
Nu
no

 A
lex

an
dr

e
Ca

st
ro

 F
er

re
ira

Novembro de 2012UM
in

ho
 |

 2
01

2
Fr

om
 In

fo
rm

at
io

n
Sy

st
em

s
Re

qu
ir

em
en

ts
to

 S
er

vi
ce

-O
ri

en
te

d
Lo

gi
ca

l A
rc

hi
te

ct
ur

es

Universidade do Minho
Escola de Engenharia

Nuno Alexandre Castro Ferreira

From Information Systems Requirements
to Service-Oriented Logical Architectures

Programa de Doutoramento em Informática
das Universidades do Minho, de Aveiro e do Porto

Universidade do Minho

Novembro de 2012

Tese de Doutoramento
Programa de Doutoramento em Informática
das Universidades do Minho, de Aveiro e do Porto

Trabalho efectuado sob a orientação de
Professor Doutor Ricardo J. Machado
Professor Doutor Dragan Gaševic

Nuno Alexandre Castro Ferreira

From Information Systems Requirements
to Service-Oriented Logical Architectures

Universidade do Minho
Escola de Engenharia

Universidade do Minho

´

iii

Agradecimentos

"If I have seen farther, it is by standing on the shoulder of giants."

Isaac Newton

Letter to Robert Hooke, 1676

Em primeiro lugar, gostaria de agradecer à minha família, por me terem dado todas as

condições e apoio necessários à execução deste trabalho ao longo dos anos. Susana,

Margarida, Pedro e Manel, Pais, a todos obrigado.

Aos meus orientadores e amigos, Prof. Doutor Ricardo J. Machado e Prof. Doutor

Dragan Gašević, dois gigantes incansáveis que sempre estiveram por perto quando foi

preciso.

À i2S, empregadores, motivadores e amigos, que criaram o desafio do projeto de

doutoramento, que criaram o contexto que deu origem ao ISOFIN, que suportaram

tudo e na qual foi executado o trabalho apresentado.

Um obrigado em especial ao Nuno Santos e à Paula Monteiro, que sempre me

acompanharam, motivaram e ajudaram.

Apoio Financeiro

O projeto ISOFIN foi realizado ao abrigo do Quadro de Referência Estratégico Nacional,

com a referência QREN 2010/013837.

A Fundação para a Ciência e Tecnologia, financiou o presente trabalho, ao abrigo da

Bolsa de Douramento em Empresas com a referência SFRH/BDE/33297/2008.

http://www.adi.pt/index.html

iii

v

Abstract

In a world where there are no certain and doubt prevails, it is not possible to take a based

decision about the construction of an artifact able to deliver a set of functionalities of which

only the intended output is known.

Based on the previous premise, this work details a method and a process for, starting from a

very high-level of abstraction of an information system requirements, create a

representation of the software solution that is able to implement the desired functionalities

and ending with an assessment of the entire process.

The presented V-Model approach for creating the information system’s representation and

the following transition to the V+V-Model approach for the creation of the software solution

representation is able to deliver a set of modeling artifacts that are presented to

development teams in order to build those represented artifacts.

The V+V-Model approach and the adopted models alongside the entire approach are

validated using the architecture validation method ARID and applied in a real industrial case

study, the ISOFIN Project, framed within business model conditioned by cloud-related and

service-oriented target scenarios.

Keywords: Logical Architectures; Information Systems Architecture; Architecture
Assessment Methods; Requirements Elicitation.

vii

Resumo

Num mundo onde não há certezas e as dúvidas imperam, não é possível efetuar decisões

baseadas na construção de artefactos capazes de disponibilizar funcionalidades, das quais só

se conhece o resultado esperado.

Baseado na premissa anterior, este trabalho detalha um método e um processo para, a partir

de um nível de abstração muito elevado dos requisitos de um sistema de informação, criar a

representação de uma solução de software capaz de implementar as funcionalidades

desejadas e, em simultâneo, avaliar se o processo de construção foi corretamente

executado.

O processo apresentado, a aproximação baseada em V-Model, para criar contexto para a

representação do sistema de informação e a transição do V-Model para o V+V-Model, para a

criação da representação da solução de software, são capazes de disponibilizar um conjunto

de artefactos que que podem ser entregues às equipas de desenvolvimento de forma a

executar a construção desses mesmos artefactos.

O processo baseado no V+V-Model, assim como os modelos usados são validados usando

uma adaptação de um método de avaliação de arquiteturas, o ARID. São também aplicados a

um caso de estudo derivado de um caso industrial real, chamado Projeto ISOFIN. Este

projeto é condicionado por fatores relacionados com cenários derivados de cloud e

orientação a serviços.

Palavras-chave: Arquiteturas Lógicas, Arquiteturas de Sistemas de Informação, Métodos de

Avaliação de Arquiteturas, Levantamento de Requisitos.

ix

Table of Contents

CHAPTER 1 ... 1

1 INTRODUCTION .. 1

1.1 MOTIVATION .. 1
1.2 RESEARCH GOALS AND STRATEGY ... 3
1.3 CONTRIBUTIONS .. 8
1.4 STRUCTURE OF THIS THESIS .. 10

CHAPTER 2 ... 13

2 CURRENT STATE OF ELICITING REQUIREMENTS FOR INFORMATION SYSTEMS 15

2.1 INTRODUCTION ... 16
2.2 PROBLEM OVERVIEW AND RELATED APPROACHES .. 17
2.3 PROCESS-LEVEL ACTIVITIES ELICITATION ... 24
2.4 CONTEXT FOR THE ACTIVITIES ON THE CLOUD .. 30
2.5 THE ISOFIN PROJECT IN THE CLOUD ... 36
2.6 CONCLUSIONS ... 38

CHAPTER 3 ... 41

3 MODELING INFORMATION AND SOFTWARE SYSTEMS ... 43

3.1 INTRODUCTION ... 43
3.2 RELATED WORK .. 46
3.3 AN APPROACH TO DOMAIN AND SOFTWARE MODELS ALIGNMENT ... 50
3.4 THE V-MODEL IN THE ISOFIN PROJECT ... 58
3.5 V-MODEL CONSIDERATIONS AND COMPARISON WITH RELATED WORK .. 69
3.6 ASSESSMENT OF THE V-MODEL .. 73
3.7 CONCLUSIONS ... 78

CHAPTER 4 ... 81

4 YET ANOTHER 4SRS .. 83

4.1 INTRODUCTION ... 83
4.2 THE ISOFIN PROJECT ... 86
4.3 THE DESIGN OF SOFTWARE ARCHITECTURES ... 91
4.4 PROCESS-LEVEL 4SRS AS AN ELICITATION METHOD .. 100
4.5 CONCLUSION .. 113

CHAPTER 5 ... 115

5 PROCESS- AND PRODUCT-LEVEL LOGICAL ARCHITECTURES .. 117

5.1 INTRODUCTION ... 117
5.2 A MACRO-PROCESS APPROACH TO SOFTWARE DESIGN ... 121
5.3 CREATING CONTEXT FOR PRODUCT IMPLEMENTATION .. 126
5.4 THE V+V MODEL IN THE ISOFIN PROJECT ... 135
5.5 TRANSITION RULES IN OTHER’S WORK ... 142
5.6 CONCLUSIONS ... 146

CHAPTER 6 ... 149

6 CONCLUSION ... 151

6.1 FOCUS OF THE WORK ... 151
6.2 SYNTHESIS OF RESEARCH EFFORTS... 154

x

6.3 SYNTHESIS OF SCIENTIFIC RESULTS .. 155
6.4 FUTURE WORK .. 157

REFERENCES ... 159

ANNEX A .. 167

ANNEX B .. 173

xi

Acronyms

4SRS Four-Step-Rule-Set

ARID Active Reviews for Intermediate Design

IBS ISOFIN Business Service

ISOFIN Interoperability in Financial Software

MOF Meta-Object Facility

NBS Native Business Service

OMG Object Management Group

SBS Supplier Business Service

SPEM Software and Systems Process Engineering Meta-Model

UML Unified Modelling Language

xiii

Table of Figures

Figure 1: Example of a cloud architecture ... 3
Figure 2:Methodology of Design Science Research (Vaishnavi & Jr., 2008). ... 7
Figure 3: The Work System Framework ... 19
Figure 4: Soft Systems Methodology (adapted from (Checkland, 2000)) .. 20
Figure 5: Phases and Products of Domain Analysis (based on (Kang, et al., 1990)) 22
Figure 6: Domain Analysis Book Composition (based on (Frakes, et al., 1998)) 23
Figure 7: Phases of PL.AC.E .. 26
Figure 8: Distribution Models .. 33
Figure 9: Placing the ISOFIN on the Cloud ... 37
Figure 10: Framing the V-Model representation in the development macro-process 51
Figure 11: Organizational Configuration .. 52
Figure 12: A- and B-Type Sequence Diagrams ... 52
Figure 13: Tabular Transformation of the 4SRS Method ... 54
Figure 14: V-Model Adaption for Domain and Software Alignment .. 55
Figure 15: SPEM diagram of ISOFIN V-Model based process... 57
Figure 16: Desirable Interoperability in ISOFIN ... 60
Figure 17: Organizational Configurations and Interactions Alignment .. 61
Figure 18: Organizational Configuration Example ... 62
Figure 19: A-Type Sequence Diagram .. 63
Figure 20: B-Type Sequence Diagram .. 64
Figure 21: The Proposed Extension to the UML Metamodel for Representing A-Type and B-Type

Sequence Diagrams .. 66
Figure 22: Derivation of Process-Oriented Logical Architectures .. 67
Figure 23: Subset of the Use Case Model from the ISOFIN Project ... 68
Figure 24: ISOFIN Process-level Logical Architecture ... 68
Figure 25: Subset of the ISOFIN Process-level Logical Architecture .. 70
Figure 26: Iterations for producing a logical architecture ... 72
Figure 27: ARID and the V-Model Intertwining .. 74
Figure 28: ARID Steps in the V-Model .. 75
Figure 29: ISOFIN Main Constructors ... 86
Figure 30: ISOFIN High-level Interactions .. 90
Figure 31: ISOFIN Macro-process ... 91
Figure 32: High-level representation of the 4SRS method .. 94
Figure 33: 4SRS Architectural Element and Analysis Space Dimensions mapping 95
Figure 34 Use Case Model Regarding the ISOFIN Process-level Perspective Functionalities. 99
Figure 35 Refinement of Use Case 1 and Use Case 2 (subset). .. 99
Figure 36: Subset of the process-level logical architecture ... 112
Figure 37: V+V process framed in the development macro-process ... 121
Figure 38: The V+V process approach .. 124
Figure 39: Derivation of service-oriented logical architectures by transiting from information system

logical architectures. .. 125
Figure 40: Assessment of the V+V execution using ARID .. 126
Figure 41: Process- to product-level transition .. 129
Figure 42: Excerpt of AEpc and UCtr Extension ... 131
Figure 43: TR1 - transition rule 1 ... 131
Figure 44: TR2 - transition rule 2 ... 132
Figure 45: TR3 - transition rule 3 ... 132
Figure 46: TR4 - transition rule 4 ... 133

xiv

Figure 47: TR5 - transition rule 5 ... 134
Figure 48: TR5.1 - transition rule 5.1 ... 134
Figure 49: Partitioning of the process-level logical architecture (TS1) .. 136
Figure 50: Filtered and collapsed architectural elements (TS1) .. 137
Figure 51: Information system logical architecture example .. 139
Figure 52: Mashed UC model resulting from the transition from process- to product-level 140
Figure 53: Subset of the ISOFIN service-oriented software logical architecture based on the information

system logical architecture .. 141
Figure 54: Process-level ISOFIN functionalities ... 167
Figure 55: Process-level 4SRS iteration #1... 168
Figure 56: Process-level 4SRS iteration #2... 169
Figure 57:Process-level 4SRS iteration #3 ... 170
Figure 58: Process-level 4SRS iteration #4... 171
Figure 59: Logical Packages with Actors .. 172
Figure 60: Product-level 4SRS iteration #1 .. 174
Figure 61: Product-level 4SRS iteration #2 .. 175
Figure 62: Product-level 4SRS iteration #3 .. 176
Figure 63: Product-level Logical Architecture Main Products ... 177

xv

List of Tables

Table 1: Public vs Private Cloud Models (adapted from(Furht & Escalante, 2010)) 34
Table 2. Step 1 of the 4SRS method ... 102
Table 3. Micro-steps 2i through 2iv of the 4SRS method .. 105
Table 4. Micro-steps 2v through 2viii of the 4SRS method .. 109
Table 5. Step 3 of the 4SRS method ... 110
Table 6. Step 4 of the 4SRS method ... 111
Table 7: Transition Steps Overview.. 138
Table 8: Executed transformations to the model .. 140

Chapter 1

Introduction

Chapter Contents

1 INTRODUCTION .. 1

1.1 MOTIVATION .. 1
1.2 RESEARCH GOALS AND STRATEGY ... 3
1.3 CONTRIBUTIONS ... 8
1.4 STRUCTURE OF THIS THESIS ... 10

1

Introduction

“Ignorance more frequently begets confidence than does knowledge: it is those who
know little, and not those who know much, who so positively assert that this or that

problem will never be solved by science.”

Charles Darwin

This chapter starts by introducing the motivation that overviewed the elaboration of

this thesis while presenting an overview of the problem, the research goals and

research strategy used and then goes on by introducing the contributions by the

present work made to the universal body of knowledge. It concludes with the

structure of the thesis.

1.1 Motivation

The development of service clouds emerges with the promise to facilitate

collaboration between independent parties, affecting thereby how organizations

manage their business processes, namely with respect to inter-organizational

interactions.

1 Introduction

 2

Services clouds are increasingly gaining importance in the current IT paradigm. As an

example, according to IDC, the "revenue from public IT cloud services exceeded $21.5

billion in 2010 and will reach $72.9 billion in 2015, representing a compound annual

growth rate (CAGR) of 27.6%." (IDC).

It is nowadays a common and agreed fact that we live in an era of cloud-enabled

solutions and that the having a software solution (henceforward referred to as

“product”) in the cloud is a business advantage, despite all the know problems and

disadvantages.

Cloud computing is a model that many know but only a few can properly explain. This

new-found paradigm is changing the business world, triggering companies to move

towards the cloud, allured by the economic advantages promised by the model. The

cloud paradigm has underneath a financial model, indexed to the real resource usage

per user, allowing justifying investment decisions and at the same time, minimizing

the risk associated to new projects. At the same time, it is continuously promoting

the business world, by the onset of new partnerships, new players and new business

offers (Roberto, 2010).

Every time more organizations seek the announced benefits of flexibility, ease and

speed of access, elasticity and competitiveness made available by the cloud. At the

same time, they also demand more security, integration, quality and return of the

investment of the product.

Cloud computing was firstly referred by MIT in 1996 (Gillett & Kapor, 1996). It is used

in apparently distinctive situations (Reese, 2009; Velte, Velte, & Elsenpeter, 2010) but

its origin was on the software architectures where internet is commonly referred to

as a cloud (Reese, 2009). Figure 1 exemplifies a typical cloud architecture.

Despite being unknown to some, a cloud definition that begins to gain consensus by

IT professionals is the one stated by the National Institute of Standards and

Technology (NIST). According to NIST, cloud computing “is a model for enabling convenient, on-

demand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage,

applications, and services) that can be rapidly provisioned and released with minimal management effort or service

1.1 Motivation

3

provider interaction. This cloud model promotes availability and is composed of five essential characteristics, three

service models, and four deployment models.” (NIST, 2009).

Figure 1: Example of a cloud architecture

The next step of moving towards the cloud, after the business opportunity was

understood by the stakeholders, was to clearly state the intended business model of

the final product. This is where the first problem arose. Despite all the inside

knowledge on traditional (non-cloud) applications, the moving towards the cloud was

unable to reach a consensus in what concerns the requirements definition for the

final purpose of the transition. Since there is a clear misunderstanding of the final

solution and traditional (product-level) requirement elicitation techniques are unable

to clarify the problem, we propose the use of a process-level perspective for the

requirements definition and design of the logical model of the information system

architecture. This is built upon the premise that such an approach contributes to a

more accurate definition of product requirements and understanding of the project

scope (Ferreira, Santos, Machado, & Gasevic, 2012b).

1.2 Research Goals and Strategy

This thesis aims to contribute for the increase of the universal body of knowledge by

defining a process able to deliver an artifact that was built with the intention of

solving a particular problem and according the initial specifications.

1 Introduction

 4

The specific goals of this thesis are:

 To define and detail a process able to create context for product design

starting from a context where the requirements are not properly defined nor

clear for all the involved stakeholders;

 Detail a method for deriving an information systems architecture from a

common understanding of the requirements based on business needs;

 Define transition rules form the information system architecture to product

requirements to establish traceability between the information system

architecture and the intended service-oriented (product) final logical

architecture and, at the same time, achieve a requirements model suitable for

deriving that architecture;

 Create an assessment method for the entire process based on well-

established assessment methods, guaranteeing that the created process

produces the desired valid and verified outputs.

This work considers a real industrial case study, the ISOFIN Project (ISOFIN Project

Consortium, 2010) properly introduced in chapter 2.

The author role in the ISOFIN project was as project leader in the leading company,

i2S (www.i2s.pt), a Portuguese software company dedicated to software

development for the insurance industry, founded in 1984, and with clients in

Portugal, Spain, France, Poland, Angola, Mozambique, among others.

According to Yin (Yin, 2003), five components of a research are important:

(i) the research questions;

(ii) the study propositions;

(iii) the unit of analysis;

(iv) the logic linking of data to the propositions;

1.3 Contributions

5

(v) the criteria for interpreting the findings.

The following paragraphs give more detail on these points.

Research questions

According to Yin “Defining the research questions is probably the most important step to be taken in a

research study,(…)”(Yin, 2003). The research questions are fundamental to defining the

roadmap for the research efforts and provide an end for which the researcher has to

provide the means.

From the initial analysis made on the ISOFIN project, there were some questions that

arose from the particular context from where the project was executed:

 How can we achieve a proper product specification if there is no agreed or

defined context from the requirements?

 How to create proper requirements if there is no intended business scenario

for the product execution?

 How to translate the know requirements (intended process’ to be executed)

into the final product architecture?

Proposition

Once again, according to Yin “(…) each proposition directs attention to something that should be

examined within the scope of study” (Yin, 2003).

In what concerns our study, the attention should be directed to the derived logical

architecture, regardless of its perspective, and on the way to achieve it. To do so, it is

important to analyze the proper artifacts (models) that make up the process

representation in each of the intended perspectives (process and

product/information systems and service-oriented).

1 Introduction

 6

As a proposition, we consider that it is crucial to our project a proper understanding

of the models that make up the process of defining the logical architecture of the

intended system.

Unit of analysis

As unit of analysis, we have defined the ISOFIN project. Yin states “the fundamental

problem of defining what the "case" is (…)” (Yin, 2003). The ISOFIN project is suitable to act as a

case study in our analysis and provide the necessary problems and at the same time,

the context for creating the solutions.

Linking data to propositions and criteria for interpreting results

In what concerns linking data to propositions and defining the criteria for interpreting

the results, and according to Yin, “The fourth and fifth components have been the least well developed

in case studies” (Yin, 2003).

In our presented case study, the problems began when the consortium responsible

for the project execution could not agree on the business model that would support

the applications (product) that was intended to be developed. The only agreed

information was the major activities that should be supported by the product.

For the purpose of aligning “artifacts (models) that make up the process

representation “ with the ISOFIN project data, we are required to establish a proper

path from activities known by the stakeholders to the intended and final product

logical architecture. To do so, we defined Organizational Configurations, stereotyped

sequence diagrams, use case models, a new process-oriented 4SRS method, logical

architecture diagrams, mashed use case models, and a whole assessment process

based on ARID.

These models and conceptions, linked to the project data and real problems, can be

interpreted as design artifacts, uncommon in case studies, but easily framed within

Design Science Research (Hevner & Chatterjee, 2010; Vaishnavi & Jr., 2008).

1.3 Contributions

7

The Design Science Research is, according to Hevner and Chatterjee, “a research paradigm

in which a designer answers questions relevant to human problems via the creation of innovative artifacts, thereby

contributing new knowledge to the body of scientific evidence. The designed artifacts are both useful and

fundamental in understanding that problem.”. With this statement, we establish the link with the

case study and the analysis of the results. By looking at the applicability of the

designed artifacts that make up our approach in the real industrial case study, it is

possible to make a proper assessment of our research contributions in what concerns

the development of a process to derive a service-oriented logical architecture from

information system requirements.

In Figure 2, Vaishnavi details the general design lifecycle that provides a way of

explicate the knowledge that is generated in the context of design and its connection

with the design science research.

Figure 2:Methodology of Design Science Research (Vaishnavi & Jr., 2008).

The awareness of the problem is given in the initial ISOFIN project consortium

meetings, where the first difficulties for establishing the intended business model

where felt. Next, follows the preliminary suggestions for the problem solutions. These

are driven by previous knowledge, theories related to the problem scope, or even

1 Introduction

 8

developed using a research methodology. In the ISOFIN project, all of the previous

were used: the previous knowledge from the 4SRS method, theories addressing

eliciting requirements from undefined contexts, and the case study itself.

After the tentative design was agreed, the creative development started. The design

was refined and the actual artifact (the V+V Model) was produced after a series of

interactions, in a constructivist sense.

The development stage led to an artifact prototype that was validated using empirical

methods (an evaluation approach in design science research (Hevner & Chatterjee,

2010)) to establish how well the produced artifact works.

The process followed through and, at the end, the conclusions where driven and used

in the ISOFIN project and others projects ever since. The ISOFIN project was

developed in cooperation with Department of Information Systems at Universidade

do Minho at which this PhD is held.

In recent years, the information systems research community has seen an upsurge of

interest in design science research. When Hevner et al. (Hevner & Chatterjee, 2010;

Vaishnavi & Jr., 2008) described a conceptual framework and guidelines for

performing design science research in information systems, another question arose

regarding what the Hevner refers to as performing design science research in

information systems calls for "communication of research.". In academic

environments, the primary means of communicating one's research is to publish the

work. In the next section, we present our contributions and also the publications that

were made related to each of the described contributions.

1.3 Contributions

This thesis aims to contribute to the increase of the universal body of knowledge in

the knowledge area of software engineering by defining a new process able to deliver

a derived product architecture based on the initial definition of the requirements.

1.3 Contributions

9

Aligned with the generic research goals, the research questions and as a result of the

research method, we were able to create the following main contributions:

Contribution 1: Process-level 4SRS method. This method allows for deriving a

process-level logical architecture from the initial activities that make up the

requirements for a given information system. The method relies on tabular

transformations to create a representation (model) of the intended system, taking as

input the requirements in form of use cases. This contribution is detailed in (Nuno

Ferreira, et al., 2012b).

Contribution 2: The V-Model approach. The V-Model approach is used to create the

initial representation of the context for the activities to be executed, the activities

representations, and the processes as a set of activities to create the requirements,

the 4SRS method to derive a logical architecture from those requirements and the

assessment of the architecture. This contribution is detailed in (Ferreira, Santos,

Soares, Machado, & Gasevic, 2012).

Contribution 3: The V+V-Model approach. This V+V-Model regards creating context

for product design, by executing a first V-Model (process-level) and then, by

executing a set of transition rules, apply a second V-Model (product-level) to derive

the logical architecture of the intended system to be developed. The entire process is

assessed using ARID to assure that the models and the methods are aligned, properly

used and produce the desired output. This contribution can be seen in (Ferreira,

Santos, Machado, & Gaševic, 2013).

Other contributions, like the (supposed) initial problem definition that gave origin to

this work can be seen on (Ferreira, Machado, & Gašević, September, 2009). More

details on the contributions can be read on (Ferreira, Santos, Machado, Fernandes, &

Gasevic, 2013).

1 Introduction

 10

1.4 Structure of this Thesis

This document is structured in six chapters. Each chapter is preceded by a cover page

with an index, with the purpose of assisting the perception of the entire chapter and

a brief summary of the chapter. After that, the main sections of the chapter are

systematically an introduction at the beginning, a conclusion at the end, and the

relevant sections for the chapter’s theme in the middle.

