new statistical map from the remaining sample. For 

the subject outside of the dataset, the expression value was determined and the classification 

probabilities were calculated. This resulted in an accuracy value of 93.1%. Here, this value was 

determined as the average of sensitivity and specificity. Secondly, new subjects were used to 

evaluate the performance of the classification approach designed by these researchers. The 

expression values were calculated for the new subjects but the statistical map used was the same. 

This method resulted in and accuracy of 76.6%. 

Although having a considerably good result in the cross-validation evaluation, this 

approach shows to be less adequate when tested against new data. This approach conducted by 

Soriano is also based on structural data and uses a different classification method than the ones 

used in the present work, so no fair comparison can be made. 

 

In 2013, Fekete and colleagues conducted a study for the combination of fMRI complex 

network measures and machine learning (Fekete et al., 2013). This study also introduced a novel 
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learning approach called block diagonal optimization (Bdopt). Classification was applied to two 

resting-state fMRI datasets, schizophrenic vs. healthy controls and awake vs. sleep. First, the 

average timeseries was extracted from 116 automated anatomical labelling ROIs. Afterwards, the 

lagged correlations and partial correlations ranging from ±3TR were computed, the matrices were 

thresholded and then seven networks were constructed. Several network measures were 

calculated: assortativity, closeness centrality, characteristic path length, clustering coefficient, 

global efficiency, transitivity, local efficiency, modularity and small-world ration for the global 

measures. Regarding the local ones: node betweenness centrality, degree, node characteristic path 

length, node clustering coefficient and node global and local efficiency were calculated. As one can 

see, these metrics include the ones used for the present work. 

Feature selection was implemented with a squared two-sample t-statistic approach. Next, 

several classifier were implemented for both datasets. Within the dataset comprising schizophrenic 

patients and healthy controls, the SVM classifier’s accuracy is of 65%, with 80% specificity and 43% 

sensitivity. The remaining classifiers had better accuracy results, with 94% for both RFE and 

Recursive Composite Kernels (RCK) and with 100% for Bdopt. Regarding the second dataset, with 

awake vs. sleep subjects, SVM’s accuracy was of 64%, specificity of 76% and sensitivity of 52%. In 

its turn, Bdopt’s accuracy was of 91%, specificity of 87% and sensitivity of 95%. By comparing these 

results to the performance results achieved in the present work, one can see that they are similar, 

regarding the common classifier, SVM. However, in spite of being similar, both these SVM 

implementations have differences that can be crucial to the final outcome. For instance, the 

parameters weren’t described in (Fekete et al., 2013) but they are most likely to not be the same 

as the ones used on the present work. The feature dataset was not the same, in Fekete’s work 

more network measures were included and no brain regional volumes were part of the dataset. 

Moreover, the construction of the correlation matrices was different, because Fekete’s work 

included lagged and partial correlations. All these variances define the final performance result, so 

this comparison cannot be considered absolute. 
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6 Conclusions and Future Work 

 

The aim of the present work was to investigate a series of machine learning algorithms 

and how to implement them to fMRI derived complex network measures. In order to do so a work 

plan was defined. Initially, some literature research was performed and several databases were 

investigated in order to find information on the three main study fields relevant for this work. After 

the gathering and analysis of Neuroimaging, Machine Learning and Graph Theory information, it 

was time to perform more practical tasks. The preprocessing of the resting-state fMRI images from 

an OCD study took place. Once the dataset was ready, the feature set was constructed by joining 

complex network measures, brain regional volumes and demographic data all together. Before 

implementing the machine learning algorithms chosen, it was required another preprocessing 

stage. Here, feature selection methods were applied to the data. Finally, cross validation was used 

to evaluate the classifiers’ performance and average values of accuracy, sensitivity and specificity 

were calculated. 

Given the nature of this problem, complex concepts and three different study fields to 

comprehend, there isn’t much information on how to implement, which methods to use and which 

parameters produce the best outcome. Yet, this combination of neuroimaging and graph theory 

applied to machine learning has potential and intends to be very promising, whether in the 

development of tools to aid researchers or to support diagnosis and clinical decision systems for 

psychiatric pathologies. 