The six chapters of this document and their main content are:

Chapter 1: Introduction. This chapter introduces the motivation for the research, the

areas of research, the research goals and research strategy, major contributions, and

the thesis structure.

Chapter 2: Current State of Eliciting Requirements for Information Systems. In this

chapter we introduce the ISOFIN project as the real industrial case study in which the

design research validates the designed artifacts. It is also subject of this chapter the

overview of requirements elicitation for information systems and the cloud-specific

context that frames the creation of the activities that will result in the processes to be

computationally supported.

Chapter 3: Modeling Information and Software Systems. This chapter presents the

V-Model approach for creating context for product design by derivation of

information systems’ architectures. It starts by framing the need for creating the high

level interactions between the domain entities to assist in the creation of the

intentional interaction manifestations that enact the domain representation.

Chapter 4: Yet another 4SRS. This chapter introduces and details the process-level

4SRS and presents an overview of the traditional product-level 4SRS. The process-

level 4SRS method is able to capture the major activities that compose information

system requirements and derive the information system logical architecture

representation.

Chapter 5: Process- and Product-level Logical Architectures. This chapter presents

the V+V-Model approach, based on the V-Model approach and with a set of defined

1.4 Structure of this Thesis

11

transition rules from one model to the other. This composed approach is able to

derive a service-oriented logical architecture (product-level) from an information

system logical architecture (process-level). To assess the entire approach, the chapter

introduces an adaptation of the architectural assessment method, ARID, adapted to

the V+V-Model approach.

Chapter 6: Conclusion. This chapter presents the conclusions about the present work.

It also promotes a discussion the future word and details some research questions

that the authors’ would like to address. This chapter also promotes a discussion on

the results of the applicability of the V+V-Model approach to the ISOFIN project.

Chapter 2

Current State of Eliciting
Requirements for Information

Systems

Chapter Contents

2 CURRENT STATE OF ELICITING REQUIREMENTS FOR INFORMATION SYSTEMS 15

2.1 INTRODUCTION ... 16
2.2 PROBLEM OVERVIEW AND RELATED APPROACHES ... 17
2.3 PROCESS-LEVEL ACTIVITIES ELICITATION ... 24
2.4 CONTEXT FOR THE ACTIVITIES ON THE CLOUD ... 30
2.5 THE ISOFIN PROJECT IN THE CLOUD... 36
2.6 CONCLUSIONS .. 38

2

Current State of Eliciting

Requirements for Information

Systems

It’s more important to understand the fundamental truth behind a given problem than to
methodically describe its conclusions (consequences)

Odracir

This chapter introduces the ISOFIN project and also the problem that arises in the

context of not having enough information to create a logical representation of

information systems architecture. Specifying functional requirements brings many

difficulties namely when regarding the cloud services. During the analysis phase, the

definition of the process level requirements (information systems) may not be fully

accomplished if there is no context for starting uncovering those requirements. The

process-level requirements must be aligned with the product level requirements

(service-oriented software).

2 Current State of Eliciting Requirements for Information Systems

16

2.1 Introduction

In our experience, one of the most complex activity in the application development

lifecycle is the transformation of a given requirement specification into a view of the

system represented by a logical architecture. Later development stages are also

complex, but there is a better understanding, more methodologies and tools

supporting them. Poorly defined requirements are one of causes of project failure

(Cerpa & Verner, 2009). This chapter proposes a new method of deriving activities

that lead to requirements and use cases of the system, thus proving a way of eliciting

requirements based on common domain activities. The common domain activities

will be based on cloud-computing (NIST, 2009) related usage scenarios.

Architecture design of a system encompass’ dealing with several design objectives at

the same time due to requirements specifications. Since new requirements emerge

anytime, before, during and even after the development stage, we can say that

designing software architectures is an activity performed several times during the

development (Bosch, 2000). Dealing with change and open requirements is a problem

that many are trying to minimize at some degree, as seen on Agile Methods, Open

Unified Process or Rational Unified Process, amongst others.

There are several ways of describing what users want from a given system, like use

cases, user stories or textual descriptions. In the case where none of the before

mentioned methods fulfill the intended purpose for describing a system’s intended

functionalities or lack information for providing the necessary detail as input, we

propose looking at the activities that a given system is supposed to execute and

frame them with the system under study specific context to derive the necessary

information for building its initial requirements and later achieve an architectural

representation of it.

This section presents PL.AC.E (Process-Level ACtivities Elicitation), a lightweight

method for eliciting requirements, in a process-level perspective, through the

discovery and classification of canonic domain activities. The method is domain-

specific because it starts by focusing the analysis on a given ICT-related domain and

2.1 Introduction

17

framing the scope of analysis to that domain, in an attempt to understand it. A multi-

level process perspective is adopted since we are focusing our analysis on activities in

order to allow processes definition. It is called multi-level because the method’s core

encompass’ the creation of an n-level matrix of ICT-related canonic activities. The

method also promotes a classification of the activities. Each step of the method is

described in this chapter and examples are given for better understanding.

Alongside with the PL.AC.E method, we present an overview of the technological

target for the activities implementation: a cloud terminology overview. This overview

is useful in the context of placing the necessary mindset for the PL.AC.E execution and

determine the high-level interactions that will be part of the business model of the

intended final software solution.

As far as definitions concern, in the scope of this section, an activity is a set of human

and/or machine actions that take place in a given context for the fulfillment of a

specific objective. A process, according to, and in a business context, is a set of

activities executed to achieve a given business goal and where business process,

human resources, raw material, and internal procedures are combined and

synchronized towards a common objective. The definition of “level” that we goes

back to Miller (Hammer, 1997). He uses the term to describe qualitatively different

entities, with a hierarchical relationship. Our usage relates to the different entities

that are combined together to give origin to the elicited activities. Multi-level refers

to the interactions we make between the different levels (entities). Another useful

definition to have in mind while reading this document is of “model”. For us, a model

is a formal specification (machine readable) and explicit of the mental representation

that results from the study of a given domain.

2.2 Problem Overview and Related Approaches

Before any software development is carried, there are three major phases that must

occur: domain engineering, requirements engineering and software design. The

2 Current State of Eliciting Requirements for Information Systems

18

domain engineering phase concerns all the necessary work for understanding and

characterizing the domain under study, resulting in a model of the domain. Domain

Analysis is part of Domain Engineering. The requirements engineering phase results in

a requirements model that specifies how we expect the resulting artifact should be.

This model is in direct relation with the domain model. Finally, the software design

encompass’ the system architecture, the code organization, components, modules

and code design, all aligned with the requirements model.

The problem begins when there is not enough understanding of the domain under

analysis. If there is no documentation, the problem-space relates to a new situation,

the stakeholders do not want or do not know how to describe the intended system, it

is not feasible to properly create a requirements model aligned with a non-existing

domain model. An analysis of the system or of the domain needs to be carried out for

accomplishing a full understanding of the requirements we want to fulfill.

The PL.AC.E method focuses on delivering a set canonic ICT-related candidate

activities for building a domain model from a process-level perspective of the system

under study. The method is intended to work in specific environments where

standard domain analysis methods cannot gather enough information to deliver

coherent domain models.

There are some methods, methodologies and frameworks that relate directly or

indirectly to activity elicitation. The next paragraphs briefly present some of them

that influence this work proposed approach. It is not our intention to present an

exhaustive survey of the system analysis or domain analysis literature, but instead

focus on the ones that influence the PL.AC.E method.

The Work System Method (Alter, 2002) allows a better understanding and analysis of

IT and non-IT systems present in organizations. This method presents a combined

static view of the current (or proposed) system and a dynamic view of the system

evolution over time. It takes in account planned and unplanned changes of the

system over time. A work system’s goal is to produce products and/or services and

make them available to customers.

2.2 Problem Overview and Related Approaches

19

The Work System Framework is based on the Work System Method and was designed

to help to understand IT dependent systems. Its elements are graphically represented

in Figure 3: Processes and Activities, Participants, Information, Technologies, Products

and Services, Customers, Infrastructure, Environment and Strategies. All of them

should be included in the analysis conducing to the understanding of a specific

system.

Figure 3: The Work System Framework

Complementing the Work System Framework, the Service Value Chain Framework

(Alter, 2008) adds activities and responsibilities of service providers and customers,

associated with services. In this context, services are defined as “the application of

specialized competences (knowledge and skills) through deeds, processes, and performances for the benefit of

another entity or the entity itself.” (Vargo & Lusch, 2004). In this line of though, the Work

System Lifecycle Model appeared. This adds to the static views presented in both the

Work System Framework and in the Service Value Chain Framework the necessary

dynamics to represent how work systems change over time.

The Soft Systems Methodology (SSM) (Checkland, 1981, 1985, 2000) is a domain-

independent analysis methodology designed for tackling problematic situations

2 Current State of Eliciting Requirements for Information Systems

20

where there is neither clear problem definition nor solution. SSM can widely be

described by its “seven-stage model” as seen on (Checkland, 1985, 2000).

Figure 4: Soft Systems Methodology (adapted from (Checkland, 2000))

The SSM model can be seen on Figure 4 and the stages are:

(i) Identify the problematic situation where the intervention is going to

happen;

(ii) Build an interpretative representation of the situation;

(iii) Build “root definitions” or define the key processes that need to occur in

the desired solution;

(iv) Build a conceptual model of the change system from the key processes;

(v) Establish a comparison between the model and the real world;

(vi) Define a set of changes to be implemented;

(vii) Take the corresponding actions in the problem.

The methodology uses system models to help improve and make more visible

changes that must occur in a system for particular actors in a given period of time for

1. Enter

unstructured

problem

situation

2. Express the

problem

situation

3. Formulate

root definitions

of relevant

human activity

systems

4. Build

conceptual

models from the

root definitions

5. Compare

models with

real world

6. Define

desirable and

feasible

changes

7. Take action

in problem

situation

Real World

Systems thinking

about the real world

2.2 Problem Overview and Related Approaches

21

a specific condition by focusing on cultural process that lead to the proposed change

actions.

The Yourdon Systems Method (Yourdon Inc., 1993) points out three main orthogonal

and independent viewpoints of a system: Function (what the system does), Time

(what happens and when), and Information (what information is used by the system).

The method designs a system by constructing models with the purpose of capturing

all the relevant information about the enterprise where the system will be

implemented and about the system itself. The three viewpoints are used to identify

that information. The requirements for the system are represented through a System

Essential Model. This model disregards any technological issue and only concerns on

the real-world subjects of the system under construction.

In relation to the domain engineering, and in particular to domain analysis, we can

briefly reference the following:

DRACO, presented by Neighbors in his thesis (Neighbors, 1980), promotes

transformation between domain descriptions and an executable program. The

method encompass’ three main phases: determine domains of interest, research the

domain and construct a software system. The first phase, determine domains of

interest, takes as input the organizational goals, and an analysis of demand for similar

systems. The output is a problem domain where the organization is interested in

producing software. This output and information about different problem domains

are inputs for the second phase, research the domain. This phase outputs, at least, a

domain analysis reports that can be inputted to second phase through successive

refinements until there is enough detail to construct the domain. The second phase

encompasses the construction and test of a domain and the further inclusion of that

domain to a library of domains. The third and last phase takes as input the analysis

report and produces an executable language.

The DRAMA framework (Kim, Park, & Sugumaran, 2008) allows to establish

traceability between domain requirements and domain architecture, quantitative

analysis all with a semi-automated tool support. DRAMA supports domain

2 Current State of Eliciting Requirements for Information Systems

22

requirements analysis and domain architecture modeling. Our interest in the

framework resides in the techniques used to elicit the domain requirements through

goal and scenario based analysis. Scenarios describe real situations and as such, they

capture real requirements.

Kang’s Feature-Oriented Domain Analysis (FODA) method (Kang, Cohen, Hess, Novak,

& Peterson, 1990) promotes a better understanding of the domain under analysis and

presents some guidelines of the desired domain architecture. The focus of the

method, as the name implies, in domain analysis, that is, the analysis of the problem

space. Feature Oriented Domain Analysis essentially encompasses three phase, as

depicted in Figure 5, Context Analysis, Domain Modeling and Architecture Modeling.

Figure 5: Phases and Products of Domain Analysis (based on (Kang, et al., 1990))

The Context Analysis phase contextualize the domain, the Domain Modeling phase

express the software problems to tackle and the Architecture Modeling phase defines

the structure for the software implementation, that is, the software architecture.

Each phase encompasses several activities and each produce documents that

describe the domain. As such, we can say that this method contributes for a better

understanding of the domain under study. Another point of interest concerning this

method is the fact that it establishes a relation between itself the possible roles

participating in the domain analysis process. That is to say that, for example, domain

user and domain experts are sources for the method and the domain user is also a

consumer. Later on, Kang presented and evolution of Feature-Oriented Domain

Domain Analysis

Context Analisys Domain Modeling Architecture Modeling

Structure Diagram

Context Diagram

E-R model

Features Model

Functional Model

Domain terminology

dictionary

Process Interaction Model

Module Structure Chart

2.2 Problem Overview and Related Approaches

23

Analysis called Feature-Oriented Reuse Method (FORM) (Kang et al., 1998), as an

extension to support software design and implementation. This extension gives more

attention to the implementation details that were not addressed in the previous

version.

The Domain Analysis and Reuse Environment (DARE) CASE tool and method (Frakes,

Prieto-Diaz, & Fox, 1998) primary objective is to create a generic architecture that

describes architectural elements and their relationships for a family of systems.

Figure 6: Domain Analysis Book Composition (based on (Frakes, et al., 1998))

The DARE method focus is on the extraction of high-level domain information from

experts. To create a domain model, in DARE called Domain Book, it is necessary to

extract information from the domain experts and documents and from existing code

present in the various systems under analysis. The DARE Domain Book contains the

sections described in Figure 6. Each section has several chapters (book metaphor),

each chapter entries and the information of how it was created. The method has two

main steps: bottom-up analysis, with the validation of the generic architecture and

features through the analysis of text and code of the domain (documents); top-down

analysis with the postulation of generic architecture and features based on domain

expert knowledge and experience (people).

Organization Domain Modeling (ODM) (M. A. Simos, 1995) is a multi-organization and

multi-domain domain analysis systematic approach able to produce domain analysis

DARE Domain

Analysis Book

Table of Contents

Domain Sources

Vocabulary Analysis

Architecture Analysis

Glossary

Bibliography

User Index

Appendix

2 Current State of Eliciting Requirements for Information Systems

24

process models able to be implemented in various technologies. The ODM method

focus, as the name implies, in the organizational aspects of an organization rather

than on technological issues. It defines a domain modeling lifecycle, distinct and

orthogonal to the system development lifecycle. The method is separated into three

main phases (M. Simos, Creps, Klinger, Levine, & Allemang, 14 June 1996): Plan

Domain, Model Domain, and Engineer Asset Base. The Plan Domain phase mainly

consists in setting the overall project objectives and in the specification of a domain

for the project, aligned with organizational needs. This phase also encompass’ the

designation of the stakeholders relevant for the domain. The Model Domain phase

produces a domain model for the selected domain based on three fundamental

constructors: lexicon, concepts and features. The domain model describes

commonality and variability within the selected domain and is constructed by

acquiring domain information, describing the domain and by refining the domain

model. The Engineer Asset phase purpose is to implement the variability defined in

the domain model. This is done by defining a scope for the asset base, architect the

asset base and then implement it.

Other domain analysis methods, like Stability-Oriented Domain Analysis (SODA)

(Haitham, 2011) or Family-oriented Abstraction, Specification, and Translation (FAST)

(D. Weiss, 1998) focus on the product perspective and thus are excluded from this

process-level perspective.

2.3 Process-level Activities Elicitation

Here we introduce the PL.AC.E lightweight method. PL.AC.E appeared after we

experienced the need to define a set of processes that are based on canonic activities

in the Information and Communication Technologies (ICT) domain related to

engineering projects. These processes later act as input for the use cases descriptions

required for describing the project result, the proposed system.

The method has six main phases, as shown in Figure 7:

2.3 Process-level Activities Elicitation

25

(i) Definition of the project scope;

(ii) Creation of the cross product between canonic regulated and non-

regulated ICT activity kinds;

(iii) Definition of the relevant constraints in the Mission’s scope and

concerning the overall project;

(iv) As a result of the instantiation of the canonic ICT activities in (ii) and

applying the constraints defined in (iii), define specific activities for the

domain under analysis;

(v) Specific activities resulting from (iv) are validated against a set of

questions and the domain stakeholders are discovered.

(vi) The approved activities from (v) can be classified by its nature;

In the remaining of this section we will detail each phase of the PL.AC.E method,

depicting the rationale for each and relating them with the previously exposed

methods.

The project scope definition regards the definition of the project purpose, objectives,

and operational activities of the enterprise, expressed thru its vision, mission, goals or

strategies (OMG, 2010) depending on the granularity of the project under analysis.

2 Current State of Eliciting Requirements for Information Systems

26

Figure 7: Phases of PL.AC.E

We are analyzing activities in the domain of ICT engineering, and since an Engineer is

considered the “professional that deals with the application of sciences and techniques relating to various

branches of Engineering in research, design, study, design, manufacture, construction, production, inspection and

quality control, including coordination and management of these and other activities with them related” (R. J.

Machado & Amaral, Fevereiro, 2011), such activity kinds should also be considered.

Activities to be

performed

Sp
ec

if
ic

A

ct
iv

it
ie

s

Coordination
Activities

Project Technical

Background

C
o

n
st

ra
in

ts

Project
Management

Cultural
Issues

 Project Objective

P
ro

je
ct

Sc
o

p
e

Defines

Defines Constrains

Frames

 Who

D
o

m
ai

n

A
ct

iv
it

ie
s

&

St
ak

eh
o

ld
er

s

Where When Why

Validates & Discovers

 Economical

Non-economical

Specific

N
at

u
re

 o
f

A
ct

iv
it

y

Generic

Classifies

Research

Design

Construction

Management

Quality Control

Teaching/Training

Standardization

C
an

o
n

ic
IC

T
A

ct
iv

it
ie

s

Studies/Consultancy

2.3 Process-level Activities Elicitation

27

We have chosen to divide the activities in two main groups: regulated activities,

encompassing Design, Construction, Quality Control and Management; and an un-

regulated group, encompassing the remaining. By regulated we mean that the activity

kinds are subject to formal, legal or defined regulations in some sort of meaning due

to the consequences of the execution of such activities carries to the entities related

to them, in the context of an ICT project. For each of these activity kinds it is

necessary to elicit matching activities.

In “Design”, we encompass all business and organizational analysis and also

requirements engineering related activities. These activities include (BABOK):

planning and monitoring of business analysis activities throughout the requirements

process, managing requirements (when requirements change, that change must be

managed, including communication with the interested stakeholders), business

situation/enterprise analysis, requirements elicitation and analysis, solution

assessment and validation and also individual competencies identification.

In “Construction”, we are grouping all the activities related to building descriptions of

the software internal structure and related support infra-structure. This category of

activities takes as input all the requirements elicited in the previous set of activities

and guarantee, at least, information type organization, description of the

relationships between business process, data, IT mission systems, among others

(EABOK). Activities performed in this set (EABOK; G2SEBoK) can be included, for

example, the ones present in the Architecture Development Method of TOGAF (The

Open Group, 2009) and in the Zachman Framework (Zachman, 1987).

The “Quality Control” group refers to activities concerning verification and validation

of software solutions, as referred by the Capability Maturity Model Integration

(CMMI) (CMMI Product Team, 2006). These activities encompass testing and regard it

as one of the most important in the software development lifecycle, with average

costs and duration above any other activity (Monteiro, Machado, & Kazman, 2009).

Common activities in this group relate to system evaluation for determining if it

satisfies given requirements, during and after the development process and

2 Current State of Eliciting Requirements for Information Systems

28

evaluation, in a given development moment, if the imposed starting conditions were

met.

In “Management” are all project management activities. From the ones depicted in

PMBOK (Project Management Institute, 2008) to the Agile methods, like SCRUM

(Schwaber & Beedle, 2001). This group relates heavily to the previous since its

activities focus are on the previous groups’ activities. Here we include planning,

coordination, measuring, monitoring, controlling and documenting all the intangible

artifacts developed in the context of software.

In relation to the non-regulated activities, Studies/Consultancy refers to the studies

and consultancy efforts that can be made to formalize new Design, Management,

Construction or Quality Control methodologies and provide support to establish new

criteria on the regulated activity kinds.

Teaching/Training refers to the activities that occur with the objective of

disseminating information or develop new skills concerning the regulated activities in

audiences that did not have those skills at a desired level.

In this context, Research refers to the activities that engineers execute to construct

new methodologies and theories enacting future usages and exploration of the

regulated activity kinds.

Standardization refers to the set of regulations that are imposed on the regulated

activity kinds. Even these standards evolve in conjunction with research or

experience. Standardization applied to the regulated activity kinds originates a

validated and coherent set of activities that are accepted by a given group or within a

given context. When applying research and standards, there are some regulations

that can be used within specific contexts, like for instance, The Guide for Software

Design ("IEEE Guide to Software Design Descriptions," 1993) when dealing with

design-related processes or Business Analysis (BABOK). Other standards can be

generically applied, like the Portuguese standards for Research, Development and

Innovation (Instituto Português da Qualidade (IPQ), 2007) that defines requirements

and processes enabling an organization to coherently promote innovation. Other

2.3 Process-level Activities Elicitation

29

general-purpose standard that can be referred in this section is the ISO 15504

(International Organization for Standardization, 2008-11-25), that provides a

framework for the assessment of processes and influence organizations to make

decisions. These kinds of standards help framing the processes that can be executed

within the context of the defined project.

Constraints related to engineering projects must also be considered. Engineering

projects environments are defined by (R. J. Machado & Fernandes, 2002) and project

management are defined in (Project Management Institute, 2008):

(i) the project technical background, consisting on a scientific framework that

supports a methodology and a technological framework that defines the

techniques and tools used by engineers in the context of project activities;

(ii) taking into consideration the scope of the project and its deliverables in

the project management section and;

(iii) Every cultural issue of interest in the scope of project must be accounted,

like in SSM (Checkland, 1985) or in DARE (Frakes, et al., 1998), cultural

aspects that surround the project (by itself) or the product resulting from

the project (Hanisch & Corbitt, 2007). As an example, the case where

usability requirements based on cultural aspects of a given region

constrains the activities that must be executed in that region.

A baseline for the definition of activities in the domain of a given ICT project is based

on Mintzberg’s theories. He states that “Every organized human activity – from the making of pottery

to the placing of a man on the moon – gives rise to two fundamental and opposing activities: the division of labor

into various tasks to be performed and the coordination of those tasks to accomplish the activity.” (Mintzberg,

1989). These translate into activities to be performed and coordination activities.

Specific activities are only used for tagging purposes.

Having in mind the previously exposed, we reach a phase in the method where

canonic activities for the domain under analysis can be derived. A list with the

activities must be produced and the next step allows the validation of such list, by

2 Current State of Eliciting Requirements for Information Systems

30

imposing a set of questions. These questions, encompass the discovery of who are

the actors (domain stakeholders) that interact with each activity, where is the activity

executed and when. To each of these questions must be placed another validation

question: why. This allows validation of the results with the project objective, defined

in the project scope and thus producing only contextualized information.

Finally, the nature of the economic activities is also a factor that must be accounted

for. There is the need to classify the elicited activities in Economical (R. J. Machado &

Fernandes, 2002) or Non-Economical (Bensaou & Venkatraman, 1993). The Nature of

the Activity is a set of tags that are added, allowing the classification of the elicited

activities (Bensaou & Venkatraman, 1993).

The PL.AC.E method reuses some of the previously exposed methods features. Like in

DRACO, we need to first analyze the domain, gather information about it and catalog

it, in order to obtain iteratively detailed domain information. As in DRAMA, a similar

situation to scenarios is used, where we intent to capture real present situations or

desirable future actions. Like in FODA, PL.AC.E allows to establish relations between

the participating roles in the process (domain user, domain expert and all the canonic

ICT activities). At the same time, both methods share the contextualization concept,

both wanting to obtain information about the domain of study. Like in FORM, PL.AC.E

also regards implementation and execution details that must be accounted in the

regulated activity kinds or in the cultural issues (this is also common to SSM and

DARE). From ODM, PL.AC.E also benefits from the domain analysis and scope

perspective impact on the project. This domain must be aligned with the organization

objectives, depicted in the project scope, defined in its early phase.

2.4 Context for the Activities on the Cloud

One of the inputs for PL.AC.E regards knowing the intended target for deployment.

The chosen scenario regards a cloud-related target. It is of the utmost relevance the

2.4 Context for the Activities on the Cloud

31

definition of what the cloud-related subject is to clearly define the actuation context

of the activities to be defined.

According to NIST’s cloud definition (NIST, 2009), the cloud computing model has five

essential characteristics: On-demand Self-service; Broad Network access; Resource

Pooling; Rapid Elasticity; Measured Service. For the purpose of understanding the

next chapters design decisions, each is these characteristics is detailed in the next

paragraphs.

On-demand Self-service

A consumer can unilaterally have access to computational resources like processing

time, storage and network servers, automatically and according to his specific needs

and without human interaction (Krutz & Vines, 2010; Mell & Grance, 2009).

Graphical interfaces to be effective and acceptable for the end user must be easy to

use and make available features to manage the service catalogue (Krutz & Vines,

2010). By making the interfaces easy to use and eliminating user interaction, there

are productivity gains and cost reduction, for the end-used and for the service

suppliers.

Broad Network access

Resources are available through the network and are accessible by means of standard

interfaces that promote the usage by heterogeneous platforms: mobile phones,

laptops, tablets, among others. To make the cloud paradigm a real alternative to

in-house data centers there must exist broadband connections that connect end-

users to cloud services (Krutz & Vines, 2010; Mell & Grance, 2009).

Resource Pooling

The resources are organized in a way to allow multiple end-users by means of multi-

tenant models. There are different physical and virtual resources, managed according

2 Current State of Eliciting Requirements for Information Systems

32

to the customer demand (Mell & Grance, 2009). The end-user does not have control

or knowledge about server’s exact location. Nevertheless, it is possible to define, at a

very high level of configuration, their location (due to legal constraints that affect

where databases should be, for example).

This computational model has a broad range of resources in order to answer

customer needs, reach economy of scale and respect the agreed quality of service.

Applications need resources for executing and those should be efficiently assigned to

achieve an optimal performance, even if they are geographically dispersed (Krutz &

Vines, 2010).

Rapid Elasticity

The resources should be supplied in a quick and elastic way, in some cases,

automatically to assure the system scalability. For the end-used, the resources should

appear like if they are unlimited, bought at any time and number and the cost

calculated accordingly to the usage time and amount of resources spent. This

characteristic regards the ability of increasing or diminishing allocated resources to

comply with self-service requirements (Krutz & Vines, 2010; Mell & Grance, 2009).

Measured Service

These computational systems control and optimize resource usage, automatically and

accordingly with the appropriate service level and type (example: storage, processing,

bandwidth, among others). Resource usage can be monitored, controlled and

communicated making the service transparent for the end-user as for the supplier.

The number of used resources can be monitored and defined dynamically. This way,

only the resources used for a given session will be charged (Krutz & Vines, 2010; Mell

& Grance, 2009).

Regarding the distribution model for cloud, there are three typical cloud

classifications in the perspective of who owns and manages the cloud infrastructure.

2.4 Context for the Activities on the Cloud

33

Figure 8: Distribution Models

In Figure 8 are depicted the typical distribution models: public cloud, private cloud

and hybrid cloud. For the sake of understandability the next paragraphs will make a

brief overview of each.

Public Cloud

The cloud infrastructure is publicly available, or to a large industrial group. The

infrastructure is proprietary of an organization that sells cloud services. This is the

most common type of cloud and its services are made available through a service

supplier and the resources are shared among other customers. Security and data

governance are the greatest concerns of this approach (Furht & Escalante, 2010).

Private Cloud

The cloud infrastructure is owned by a single organization. It may be deployed inside

or outside the organization’s facilities, being managed by the organization itself or by

another one. Many of the infrastructures are managed by big organizations or

governmental groups that prefer to maintain their data in a controlled and more

secure environment (Furht & Escalante, 2010).

Table 1 summarizes a comparison between the public and private cloud models.

2 Current State of Eliciting Requirements for Information Systems

34

Table 1: Public vs Private Cloud Models (adapted from(Furht & Escalante, 2010))

 Public Cloud Private Cloud

Infrastructure

owner
Third party (cloud provider) Company

Scalability Unlimited and On-Demand
Limited to the installed

infrastructure

Control and

Management

Only manipulate the virtual

machines, resulting in less

management costs

High level of control over

the resources, and need

more expertise to manage

them.

Cost Lower cost

High cost (space, cooling,

energy consumption,

hardware, etc.)

Performance

Unpredicted multi-tenant

environment, making

performance goals hard to

achieve

Guaranteed performance

Security
Concerns regarding data

privacy
Highly secure

Community Cloud

The cloud infrastructure is shared by several organizations, supporting a community

with identical concerns (examples: mission, security requirements, and policies), able

to co-exist inside or outside the organization facilities and being managed by the

organizations that own it or by an external entity (Mell & Grance, 2009).

2.4 Context for the Activities on the Cloud

35

Hybrid Cloud

The cloud infrastructure is a composition of two or more cloud (private, public, or

community) that remain single entities and, being connected through standard or

proprietary technology, allow data and application portability (Mell & Grance, 2009).

This way, an organization can sustain its data and critical applications, inside its

facilities, deploying the less critical in a public cloud (Furht & Escalante, 2010).

Regarding the service models, the NIST definition regards the following three:

Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a

Service (SaaS). In this definitions are left outside Business Process Management as a

Service (and related) for being considered a specializations of the SaaS model.

Infrastructure as a Service

In this model the user has available processing time, storage, networks and other

computational resources. The user can deploy and execute any software, including

operative systems and applications. The basic cloud infrastructure isn’t controlled by

the end-user, but he has control over the operative system, storage, and application

deployment, having the possibility to control a limited range of network components,

like firewalls. In this category are included Computation as a Service (CaaS) and Data

as a Service (DaaS).

Platform as a Service

In this model the end-user has access to deploy in the cloud applications bought or

created by him, but only if they are supported by the programming language/tools

supported by the model infrastructure. The end-user does not controls or manages

the infrastructure of the cloud (network, servers, operative system, or storage) but

controls the deployed applications and their configurations.

Software as a Service

2 Current State of Eliciting Requirements for Information Systems

36

This model allows to the end-user to use applications that are available by the cloud

supplier in the cloud system. Those applications can be accessed through a graphical

interface, like a web browser. The end-user does not have control on anything on the

cloud, with the exception of the application user-specific configurations.

2.5 The ISOFIN Project in the Cloud

Every time a new technology emerges its adoption always faces risks and drawbacks

from the adopters. In the insurance industry, whose focus is on the calculation and

mitigation of risks, this situation is more noticeable. To deploy a new technology or

process in a business with an existing infrastructure presents some risk. If to the

previous, we add some uncertainty in the offer-side features, it can lead to loss of

innovation and business opportunities.

The combination of SaaS and cloud is of great value to the insurance industry but its

adoption is slow, namely in Policy Administration Systems and Claims Management.

This is due, mainly to insurance companies not having a well-defined cloud computing

strategy and a visible benefit that counteracts the potential security problems (J.

Weiss, 2010). By having a combination of private and public cloud in a SaaS model it is

possible to coordinate different channels, like distribution, claims and marketing. The

cloud assures to end-users continuous availability of most data, files and relevant

information.

The ISOFIN project (ISOFIN Project Consortium, 2010) aims to deliver a set of

coordinating services in a centralized infrastructure (public cloud), enacting the

coordination of independent services relying on separate infrastructures (private

clouds). The resulting ISOFIN platform, allows for the semantic and application

interoperability between enrolled financial institutions (Banks, Insurance Companies

and others), as depicted in Figure 9.

2.5 The ISOFIN Project in the Cloud

37

Figure 9: Placing the ISOFIN on the Cloud

This project is used as the main case study that supported this thesis work. The

project started officially in 2010 but the preparatory works began in 2009 with the

application submission to funding from the Portuguese Government (project funded

with reference QREN/2010/013837) (ISOFIN Project Consortium, 2010).

The ISOFIN project encompasses eight institutions, ranging from universities,

research centers and private software development companies for the bank and

insurance domains. The stakeholders of this group had different backgrounds and

expectations regarding the project outcome. These differences resulted in the lack of

definitions for the requirements that the project’s applications would support and

even to a proper definition of a business model that the organizations that participate

in the project would pursue.

The expected benefits of the ISOFIN project are to deliver a platform able to

guarantee the coordination of different application residing in the supplier’s private

clouds in a unified view, made available in the ISOFIN Platform public cloud.

The ISOFIN project main constructors and terminology are described in section 4.2 of

this thesis.

Supplier A Supplier B Supplier C Supplier ...

ISOFIN Customers

ISOFIN Suppliers

ISOFIN Platform Public Cloud

Private Clouds

2.6 Conclusions

The PL.AC.E. method is used to create the activities that will make up the initial

context for the project process definitions, based on the cloud premises detailed in

the previous sections. This detail is essential to contextualize the problem, possible

solutions and design decisions that must be taken during the analysis and design

phases. The deployment configurations, the various usages of the cloud

infrastructure will frame and at the same time provide a hints and guidelines for the

intended business model.

A possible problem that can be addressed to the method concern the fact that its

execution can sometimes be constrained by organizational or project structures,

leading to activities that represent the actual situation and not the expected one. The

method is a green-field approach able to deliver a set of canonic ICT activities suitable

for a scoped project.

Having in mind that the purpose of domain analysis is the reuse, and since the

method is commonly used in a process-level perspective, in our opinion, eliciting

requirements in this perspective is a task that must be carefully executed to not

exclude key requirements from the analysis that should be raised when transiting to

the product-level perspective. Hence, the domain analysis perspective that we use

regards the domain of analysis perception with the purpose of creating a requirement

model (activities and processes) that will support traditional (product-level)

engineering processes with reuse purposes.

The ISOFIN project previously presented emerges in two distinct edges: a first, with

the need of the financial domain of having a infrastructure able to enact the

coordination of distinct services and, a second edge, if there is no knowledge on the

real business model of the project, there is no guarantee on the development

roadmap for the development of the final solution. These edges, connected, are

combined into a plane that is the roadmap of this thesis: Starting from (1) a reality

2.6 Conclusions

39

where there is no proper definition of the required inputs for a business model, (2)

learning about the target environment and the scenarios that must be supported and

then, moving on to the (3) high-level definitions of the activities that must be

supported. Step (1) relates to PL.AC.E.; Step (2) to the cloud environment; and Step

(3) relates to the organization configurations that will be detailed in the next chapter.

Chapter 3

Modeling Information and
Software Systems

Chapter Contents

3 MODELING INFORMATION AND SOFTWARE SYSTEMS ... 43

3.1 INTRODUCTION ... 43
3.2 RELATED WORK .. 46
3.3 AN APPROACH TO DOMAIN AND SOFTWARE MODELS ALIGNMENT ... 50
3.4 THE V-MODEL IN THE ISOFIN PROJECT .. 58
3.5 V-MODEL CONSIDERATIONS AND COMPARISON WITH RELATED WORK ... 69
3.6 ASSESSMENT OF THE V-MODEL ... 73
3.7 CONCLUSIONS .. 78

42

3.1 Introduction

43

3

Modeling Information and

Software Systems

"Depending on where you’re looking, one person’s system is another’s subsystem."

Grady Booch

This chapter introduces the basic structure that makes our approach: the V-Model

process representation. This representation was built upon a set of models that are

intertwined together to derive a logical architecture representation of an information

system. The input for the V-Model process is a set of misunderstood requirements

that make up the intention of the business model of the desired information system.

3.1 Introduction

One of the top concerns of information technologies (IT) managers for almost thirty

years relates to software and the business domain alignment (Luftman & Ben-Zvi,

2010). The importance of aligning the software with domain specific needs for the

purpose of attaining synergies and visible success is a long-running problem with no

visible or deterministic solution. There are many questions concerning this subject,

3 Modeling Information and Software Systems

44

going from how to align several strategic components of an organization with the

necessary maturity or how specific domain needs and software that supports the

domain are aligned with each other.

The perspective on domain specific needs with software alignment has changed along

the years. Initially, alignment meant relating specific domain needs with supporting

software plans. Later, the concept evolved to include business and software

strategies, business needs and information system priorities. This created the need

for aligning business models (as a rationale for how the organizations create, deliver

and capture value for a given business) with the underlying information system

(people and software solutions) that is designed to support part or whole of the

business model.

One of the possible representations of a software solution is its logical architecture,

resulting from a process of transforming business-level and technological-level (of

any given domain) decisions and requirements into a representation (model). A

model can be seen as a simplified view of reality, and possesses five key

characteristics: abstraction, understandability, accuracy, predictiveness, and

inexpensiveness (Selic, 2003). This representation is fundamental and mandatory to

analyze and validate a system but is not enough for achieving a full transformation of

the requirements into a model able to implement stakeholders’ decisions. It is

necessary to promote an alignment between the logical architecture and other

supporting models, like organizational configurations, products, processes, or

behaviors.

An organization is about people. Stakeholders are responsible for the decision-

making processes that influence the organization’s strategy at any given level under

analysis (Campbell, Kay, & Avison, 2005). At the same time, the stakeholders also

influence the organization’s software architecture and systems. Aligning domain

specific needs with the way that software solutions are organized is a task that must

be accounted for and whose results are not easily, or at all, measurable.

3.1 Introduction

45

Our approach is based on the premise that there is no clearly defined context for

eliciting product requirements within a given specific domain. As an example for a

situation where there is no clearly defined context, we present the ISOFIN project

(ISOFIN Consortium, 2010). This project is used along the present work as a real

industrial case study of the applicability of the presented approach.

The ISOFIN project is executed in a consortium comprising eight entities (private

companies, public research centers and universities), making the requirements

elicitation and the definition of a development roadmap difficult to agree. The initial

request for the project requirements resulted in mixed and confusing sets of

misaligned information. Even when a requirement found a consensus in the

consortium, all the stakeholders did not easily understand the intended behavior or

its definition.

Our proposal of adopting a process-level perspective was agreed on and, based on

the knowledge that each consortium member had of the intended project results, the

major processes were elicited and a first approach to a logical (process-level)

architecture was made. After execution of the process-level perspective, it was

possible to gather a set of information that the consortium is sustainably used to

evolve to the traditional (product-level) development scenario.

Elicited requirements in a process-level perspective describe the processes in a higher

level of abstraction, making them understandable by the consortium key decision-

taking members (business stakeholders). At the same time, by defining the major

activities, their relations and flows, the definitions and intended behavior of the

system, expressed in the architecture that results from the process-level 4SRS

method, describe the system to the consortium key technological developers

(technological stakeholders).

Our approach results in a “Vee” Model-based adaptation (V Model) (Haskins &

Forsberg, 2011), which suggests a roadmap for product design based on domain

specific needs. The model requires the identification of those domain specific needs

and then, by successive models derivation, it is possible to transit from a domain level

3 Modeling Information and Software Systems

46

perspective to a software (IT) level perspective and at the same time, aligns the

requirements with the derived models, reducing the gap between business and

technological stakeholders.

This chapter starts by framing our approach with others work. Then we detail our V-

Model representation to promote the creation of an information system logical

architecture. The ISOFIN project, as a case study is presented, giving details about the

pertinence of using the chosen presented models for creating context to product

design based on the information system logical architecture. We also explain how to

proceed from one model to another and includes discussions, comparison with the

related work and an assessment overview of the presented approach and its

validation through ARID.

3.2 Related Work

A typical software development project is coordinated so that the resulting product

properly aligns with the domain-specific (business) model intended by the leading

stakeholders. As an economical plan for the organization or for a given project, the

business model contributes for eliciting the requirements by providing the product’s

required needs in terms of definitions and objectives.

By “product”, we mean applications that must be computationally supported. They

may be in the form of independent application modules or interconnected business

services.

In situations where organizations focused on software development are not capable

of properly eliciting requirements for the software product, due to insufficient

stakeholder inputs or some uncertainty in defining a proper business model, a

process-level requirements elicitation is an alternative approach.

The process-level requirements assure that organization’s business needs are

fulfilled. However, it is absolutely necessary to assure that product-level (software-

3.2 Related Work

47

related) requirements are perfectly aligned with process-level requirements (derived

from the business requirements), and hence, are aligned with the organization’s

domain-specific requirements. In this section, we chose to refer to other author’s

work related to ours in the diverse topics that integrate our approach: business and IT

alignment, governance, alignment of requirements with system specifications, the

process-level perspective, process architectures and the models that can be used to

describe requirements and help build the context for product elicitation.

An approach that enacts the alignment between domain-specific needs and software

solutions, is the goal oriented approach GQM+Strategies (Goal/Question/Metric +

Strategies) (Basili et al., 2010). The GQM+Strategies approach uses measurement to

link goals and strategies on all organizational levels. This approach explicitly links

goals at different levels, from business objectives to project operations, which is

critical to strategic measurement. Applying GQM+Strategies makes easier to identify

goal relationships and conflicts and facilitates communication for organizational

segments. Another goal-oriented approach is the Balanced Scorecard (BSC) (Kaplan &

Norton, 1992). BSC links strategic objectives and measures through a scorecard in

four perspectives: financial, customer, internal business processes, and learning and

growth. It is a tool for defining strategic goals from multiple perspectives beyond a

purely financial focus.

Another approach, COBIT (Information Technology Governance Institute (ITGI), 2012),

is a framework for governing and managing enterprise IT. It provides a

comprehensive framework that assists enterprises in achieving their objectives for

the governance and management of enterprise IT. It is based on five key principles:

(1) meeting stakeholder needs; (2) covering the enterprise end-to-end; (3) applying a

single, integrated framework; (4) enabling a holistic approach; and (5) separating

governance from management. These five principles enable the enterprise to build an

effective governance and management framework that optimizes information and

technology investment and use for the benefit of stakeholders.

3 Modeling Information and Software Systems

48

In order to represent the intended aligned system specification we use models. It is

recognized in software engineering that a complete system architecture cannot be

represented using a single perspective or model (Kruchten, 1995; Sungwon &

Yoonseok, 2005). Using multiple viewpoints, like logical diagrams, sequence diagrams

or other artifacts, contributes to a better representation of the system and, as a

consequence, to a better understanding of the system. Some architecture views can

be seen in the works of Clements et al. (P. Clements, Garlan, Little, Nord, & Stafford,

2003), Hofmeister et al. (Hofmeister, Nord, & Soni, 2000) and Krutchen (Kruchten,

1995). Krutchen's work refers that the description of the architecture can be

represented into four views: logical, development, process and physical. The fifth

view is represented by selected use cases or scenarios. Zou and Pavlovski (Zou &

Pavlovski, 2006) add another extra view, the control case view, that complements the

use case view to complete requirements across the collective system lifecycle views.

Since the term process has different meanings depending on the context, in our

process-level approach we acknowledge that (1) real-world activities of a software

production process are the context for the problem under analysis and, (2) in relation

to a software model context (Conradi & Jaccheri, 1999), a software process is

composed of a set of activities related to software development, maintenance,

project management and quality assurance.

For scope definition of our work, and according to the previously exposed

acknowledgments, we characterize the process-level perspective by (1) being related

to real world activities, including business, and when related to software (2) those

activities encompass the typical software development lifecycle. Typically, product-

level approaches promote the functional decomposition of systems models. Our

approach is characterized by using refinement (as one kind of functional

decomposition) and integration of system models. Activities and their interface in a

process can be structured or arranged in a process architecture (Browning &

Eppinger, 2002).

3.2 Related Work

49

The process architecture represents a fundamental organization of service

development, service creation, and service distribution in the relevant enterprise

context (Winter & Fischer, 2006a). Designing a software architecture provides a more

accurate definition of the requirements. There are several approaches to supporting

the proper design of software architectures, like FAST (D. M. Weiss & Lai, 1999),

FORM (Kang, et al., 1998) or KobrA (Bayer, Muthig, & Göpfert, 2001). These all relate

to the product-level perspective. In a process-level perspective, Tropos (Castro, Kolp,

& Mylopoulos, 2002) is a methodology that uses notions of actor, goal and (actor)

dependency as a foundation to model early and late requirements, architectural and

detailed design. Machado et al. present the 4SRS (Four-Step-Rule-Set) method for

architecture design based on requirements. 4SRS is usually used in a product-level

perspective (R. J. Machado, Fernandes, Monteiro, & Rodrigues, 2006a), but it also

supports a process-level perspective (N. Ferreira, et al., 2012; R. J. Machado &

Fernandes, 2002). The result of the application of the 4SRS method is a logical

architecture. Logical architectures can be faced as a view of a system composed by a

set of problem-specific abstractions supporting functional requirements (Kruchten,

1995).

The defined and derived models suggested by our approach, used alone and

unaligned with each other, are of a lesser use to organizations and stakeholders. Our

approach begins in a domain-specific perspective, by defining the organizational

configurations that represent major interactions, at a very high-level, in the chosen

domain, and ends with a technological view of the system. From one perspective to

the other, alignment must be assured. The alignment we refer to relates to domain-

specific and software alignment (Campbell, 2005), and in our case, where the

domain-specific needs must be instantiated into the creation of context for proper

product design.

A possible point of failure in achieving the intended alignment relates to the lack of

representativeness of the necessary requirements for expressing domain-specific

needs. According to Campbell et al. (Campbell, et al., 2005), the activities that

support the necessary information for creating context for requirements elicitation

3 Modeling Information and Software Systems

50

are not explicitly defined or even promoted. Also, existing approaches to designing

software architecture do not support any specific technique for requirements

elicitation in a process-level perspective; rather, they use the information delivered

by an adopted elicitation technique.

Typical (product-oriented) elicitation techniques may not be able to properly identify

the necessary requirements within a given context creating an opportunity for our

approach to define the process that support the derivation of models with the

purpose of creating context for product design. With the case study described in this

work we demonstrate that firstly adopting a process-level perspective allows for

better understanding of the project scope and then support the creation of context

for the elicitation of requirements of the product to be developed.

3.3 An Approach to Domain and Software Models
Alignment

In this section, we present our approach, based on successive and specific models

generation. As models, we use Organizational Configurations (OC) (Evan, 1965), A-

Type and B-Type Sequence Diagrams (R. Machado, Lassen, Oliveira, Couto, & Pinto,

2007), use cases and process-level logical architecture diagrams. All these models are

briefly described in this section and properly exemplified in the case study that

follows, where more detail is given on how to derive a model from the previous

models.

Traditional development processes can be referenced using the Royce’s waterfall

model (Ruparelia, 2010) that includes five typical phases in its lifetime:

(i) Analysis;

(ii) Design;

(iii) Implementation;

3.3 An Approach to Domain and Software Models Alignment

51

(iv) Test;

(v) Deployment.

Defining a simplified macro-process for supporting the requirement elicitation in a

process-level approach must take into account the waterfall model lifecycle for a

project. An adaption of the macro-process for the ISOFIN project will be later detailed

in Figure 31 in section 4.2 - The ISOFIN Project.

We frame our proposed V-Model approach in the Analysis phase of the lifecycle

model, as depicted in Figure 10. This simplified development macro-process based on

the waterfall model uses the V-Model generated artifacts for eliciting requirements

that, in a process-level approach, are used as input for the traditional 4SRS usage

(product level) (R. J. Machado, et al., 2006a). The product-level 4SRS promotes the

transition from the Analysis to the Design phase.

Figure 10: Framing the V-Model representation in the development macro-process

The OC model is a high-level representation of the activities (interactions) that exist

between the business-level entities of a given domain. Figure 11 shows an example of

the aspect of an OC, with two activity types, each with a role and two interactions.