In the present work, 5 classification algorithms – 3NN, 5NN, SVM, LDA and decision tree 

– were implemented by themselves, i.e., without feature selection, and combined with 3 feature 

selection approaches – RFE, forward selection and PCA. The work performed led to some 

knowledge about this amalgamation of concepts from machine learning, graph theory and 

functional connectivity data. In a general way, feature selection methods improved the performance 

results, except for the decision tree algorithm, which performed best with the complete dataset as 

input. SVM results can be considered within the expected values, by comparison with (Fekete et 

al., 2013). This might mean that the feature dataset used in this work is adequate to the 

classification task performed. As for the other classifiers that didn’t perform very well, other features 

might produce different and better results.  
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The present work contributes with a small amount of knowledge on how to build the 

dataset, what works and doesn’t work and how the classification processes must be built. In spite 

of being small, this knowledge is relevant because it’s a starting point to further investigations. 

Without doubt, the bigger limitation of this work was time. It requires time to fully comprehend all 

the concepts involved, because they come from three distinct disciplines. Moreover, it takes time 

to implement and run the classification processes. Having more time to develop this work, more 

classifiers could have been tested. 

 

The first suggestion would be to apply the obtained models to completely new datasets. 

After the acquisition of fMRI images of new subjects and application of the same preprocessing 

steps, the models can be tested in order to better assess their performance. These results are 

considered a good method to obtain feedback on the models created. If the results are satisfactory, 

it means models are a close representation of reality. 

Another recommendation is to implement other classifiers, as well as other feature 

selection algorithms. Concerning the classifiers, the application of transductive conformal 

predictors described in (Nouretdinov et al., 2011) seems to be an interesting approach to be 

considered. It proposes a general probabilistic classification method to produce measures of 

confidence for MRI data. Another approach worthy of further investigation is the use of Bayesian 

network classifiers seen in (Morales et al., 2013) as well as a Maximum Entropy Approach (Phillips, 

Dudík, & Schapire, 2004). 

Regarding the feature selection algorithms, the proposed ones are an evolutionary 

approach to optimize selection and the removal of correlated attributes. Another tactic is to select 

features using a prior approach. This can be performed by choosing features that are known 

beforehand to be related to the specific classification problem. For instance, in the present work, 

the volumes from brain regions could be selected in order to retain the ones that are most activated 

in OCD patients. As for the feature set building, other attributes could be considered. For instance, 

the actual values of FC, straight from the correlation matrix, could also be used as features. 

To remove the noise from the fMRI images, the mentioned ICA-denoise method could be 

further explored. Another tool, called CompCor (Behzadi, Restom, Liau, & Liu, 2007), could also 

be used to remove confounds from WM and CSF signals. 

Other environments could be experimented, outside of RapidMiner. The Python toolbox 

for Multivariate Pattern Analysis called PyMVPA (Hanke et al., 2009) seems to be an alternative 
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worthy of further investigation. This toolbox allows the application of classifier-based analysis 

techniques to fMRI datasets. 

One more approach that deserves more attention is the implementation of a meta-

algorithm that together with other learning algorithms can improve their performance. This 

technique is based on Bayes’ Theorem and is known as Bayesian Boosting (Nock & Sebban, 2001). 
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Appendix 

Correspondence between the brain areas used as nodes and their shortened version. 

 

Left-Thalamus-Proper LTP 

Left-Caudate LCAU 

Left-Putamen LPUT 

Left-Pallidum LPAL 

Left-Hippocampus LHIP 

Left-Amygdala LAMY 

Left-Accumbens-area LACC 

Right-Thalamus-Proper RTP 

Right-Caudate RCAU 

Right-Putamen RPUT 

Right-Pallidum RPAL 

Right-Hippocampus RHIP 

Right-Amygdala RAMY 

Right-Accumbens-area RACC 

ctx_lh_G_and_S_frontomargin LFM 

ctx_lh_G_and_S_occipital_inf LOCCI 

ctx_lh_G_and_S_paracentral LPC 

ctx_lh_G_and_S_subcentral LSC 

ctx_lh_G_and_S_transv_frontopol LTF 

ctx_lh_G_and_S_cingul-Ant LCANT 

ctx_lh_G_and_S_cingul-Mid-Ant LCMANT 

ctx_lh_G_and_S_cingul-Mid-Post LCMPOS 

ctx_lh_G_cingul-Post-dorsal LCPOSD 

ctx_lh_G_cingul-Post-ventral LCPOSV 

ctx_lh_G_cuneus LCUN 

ctx_lh_G_front_inf-Opercular LFIOPER 

ctx_lh_G_front_inf-Orbital LFIORB 

ctx_lh_G_front_inf-Triangul LFITRI 
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ctx_lh_G_front_middle LGFMID 