The set of interactions are based on domain-specific requirements (such as business)

and, in conjunction with the entities and the stakeholders, are represented with the

intention of describing a feasible scenario that fulfills a domain-specific business

vision. In what concerns OCs characterization for the purpose of our work, each

configuration must contain information on the performed activities (economical (R. J.

Machado & Fernandes, 2002) or non-economical (Bensaou & Venkatraman, 1993)),

Analysis Design Implementation

Test

Deployment

V-Model

Product-Level 4SRS
4SRS

3 Modeling Information and Software Systems

52

the several professional profiles (actors and skills) that participate in the activity

execution and also the exchange of information or artifacts. There must be defined as

much OCs as the ones required to express all the major interactions defined by the

business stakeholders that relate to the intended system.

Figure 11: Organizational Configuration

Our approach uses a UML stereotyped sequence diagram representation to describe

interactions in early analysis phase of system development. These diagrams are

presented in this work as A-Type Sequence Diagrams. Another stereotyped sequence

diagram, called B-Type Sequence Diagrams, allows for deriving process sequences

represented by the sequence flows between the logical parts depicted in the logical

architecture.

One must assure that a process’ sequences modeled in B-Type Sequence Diagrams

depict the same flows as the ones modeled in A-Type Sequence Diagrams, as well as

being in conformity with the interactions between architectural elements (AEs)

depicted in the logical architecture associations. An AE is a representation of the

pieces from which the final logical architecture can be built. This term is used to

distinguish those artifacts from the components, objects or modules used in other

contexts, like in the UML structure diagrams. An example of A-Type and B-Type

Sequence Diagrams can be found in Figure 12.

Figure 12: A- and B-Type Sequence Diagrams

Role #i of Entity #1 Role #j of Entity #2

interaction #a
activity type #x activity type #y

interaction #b

A-Type Sequence Diagrams B-Type Sequence Diagrams

Use case #a

Use case #b

Actor #x

Use case #c
Actor #y

AE #d AE #e AE#f

3.3 An Approach to Domain and Software Models Alignment

53

The generated models and the alignment between the domain specific needs and the

context for product design can be represented by a V-Model as seen on Figure 14.

The V-Model representation (Haskins & Forsberg, 2011) provides a balanced process

representation and, simultaneously, ensures that each step is verified before moving

to the next. In this V-Model, the models that assemble it are generated based on the

rationale and in the information existing in previously defined models, i.e., A-Type

diagrams are based on OCs, use cases are based on A-Type diagrams, the logical

architecture is based on the use case model, and B-Type diagrams comply with the

logical architecture.

A-Type Sequence Diagrams can be gathered and afterwards used as an elicitation

technique for modeling the use cases. It can be counterintuitive to consider that use

case diagrams can be refinements of sequence diagrams. It is possible if we take into

consideration that the scenarios expressed in the A-Type Sequence Diagrams are built

using the use-case candidates in the form of activities that will be executed and must

be computationally supported by the system to be implemented. These activities in

form of use cases are placed in the A-Type Sequence Diagram and associated with the

corresponding actors and other used cases. These use cases are later arranged in use

case diagrams after redundancy is eliminated and proper naming is given. The flow

expressed by the sequences creates the rationale for discovering the necessary use

cases to complete the process.

Use cases are modeled and textually described and used as input for the 4SRS. The

execution of the 4SRS (N. Ferreira, et al., 2012) results in a logical architecture with a

direct relation between the process-level use cases assured by the method’s

execution. Due to that, the logical architecture is derived, in a process- or in a

product-level perspective, using the use case information to create AEs and their

associations, in a properly aligned approach. The product level perspective is

described in (R. J. Machado, et al., 2006a) and the process-level perspective in (N.

Ferreira, et al., 2012; R. J. Machado & Fernandes, 2002). The process-level

perspective imposes a different rationale to the method’s execution. It is not our

intention to describe the 4SRS method application. That is thoroughly done in the

3 Modeling Information and Software Systems

54

literature (N. Ferreira, et al., 2012; R. J. Machado & Fernandes, 2002; R. J. Machado,

et al., 2006a) and we use it as described in those works. For the sake of

understandability, we only present a brief paragraph of the method’s structure and

application.

re
p

re
s
e
n

te
d

b
y

re
p

re
s
e
n

t

cd

{AE2.1.c}
Generated

AE
T

IBS Analysis

Pre-Start

Decision

Browse the IBS and SBS

Catalogs searching

already existing IBS and

SBS information with the

intent of analyzing if the

current business need

isn't already fullfilled and if

the ISOFIN Platform

infrastructure supports the

new implementation. …

{AE2.1.c}

{AE1.11.i}

{AE2.2.c}

{AE2.5.c}

{AE2.5.i}

T

Access

Remote

Catalogs

Allows browsing the

available catalogs in the

ISOFIN Platform (ISOFIN

Application, IBS, and

SBS). The user (Business

User or the IBS Business

Analyst) is allowed to

search for information

regarding the desired

artifact and to select

artifacts to use on his

purposes. ...

{P2.2} IBS

Analysis

Decisions

{AE1.11.d1}

{AE1.11.d2}

{AE2.1.d}

{AE2.3.1.i}

{AE2.3.2.i}

{AE2.10.i}

{AE2.11.i}

{AE3.3.i}

{AE3.7.1.i}

{AE2.1.d}
Generated

AE
T

ISOFIN

Functionalities

Requirements

List

Set of functional and non-

functional requirements

needed to fulfill identified

business needs, intended

system functionalities and

all the constraints that

may restrict design and

implementation.

{AE2.1.d} T

ISOFIN

Functionalities

Requirements

List

{P2.1} IBS

Requirements
{AE2.1.c}

{AE2.1.i} F

{U2.1.}

4
i
-

D
ir

e
c
t

A
s
s
o

c
ia

ti
o

n
s

4
ii
 -

 U
C

A
s
s
o

c
ia

ti
o

n
s

Step 4 - architectural

element association

Step 3 -

packaging &

aggregation

Step 2 - architectural element elimination

2v - architectural

element

2
i
-

u
s
e
 c

a
s
e

c
la

s
s
if

ic
a
ti

o
n

2
ii
 -

 l
o

c
a
l

e
li
m

in
a
ti

o
n

2
ii
i
-

a
rc

h
it

e
c
tu

ra
l

e
le

m
e
n

t
n

a
m

in
g

2
iv

 -
 a

rc
h

it
e
c
tu

ra
l

e
le

m
e
n

t

d
e
s
c
ri

p
ti

o
n

2
v
i
-

g
lo

b
a
l

e
li
m

in
a
ti

o
n

2
v
ii
 -

a
rc

h
it

e
c
tu

ra
l

e
le

m
e
n

t

re
n

a
m

in
g

2
v
ii
i
-

a
rc

h
it

e
c
tu

ra
l

e
le

m
e
n

t

s
p

e
c
if

ic
a
ti

o
n

Step 1 -architectural

element creation

Figure 13: Tabular Transformation of the 4SRS Method

The 4SRS method is organized in four steps to transform use cases into architecture

elements: Step 1 (architectural element creation) creates automatically three kinds of

AEs for each use case: an i-type (interface), c-type (control) and d-type (data); Step 2

(architectural element elimination) removes redundancy automatically create

architectural elements, redundancy in the requirements passed by the use cases, and

promotes the discovery of hidden requirements; Step 3 (architectural element

packaging & aggregation) semantically groups architectural elements in packages and

also allows to represent aggregations (of, for instance, existing legacy systems); and

Step 4 (architectural element association) whose goal is to represent associations

between the remaining architectural elements.

According with the previously described, the 4SRS method takes use cases

representations (and corresponding textual descriptions) as input and (by recurring to

tabular transformations) creates a logical architectural representation of the system.

We present a subset of the tabular transformations in Figure 13Figure 13. These

tabular transformations are supported by a spreadsheet and each column has its own

3.3 An Approach to Domain and Software Models Alignment

55

meaning and rules. Some of the steps have micro-steps; some micro-steps can be

completely automatized. Tabular transformations assure traceability between the

derived logical architecture diagram and the initial use case representations. At the

same time it makes possible to adjust the results of the transformation to changing

requirements. Tabular transformations are thoroughly described in (Nuno Ferreira, et

al., 2012b; R. J. Machado, Fernandes, Monteiro, & Rodrigues, 2005) and on chapter 4

of this thesis.

As suggested by the V-Model represented in Figure 14, the models placed on the left

hand side of the path representation are properly aligned with the models placed on

the right side, i.e., B-Type Sequence Diagrams are aligned with A-Type Sequence

Diagrams, and the logical architecture is aligned with the use case model.

Alignment between the use case model and the logical architecture is assured by the

correct application of the 4SRS method. The resulting sets of transformations along

our V-Model path provide artifacts properly aligned with the organization’s business

needs (which are formalized through Organization Configurations).

Figure 14: V-Model Adaption for Domain and Software Alignment

Context for
Product

Design (CPD)

Problem Domain Solution Domain

Project
Reviewer

Course
Developer

#C

System User
System
Admin

#D

Aplications

Requirements

Organizational Configurations (OCs)

A-type Sequence Diagrams

 {U2.1.} {U2.2.}

IBS Business

Analyst

 {U2.3.}

B-type Sequence Diagrams

IBS Business

Analyst

{AE2.1.i} {AE2.2.c} {AE2.3.i}

Logical Archictecture Diagram

AE2.2c

AE2.3i AE2.2d

AE2.1i AE2.1c

AE2.1d

Use Cases Diagrams

IBS Business

Analyst

 {U2.2.}

 {U2.3.}

 {U2.1.}

4SRS

U2.1 AE2.1i

U2.2

AE2.1d

AE2.2d

AE2.2c

Refinement
and

Specification

Integration
and

Validation

3 Modeling Information and Software Systems

56

The V-Model representation promotes the alignment between the models on the

problem domain and the models on the solution domain. The presented models are

created in succession, by manipulating the information that results from one to make

decisions on how to create the other. In the descending side of the V-Model (left side

of the V), models created in succession represent the refinement of requirements

and the creation of system specifications. In the ascending side (right side of the V),

models represent the integration of the discovered logical parts and their

involvement in a cross-side oriented validating effort.

To assess the V-Model approach, we present a process regarding our real case study,

the ISOFIN project, as an example. The process under analysis, called “Create IBS”,

deals with the creation of a new Interconnected Business Service (IBS). The inter-

organizational relations required to create a new IBS are described under a new OC.

The definition of activities and actors required to create a new IBS are described in an

A-Type Sequence Diagram. This diagram provides detail on required functionalities in

order to create an IBS, formally modeled in use cases. Use cases are used as input for

a transformation method and the process-level logical architecture is derived. A

B-Type Sequence Diagram allows for validation of the logical architecture required to

create an IBS and also validates the requirement expressed in the corresponding

A-Type Sequence Diagram. After the generation of these models, we assure that the

“Create IBS” process is aligned with the stakeholder’s needs.

A V-Model SPEM representation

The development of software systems encompasses the application of several good

practices and diversified knowledge as well as, eventually, the introduction of new

ideas or strategies. This results on the possibility of existence of several distinct

approaches or ways for the development of a software system. In order to be able to

express, establish, or organize the structure of activities inherent to a software

development approach, it is convenient a standard way for expressing the process

structure. In this context, Software and Systems Process Engineering Meta-Model 2.0

3.3 An Approach to Domain and Software Models Alignment

57

(SPEM 2.0), standardized by the Object Management Group (OMG), is a process

engineering meta-model that provides to process engineers a conceptual framework

for “modeling, documenting, presenting, managing, interchanging, and enacting

development methods and processes” (OMG). In its current version, version 2.0,

SPEM is defined as a meta-model as well as a UML 2 Profile (concepts are defined as

meta-model classes as well as UML stereotypes) which provides an alternative

representation to the SPEM 2.0 meta-model. Attending to the usefulness of the SPEM

specification, we use it to describe our approach. As such, attending to the work

performed and products produced, Figure 15 presents a SPEM perspective of the

V-Model based process used to derive the product-level requirements elicitation

context. For this purpose, we use the typical SPEM representations for presenting the

approach, i.e., activities (e.g., Use Case Modeling), artifacts (e.g., Use Case Model),

deliverables (Product-level Requirements Elicitation Context) and associations

(«input», «output», «predecessor» and «composition»).

Figure 15: SPEM diagram of ISOFIN V-Model based process.

Definition of Organizational

Configurations

Description of Interactions

Use Case Modeling

4SRS

Transformation

Architecture

Traversing

Collection of Artifacts

Organizational

Configurations

A-Type Sequence

Diagrams

Use Case

Model

Process-Level Logical

Architecture Diagram

B-Type Sequence

Diagrams

{linkType=finishToStart}

Product-Level Requirement

Elicitation Context

Product-Level

Requirement Elicitation

Context

ISOFIN V-Model

Based Process

{linkType=finishToStart}

 «output»

 «predecessor»

 «predecessor»

 «output»

 «output»

 «input»

 «input»

 «input» «output»

 «predecessor»

 «predecessor»

 «output»

 «output»

 «output»

 «input»

 «input»

 «composition»

 «composition»

 «composition»

 «composition»

 «composition»

 «composition»

 «composition»

 «predecessor»

3 Modeling Information and Software Systems

58

As depicted by Figure 15, the V-Model representation has the purpose of providing

the deliverable Product-Level Requirement Elicitation Context. The main activities that

make up the process are Definition of Organizational Configurations, Description of

interactions, Use Case Modeling, 4SRS Transformation, Architecture Traversing, and

Collection of Artifacts (as indicated by the «composition» associations). These

activities are sequentially performed in a way that an activity starts only when its

predecessor activity has finished (as indicated by the «predecessor» dependencies).

The activities use and produce (as indicated by «input» and «output» associations)

artifacts, namely Organizational Configurations, A-Type Sequence Diagrams, Use

Case Model, Process-Level Logical Architecture Diagram, B-type Sequence Diagrams,

and Product-Level Requirement Elicitation Context.

3.4 The V-Model in the ISOFIN Project

We assess the applicability of the proposed approach with a case study that resulted

from the process-level requirements elicitation in a real industrial case: the ISOFIN

project (Interoperability in Financial Software) (ISOFIN Consortium, 2010).

The ISOFIN project encompasses eight institutions, ranging from universities,

research centers and private software development companies for the bank and

insurance domains. The stakeholders of this group had different backgrounds and

expectations regarding the project outcome. These differences resulted in the lack of

definitions for the requirements that the project’s applications would support and

even to a proper definition of a business model that the organizations that participate

in the project would pursue.

If there is no agreed or even a defined business model, it is not possible to define the

context for the requirements elicitation of the products (applications) to be

developed. There is, however, communality in the speech of the stakeholders. They

all contain hints on the kind of activities that the intended products would have to

3.4 The V-Model in the ISOFIN Project

59

support – that is, they got beforehand an idea of the processes that the ISOFIN

platform applications were required to computationally support.

The authors of this work proposed a process-level approach to tackle the problem of

not having a defined context for product design and researched on the models that

the stakeholders agreed on to support the knowledge they had of the process-level

requirements – Organizational Configurations, A-Type Sequence Diagrams and Use

Cases. After executing the 4SRS method, properly adjusted to handle the

process-level perspective we were able to deliver a process-level logical architecture

representation of the processes that are intended to be computationally supported

by the applications to be developed. This approach created the context for product

design, since the authors were able to identify the primary constructors that would

support the processes. B-Type Sequence Diagrams appeared seamlessly in the

process. They represented the scenarios depicted in the A-Type Sequence Diagrams

and also contributed to the validation of the process-level logical architecture

diagram. These two aspects will be detailed later.

The primary constructors that were identified correspond to the two main service

types that the global ISOFIN architecture relies on: Interconnected Business Service

(IBS) and Supplier Business Service (SBS). IBSs concern a set of functionalities that are

exposed from the ISOFIN core platform to ISOFIN Customers. An IBS interconnects

one or more SBSs and/or IBSs exposing functionalities that relate directly to business

needs. SBSs are a set of functionalities that are exposed from the ISOFIN Suppliers

production infrastructure. Figure 16 encompasses the primary constructors related to

the execution of the platform (IBS, SBS and the ISOFIN Platform) available in the

logical representations of the system: in the bottom layer there are SBSs that connect

to IBSs in the ISOFIN Platform layer and the later are connected to ISOFIN Customers.

There are other constructors that were identified by using the V-Model approach and

that support the operations for the execution of the ISOFIN Platform. These other

constructors are, for instance, Editors, Code Generators, Subscriptions Management

Systems, and Security Management Systems. These constructors support the creation

3 Modeling Information and Software Systems

60

and the operation of the primary constructors (IBS, SBS and ISOFIN Platform). The

process-level architecture, later presented, depicts their interactions, major elements

and organization.

By adopting the process-level perspective we were able to create a system’s

representation that supports the elicitation of the process-level requirements from

the stakeholders. This approach also allowed creating the context for product design

by representing the processes that must be supported by the applications to be

developed. The next sections detail the V-Model process and exemplify the

construction of the adopted models in real case study situations.

Figure 16: Desirable Interoperability in ISOFIN

Alignment between Organizational Configurations and Interactions

In a process-level approach, in opposition to the product-level approach, the

characterization of the intended system gives a different perspective on the

organizational relations and interactions. When defining a specific domain context,

we consider that interactions between actors and processes constitute an important

issue to be dealt. This section focuses on characterizing those interactions by using

three different levels of abstraction, as depicted in Figure 17: OCs represents the first

level; different types of Stereotyped UML Sequence Diagrams, presented as A-Type

and B-Type Diagrams (later described) represent the other two.

Bank Insurance Broker Supplier ...

Regulatory Institute

SBS in the ISOFIN
Suppliers

IBS in the ISOFIN
Platform

3.4 The V-Model in the ISOFIN Project

61

Today’s business is based on inter-organizational relations (Evan, 1965), having an

impact on an organization’s business and software strategy (Barrett & Konsynski,

Dec., 1982). We model a set of OCs to describe inter-organizational relations as a

starting point to the definition of the domain-specific context. An OC models a

possible inter-organizational relation, at a very high-level of abstraction and not

considering lower-level processes and/or actors involved in the relation. For better

deriving the domain-specific context, it is advisable to model as many OCs as required

to describe, at least, the main relations as depicted by the stakeholders’ domain-

specific needs.

We present an example of an OC, for the purpose of assessing our approach, which

has been characterized and applied in our case study (the ISOFIN project). Firstly, it is

necessary to define the types of activities performed in the domain-specific context.

By analyzing the types of activities, the execution of an IBS within a domain activity

regards #A activities, while the creation of a new IBS regards #B activities:

(i) #A Activities – Financial Domain Business Activities: these are the delivered

domain business activities regarding the financial institutions.

(ii) #B Activities – ISOFIN Platform Services Integration: these are the activities

that relate to the integration of supplier services.

Figure 17: Organizational Configurations and Interactions Alignment

In order to characterize an organization, it is required to relate a set of roles to the

performed activity type. Finally, the interactions between organizations are specified.

In Figure 18, it is possible to depict the required relations between organizations in

BlackBox

OCs
CPD

B-Type SequenceA-Type Sequence

3 Modeling Information and Software Systems

62

order to create an IBS and providing it to ISOFIN Customers. The professional profiles

and the exchange of information between organizations are not relevant in this work,

so only brief and simple examples are presented and only the types of activities are

described.

Figure 18: Organizational Configuration Example

In an early analysis phase, we need to define the relations between activities and

actors, defined through interactions in our approach. Interactions are used during the

more detailed design phase where the precise inter-process communication must be

set up according to formal protocols (OMG, 2011b). An interaction can be displayed

in a UML sequence diagram.

Traditional sequence diagrams involve system objects in the interaction. Since

modeling structural elements of the system is beyond the scope of the user

requirements, Machado et al. propose the usage of a stereotyped version of UML

sequence diagrams that only includes actors and use cases to validate the elicited

requirements at the analysis phase of system development (R. Machado, et al., 2007).

We create A-Type Sequence Diagrams, as shown in Figure 19. In the example, we

present some of the activities and actors required to create a new IBS. A-Type

Sequence Diagrams also models the message exchange among the external actors

and use cases (later depicted in Figure 23).

In Figure 19 we depict sequential flows of process-level use cases that refer to the

required activities for creating an IBS. These activities are executed within #B

activities, after receiving domain-specific requirements from ISOFIN Customers and

before delivering IBS (interactions depicted in the OC of Figure 18).

The usage of A-Type Sequence Diagrams is required to gather and formalize the main

stakeholder’s intentions, which provide an orchestration and a sequence of some

ISOFIN Customer ISOFIN Platform

Business Requirements
#A #B

Provide IBS

Subscribe Platform

3.4 The V-Model in the ISOFIN Project

63

proposed activities. A-Type sequence diagrams realize the roles presented within an

OC and instantiates them into activities. A-Type Sequence diagrams allow a pure

functional representation of behavioral interaction with the environment and are

appropriate to illustrate workflow user requirements (R. Machado, et al., 2007). They

also provide information for defining and modeling use cases at a process-level

perspective and frame the activities execution in time. Modeled diagrams must

encompass all processes and actors.

Figure 19: A-Type Sequence Diagram

One of the purposes of creating a software logical architecture is to support the

system's functional requirements (Kruchten, 1995). It must be assured that the

derived logical architecture is aligned with the domain-specific needs. On the one

hand, the execution of a software architecture design method (e.g., 4SRS) provides an

alignment of the logical architecture with user requirements. On the other hand, it is

necessary to validate if the behavior of the logical architecture is as expected. So, in a

later stage, after deriving a logical architecture, to analyze the sequential process

flow of AEs (as shown in Figure 20), we adopt different stereotype of UML sequence

diagrams, where AEs (presented in the logical architecture), actors and packages (if

justifiable) interactions are modeled. In Figure 20, we present the same activities

concerning creating an IBS but in a lower level of abstraction, closer to product

design. B-Type Sequence Diagrams differ from the traditional ones, since they model

{U2.1.} Perform
Requirements Analysis

{U2.2.} Choose SBS
specs

A-type Sequence Diagram : Create IBS

IBS Business

Analyst

1. Analyze Requirements

2. Return Requirements

3. Select set of SBS specs from Catalog

4. Return subset of SBS specs

5. Define IBS Behaviour

8. Return IBS Internal Composition

IBS Developer

9. Request Creation of new IBS

{U2.3.1.} Define
IBS Internal

Structure

3 Modeling Information and Software Systems

64

the exchange of information between actors and logical AEs, thus they are still

modeled at the system level.

Sequence flows between AEs are only possible if such a path is allowed within the

logical architecture. B-Type Sequence Diagrams are used to validate the derived

logical architecture, through the detection of missing architecture elements and/or

associations to execute a given process within the derived logical architecture.

B-Type Sequence Diagrams can also be used to validate sequences in the previously

modeled A-Type Sequence Diagrams, since the sequence flows between use cases

must comply with the related sequence flows between AEs in B-Type diagrams. This

validation is considered essential in our V-Model process. There must be modeled as

many A-Type sequence diagrams as necessary to fully represent the business context

detail. B-Type sequence diagrams must be modeled to match corresponding business

requirements given in A-Type sequence diagrams and there must be enough B-Type

sequence diagrams to ensure that all AEs of the logical architecture are used.