ctx_lh_G_front_sup LGFSUP 

ctx_lh_G_Ins_lg_and_S_cent_ins LIGCENT 

ctx_lh_G_insular_short LIS 

ctx_lh_G_occipital_middle LOCCMID 

ctx_lh_G_occipital_sup LOCCSUP 

ctx_lh_G_oc-temp_lat-fusifor LLAT-FUSI 

ctx_lh_G_oc-temp_med-Lingual LMED-LING 

ctx_lh_G_oc-temp_med-Parahip LMED-PARA 

ctx_lh_G_orbital LORB 

ctx_lh_G_pariet_inf-Angular LPARIANG 

ctx_lh_G_pariet_inf-Supramar LPARISUP 

ctx_lh_G_parietal_sup LPARSUP 

ctx_lh_G_postcentral LPOS 

ctx_lh_G_precentral LPRE 

ctx_lh_G_precuneus LPREC 

ctx_lh_G_rectus LREC 

ctx_lh_G_subcallosal LSUBCALL 

ctx_lh_G_temp_sup-G_T_transv LTRANSV 

ctx_lh_G_temp_sup-Lateral LSUPLAT 

ctx_lh_G_temp_sup-Plan_polar LSPPOL 

ctx_lh_G_temp_sup-Plan_tempo LSPTEMP 

ctx_lh_G_temporal_inf LTINF 

ctx_lh_G_temporal_middle LTMID 

ctx_lh_Lat_Fis-ant-Horizont LFH 

ctx_lh_Lat_Fis-ant-Vertical LFV 

ctx_lh_Lat_Fis-post LFPOS 

ctx_lh_Pole_occipital0 LPOCC 

ctx_lh_Pole_temporal LPTEMP 

ctx_lh_S_calcarine LCAL 

ctx_lh_S_central LCEN 

ctx_lh_S_cingul-Marginalis LCINMAR 
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ctx_lh_S_circular_insula_ant LCIRINSANT 

ctx_lh_S_circular_insula_inf LCIRINSINF 

ctx_lh_S_circular_insula_sup LCIRINSSUP 

ctx_lh_S_collat_transv_ant LCOLLANT 

ctx_lh_S_collat_transv_post LCOLLPOS 

ctx_lh_S_front_inf LFINF 

ctx_lh_S_front_middle LSFMID 

ctx_lh_S_front_sup LSFSUP 

ctx_lh_S_interm_prim-Jensen LINJENS 

ctx_lh_S_intrapariet_and_P_trans LINTPAR 

ctx_lh_S_oc_middle_and_Lunatus LOCMIDLUN 

ctx_lh_S_oc_sup_and_transversal LOCTRANS 

ctx_lh_S_occipital_ant LOCCANT 

ctx_lh_S_oc-temp_lat LOCTLAT 

ctx_lh_S_oc-temp_med_and_Lingual LOCTMEDLING 

ctx_lh_S_orbital_lateral LORBLAT 

ctx_lh_S_orbital_med-olfact LORBMED-OLF 

ctx_lh_S_orbital-H_Shaped LORB-SH 

ctx_lh_S_parieto_occipital LPAROCC 

ctx_lh_S_postcentral LPOSCEN 

ctx_lh_S_precentral-inf-part LPRECINF 

ctx_lh_S_precentral-sup-part LPRECSUP 

ctx_lh_S_suborbital LSUBORB 

ctx_lh_S_subparietal LSUBPAR 

ctx_lh_S_temporal_inf LTEMPINF 

ctx_lh_S_temporal_sup LTEMPSUP 

ctx_lh_S_temporal_transverse LTTRANS 

ctx_rh_G_and_S_frontomargin RFM 

ctx_rh_G_and_S_occipital_inf ROCCI 

ctx_rh_G_and_S_paracentral RPC 

ctx_rh_G_and_S_subcentral RSC 

ctx_rh_G_and_S_transv_frontopol RTF 
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ctx_rh_G_and_S_cingul-Ant RCANT 