Figure 20: B-Type Sequence Diagram

An UML Metamodel Extension for A-Type and B-Type Sequence Diagrams

IBS Business

Analyst

<<data>>
{AE2.1.d} ISOFIN
Functionalities

Requirements List

<<control>>
{AE2.3.1.c} IBS

Internal Structure
Specification

IBS Developer

3. Specify ISOFIN Functionalities Requirements

4. Return List

5. Browse SBS Catalog for Specifications

6. Show Available SBSs

7. Select SBS Specifications

8. Return Subset of SBS Specs

11. Request Creation of New IBS

9. Define IBS Composition

10. IBS Internal Structure

B-type Sequence Diagram : Create IBS

<<control>>
{AE2.1.c} Access
Remote Catalogs

<<data>>
{AE1.11.d1}

Business Needs
Requirements

1. Business Requirements

2. Return List

3.4 The V-Model in the ISOFIN Project

65

The usage of A-Type and B-Type sequence diagrams in our approach is perfectly

harmonized with UML sequence diagram’s original semantics, as described in the

UML Superstructure (OMG, 2011b). We present in the left side of Figure 21 some of

the classes of the UML metamodel regarding sequence diagrams (in the Interactions

context of the UML Superstructure). As A-Type and B-Type sequence diagrams differ

from typical sequence diagrams in the participants of the interactions, the usage of

these diagrams regards the Lifeline class. A lifeline represents an individual

participant in the Interaction. The Lifeline notation description presented in the UML

Superstructure details that the lifeline is described by its <connectable-element-

name> and <class_name>, where <class_name> is the type referenced by the

represented ConnectableElement, and its symbol consists in a “head” followed by a

vertical line (straight or dashed). A ConnectableElement (from InternalStructures) is

an abstract metaclass representing a set of instances that play roles of a classifier.

The Lifeline “head” has a shape that is based on the classifier for the part that this

lifeline represents.

The participants in the interactions in A-Type sequence diagrams are use cases and in

B-Type sequence diagrams are architectural elements. Regarding A-Type sequence

diagrams, the UML Superstructure clearly defines a class for use cases. However,

regarding B-Type sequence diagrams, architectural elements are not considered in

any class of the UML metamodel and, despite some similarities in semantics, are

different from UML components. Such situation leads to the necessity of defining a

stereotype «Architectural Element» for the NamedElement class (depicted in the right

side of Figure 21). AEs refer to the pieces from which the final logical architecture can

be built and currently relate to generated artifacts and not to their connections or

containers. The nature of architectural elements varies according to the type of

system under study and the context where it is applied.

Like the ConnectableElement class, UseCase class is also generalized by

NamedElement class. The information regarding abstract syntax, concrete syntax,

well-formedness and semantics (Atkinson & Kuhne, 2003) of UseCase class and the

3 Modeling Information and Software Systems

66

context in which we defined the stereotype «Architecture Element» does not express

any condition that restricts them of being able to act as a ConnectableElement.

Interaction

Lifeline

UML::CompositeStructures::InternalStructures::
ConnectableElement

*

1

+ represents

*

0..1

UML::Classes::Kernel::
NamedElement

«stereotype»
Architectural Element

UML::Classes:Kernel::Namespace

UseCase

Classifier

0..1

*

{subsets ownedMember}
+ ownedUseCase

+ subject

+ useCase

*

*

Figure 21: The Proposed Extension to the UML Metamodel for Representing A-Type and B-Type Sequence Diagrams

Derivation of Process-Oriented Logical Architectures

In this section, we present the process-level logical architecture derived using the

4SRS method. The process-level application of the 4SRS method used in this example

is detailed in (Nuno Ferreira, et al., 2012b; R. J. Machado, et al., 2005) and in the next

chapter, and so we treat the 4SRS like a black box in the V-Model description as

represented in Figure 22. The method takes use cases as input, since they reflect

elicited requirements and functionalities. Use cases are derived from A-Type

Sequence Diagrams and from the OCs.

Gathering A-Type Sequence Diagrams can be used as an elicitation technique for

modeling use cases, after eliminating redundancy and give a proper name to the use

cases used in the sequences. All use cases defined in the A-Type Sequence Diagrams

must be modeled and textually described in the use case model in order to be used in

the 4SRS method.

3.4 The V-Model in the ISOFIN Project

67

Figure 22: Derivation of Process-Oriented Logical Architectures

The use case model specifies the required usages of the ISOFIN Platform. In Figure 23,

we present a subset of such usages, regarding the development of functionalities to

be accessed by ISOFIN Customers. These use cases intent to capture the

requirements of the system that where initially expressed through OCs in the

business perspective and later represented using A-Type sequence diagrams.

Use cases, in the process-level perspective, portray the activities (processes) executed

by persons or machines in the scope of the system, instead of the characteristics

(requirements) of the intended products to be developed. It is essential for use case

modeling to include textual descriptions that contain information regarding the

process execution, preconditions and actions, as well as their relations and

dependencies.

The 4SRS method execution results in a logical architecture diagram, presented in

Figure 24. This logical architecture diagram represents the architectural elements,

from which the constructors can be retrieved, their associations and packaging. The

architectural elements derive from the use case model by the execution of the 4SRS

method. In this representation, there are packages that represent, for example,

subscription activities in {P6} ISOFIN Platform Subscriptions Management, and the

SBS and IBS development in {P1.} SBS Development and {P2} IBS Development

respectively. Inside both {P1} and {P2} it can be found the requirements activities, the

analysis decisions and the generators for the major constructors (IBS and SBS). It is

also possible to observe that each SBS (in {P1.4} SBS) and IBS (in {P2.4} IBS) result

BlackBox

A-Type Sequence

Use Cases

Logical Architecture

3 Modeling Information and Software Systems

68

from activities able to generate their code. This process-level logical architecture

shows how activities are arranged so the major constructors are made available to

ISOFIN Customers within the intended IT solution.

Figure 23: Subset of the Use Case Model from the ISOFIN Project

Figure 24: ISOFIN Process-level Logical Architecture

IBS Business

Analyst

IBS Developer

{U2.1.} Perform
Requirements Analysis

{U2.3.} Design IBS

{U2.4.} Process
ISOFIN Platform

Subscription

{U2.6.} Implement
IBS

{U2.11.} Integrate
Publishing Info

{U2.7.} Publish IBS
Description

<<uses>>

{U2.} Develop IBS

<<interface>>
{AE1.1.i} Send

Commands to ISOFIN
Application

<<interface>>
{AE1.2.i} Receive

Information from ISOFIN
Application

<<data>>
{AE1.4.d} ISOFIN

Application
Configurations

<<data>>
{AE1.5.d} Consumer

Subscription
Requirements

<<data>>
{AE1.6.d} IBS

Configuration Decisions

<<control>>
{AE1.7.c} Alert
Configurations

<<interface>>
{AE1.7.i} Create Alert

<<data>>
{AE1.8.d} IBS

Configurations

<<interface>>
{AE1.8.i} Interfaces

Configuration Commands

<<control>>
{AE1.9.c1} Validate

Platform Subscription

<<control>>
{AE1.9.c2} Validate

Platform Access

<<interface>>
{AE1.9.i} Send

Commands to IBS

<<interface>>
{AE1.10.i} Receive

Information from IBS

<<control>>
{AE2.1.c} Access Remote

Catalogs

<<data>>
{AE2.1.d} ISOFIN
Functionalities

Requirements List

<<control>>
{AE2.3.1.c} IBS Internal
Structure Specification <<control>>

{AE2.3.2.c} ISOFIN
Application Specification

<<data>>
{AE2.4.1.d} ISOFIN
Supplier Request

Decisions

<<control>>
{AE2.4.2.c} Execute
Conformance Tests

<<data>>
{AE2.4.2.d} ISOFIN
Customer Request

Decisions

<<interface>>
{AE2.4.2.i} Subscription

Request Analysis

<<data>>
{AE2.4.3.d} ISOFIN

Platform Supplier Policy

<<control>>
{AE2.4.4.c} Grant Access

to ISOFIN Platform

<<data>>
{AE2.4.4.d} ISOFIN

Platform Customer Policy

<<interface>>
{AE2.4.4.i} Communicate

Subscription Request
Status

<<control>>
{AE2.8.1.c1} Generic

Interface Design Rules

<<data>>
{AE2.9.d} ISOFIN

Application Configuration
Decisions

<<control>>
{AE2.11.c} Global

Publishing Integration
Decisions

<<interface>>
{AE2.11.i} Execute

Publishing Info
Integration

<<data>>
{AE3.1.d} Business
Requirements List

<<control>>
{AE3.2.c} Define NBS

Specs Subset

<<data>>
{AE3.3.d} SBS Supplier

Subscription
Requirements

<<interface>>
{AE3.3.i} Request

Platform Subscription

<<data>>
{AE3.4.d} SBS Design

Decisions

<<data>>
{AE3.5.d} NBS

Implementation
Decisions

<<control>>
{AE5.1.c} Install Patches

<<data>>
{AE5.1.d} Infrastructure
Management Decisions

<<interface>>
{AE5.1.i} Manage

Infrastructure

<<data>>
{AE5.2.d} Infrastructure

Requirements List

<<data>>
{AE5.3.d} Service-level

Agreements

<<data>>
{AE5.4.d} Infrastructure-
related Risks Decisions

<<data>>
{AE5.5.d} Future

Maintenance Tasks List

{P5} System
Maintenance

<<data>>
{AE4.1.d} Audit

Requirements Analysis

<<data>>
{AE4.2.d} Audit

Preparation

<<control>>
{AE4.3.c} Execute Service

Testing

<<interface>>
{AE4.3.i} Service Audits

<<data>>
{AE4.4.d} Delivery and

Support Decisions

<<data>>
{AE4.5.d} Process

Monitoring Decisions

<<interface>>
{AE4.6.i} Rate Audit

Goals

<<data>>
{AE4.7.d} Audit Results

{P4} Audit

<<control>>
{AE2.6.1.c} IBS Code

Organization Decisions

<<data>>
{AE2.6.2.d} IBS

Deployment Decisions

<<control>>
{AE2.8.1.c2} ISOFIN

Application Interface
Decisions

<<data>>
{AE2.8.2.d} ISOFIN

Application Deployment
Decisions

<<data>>
{AE3.6.d} SBS

Implementation
Decisions

<<interface>>
{AE3.6.i} Generate SBS

Code

<<data>>
{AE3.7.1.c} Remote SBS
Publishing Information

<<interface>>
{AE3.7.1.i} Remote SBS

Publishing Interface

<<data>>
{AE3.7.2.c} Local SBS

Publishing Information

<<interface>>
{AE3.7.2.i} Local SBS
Publishing Interface

{P1.1} SBS
Requirements

{P1.2} SBS Analysis
Decisions

{P1.3} SBS
Generator

{P1.4} SBS

{P2.4} IBS

{P2.1} IBS
Requirements

{P2.2} IBS Analysis
Decisions

{P2.3} IBS
Generator

<<interface>>
{AE1.6.i} Configure pre-

runtime IBS

<<data>>
{AE1.11.d1} Business
Needs Requirements

<<data>>
{AE1.11.d2} Business

Needs Fulfillment
Request

<<interface>>
{AE2.6.1.i} Generate IBS

Code

<<interface>>
{AE2.6.2.i} IBS

Deployment Process

<<control>>
{AE2.7.c} IBS Publication

Decisions

<<interface>>
{AE2.7.i} Execute IBS
Publication in Catalog

<<interface>>
{AE2.8.1.i} Interface

Generation

<<interface>>
{AE2.8.2.i} ISOFIN

Application Deployment
Process

<<interface>>
{AE2.9.i} Configure pre-

runtime ISOFIN
Application

<<control>>
{AE2.10.c} ISOFIN

Application Publication
Decisions

<<interface>>
{AE2.10.i} Execute ISOFIN
Application Publication in

Catalog

{P3.1} ISOFIN Application
Requirements

{P3.2} ISOFIN
Application Analysis

Decisions

{P3.3} ISOFIN
Application
Generator

{P3.4} ISOFIN
Application

{P1.} SBS
Development {P2} IBS Development

{P3} ISOFIN Application
Development

{P6} ISOFIN Platform Subscriptions
Management

«generates»

<<control>>
{AE3.1.c} Access Local

Catalogs

«generates»

«generates»

3.4 The V-Model in the ISOFIN Project

69

Figure 24 depicts the process-level logical architecture for the ISOFIN project and

contains nearly eighty architectural elements. This figure is intentionally not zoomed

in (and thus not readable), just to show the complexity of the ISOFIN project that has

justified the adoption of process-level techniques to support the elicitation efforts. A

proper zoom of the architecture can be found in Figure 25, detailing some of its

constructors.

3.5 V-Model Considerations and Comparison with
Related Work

For creating a context for IT product design, the V-Model presented in this chapter

encompasses a set of artifacts through successive derivation. Our approach is

different from existing ones (Bayer, et al., 2001; Kang, et al., 1998; D. M. Weiss & Lai,

1999), since we use a process-level perspective. Not only do we manage to create the

context for product design, but we also manage to align it with the elicited domain-

specific needs.

Our stereotyped usage of sequence diagrams adds more representativeness value to

the specific model than, for instance, the presented in Krutchen's 4+1 perspective

(Kruchten, 1995). This kind of representation also enables testing sequences of

system actions that are meaningful at the software architecture level (Bertolino,

Inverardi, & Muccini, 2001). Additionally, the use of this kind of stereotyped sequence

diagrams at the first stage of analysis phase (user requirements modeling and

validation) provides a friendlier perspective to most stake-holders, easing them to

establish a direct correspondence between what they initially stated as functional

requirements and what the model already describes.

3 Modeling Information and Software Systems

70

Figure 25: Subset of the ISOFIN Process-level Logical Architecture

In the ISOFIN project the usage of A-Type Sequence Diagrams also contributed to

creating a standard representation for the scenarios that are intended to be

supported. The B-Type Sequence Diagrams that derived from the A-Type Sequence

Diagrams allowed designers to validate the logical architecture against the given

scenarios and at the same time represent the process flow depicted in the

architectural elements.

Regarding alignment approaches that use set of models (like GQM+Strategies (Basili,

et al., 2010), Balanced Scorecards (Kaplan & Norton, 1992) or COBIT (Information

Technology Governance Institute (ITGI), 2012)), all relate to aligning the domain-

specific concerns with software solutions. As far as the authors of this work are

concerned, none of the previous approaches encompasses processes for deriving a

logical representation of the intended system processes with the purpose of creating

context for eliciting product-level requirements. Those approaches have a broader

specification concerning risk analysis, auditing, measurement, or best practices in the

overall alignment strategy.

The Project Charter regards information that is necessary for the ongoing project and

relates to project management terminology and content (Project Management

Institute, 2008). This document encompasses information regarding the project

3.5 V-Model Considerations and Comparison with Related Work

71

requirements in terms of human and material resources, skills, training, context for

the project, stakeholder identification, amongst others. It explicitly contains principles

and policies of the intended practice with people from different perspectives in the

project (analysis, design, implementation, etc.). It also allows having a common

agreement to refer to, if necessary, during the project execution.

The Materials document contains the necessary information for creating a

presentation of the project. It regards collected seed scenarios based on OCs (or

Mashed UCs), A-type sequence diagrams and (business or software) Use Case Models.

Parts of the Logical Architecture model are also incorporated in the presentation that

will be presented to the stakeholders (including software engineers responsible for

implementation). The purpose of this presentation is to enlighten the team about the

logical architecture and propose the seed scenarios to discussion and create the B-

type sequence diagrams based on presented information.

The Issues document supports information regarding the evaluation of the presented

logical architecture. If the logical architecture is positively assessed, we can assume

that we reached consensus to proceed into the macro-process. If not, using the Issues

document it is possible to promote a new iteration (as seen on Figure 26) of the

corresponding V-Model execution to adjust the previously resulting logical

architecture to make the necessary corrections to comply with the seed scenarios.

Main causes for this adjustment are:

(i) bad decisions that were made in the corresponding 4SRS method

execution;

(ii) B-type sequence diagrams not complying with all the A-type sequence

diagrams;

(iii) created B-type sequence diagrams not comprising the entire logical

architecture;

(iv) the need to explicitly placing a design decision in the logical architecture

diagram, usually done by using a common architectural pattern and

3 Modeling Information and Software Systems

72

injecting the necessary information in the use case textual descriptions

that are input for the 4SRS.

Figure 26: Iterations for producing a logical architecture

The adjustment of the logical architecture diagram (by iterating the same V-Model)

suggests the construction of a new use case model or, in the case of a new scenario,

the construction of new A-type sequence diagrams. The new use case model captures

user requirements of the revised system under design. At the same time, through the

application of the 4SRS method, it is possible to derive the corresponding logical

architecture diagram.

3.6 Assessment of the V-Model

73

3.6 Assessment of the V-Model

Having a structured method makes the analysis repeatable and at the same time

helps ensuring that the same set of validation questions are placed in early

development stages. With the purpose of assuring the attained logical architecture

representation is tenable, we chose to validate it and the underlying V-Model, using

the Active Reviews for Intermediate Designs (ARID) method (P. C. Clements, 2000).

Our concerns relate to discovering errors as soon as possible, inconsistencies in the

logical architecture or even inadequacies with the elicited requirements, expressed

through the A-Type Sequence Diagrams (scenario requirements) and use case models

(specific process-level requirements).

The ARID method is a combination of Architecture Tradeoff Analysis Method (ATAM)

with Active Design Review (ADR). ATAM is a refined and improved version of

Software Architecture Analysis Method (SAAM) that helps reviewing architectural

decisions having the focus on the quality attributes requirements and their alignment

and satisfaction degree of specific quality goals. The ADR method targets incomplete

(under development) architectures, performing evaluations on sections of the global

architecture. Those features made ARID our method of choice regarding the

evaluation of the in-progress ISOFIN logical architecture.

In Figure 27 we present a simplified diagram that encompasses major ARID

representations required to align with our V-Model models.

We now present our adapted ARID specific models like Project Charter, Materials and

Issues. ARID requires that a project context is defined, containing information

regarding the identification of the design reviewers. We have represented such

information using the Project Charter box as used in project management (Project

Management Institute, 2008) terminology. The Materials box represents the

supporting documentation, like presentation that needs to be done to stakeholders,

3 Modeling Information and Software Systems

74

seed scenarios and meeting agenda. Issues relates to a checklist that includes but is

not limited to notes concerning the presentation, the presented logical architecture,

newly created scenarios and validation scenarios. The issues representation is used to

identify flaws in the logical architecture diagram and therefore promoting a new

iteration of the 4SRS method.

Figure 27: ARID and the V-Model Intertwining

ARID was used in the ISOFIN project to assess the process-level logical diagram as a

result of the V-Model approach. The Project Charter was created with the initial

requirements the project, the stakeholders, the teams, budget, timings, intended

context and others, that influence directly or indirectly the project’s execution.

Having this in mind, it is possible to represent the Organizational Configurations

(high-level interactions in the domain of analysis). The intended context described in

the Project Charter gives hints on the domain interactions and the stakeholders are

able to provide more information about the roles and activity types that must be

supported.

The Materials model stores information regarding the created Organizational

Configurations, A-Type Sequence Diagrams, Use Case models and the derived Logical

Project Charter

Materials

Issues

CPD
OCs

A-type Sequence

Use Cases Logical Architecture

B-type Sequence

4SRS

3.6 Assessment of the V-Model

75

Architecture. This information is useful for presenting the project, the rationale that

sustained the creation of the used models and the scenarios that are used as basis for

the requirements elicitation.

Using the information of the Materials model a presentation is made to the

stakeholders with the intention of assuring that all the initial requirements are met, in

the form of scenarios. A scenario is represented by an A-Type Sequence Diagram and,

for each, is discussed and presented the path that must be followed in the Logical

Architecture diagram to accomplish that given scenario. This path is represented

using B-Type Sequence Diagrams. Any problem with the path (architectural elements

missing, associations not possible to accomplish, bad routes, etc.) are stored in the

Issues model and a new iteration of the 4SRS method is executed. This iteration can

be promoted by changing the initial scenarios (A-Type Sequence Diagrams) or the

initial requirements (use cases). The process- and product-level iterations of the 4SRS

are found on Annex A and Annex B.

Figure 28: ARID Steps in the V-Model

Figure 28 shows the coverage of each ARID step with respect to the V-Model artifacts.

There are also represented ARID specific artifacts like Project Charter, Materials and

Issues. ARID requires that a project context is defined, containing information

regarding the identification of the design reviewers.

The ARID method is divided in two phases: Rehearsal and Review. The Rehearsal

phase was adapted to the ISOFIN project context as follows:

CPDOCs

A-type Sequence

Use Cases

4SRS

Logical Architecture

B-type Sequence

Project Charter

Materials

Issues

ARID Step 1

ARID Step 2

ARID Step 3

ARID Step 4

ARID Step 5
ARID Step 6

ARID Step 7

ARID Step 8

ARID Step 9

ite
ra

tio
n

3 Modeling Information and Software Systems

76

ARID Step 1. Identify the Reviewers: We chose 10 reviewers from the ISOFIN project

design team. We chose 2 stakeholders from each of the 5 entities that were involved

directly or indirectly with the design decisions.

ARID Step 2. Prepare the design briefing: For the purpose of demonstrating the

design we prepared a presentation showing the logical architecture diagram as a

background and the OCs, A-type sequence diagrams and use cases that were used to

derive each part of the logical architecture.

ARID Step 3. Prepare the seed scenarios: Associated with each OC and A-type

sequence diagram set there was defined a feasible scenario in a total of 10 scenarios,

included in the presentation with the purpose of rising questions regarding the

presented logical architecture.

ARID Step 4. Prepare the materials: We scheduled a meeting with all the stakeholders

(reviewers), and distributed to them the presentation and the meeting agenda.

The second ARID phase, Review, was adapted to the ISOFIN context as follows:

ARID Step 5. Present ARID: We have presented the steps of ARID to the stakeholders

in order to create a context for the method execution.

ARID Step 6. Present the design: Prepared materials, scenarios and logical

architecture were presented. The reviewers followed the rule of not questioning the

presentation contents or making any improvement comment. Only clarification

questions where allowed for the sake of better understanding the materials. One of

the design team members was assigned to take notes of any occurrence of references

to deliverables that where not yet available. These notes helped to show potential

issues in the logical architecture diagram that needed to be taken care of in a next

iteration.

ARID Step 7. Brainstorm and prioritize scenarios: Reviewers presented the new

scenarios that solved problems they were dealing. Those scenarios where put in the

pool with the seed scenarios. We analyzed that pool to exclude duplicates and

overlaps. At this moment we had 16 feasible scenarios and formalized the A-type

3.6 Assessment of the V-Model

77

sequence diagrams. Each reviewer was allowed a vote equaling 30% the number of

scenarios. That vote could be allocated on any scenario or scenarios they wanted to

be discussed.

ARID Step 8. Apply the scenarios: Scenarios that won where used to test the logical

architecture diagram for suitability. We began with the scenario that gathered the

most votes. The reviewers, working as one and having that scenario in mind designed

the B-type sequence diagrams that corresponded to the scenario under analysis.

These diagrams where used to see if the logical architecture diagram solves the

problem raised by the scenario. The team member allocated to taking notes recorded

the B-type sequence diagrams. At any time the design team responsible for the logical

architecture intervened to help. We have established a four-hour window to execute

this step and in that time we managed to create just as many B-type sequence

diagrams as A-type sequence diagrams. This is considered the necessary condition for

the architecture validation.

ARID Step 9. Summarize: As a last step we reviewed the notes and inquired the

participants concerning the exercise. All this feedback helped improve the logical

architecture diagram and define a check-list of subjects that required attention and

needed to be attended before moving on to design or implementation.

In Figure 28 issues discovered in step 8 and summarized in step 9 may promote a new

iteration of the 4SRS method. This is done when there are detected severe flaws in

the logical architecture diagram by not managing to create correct or the necessary

B-type sequence diagrams to traverse all the AEs in the logical architecture diagram

or to comply with all the defined A-type sequence diagrams. We required four

iterations in the 4SRS method before the logical architecture passed the ARID

assessment.

3 Modeling Information and Software Systems

78

3.7 Conclusions

In this chapter, we have presented a process-level approach to creating context for

product design based on successive derivation of models in a V-Model

representation. We use A-Type sequence diagrams as a bridge from domain-specific

needs to the first system requirements representation, B-Type sequence diagrams are

used as validation for A-Type sequence diagrams and the logical architecture diagram.

The used models represent the system in its behavior, structure and expected

functionalities.

The approach assures that validation tasks are performed continuously along the

modeling process. It allows for validating: (i) the final software solution according to

the initial expressed requirements; (ii) the B-Type sequence diagrams according to A-

Type sequence diagrams; (iii) the logical diagram by traversing it with B-Type

sequence diagrams.