ctx_rh_G_and_S_cingul-Mid-Ant RCMANT 

ctx_rh_G_and_S_cingul-Mid-Post RCMPOS 

ctx_rh_G_cingul-Post-dorsal RCPOSD 

ctx_rh_G_cingul-Post-ventral RCPOSV 

ctx_rh_G_cuneus RCUN 

ctx_rh_G_front_inf-Opercular RFIOPER 

ctx_rh_G_front_inf-Orbital RFIORB 

ctx_rh_G_front_inf-Triangul RFITRI 

ctx_rh_G_front_middle RGFMID 

ctx_rh_G_front_sup RGFSUP 

ctx_rh_G_Ins_lg_and_S_cent_ins RIGCENT 

ctx_rh_G_insular_short RIS 

ctx_rh_G_occipital_middle ROCCMID 

ctx_rh_G_occipital_sup ROCCSUP 

ctx_rh_G_oc-temp_lat-fusifor RLAT-FUSI 

ctx_rh_G_oc-temp_med-LinguaL RMED-LING 

ctx_rh_G_oc-temp_med-Parahip RMED-PARA 

ctx_rh_G_orbital RORB 

ctx_rh_G_pariet_inf-Angular RPARIANG 

ctx_rh_G_pariet_inf-Supramar RPARISUP 

ctx_rh_G_parietal_sup RPARSUP 

ctx_rh_G_postcentral RPOS 

ctx_rh_G_precentral RPRE 

ctx_rh_G_precuneus RPREC 

ctx_rh_G_rectus RREC 

ctx_rh_G_subcallosal RSUBCALL 

ctx_rh_G_temp_sup-G_T_transv RTRANSV 

ctx_rh_G_temp_sup-Lateral RSUPLAT 

ctx_rh_G_temp_sup-Plan_polar RSPPOL 

ctx_rh_G_temp_sup-Plan_tempo RSPTEMP 

ctx_rh_G_temporal_inf RTINF 
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ctx_rh_G_temporal_middle RTMID 

ctx_rh_Lat_Fis-ant-Horizont RFH 

ctx_rh_Lat_Fis-ant-Vertical RFV 

ctx_rh_Lat_Fis-post RFPOS 

ctx_rh_Pole_occipital RPOCC 

ctx_rh_Pole_temporal RPTEMP 

ctx_rh_S_calcarine RCAL 

ctx_rh_S_central RCEN 

ctx_rh_S_cingul-Marginalis RCINMAR 

ctx_rh_S_circular_insula_ant RCIRINSANT 

ctx_rh_S_circular_insula_inf RCIRINSINF 

ctx_rh_S_circular_insula_sup RCIRINSSUP 

ctx_rh_S_collat_transv_ant RCOLLANT 

ctx_rh_S_collat_transv_post RCOLLPOS 

ctx_rh_S_front_inf RFINF 

ctx_rh_S_front_middle RSFMID 

ctx_rh_S_front_sup RSFSUP 

ctx_rh_S_interm_prim-Jensen RINJENS 

ctx_rh_S_intrapariet_and_P_trans RINTPAR 

ctx_rh_S_oc_middle_and_Lunatus ROCMIDLUN 

ctx_rh_S_oc_sup_and_transversal ROCTRANS 

ctx_rh_S_occipital_ant ROCCANT 

ctx_rh_S_oc-temp_lat ROCTLAT 

ctx_rh_S_oc-temp_med_and_Lingual ROCTMEDLING 

ctx_rh_S_orbital_lateral RORBLAT 

ctx_rh_S_orbital_med-olfact RORBMED-OLF 

ctx_rh_S_orbital-H_Shaped RORB-SH 

ctx_rh_S_parieto_occipital RPAROCC 

ctx_rh_S_postcentral RPOSCEN 

ctx_rh_S_precentral-inf-part RPRECINF 

ctx_rh_S_precentral-sup-part RPRECSUP 

ctx_rh_S_suborbital RSUBORB 



 

79 
 

ctx_rh_S_subparietal RSUBPAR 

ctx_rh_S_temporal_inf RTEMPINF 

ctx_rh_S_temporal_sup RTEMPSUP 

ctx_rh_S_temporal_transverse RTTRANS 
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