Due to the use of a process-level perspective instead of the typical product-level

perspective, our approach might be considered to delay the delivery of usable results

to technological teams. Although, we are formalizing a model called process-level

architecture that is the basis for the domain-specific and software alignment, assuring

the existence of one effective return on the investment put into action during that so-

called delay, decreasing, namely, the probability of project failure or the need for

post-deployment product rework. These advantages were well appreciated by the

designers and developers that used the process-level logical architecture artifacts in

their work. Also, they were presented with the rationale that was made, in terms of

processes that must be supported by the applications they developed.

The presented approach compels the designers and developers to provide a set of

models that allow the requirements to be sustainably specified. Also, using multiple

viewpoints, like logical diagrams, sequence diagrams or other artifacts, contributes to

a better representation and understanding of the system. Each created model in the

3.7 Conclusions

79

V-Model takes knowledge from the previously created model as input. Since they are

created in succession, the time required to derive a given model, for the same degree

of representativeness, is smaller than the previous one. For example, A-Type

Sequence Diagrams take as input information from the OC model. This means that

the context for building A-Type Sequence Diagrams is created by the OC model.

In the left-side of the process, the OC model represents processes at a very high-level.

The refinement of requirements lowers the abstraction level. In similar context to the

one presented in our case study (not having a defined context for product design),

this approach is capable of starting with very high-level models and end with low-

level information. Also, deriving the models allows uncovering requirements that

weren’t initially elicited.

As recommended by the ARID method, the V-Model is able to conduct reviews

regarding architectural decisions, namely on the quality attributes requirements and

their alignment and satisfaction degree of specific quality goals that are imposed to

the created scenarios (A-Type Sequence Diagrams). These quality attributes reviews

were not explicitly done in the ISOFIN project. Instead, those requirements were

imbued in design decisions related to the logical architecture.

Unfortunately, our approach could not be compared with other approaches within

the same case study. It was also not possible to add a fresh team on the project just

to perform other approach for comparison reasons.

It is a common fact that domain-specific needs, namely business needs, are a fast

changing concern that must be tackled. Process-level architectures must be in a way

that potentially changing domain-specific needs are local in the architecture

representation. Our proposed V-Model process encompasses the derivation of a

logical architecture representation that is aligned with domain-specific needs and any

change made to those domain-specific needs is reflected in the logical architectural

model through successive derivation of the supporting models (OCs, A- and B-Type

Sequence Diagrams, and Use cases). In addition, traceability between those models is

built-in by construction, and intrinsically integrated in our V-Model process.

Chapter 4

Yet Another 4SRS

Chapter Contents

4 YET ANOTHER 4SRS .. 83

4.1 INTRODUCTION ... 83
4.2 THE ISOFIN PROJECT .. 86
4.3 THE DESIGN OF SOFTWARE ARCHITECTURES .. 91
4.4 PROCESS-LEVEL 4SRS AS AN ELICITATION METHOD ... 100
4.5 CONCLUSION .. 113

4

Yet Another 4SRS

“A problem well stated is a problem half solved.”

Charles F. Kettering

This chapter presents the process-level perspective of the 4SRS method. This

perspective allows the creation of a logical architecture representation of the

information system based on the requirements initially expressed by the business

stakeholders of the system to be developed. These requirements are not always

clearly defined and the usage of the process-level 4SRS contributes for their

clarification.

4.1 Introduction

A logical architecture provides the conceptual foundation on which other type of

architectures (for instance enterprise architectures) can be built upon. This

architecture can be represented in a model (diagram) that provides a centralized

view of all processes and systems that supports the intended final solution. Such a

representation helps the teams responsible for the enterprise architecture to ensure

4 Yet Another 4SRS

84

that they are addressing the relevant all areas necessary for maximum effectiveness

and achievement of the initially defined purposes.

The design of software architectures for systems to be executed in any target

environment (for instance, cloud computing or service-oriented platforms) brings

many difficulties to system architects. Instead of designing an entire enterprise

architecture based on user requirements traditionally defined in a product-level

perspective, in this chapter we propose the use of a process-level perspective for the

requirements definition and design of the logical model of the intended final

architecture. This assumption is built upon the premise that such an approach

contributes to a more accurate definition of the desired final product requirements

(software architecture) and understanding of the project scope. This is mainly useful

when the project stakeholders to not have enough confidence in the project

information to decide key issues, like the final logical architecture, the intended

business model or even the parts (components, services, connection points or

databases) that make the final system.

In our presented approach, we use the term process. This term, in a generic context,

is hard to define. In the definition given in (Davenport, 1993), a process is a specific

ordering of work activities across time and place, with a beginning, an end, and

clearly identified inputs and outputs. Our process definition aligns with the previous

one, giving emphasis to another aspect: a process is executed by someone and thus,

that also must be accounted for. Therefore, a process is, in our definition, a set of

interconnected or interrelated activities, with a beginning and an end, executed by

someone, with the purpose of transforming a set of inputs into outputs.

This section describes the extensions introduced into the 4SRS method to be adopted

at the process-level perspective in large-scale projects using as case study the ISOFIN

project (ISOFIN Project Consortium, 2010) for achieving a representation of the

system’s logical architecture. The resulting work is presented in (Nuno Ferreira, et al.,

2012b) and in (Ferreira, Santos, Machado, Fernandes, et al., 2013). Since the

obtainment of a logical architecture based on system requirements is a well-

4.1 Introduction

85

documented task in the works of (Fernandes, Machado, Monteiro, & Rodrigues,

2006; R. J. Machado & Fernandes, 2002; R. J. Machado, et al., 2005), and due to our

knowledge in the 4SRS method presented in those works, we decided to use it in

order design the logical architecture of the ISOFIN Platform.

The process-level perspective allows capturing the intentionality’s presented in the

desired activities that the platform will sustain and at the same time resolve the

ambiguity in the product definition that obscure the borderline of actuation of the

ISOFIN Project.

The 4SRS method was first defined and detailed in (R. J. Machado, et al., 2006a; R. J.

Machado, et al., 2005). The described extensions are focused on a process-level

perspective to deliver a logical architectural model. This logical architectural model

contributes to the context definition of a proper requirements elicitation. We

additionally illustrate the applicability of the proposed approach in the real industrial

case, the ISOFIN project, later presented. In the presented real industrial case, the

process-level 4SRS is used to create the necessary context to elicit the requirements

for designing an architecture capable to be implemented in the three typical cloud-

layers: Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS), and Software-

as-a-Service (SaaS), as defined in (NIST, 2009). The transformation of such context

into product-level requirements is presented in chapter 5 of this thesis.

This chapter begins with the ISOFIN Project presentation and its framing as the

problem context from where the delving of solutions began. In the next sections, we

introduce the method of choice for creating a logical architecture representation of

the intended system in two perspectives: the product- and process-level perspectives

of the 4SRS method. We end this chapter with a presentation of the results of the

application of the method in the process-level perspective and introduce the next

steps: the transition from process to product to achieve a service-oriented logical

architecture representation.

4.2 The ISOFIN Project

4.2 The ISOFIN Project

The ISOFIN project aims to deliver a set of coordinating services in a centralized

infrastructure, enacting the coordination of independent services relying on separate

infrastructures. The resulting ISOFIN platform will desirably contribute for the

semantic and application interoperability between enrolled financial institutions

(Banks, Insurance Companies and others), that is, between the ISOFIN Customers and

the ISOFIN Suppliers, as depicted in Figure 29.

Figure 29: ISOFIN Main Constructors

In this section we present an overview of the ISOFIN terminology based on Figure 29.

This terminology was created as a result of the execution of the process-level 4SRS

method described in this section as is presented to create the proper context for the

method, techniques and approaches that are described in this work and specially in

the process-level 4SRS described in this chapter.

IBS

Supplier A Supplier B Supplier C Supplier ...

ISOFIN Customers

ISOFIN

ISOFIN Applications

SBS

NBS

ISOFIN Suppliers

4.2 The ISOFIN Project

87

The global ISOFIN architecture relies on two main service types, Interconnected

Business Service (IBS) and Supplier Business Service (SBS). Alongside those two main

service types, the global ISOFIN architecture references the following:

 NBS (Native Business Service): The already existing software installed and

exploited within the context of each ISOFIN Supplier. NBS examples (from the

insurance core application context) are GetRolesInContract,

GetAgreementAccounts, CreateRecurringTransfer.

 SBS (Supplier Business Service): Set of functionalities exposed from the ISOFIN

Supplier infrastructure. A SBS is the result of externalizing of one or more

NBSs. The creation of SBSs is dependent upon the ISOFIN Supplier strategy

(business needs) and/or legal requirements that it is required to fulfill. If a SBS

consists in the externalization of a single NBSs, the analysis and design of that

SBS is negligible since the development effort is done mainly in the NBS,

leaving to the SBS the externalization effort. In the case where a SBS is the

result of interconnecting more than one NBS, the analysis and design efforts

must be accounted since there is the need to align the SBS with business

needs (elementary NBSs that compose that SBS do not fulfill, by themselves,

any business need). In this case the implementation effort is also higher since

may be necessary to interconnect NBSs that reside in different execution

environments and/or implemented with different technologies for example. It

is not part of the scope of the ISOFIN Platform functionalities the

development of SBS. The ISOFIN Platform functionalities only regard

mechanisms of cataloguing and externalizing SBSs allowing the development

of IBSs. An SBS never takes the initiative of beginning interactions with IBSs.

The interactions are always initiated by IBSs.

 IBS (Interconnected Business Service): Set of functionalities that are exposed

from the ISOFIN Platform to ISOFIN Customers. An IBS interconnects one or

more SBSs and/or IBSs exposing functionalities that relate directly to business

needs. IBSs are externally available to ISOFIN Customers applications and

4 Yet Another 4SRS

88

internally available for interconnections with other IBSs or ISOFIN

Applications. IBSs execute in the ISOFIN Platform and each IBS has an

interface defined according to an interface formal definition or contract. An

IBS interface is an application program interface (api) that allows access to the

IBS functionalities. IBSs can be regarded as an incomplete final software

building block that will be presented to customers. Incomplete because it is

not standalone (its execution, by itself does not translates into any business

need, it is required another part to perform the necessary transformations to

deliver the expected functionalities) and final because is a self-contained

software artifact able to be used, as it is, in conjunction with other artifacts

(IBSs, ISOFIN Applications, Remote Business Programs).

 ISOFIN Application: A software application that is built as a result of joining an

interface to a single IBS. Interfaces in this context are graphical user

interfaces, executed in the scope of the ISOFIN Platform and that are

externally exposed to Business Users. Access to ISOFIN Applications is usually

done using a secure session in a web browser. ISOFIN Applications are

developed to fulfill the need (of the ISOFIN Customer) of accessing, using a

simple interface, functionalities exposed by IBSs. That need derives from

business needs or legal requirements. By adding graphical user interfaces to

IBSs, the functionalities of the ISOFIN Platform can be accessed by a larger

group without requiring specific implementation of programs (Remote

Business Programs).

 ISOFIN Platform: Software system developed whose main purpose is to

respond to ISOFIN Customer’s requests through orchestration of a set of

integrated services (IBSs and ISOFIN Applications) concerning the financial

domain. The ISOFIN Platform encompass’ all the tools, services and catalogs

required to externalize SBSs (and related information) from the ISOFIN

Customers infrastructure and operationalize (assuring) execution of

interconnected functionalities in IBSs and ISOFIN Applications. The platform

functionalities also include self-management, security and auditing.

4.2 The ISOFIN Project

89

An ISOFIN Supplier encompasses all the entities that supply the ISOFIN Platform with

SBSs. An entity can be, for example, a Bank, an Insurer, or a Broker. Within the

context of the ISOFIN project, these companies can become ISOFIN Suppliers after

successful subscription of the ISOFIN Platform.

ISOFIN Customers are those entities whose domain of interactions resides in the

scope of consuming the functionalities exposed by the IBSs or ISOFIN Applications.

The ISOFIN project execution was in the context of a consortium. The ISOFIN

Consortium is a association of business and academic entities with the objective of

promoting the interoperability of applications in the financial domain. The goal of the

consortium is to develop the ISOFIN Platform by creating the conditions for future

commercial use. The consortium encompasses the following entities: I2S Informática

Software e Serviços (designated as the consortium leader), Universidade do Minho,

Faculdade de Ciências e Tecnologia of Universidade Nova de Lisboa, CCG Centro de

Computação Gráfica, INOV INESC Inovação, iZone Knowlege Systems, Maisis

Information Systems and KnowledgeBiz Consulting.

The ISOFIN Platform allows information systems integration across multiple domains

of interest. In this context, we define “information” as data that is processed and

used to make decisions, take actions, and provide better understanding on a subject

allowing uncertainty to be reduced. A “system” is a group of multiple components or

subsystems that act together in order to accomplish a common purpose. A system is

called a subsystem when it is understood as a component of a larger system. On the

other hand, a subsystem is considered a system when it is the focus of attention. An

“information system” is the set of procedures by which data are collected and

processed into information, and then distributed to end users. Due to the previously

exposed, the ISOFIN Platform can be regarded as a software-based system that allows

information subsystems to interact together.

The typical high-level interactions between all the entities addressed in the ISOFIN

project are presented in Figure 30. This representation is one of the results of the

interpretation of the final output of the process described in this thesis.

4 Yet Another 4SRS

90

Figure 30: ISOFIN High-level Interactions

In what concerns the scientific research conducted, we frame each of the ISOFIN

constructors in a development macro-process as depicted in Figure 31. Based on the

business needs, it is made the analysis of the SBS that drives the design and then the

implementation. From the SBS emerges a set of IBS arranged as an orchestration of

one of more SBS. IBS also derive from the business needs and by its turn, give origin

to ISOFIN Applications. Each of the major constructors, SBS, IBS and ISOFIN

Applications analysis, design and implementation are made in succession, evolving

over time and being functionally dependent from the previous.

Typical ISOFIN Customers:
- General public
- Insurance and Pension Funds
Supervisory Authority
- Insurance Associations
- Insurance Companies
- Financial Regulatory Entities
- Banks
- Brokers

Typical ISOFIN Platform Users:
- Auditors
- Service Developers (any of the ISOFIN Customers)
- Business Analysts

ISOFIN Suppliers

NBS SBS

ISOFIN Platform

IBS / ISOFIN Applications

ISOFIN Customers

Users and Applications

Generators

Support Services

Auditoria

Subscrições Alertas

Manutenção

Generators

Typical ISOFIN Suppliers:
- Insurance Companies
- Banks
- IT Service suppliers

4.2 The ISOFIN Project

91

Figure 31: ISOFIN Macro-process

4.3 The design of software architectures

The presented approach is based on a premise that the process-level 4SRS method

can be used when there is no agreed on or defined context for requirements

elicitation. Requirements Elicitation is concerned with where software requirements

come from and how they are collected (Abran, Moore, Dupuis, Dupuis, & Tripp, 2001)

within the Requirements Engineering area. The objective of a requirements elicitation

task is to communicate the needs of users and project sponsors to system developers

(Zowghi & Coulin, 2005). A proper requirements elicitation task must encompass an

understanding of the organizational environment, through their business processes

(Cardoso, Almeida, & Guizzardi, 2009).

An accurate requirements elicitation can be assured through the use of requirements

elicitation methodologies, methods or techniques. The Work System Method (Alter,

2002) presents a combined static view of the current (or proposed) system and a

SBS

Analysis (SBS.A)

Design (SBS.D)

Implementation (SBS.I)

IBS

Analysis (IBS.A)

Design (IBS.D)

Implementation (IBS.I)

ISOFIN Application

Analysis (IA.A)

Design (IA.D)

Implementation (IA.I)

A
b

s
tr

a
ti
o

n
 l
e

v
e

l

Time

Business Needs Analysis

U
ti
liz

a
ti
o
n

U
ti
liz

a
ti
o
n

4 Yet Another 4SRS

92

dynamic view of the system evolution over time. The Soft Systems Methodology

(SSM) (Checkland, 2000) is a domain-independent analysis methodology designed for

tackling problematic situations where there is neither clear problem definition nor

solution.

Our approach suggests the derivation of a process-level logical architecture for

creating context for cloud design. Software architecture deals with the design and

implementation of the high-level structure of the software (Kruchten, 1995). There

are several approaches to support the design of software architectures, in a product-

level perspective, like RSEB (Jacobson, Griss, & Jonsson, 1997), FAST (D. M. Weiss &

Lai, 1999), FORM (Kang, et al., 1998), KobrA (Bayer, et al., 2001) and QADA

(Matinlassi, Niemelä, & Dobrica, 2002). The product-level perspective of the 4SRS (R.

J. Machado, et al., 2006a) method also promotes functional decomposition of

software systems.

Tropos (Castro, et al., 2002) and 4SRS (in (R. J. Machado & Fernandes, 2002)) are

process-level requirement modeling methods. Tropos uses notions of actor, goal and

(actor) dependency as a foundation to model early and late requirements,

architectural and detailed design. The 4SRS method is usually applied in a product-

level perspective. Our presented approach formalizes the process-level perspective

that was firstly used in (R. J. Machado & Fernandes, 2002). Use cases act as input for

the 4SRS method and, in the 4SRS process-level perspective, portray the activities

(processes) executed by persons or machines in the scope of the system, instead of

the characteristics (requirements) of the intended products to be developed.

According to (Hammer, 1997), and in a business context, a process is executed to

achieve a given business goal and where business processes, human resources, raw

material, and internal procedures are combined and synchronized towards a common

objective. Our processes represent the real-world activities of a software production

process, like in (Conradi & Jaccheri, 1999). A software process is composed of a set of

activities related to the software development lifecycle. Designing a process

comprises the development of a process architecture that continually aggregates

4.3 The design of software architectures

93

process elements to support tailoring and enhancements of processes. Implementing

a process encompasses the specification of the requirements for process execution.

The requirements for process execution can be represented in a logical architecture.

A logical architecture can be considered a view of a system composed of a set of

problem-specific abstractions supporting functional requirements (Sofia Azevedo,

Machado, Muthig, & Ribeiro, 2009). The process architecture represents the

fundamental organization of service development, service creation, and service

distribution in the relevant enterprise context (Winter & Fischer, 2006a). A process

architecture can also be defined as an arrangement of the activities and their

interfaces in a process (Browning & Eppinger, 2002), takes into account some non-

functional requirements, such as performance and availability (Kruchten, 1995), and

can be represented with components, connectors, systems/configurations of

components and connectors, ports, roles, representations and rep-maps (Medvidovic

& Taylor, 2000), as well as by architectural elements’ static and temporal features

(Kazman, 1996). The result of the application of the 4SRS method is a logical

architecture.

Existing approaches for designing software architecture do not support any specific

technique for requirements elicitation; rather, they use the information delivered by

an adopted elicitation technique. One problem arises when typical (product-oriented)

elicitation techniques cannot properly identify the necessary requirements. With the

real industrial case described in this work we demonstrate that firstly adopting

process-level techniques allows for better understanding of the project scope since it

allows for the elicitation of the activities that will be supported by the product to be

developed.

The product-level 4SRS method

A product-level perspective to design can translate system requirements into

software architectures and design elements. This is the case where the product-level

4SRS perspective of the method is proven useful (Bragança & Machado, 2009). The

4 Yet Another 4SRS

94

4SRS method in its essence maps UML use case diagrams into UML object diagrams

(specialized as architectural elements) resulting in a model of the logical architecture

representation of the intended system to be developed (R. J. Machado, et al., 2006a).

The 4SRS method comprises four steps: architectural element creation, architectural

element elimination, architectural element packaging & aggregation, and

architectural element association. The method takes as input a set of use cases

describing the intended system (product) requirements and transforms them into a

logical architecture representation of the intended system to be developed. Such is

represented in Figure 32. The logical architecture is made of interconnected

architectural elements.

Figure 32: High-level representation of the 4SRS method

Step 1: Architectural Element Creation

The transformation of the use cases into architectural elements is the first of the four

steps in 4SRS, the architectural element creation. It is a fully automated step since the

transformation is made by creating three architectural element types for each use

case. There are three kind of architectural elements: interface (i), data (d) and control

(c). Each represents a relation with a design space dimension, namely presentation,

information and behaviour respectively.

Product-level 4SRS

Requirements

(Use Cases)

Logical Architecture

Representation

Step 4:

Association

Step 3:

Packaging & Aggregation

Step 2:

Elimination

Step 1:

Creation

4.3 The design of software architectures

95

Step 2: Architectural Element Elimination

The second step, architectural elements elimination, is the most critical of the

method application. It comprises seven micro-steps. A full description of the micro-

steps can be found in (R. J. Machado, et al., 2005). In order to better understand the

method applicability, this critical step, and the changes latter introduced to create the

process-level 4SRS method, we present in short, step 2 micro-steps:

- 2i: Use Case Classification: a classification of each architectural element is

made. Each use case is imbued with one or more analysis space dimensions

and, when deriving the three “blind” architectural elements in the first step of

the 4SRS, in this micro-step there must be made an explicit reference to the

architectural element types that are present in the use case description. We

must first perform an analysis of the dimensions where the use case currently

being processed exists and then, establish a mapping to one or more of the

4SRS architectural element types. The mapping guidance can be seen in Figure

33. An use case may belong to one of the subsets {Ø, i, c, d, ic, di, cd, icd}.

Figure 33: 4SRS Architectural Element and Analysis Space Dimensions mapping

Interface

Data

Control

Presentation

Information

Behaviour

Default connection (may not exist)

Possible connection

4SRS Architectural

Element type

Analysis Space

Dimensions

4 Yet Another 4SRS

96

- 2ii: Local Elimination: elimination of the architectural elements blindly created

in step 1 that does not make sense preserving in the use case context.

- 2iii: Architectural Element Naming: create a name for the architectural

elements that remained from elimination in micro-step 2ii.

- 2iv: Architectural Element Description: provide an accurate description of the

architectural element under analysis in order to achieve the most

comprehensive detail on the rationale that presided to its creation and

prevented it from elimination in the previous micro-steps.

- 2v: Architectural Element Representation: This micro-step is the most critical

in the product-level perspective of the 4SRS method since it encompasses the

elimination of redundancy in the architectural element representation while

concerning the entire set of elements and not only the derived from a single

use-case. This micro-step takes into account if a given architectural element

under analysis fully represents or is represented functionally by another

architectural element. This micro-step also works as a discovery of hidden

requirements.

- 2vi: Global Elimination: in this micro-step all the architectural elements that

are fully represented by others (that is, the system requirements are no

longer represented by them) must be eliminated.

- 2vii: Architectural Element Renaming: since the architectural elements in the

previous micro-steps have gained more representativeness it is necessary to

rename them to represent the entire requirements of the architectural

elements they represent.

Step 3: Architectural Element Packaging & Aggregation

The third step uses the architectural elements that remained from the second step

and must be packaged or aggregated in the cases where there is a reason for them to

4.3 The design of software architectures

97

be treated in a single unit. This unit works as a coherent logical block that allows to

group functionalities.

Step 4: Architectural Element Association

The last 4SRS step regards creating associations between the remaining architecture

elements. These associations are created by interpreting the initial use cases

descriptions and the tasks performed in micro-step 2i.

After the execution of this last step we achieve a logical architecture representation

of the system to be developed. The product-level usage of the 4SRS method can be

used recursively (R. J. Machado, et al., 2006a) to allow the refinement of a subset of

the logical architectural model. By using the refinement technique, it is possible, by

using the method applied to that particular subset, to create a refined and detailed

logical architecture model of that particular part of the global system.

When there is not enough information to gather the necessary use cases to act as

input for the product-level 4SRS method, it is not possible to assure its proper

execution. Since there is not enough information to create a coherent representation

of the entire system requirements, micro-steps (like 2v – architectural element

representation) does not have the necessary information to discover if there is any

missing requirement nor eliminate redundancy.

Looking at some examples of the historical usage of the 4SRS method (Virtual

Automation project (R. J. Machado & Fernandes, 2002), USE-ME.gov project (R. J.

Machado, et al., 2006a), ISOFIN project (N. Ferreira, et al., 2012)) it is possible to

acknowledge that for creating a proper representation of the system, it is necessary

to have an initial representation of, at least, thirty use cases. Lesser

representativeness generated a flawed logical architecture model that demanded a

new requirements elicitation phase.

If, even though, it is not possible to gather the required use cases with the proper

textual descriptions, the product-level perspective is not useful. It is necessary to

execute first a process-level 4SRS as described in the following sections to achieve a

4 Yet Another 4SRS

98

proper system requirements representation and, only then, execute the product-level

4SRS method to derive the logical architecture representation of the intended

system.

The process-level 4SRS method in the ISOFIN Project

The logical process-level architecture of the ISOFIN solution (ISOFIN Project

Consortium, 2010) has embedded design decisions that are initially injected in the

processes descriptions. The design decisions concern the deployment of the system in

a public cloud environment and its interoperability with several other private clouds

as defined in the project objectives.

The resulting logical model of the system architecture, based on the processes that

are intended to be executed, shows a software solution able to be deployed in an

IaaS layer. That layer will support the execution of a set of services that will allow

suppliers to specify the behaviour of the services they intend on supplying, in a PaaS

layer. This will allow customers, or third-parties, to use the platform’s services, in a

SaaS layer and be billed accordingly. This chapter only presents a subset of the

proposed process-level architecture related to the customer perspective, as seen in

Figure 34. Further details are found in annex A where we present the evolution of the

process-level 4SRS iterations and some additional diagrams related to the process-

level perspective. Processes regarding the provider perspective (e.g., infrastructure

management) are not considered. We present subsets of two use case models

concerning two distinctive functionalities provided by the platform.

4.3 The design of software architectures

99

Figure 34 Use Case Model Regarding the ISOFIN Process-level Perspective Functionalities.

The process-level architecture focuses on two sets of functionalities: Interconnected

Business Service (IBS) and Supplier Business Service (SBS). IBSs concern a set of

functionalities that are exposed from the ISOFIN SaaS Platform to ISOFIN Customers.

An IBS interconnects one or more SBSs and/or IBSs exposing functionalities that

relate directly to business needs. SBSs are a set of functionalities that are exposed

from the ISOFIN Supplier private cloud.

ISOFIN

Customer

{U1.5.} Subscribe
ISOFIN Platform for

Consuming

{U1.6} Instantiate IBS
 to ISOFIN Customer

{U1.9.} Send info
to IBS

{U1.10.}
 Receive info from

IBS

{U1.8.} Configure
IBS

{U1.} Perform Busines

Activities

IBS Business

Analyst

IBS Developer

{U2.1.} Perform
Requirements Analysis

{U2.3.} Design IBS

{U2.4.} Process
ISOFIN Platform

Subscription

{U2.6.} Implement
IBS

{U2.11.} Integrate
Publishing Info

{U2.7.} Publish IBS
Description

<<uses>>

{U2.} Develop IBS

Figure 35 Refinement of Use Case 1 and Use Case 2 (subset).

In Figure 35 there is a description of the execution of a set of economically-related

business processes within the context of the project. They are executed through the

SaaS layer, since the software components and applications are hosted by third-party

SBS DeveloperSBS Business

Analyst

IBS DeveloperIBS Business

Analyst

{U1.} Perform
Busines Activities

{U3.} Develop
SBS

{U2.} Develop IBS

<<uses>> <<uses>>

Native Business Services

ISOFIN

Customer

Process-level ISOFIN Functionalities

4 Yet Another 4SRS

100

service providers in the cloud. By accessing the services functionalities (represented

by implemented IBSs), ISOFIN Customers fulfills their business needs.

Most of these processes, namely the ones regarding the design and implementation

efforts, are executed through the PaaS layer. The defined processes will correspond

to some of the services and applications that the ISOFIN Platform will support, when

executed in the SaaS layer. The model encompasses the analysis, design and

implementation of IBSs, accessed externally, through the SaaS layer, and providing

ISOFIN Customers with added business value.

4.4 Process-level 4SRS as an Elicitation Method

The 4SRS method allows for the transformation of user requirements into an

architectural model representation. This section presents an extension of the

traditional (product-level perspective) usage of the 4SRS method (presented in (R. J.

Machado, et al., 2006a)) to allow its application in a process-level perspective

supporting the creation of context for the product-level requirements elicitation. This

application differs from the traditional by defining a set of rules that must be

observed when reasoning about the execution of the method steps. Our extension of

the method also defines additional micro-steps to the existing ones. Alongside the

method presentation there will be included some examples created during the

method application to derive a logical architecture that acts as a basis for the

requirements elicitation of a cloud SaaS solution, in this case, a subset of the ISOFIN

project.

The 4SRS method takes as input a set of use cases describing the requirements for

the cloud-specific processes that tackle the initial problem. These use cases are

refined through successive 4SRS iterations, representing the intended cloud concerns

of the involved business and technological stakeholders. Neither KobrA, RSEB, nor

Tropos make use of techniques for refining use cases like the 4SRS method does.

Application of the 4SRS method requires the creation of “architectural elements”

4.4 Process-level 4SRS as an Elicitation Method

101

(AEs). The nature of AEs varies according to the type of system under study and also

with the context where it is applied. In the specific context of logical architectures,

the term architectural element refers to the pieces from which the final logical

architecture can be built. We deliberately use this term to distinguish those artifacts

from the components, objects or modules used in other well established contexts,

like in the UML structure diagrams.

The execution of the 4SRS transformation steps can be supported in tabular

representations as it can be seen in (R. J. Machado, et al., 2006a). Moreover, the

usage of tables permits a set of tools to be devised and built, so that the

transformations can be partially automated. These tabular representations constitute

the main mechanism to automate a set of decision-assisted model transformation

steps. Tabular transformations are supported in a table where the cells are filled with

the set of decisions that were taken and made possible the derivation of a logical

architecture for the cloud design. Each column of the table concerns a step/micro-

step of the method execution. For readability purpose, the entire table was divided

into five smaller tables (Tables 2 to 6). In the real context, we manipulate the entire

table (seen on Figure 13: Tabular Transformation of the 4SRS Method) and not the

smaller ones. The next sub-sections detail the extensions made to the process-level

perspective of the 4SRS method and the added micro-steps (product-level 4SRS

original steps are in (R. J. Machado, et al., 2006a)).

Step 1: Architectural Element Creation

This step regards the creation of AEs. The product-level 4SRS (R. J. Machado, et al.,

2006a) rule of transforming each use case into three AEs is still valid in the process-

level 4SRS. According to the MVC-like pattern applied in the product-level 4SRS, an

interface, data and control AEs are created for each use case. i-type, d-type, or c-type

stereotypes respectively are added to each AE and their names are prefixed with "AE"

(the stereotypes definition will be detailed in micro-step 2i). No particular rationale or

decision is required at this step since it concerns mainly the transformation of one

4 Yet Another 4SRS

102

use case into three specific AEs. This step is represented in the 1st and 2nd columns

of Table 2.

An addition to this step is the identification of glue elements resulting from the

textual descriptions associated with the use case under analysis. If the use case

depicts pre- or post-conditions in the form of validations, those can be expressed in

this step as a Glue AE. These AEs have the c-type stereotypes since they require

decisions to be made with computational support, that is, they must be supported by

the system architecture to be represented. A sequential number is added to each

Glue AE. Those elements will be used as generic process interfaces between

generated AEs and act as pre- or post-condition process validations. Other AEs are

expressed as Generated AE.

For example, {AE1.9.c2} Validate Business User was created as a result of the analysis

of the use case {U1.9.} Send info to IBS with the description “[…] Before sending

commands to an IBS, ISOFIN Customers must subscribe […]”.

Table 2. Step 1 of the 4SRS method

{U1.9.} Send info to IBS

{AE1.9.c2} Glue AE

{AE1.9.i} Generated AE

Step 1 -architectural element creation

Use Case Description

Step 2: Architectural Element Elimination

In this step, AEs are submitted to elimination tasks according to pre-defined rules. At

this moment, the system architect decides which of the original three AEs (i, c, d) plus

any glue element are maintained or eliminated taking into account the entire system.

The original step 2 of 4SRS is divided into seven micro-steps. We added a new micro-

step, 2viii: Architectural Element Specification. With this addition, step 2 becomes

more robust and detailed. It provides information to the next steps that was hard to

obtain in the original version.

4.4 Process-level 4SRS as an Elicitation Method

103

Micro-step 2i: Use Case Classification

In this step, each use case is classified according to the nature of its AEs, previously

created in step 1. The nature of an AE is defined according to the suffix the AE was

tagged with. This classification is represented in the 2nd column of Table 3 (the 1st

column regards the AE identification). In the process-level perspective more than one

of each AE type can be generated according to the textual description and in the

model of the use case. Each AE type must be interpreted as follows:

 i-type – refer to interface. These represent process’ interfaces with users,

software or other processes. An AE belonging to or being classified in this

category is due to its ability interact with other AEs external to itself;

 c-type – refer to control. These represent a process focusing on decision

making and such decision must have a computational support given from the

overall intended system;

 d-type – refer to generic decision repositories (data), not computationally

supported from the overall intended system. This repository stores information

for a given period of time, regardless of duration, comprising decisions based

on physical repositories (like documents or databases) or verbal decisions

taken and transmitted between humans.

In the process-level perspective, c-type and d-type AEs are related to decision-making

processes. The difference resides on the computational support of the AE by then

under design overall intended system (in hypotheses).

Micro-step 2ii: Local Elimination

This micro-step refers to determining which AEs must be eliminated in the context of

a use case, guaranteeing its full representation. This is required since micro-step 2i

disregards any representativeness concerns.

There are cases when there is an explicit place for a d-type AE and it is admittedly

eliminated. Reasons for this are due to the process-level perspective: there is no need

for certain types of decision repositories that only regard information for the final

4 Yet Another 4SRS

104

product and not the process. This is the case, for example, in use case {U1.9.} Send

info to IBS, where any possible repository (data object in the traditional 4SRS) that

could exist would only reflect the product-level perspective and not the process.

Other situation similar to the previous one is when a given d-type AE exists in the

product-level perspective but also, and above it, exists in the process-level

perspective. This is the case of {U1.6} Instantiate IBS to Remote Business Program,

where {AE1.6.d} IBS Configuration Decisions represents the process for supporting the

configuration process (process-level), not the configuration repository (product-

level).

The 3rd column in Table 3 corresponds to the execution of micro-step 2ii. The cells

are filled with “T” or “F”. “T” means the AE is going to be eliminated and “F” that the

AE is kept alive.

Micro-step 2iii: Architectural Element Naming

In this micro-step (4th column of Table 3), AEs that survived the previous micro-step

are given a name. The name must reflect the role of the AE within the entire use case,

in order to semantically give hints on what it represents and not just copy the original

use case name. Usually, the AE name reflects also the use case from which the AE was

originated.

For better understanding of the role of the AE, it is advisable that the name given

reflects the type (c, d or i) of the AE. For instance, since d-type refers to decision-

making, in our model, we decided to name “IBS Configuration Decisions” to {AE1.6.d}.

In glue AE cases, the naming of the AE should reflect the pre- or post-conditions that

are executed. For instance, {AE2.4.3.d} ISOFIN Platform Supplier Policy, reflects the

pre-condition “The ISOFIN Supplier must accept […] to comply with the defined

policy”.

4.4 Process-level 4SRS as an Elicitation Method

105

Table 3. Micro-steps 2i through 2iv of the 4SRS method

{U1.9.} i

{AE1.9.c2} F
Validate Remote Business

Program

Execute the necessary verification procedures to

ensure that the Remote Business Program is …

{AE1.9.i} F Send Commands to IBS
Send commands and associated information to the

IBS in order to process a business request…

2i - use case

classification

2ii - local

elimination

2iii - architectural

element naming
2iv - architectural element description

Step 2 - architectural element elimination

Micro-step 2iv: Architectural Element Description

This micro-step is represented in the 5th column of Table 3. The resulting AEs that

were named in the previous micro-step must be described and the requirements that

they represent must be addressed in the process-level perspective. This micro-step is

where the transition is made from the problem domain to the solution domain, so

the descriptions must detail, in process terms, how, why, when by whom that AE is

going to be executed. This micro-step must explicitly describe the expected behavior

of the AE execution, including which decisions will be made and how will they be

supported.

Micro-step 2v: Architectural Element Representation

The purpose of this micro-step is to eliminate AE redundancy in the global process. In

this micro-step, all AEs are considered and compared in order to identify if one AE is

represented by any other one. The identification of AE representation is the most

critical task in the 4SRS method application, because the elimination of redundancy

assures a semantic coherence of the logical architecture and discovers anomalies in

the use case model. Since the architecture being described concerns the process-

level, the identification of AE redundancy takes in consideration facts like the

execution context, actors involved, used artifacts, activities and tasks, among others.

If all of these factors are similar, though the AEs are originated by different use cases,

4 Yet Another 4SRS

106

the given AE can be considered to represent another. Other cases when an AE is

considered to represent another:

In similar activities, if the same actor has the same role in the both AEs, despite

different execution contexts (e.g., {AE2.4.1.i} Perform ISOFIN Supplier Request

Evaluation is considered to be represented by {AE2.4.2.i} Perform ISOFIN Customer

Request Evaluation, the IBS Business Analyst triggers both AEs – the first AE

represents the second AE, because the actor interacts with the same type of

information);

In similar activities, different actors participate in the AE, but the execution context is

the same (e.g., {AE2.1.c} Access Remote Catalogs and {AE1.11.i} Browse ISOFIN

Catalogs, the involved actors are different, but the execution platform is the same –

both of them execute in the ISOFIN Platform, in the SaaS layer).

These cases are only applicable for i-type and c-type AEs. This set of rules cannot be

applied to d-type AEs since they represent the decisions that need to be taken and

whose computational support is not assured by the scope of the project under

analysis. Also, d-type AEs are usually input for other decision processes (c-type AEs)

requiring computational support.

Despite the decision making process may be similar, d-type AEs differ in the decision

making purpose. This difference is required to assure the process variability, when

the execution contexts are similar but the involved actors and activities are different.

For example, {AE1.5.d} Consumer Subscription Requirements and {AE3.3.d} SBS

Catalog Subscription Requirements cannot be represented by one AE, although the i-

type related AEs – {AE1.5.i} and {AE3.3.i} – are represented by the same AE. The

decision making regarding a specific purpose viewed from different perspectives

concerns different purposes, even if, at first sight, the interface seems to be the

same.

A potential concern when executing this micro-step regards the number of AEs

involved. Since all living AEs must be accounted in the analysis, it is hard to keep track

of all the processes they refer to in order to know if one can be represented by other.

4.4 Process-level 4SRS as an Elicitation Method

107

In the product-level perspective, this step concerns the analysis if a given AE is

complex enough to exist by itself or if there is any other AE whose functionalities can

be incorporated in the one under analysis. This rule also applies to the process-level

perspective, if three questions are considered:

 Is the analyzed AE suitable to be represented by other in his entire

functionality?

 Is the target AE suitable to incorporate the AE under analysis functionalities

without losing any of its own characteristics?

 If the target AE is complex and the extra-functionalities to be added increase

the complexity will it be in a degree where its maintenance, description or

scope are compromised?

If the activities or processes executed within the context of a given AE are to be

executed by another AE and the target AE is subject to change, no extra complexity

should be added to that target AE nor its core specification change in order to full

represent the source AE.

The execution of micro-step 2v is presented in Table 4 in the 2nd and 3rd columns.

The 2nd column, “represented by”, stores the reference of the AE that will represent

the AE being analyzed. If the analyzed AE is going to be represented by itself, the

corresponding “represented by” column must refer to itself. The 3rd column,

“represent”, stores the references of the objects that the analyzed AE will represent.

Micro-step 2vi: Global Elimination

This micro-step (4th column in Table 4) refers to determining which AEs must be

eliminated in the context of the global model, similar to micro-step 2ii, since its

execution is automatic.

The AE that is represented by itself or represents other AEs is maintained. The rest

(i.e., AEs that are represented by other AEs) are eliminated. This is a fully “automatic”

micro-step, since it is based on the results of the previous one. If the AE is

4 Yet Another 4SRS

108

represented by itself, cell is filled with “T”, meaning that the AE is represented by

other AE and thus, eliminated, and “F” if the AE is going to be kept alive.

Micro-step 2vii: Architectural Element Renaming

In this micro-step (5th column in Table 4), AEs that have not been eliminated in

micro-step 2vi are renamed. In cases where the AE under analysis results of the

representation of more than one AE, the new name must reflect the global execution

of the AE in the project context.

Micro-step 2viii: Architectural Element Specification

This micro-step (6th column in Table 4) has never been considered in previous

versions of the traditional 4SRS method. Though it is similar to micro-step 2iv, this

micro-step intends to describe AEs that, in micro-step 2v, are considered to represent

other AEs. The decision of creating this micro-step arises from the need to clearly

define the proper behavior of the “new” AE in a way that is clear to system architects.

Besides including the information regarding AEs eliminated in micro-step 2vi as a

result of micro-step 2v, the AEs specifications must include the pre-conditions of the

basic AEs, so it can properly support the associations to be established in step 4. For

instance, if the extended description of {AE1.9.c1} does not include the conditions

described in {AE1.1.c1}, that information would be lost since {AE1.1.c1} has been

eliminated in micro-step 2vi and, as such, is not considered in step 4. If those

references are not preserved in any surviving AEs, they will be permanently lost and

thus, disregarded in the construction of the logical diagram model.

The specification must also include execution sequence references of the AEs. For

instance, {AE2.9.i} must reference the ISOFIN Application catalog described by

{AE1.3.d}, which is also eliminated in micro-step 2v, to create the association in step

4. The specification information is required in the transformation from the process-

level perspective to the product-level perspective, to infer the necessary

4.4 Process-level 4SRS as an Elicitation Method

109

requirements of a given product based on the processes of which the product is

composed.

This micro-step contributes to a better description of AEs that result from joining

other AEs. By adding this information, the designer can clearly express their thoughts

and decisions concerning the creation of the AE under analysis as a result of the

potentially added extra-complexity resulting from micro-step 2v.

Table 4. Micro-steps 2v through 2viii of the 4SRS method

represented by represent

{U1.9.}

{AE1.9.c2} {AE1.9.c2} {AE1.1.c2} F
Validate Platform

Access

Execute the necessary verification procedures

to ensure that subscribed ISOFIN Customers…

{AE1.9.i} {AE1.9.i} F
Send Commands to

IBS

Step 2 - architectural element elimination

2v - architectural element representation 2vi - global

elimination

2vii - architectural

element renaming
2viii - architectural element specification

It is necessary to pay a special attention to the AEs that represent other AEs in micro-

step 2v. The specification must clarify system architects in what way the AE is

executed and how its execution represents an eliminated AE.

Step 3: Packaging and Aggregation

Like in the traditional 4SRS method, in this step (2nd column in Table 5), the

remaining AEs (those that were maintained after executing step 2), for which there is

an advantage in being treated in a unified process, should give the origin to

aggregations or packages of semantically consistent AEs. This step supports the

construction of a truly coherent process-level model.

In order to correctly package AEs, it is necessary to consider the model as a whole, so

that all relevant processes (in a high-level order of abstraction) are identified. Then,

when justifiable, the AEs are associated to a package. The packaging technique

contributes for a temporary obtainment of a more comprehensive and

understandable process model. Typically, aggregation is used when there is a part of

the process that constitutes a legacy sub-system, or when the design has a pre-

defined reference architecture that constricts the model.

4 Yet Another 4SRS

110

Table 5. Step 3 of the 4SRS method

{U1.9.}

{AE1.9.c2} {P6} ISOFIN Platform Management

{AE1.9.i} {P2.4} IBS

Step 3 - packaging & aggregation

Step 4: Architectural Element Association

Decisions on the identification of associations between AEs can be based in

information contained in the use case model and in micro-step 2i. Thus, step 4 was

divided in two micro-steps: micro-step 4i: Direct Associations and 4ii: Use Case

Associations.

It is also important to point out that any textual references to eliminated AEs in

micro-step 2vi, must be included in micro-step 2viii, making it another source of

information for step 4.

In the traditional 4SRS application, this step is executed in a single step. We propose

to do it in two micro-steps to easily identify unnecessary direct associations, as well

as associations originated by textual description of eliminated AEs. This division, by

separating the associations by its source, also helps to adjust the model when there

are changes due to refinements or corrections in the previous steps execution.

Micro-step 4i: Direct Associations

Direct associations (2nd column of Table 6) are the ones that derive from AEs

originated by the same use case. These associations are depicted from the

classification given in the method micro-step 2i. For example, {AE1.6.d} IBS

Configuration Decisions and {AE1.6.i} Configure pre-runtime IBS are directly

4.4 Process-level 4SRS as an Elicitation Method

111

associated since they are originated by the same use case, {U1.6} Instantiate IBS to

Remote Business Program.

Micro-step 4ii: Use Case Model Associations

Use Case Model Associations are the ones that can be inferred from the textual

descriptions of use cases, that is, when a use case description refers, implicitly or

explicitly to another use case, the associations inferred imply that the use cases are

connected. This micro-step is represented in the 3rd column of Table 6.

Table 6. Step 4 of the 4SRS method

{U1.9.}

{AE1.9.c2} {AE1.1.i}, {AE1.9.c1}, {AE1.9.i}. {AE3.3.i}.

{AE1.9.i} {AE1.9.c1}, {AE1.9.c2}. {AE1.7.i}, {AE2.9.i}, {AE3.3.i}.

4ii - UC Model Associations

Step 4 - architectural element association

4i - Direct Associations

As an example for these situations, the use case textual description of {U3.7.1.}

Publish in Platform Catalog in the use case model refers that “The SBS […] is available

for access to IBS Business Analyst (see use case {U2.2.} Choose SBS Specs, use case

{U2.3.1.} Define IBS Internal Structure and use case {U2.5.} Choose SBS

Implementation) and to the SBS Developer (see use case {U2.6.} Implement IBS)”.

Thus, the generated surviving AE – {AE3.7.1.i} Remote SBS Publishing Interface – is

associated with {AE2.1.c}, {AE2.3.1.c}, and {AE2.6.1.i}.

The ISOFIN Process-level Logical Architecture

The initial request for the ISOFIN project requirements resulted in mixed and

confusing sets of misaligned information. Even when a requirement found a

consensus in the consortium, the intended behavior or definition was not easily

understood by all the stakeholders. Our proposal of adopting a process-level

perspective was agreed on and, after being executed, resulted in a set of information

that the consortium sustainably used to evolve to the traditional (product-level)

development scenario. Elicited requirements in a process-level perspective describe

4 Yet Another 4SRS

112

the processes in a higher level of abstraction, making them understandable by

business stakeholders. At the same time, definitions and intended behavior of the

system, expressed in the architecture that results from the process-level 4SRS

method, describe the system to technological stakeholders.

The turning point for eliciting requirements was the usage of the 4SRS method in the

process-level perspective, which allowed the transformation of process-level

requirements into the logical diagram. Due to the diagram’s complexity, we only

present a subset in Figure 36. This diagram represents the logical architecture of the

process-level ISOFIN functionalities. The architecture is composed by the AEs that

survived after the execution of step 2. The packaging executed in step 3 allows the

identification of major processes. The associations identified in step 4 are

represented in the diagram by the connections between the AEs (for readability

purposes, the “direct associations” were represented in dashed lines, and the “use

case model associations” in straight lines).

Figure 36: Subset of the process-level logical architecture

As seen previously, the process-level architecture focuses on IBS and SBSs, acting as

services in the cloud environment and allowing interoperability between the

insurance domain business entities. In this context, there are two external business

4.4 Process-level 4SRS as an Elicitation Method

113

domain entities with access to the ISOFIN Platform: ISOFIN Customers and ISOFIN

Suppliers. An ISOFIN Customer is an entity whose domain of interactions resides in

the scope of consuming, for economic reasons, the functionalities exposed by IBSs.

An ISOFIN Supplier is a company that interacts with the ISOFIN SaaS Platform by

supplying the platform with functionalities (SBSs) that reside in their private clouds.

SBSs are made available in the ISOFIN Supplier private cloud by the use of generators

({AE3.6.i} Generate SBS Code) and are composed, in the public cloud where the

ISOFIN SaaS Platform resides ({AE2.6.1.i} Generate IBS Code) to implement an IBS.

Composition of basic SBSs into IBSs give origin to more powerful functionalities that

are exposed by the platform.

Due to the lack of consensus in the requirements elicitation in this “newfound”

paradigm of IT solutions (Cloud Computing), our approach changed the traditional

product-level perspective to the described process-level perspective. This new

perspective allows the proper elicitation of requirements in Cloud Computing

projects.

4.5 Conclusion

This chapter started by presenting the ISOFIN project as the context for the problem

we had to tackle. Following that contextualization, we introduced both perspectives

on the 4SRS method: the product- and process-level. We also detailed the extensions

made to the traditional application of the 4SRS method, for creating context for

requirements elicitation and later derivation of logical architectural diagrams from

use cases in a process-level perspective.

By using the proposed approach, we succeeded to define the requirements in such a

way that the requirements were understood by all the project stakeholders,

uncovering more information: as an example, we started with 39 use cases and

ended with 74 documented AEs (not counting associations). This means that we

added more details to the problem description and that all the involved project

4 Yet Another 4SRS

114

stakeholders understand the information. The process-level perspective allowed us to

overcome difficulties when adopting a product-level perspective.

On the other hand, the manual execution of the method is prone to errors and very

time consuming. In addition, by adopting first the process-level perspective instead of

the product-level perspective, time for delivering documentation to implementation

teams increased.

The ISOFIN project aims to deliver a set of functionalities that help forward

interoperability in the Insurance application domain. The obtained process-level

logical architecture is mainly devoted to be used by IT-professionals and not by

business stakeholders. Based on the main constructors presented in the architecture

Figure 36, the diagram represented in Figure 29 and in Figure 30 emerged with the

aim to be presented to any technical role engaged in the ISOFIN project and be used

to explain in a simple way that in the bottom layer there are SBSs that connect to IBSs

in the ISOFIN Platform layer and that the later are connected to a ISOFIN Customer

role.

Chapter 5

Process- and Product-level
Logical Architectures

Chapter Contents

5 PROCESS- AND PRODUCT-LEVEL LOGICAL ARCHITECTURES .. 117

5.1 INTRODUCTION ... 117
5.2 A MACRO-PROCESS APPROACH TO SOFTWARE DESIGN .. 121
5.3 CREATING CONTEXT FOR PRODUCT IMPLEMENTATION .. 126
5.4 THE V+V MODEL IN THE ISOFIN PROJECT... 135
5.5 TRANSITION RULES IN OTHER’S WORK .. 142
5.6 CONCLUSIONS .. 146

5

Process- and Product-level

Logical Architectures

The hardest single part of building a software system is deciding precisely what to build.

Frederick Brooks

This chapter presents an approach that supports the creation of a service-oriented

logical architecture, beginning in a process-level perspective and evolving to a product-

level perspective through successive models derivation with the purpose of creating

context for the implementation teams. The requirements are expressed through

models, namely logical architectural models and stereotyped sequence diagrams. We

define a V+V process approach, based on V-Models, that defines the flow of model

derivation in both a process-level and in a product-level perspective.

5.1 Introduction

A typical business software development project is coordinated so that the resulting

product properly aligns with the business model intended by the leading stakeholders.

The business model normally allows for eliciting the requirements by providing the

5 Process- and Product-level Logical Architectures

118

product’s required needs. In situations where organizations focused on software

development are not capable of properly eliciting requirements for the software

product, due to insufficient stakeholder inputs or some uncertainty in defining a

proper business model, a process-level requirements elicitation is an alternative

approach.

The process-level requirements assure that organization’s business needs are fulfilled.

However, it is necessary to assure that product-level (IT-related) requirements are

properly aligned with process-level requirements, and hence, are aligned with the

organization’s business requirements.

Using a process-level perspective, in order to create an information system logical

architecture which is used for eliciting service-based software (product-level)

requirements, is a possible approach. Services in Cloud Computing environments have

earned much attention because, amongst other aspects, they enable interoperability

and rapid development of large scale distributed applications in various application

domains (Chen & Tsai, 2010). Composing such services in a more powerful service

brings more functionality to the system (Yipeng, Hailong, Xudong, Jin, & Shangda,

2009). The strategy of composing services results in a straightforward development

process for cloud applications.

The first effort should be to specify the requirements of the overall system in the

physical world; then to determine necessary assumptions about components of that

physical world; and only then to derive a specification of the computational part of the

control system (Maibaum, 2006). There are similar approaches that tackle the problem

of aligning domain specific needs with software solutions. For instance, goal-oriented

approaches are a way of doing so, but they don’t encompass methods for deriving a

logical representation of the intended system processes with the purpose of creating

context for eliciting product-level requirements.

Our main problem is assuring that product-level (IT-related) requirements are perfectly

aligned with process-level requirements, and hence, are aligned with the

organization’s business requirements. The process-level requirements express the

need for fulfilling the organization’s business needs, and we detail how they are

5.1 Introduction

119

characterized within our approach further in section 2. These requirements may be

supported by analysis models, that are implementation agnostic (Yue, Briand, &

Labiche, 2011). According to (Yue, et al., 2011), the existing approaches for

transforming requirements into an analysis model (i) don’t require acceptable user

effort to document requirements, (ii) are efficient enough (e.g., one or two

transformation steps), (iii) are able to (semi-)automatically generate a complete (i.e.,

static and dynamic aspects) consistent analysis model, which is expected to model

both the structure and behavior of the system at a logical level of abstraction.

One of the possible representations of an information system is its logical architecture

(Castro, et al., 2002), resulting from a process of transforming business-level and

technological-level decisions and requirements into a representation (model). This

representation is fundamental and mandatory to analyze and validate a system but is

not enough for achieving a full transformation of the requirements into a model able

to implement stakeholders’ decisions. It is necessary to promote an alignment

between the logical architecture and other supporting models, like organizational

configurations, products, processes, or behaviors.

A logical architecture can be considered a view of a system composed of a set of

problem-specific abstractions supporting functional requirements (Sofia Azevedo, et

al., 2009). A process architecture can be defined as an arrangement of the activities

and their interfaces in a process (Browning & Eppinger, 2002), that takes into account

some non-functional requirements, such as performance and availability (Kruchten,

1995), and that can be represented with components, connectors,

systems/configurations of components and connectors, as well as with architectural

elements’ static and temporal features (Kazman, 1996). The ANSI/IEEE 1471-2000

Recommended Practice for Architectural Description of Software Intensive Systems

defines architecture as the “fundamental organization of a system embodied in its

components, their relationships to each other, and to the environment, and the

principles guiding its design and evolution” (IEEE Computer Society, 2000).

In order to properly support technological requirements that comply with the

organization’s business requirements, we present in this chapter an approach

5 Process- and Product-level Logical Architectures

120

composed by two V-Models (Haskins & Forsberg, 2011), the V+V process. The

requirements are expressed through logical architectural models and stereotyped

sequence diagrams (R. Machado, et al., 2007) in both a process- and a product-level

perspective. The first execution of the V-Model regards eliciting requirements from a

high-level business level to create context for product design (CPD). The second

execution of the V-Model regards a product-level perspective and outputs a context

for product implementation (CPI). This approach also assures a proper compliance

between the process- and the product-level requirements through a set of transition

steps between the two perspectives.

We present an approach framed within a macro-process for information systems

development, as presented in Figure 37. The approach encompasses domain analysis,

requirements elicitation, modeling and design of logical architectures. Regarding the

design, our approach deals, in particular, with the architectural and mechanistic design

of the logical architecture. By mechanistic we mean that we regard not only the

general structure but also non-functional requirements, and behavioral mechanisms

that are imbued in the representation by means of design decisions that bridge the gap

to implementation issues. Each V-Model is self-contained regarding inner-validation

for macro-process evolution.

The process-level V-Model acts in the analysis phase, creating the CPD. The vertex is

assured by the process-level 4SRS method execution (Nuno Ferreira, et al., 2012b). The

process-level 4SRS method execution results in the creation of a validated architectural

model which allows creating context for the product-level requirements elicitation and

in the uncovering of hidden requirements for the intended product design. The

product-level V-Model (the second V-Model) enables the transition from analysis to

design through the execution of the product-level 4SRS method (R. J. Machado, et al.,

2005). The resulting architecture is then considered a design artifact that contributes

for the CPI as information required by implementation teams.

5.1 Introduction

121

Figure 37: V+V process framed in the development macro-process

This chapter is structured as follows: we begin by presenting the macro-process based

on both the process- and product-level V-Models; we follow by describing the

transition steps between both perspectives; In the next section we present the

applicability of our approach in the context of the ISOFIN project and make and

assessment of the transition steps between process- and product-level perspectives;

we also include a comparison of our approach with other related works to promote

discussion on the subject.

5.2 A Macro-process Approach to Software Design

The development process of information systems can be regarded (in a simple way) as

a cascaded lifecycle (i.e., a development process only initiates when the previous has

ended), if we consider typical and simplified phases: analysis, design and

implementation. Our approach encompasses two V-shaped process models hereafter

referred as the V+V process.

The first V-Model (at process-level) is composed by Organizational Configurations

(OC), A-type and B-type sequence diagrams, and Use Case models (UCs) that are used

to derive (and, in the case of B-type sequence diagrams, validate) a process-level

logical architecture (i.e., the information system logical architecture). We frame the

process-level V-Model (the first V-Model of Figure 37) in the analysis phase, creating

Process-Level 4SRS
4SRS

Analysis Design

Implementation
CPD CPI

Product-Level 4SRS
4SRS

5 Process- and Product-level Logical Architectures

122

the context for product design (CPD). In its vertex, the process-level 4SRS method

execution assures the transition from the problem to the solution domain by

transforming process-level use cases into process-level logical architectural elements,

and results in the creation of a validated architectural model which allows creating

context for the product-level requirements elicitation and in the uncovering of hidden

requirements for the intended product design.

One of the outputs of any of our V-Models is the logical architecture diagram for the

intended system. This diagram is considered a design artifact but the design itself is

not restricted to that artifact. We have to execute a V+V process to gather enough

information in the form of models (logical architecture diagrams, B-type sequence

diagrams and others) to deliver to the implementation teams the correct specifications

for product realization.

Regarding the first V-Model, we refer that it is executed at a process-level perspective.

How the term process is applied in this approach can lead to inappropriate

interpretations. Since the term process has different meanings depending on the

context, in our process-level approach we acknowledge that: (1) real-world activities of

a business software production process are the context for the problem under

analysis; (2) in relation to a software model context (Conradi & Jaccheri, 1999), a

software process is composed of a set of activities related to software development,

maintenance, project management and quality assurance. For scope definition of our

work, and according to the previously exposed acknowledgments, we characterize our

process-level perspective by: (1) being related to real-world activities (including

business); (2) when related to software, those activities encompass the typical

software development lifecycle. Our process-level approach is characterized by using

refinement (as one kind of functional decomposition) and integration of system

models. Activities and their interface in a process can be structured or arranged in a

process architecture (Browning & Eppinger, 2002).

Our V-Model approach (inspired in the “Vee” process model (Haskins & Forsberg,

2011)) suggests a roadmap for product design based on business needs elicited in an

early analysis phase. The approach requires the identification of business needs and

5.2 A Macro-process Approach to Software Design

123

then, by successive artifact derivation, it is possible to transit from a business-level

perspective to an IT-level perspective and at the same time, aligns the requirements

with the derived IT artifacts. Additionally, inside the analysis phase, this approach

assures the transition from the business needs to the requirements elicitation.

In this section, we present our approach, based on successive and specific artifacts

generation. We use Organizational Configurations (OC) (Evan, 1965), A-type and B-type

sequence diagrams (R. Machado, et al., 2007), (business) Use Case models (UCs) and a

process-level logical architecture diagram. The generated artifacts and the alignment

between the business needs and the context for product design can be inscribed into

the first V-Model (at process-level).

The V-Model representation provides a balanced process representation and,

simultaneously, ensures that each step is verified before moving into the next. The

artifacts are generated based on the rationale and in the information existing in

previously defined artifacts, i.e., A-type diagrams are based on OCs, (business) use case

model is based on A-type sequence diagrams, the logical architecture is based on the

(business) use case model, and B-type sequence diagrams comply with the logical

architecture. The V-Model also assures validation of artifacts based on previously

modeled artifacts (e.g., besides the logical architecture, B-type sequence diagrams are

validated by A-type sequence diagrams). The aim of this section if not to detail the

inner execution of the V-Model (that was done in chapter 3 of this thesis), rather it is

to explain, justify and exemplify the rules that enable the transition from the

process-level V-Model to the product-level V-Model within the macro-process of

information systems development.

The presented approach encompasses two V-Models, hereafter referred as the V+V

process and depicted in Figure 38. The first V deals with the process-level perspective

and its vertex is supported by the process-level 4SRS method detailed in (Nuno

Ferreira, et al., 2012b). The purpose of this first execution of the V-Model regards

eliciting requirements from a high-level business level to create context for product

design (CPD), that can be considered a business elicitation method (like the Business

Modeling discipline of RUP).

5 Process- and Product-level Logical Architectures

124

Figure 38: The V+V process approach

The second execution of the V-Model is done at a product-level perspective and its

vertex is supported by the product-level 4SRS method detailed in (R. J. Machado, et al.,

2005). The product-level V-Model gathers information from the CPD in order to create

a new model referred as Mashed UCs. The creation of this model is detailed in the next

section of this chapter as transition steps and rules. Using the information present in

the Mashed UCs model, we create A-Type Sequence Diagrams, detailed in (R.

Machado, et al., 2007). These diagrams are input for the creation of (software) Use

Case Models that have associated textual descriptions of the requirements for the

intended system. Using the 4SRS method in the vertex, we derive those requirements

into a Logical Architecture model. Using a process identical to the one used in the

process-level V-Model, we create B-type sequence diagrams and assess the Logical

Architecture Model.

Both V-Models produce Logical Architecture Models: the first V produces a process-

level logical architecture (that can be considered the information system logical

architecture); the second V produces a product-level logical architecture (that can be

considered the business software logical architecture). Also, for each of the V-Models,

in the descending side of the V (left side), models created in succession represent the

refinement of requirements and the creation of system specifications. In the ascending

side (right side of the V), models represent the integration of the discovered logical

parts and their involvement in a cross-side oriented validating effort contributing for

the inner-validation for macro-process evolution.

CPD CPI

A-type Sequence

Use Cases

4SRS

Logical Architecture

B-type Sequence

IssuesMashed UCs

OCs

A-type Sequence

Use Cases

4SRS

Logical Architecture

B-type Sequence

Issues

Process-Level Perspective Product-Level Perspective

Refinement
and

Specification

Integration
and

Validation

Refinement
and

Specification

Integration
and

Validation

5.2 A Macro-process Approach to Software Design

125

Figure 39: Derivation of service-oriented logical architectures by transiting from information system logical architectures.

As depicted in Figure 39, the result of the first V-Model (process-level) execution is the

information system logical architecture. The architectural elements that compose this

architecture are derived (by performing transition steps) into product-level use cases

(Mashed UCs model). The result of the second V-Model (product-level) execution is the

service-oriented software logical architecture.

In both V-Models execution, the assessments that result from comparing A- and B-type

sequence diagrams produce Issues documents. These documents are one of the

outputs of the previously presented ARID method used to assess each V-Model

execution. ARID is able to conduct reviews regarding architectural decisions, namely

on the quality attributes requirements and their alignment and satisfaction degree of

specific quality goals. At the same time is able of performing evaluations on parts of

the global architecture. Those features made ARID our method of choice regarding the

evaluation of the in-progress logical architecture and in the assistance to determine

the need of further refinements, improvements, or revisions before assuming that the

architecture is ready to be delivered to the teams responsible for implementation. This

delivery is called context for product implementation (CPI).

First V-Model

Process-level Use Cases Diagrams

Process-level 4SRS

U2.1 AE2.1i

U2.2

AE2.1d

AE2.2d

AE2.2c

Information System
Logical Architecture

Second V-Model

Product-level Use Cases Diagrams

Product-level 4SRS

U2.1 AE2.1i

U2.2

AE2.1d

AE2.2d

AE2.2c

Service-Oriented Software
Logical Architecture

Transition Steps:

TS1 – Architecture Partitioning
(filtering & collapsing techniques)
TS2 – Use Case Transformation
TS3 – Original Actors Inclusion
TS4 – Redundancy Elimination
TS5 – Gap Filling

5 Process- and Product-level Logical Architectures

126

Figure 40: Assessment of the V+V execution using ARID

In Figure 40, we present the simplified interactions between the ARID-related models

in the V+V process. In this figure, we can see the macro-process associated with both

V-Models, the transition from one to the other (later detailed) and the ARID models

that support the assessment of the V+V execution.

Our application of common architectural patterns include business, analysis,

architectural and design patterns as defined in (S. Azevedo, Machado, Bragança, &

Ribeiro, 2010). By applying them as early as possible in the development (in early

analysis and design), it is possible to incorporate business requirements into the logical

architectural model and at the same time assure that the resulting model is aligned

with the organization needs and also complies with the established non-functional

requirements. The design patterns are used in particular when there is a need to detail

or refine parts of the logical architecture.

In the second V, after being positively assessed by the ARID method, the business

software logical architecture model is considered a final design artifact that must be

divided into products (applications) for latter implemented by the software teams.

5.3 Creating Context for Product Implementation

As stated before, a process-level V-Model can be executed for business requirements

elicitation purposes, followed by a product-level V-Model for defining the software

functional requirements. The V+V process is useful for both stakeholders,

Project Charter

Materials

Issues

CPD
OCs

A-type Sequence

Use Cases Logical Architecture

B-type Sequence

4SRS

Materials

Issues

CPI

A-type Sequence

Use Cases Logical Architecture

B-type Sequence

4SRS

Mashed UCs

Transition Rules

5.3 Creating Context for Product Implementation

127

organizations and technicians, but it is necessary to assure that they properly reflect

the same system.

This section presents a set of transition steps whose execution is required to create the

Mashed UC model referred in Figure 38 and in Figure 40. The purpose of these

transition steps is to assure an aligned transition between the process- and product-

level perspectives in the V+V process.

To allow the recursive execution of the 4SRS method (Sofia Azevedo, et al., 2009; R. J.

Machado, Fernandes, Monteiro, & Rodrigues, 2006b), the transition from the first V-

Model to the second V-Model must be performed by a set of steps. The output of the

first V-Model must be used as input for the second V-Model; i.e., we need to transform

the information system logical architecture into product-level use case models. The

transition steps to guide this mapping must be able to support a business to

technology changing. By defining these transition steps, we assure that product-level

(software) use cases (UCpt) are aligned with the architectural elements (AEpc’s) from

the process-level logical architecture diagram (AEpc); i.e., software use case diagrams

are reflecting the needs of the information system logical architecture. The transition

steps (TS), represented in Figure 41, are structured as follows:

 TS1 – Architecture Partitioning: By applying collapsing and filtering techniques

as detailed in (R. J. Machado, et al., 2006a), it is possible to identify major

groups of elements in the information system logical architecture that must be

computationally supported by software. In this transition step, the AEpc’s

under analysis are classified by their computation execution context with the

purpose of defining software boundaries to be transformed into UCpt’s. The

final software boundary is represented after the execution of filtering and

collapsing techniques in the AEpc’s. Each of the identified major groups of

elements is subject to a separate execution in the following transition steps.

 TS2 – Use Case Transformation: This transition step is applied to each partition

defined in the previous transition step (i.e., to each major groups of elements)

with the purpose of transforming elements of the information system logical

architecture (AEpc’s) into software use cases and actors. In this transition step,

5 Process- and Product-level Logical Architectures

128

AEpc’s are transformed into software use cases and actors that represent the

system under analysis. This is the most critical transition step of the transition

process and, as such, we have devised a set of transition patterns that must be

applied as rules that are later described in this section.

 TS3 – Original Actors Inclusion: For each defined partition, the original actors

that were related to the (business) use cases from which the architectural

elements of the process-level perspective are derived (in the first V execution)

must be included in the representation. The purpose of this transition step is to

introduce into the product-level perspective the necessary information

regarding the skills and stakeholders of the originally defined processes. The

traceability between the process-level (business) use cases and the AEpc’s is

assured by the process-level 4SRS execution (Nuno Ferreira, et al., 2012b).

 TS4 – Redundancy Elimination: In the previous transition steps there is a

possibility of including redundancy in the model in the form of actors and use

cases generated by the transition rules. For each partition defined in the first

transition step, it is important to remove such redundancy by explicitly

removing the unnecessary actors and use cases from the model.

 TS5 – Gap Filling: This final transition step intents to create, in the form of use

cases to be added to the model, the necessary information of any requirement

that is intended to be part of the design and that is not yet present. Typical

missing use cases are connections between existing use cases that were

automatically created by the transition rules.

During the execution of these transition steps, transition use cases (UCtr) bridge the

AEpc’s and serve as basis to elicit UCpt’s. UCtr’s also provide traceability between

process- and product-level perspectives using tags and annotations associated with

each representation.

5.3 Creating Context for Product Implementation

129

Figure 41: Process- to product-level transition

The rules to support the execution of the transition step 2 (TS2) are applied in the form

of transition rules and must be applied in accordance to the stereotype of the

envisaged architectural element. There are three stereotyped architectural elements:

 d-type, which refer to generic decision repositories (data), representing

decisions not supported computationally by the system under design;

 c-type, which encompass all the processes focusing on decision making that

must be supported computationally by the system;

 i-type, which refer to process’ interfaces with users, software or other

processes.

The full descriptions and specifications of the three stereotypes are available in (Nuno

Ferreira, et al., 2012b).

For the sake of understandability we present in Figure 42 an excerpt of the UML

extension that supports the creation of AEpc’s, UCtr’s and partitions. We consider that

a partition is a container of AEpc’s or UCtr’s and acts as a border delimiter for the

combinations of possible systems candidates to be analyzed. After delimiting all the

partitions, it is necessary to focus on a particular one (called inbound partition) and

P1 P2

P1

Transition
Rules

TS1 TS2

TS3TS4TS5

P1 is the
partition

under analysis

5 Process- and Product-level Logical Architectures

130

execute the required transformations considering all the remaining neighbor partitions

(outbound partitions).

The identification of each partition is firstly made using the information that results

from the packaging and aggregation efforts of the previous 4SRS execution (step 3 of

the 4SRS method execution as described in (Ferreira, Santos, Machado, & Gasevic,

2012a)). Nevertheless, this information is not enough to properly identify the

partitions. Information gathered in OC’s and on the process-level B-type sequence

diagrams must also be accounted. A partition is created by identifying all the relevant

architectural elements that belong to all B-type sequence diagrams that correspond to

a given organizational configuration scenario. By traversing the architectural elements

that comply with the scenario definition (for each B-type sequence diagram and

aligned with the packages and aggregations presented in the information system

logical architecture), it is possible to properly identify the partitions that support the

interactions depicted in the OC’s.

A proper way of defining the transformations between models is by means of using

OMG’s QVT (OMG, 2011a). QVT is a set of languages (QVT-Operational, QVT-

Relations, and QVT-Core) that enables models transformations. QVT-Operational

enables unidirectional transformations of a given model into another. QVT-

Relations allow bi-directional transformations. QVT-Core can be considered a subset

of QVT-Relations. All the QVT set of languages are associated with model-driven

approaches. These model driven approaches are usually associated with design and

implementation models and lack support to requirements and analysis models. The

requirements specification (in any perspective) is a crucial task in any software

development process. As such, models that support requirements specification

should be integrated into model-driven methods.

5.3 Creating Context for Product Implementation

131

Figure 42: Excerpt of AEpc and UCtr Extension

In our proposed approach we have chosen QVT as a mean to transform AEpc’s

models into UCtr’s models, or being more specific, transforming information system

logical architectural models into Mashed UC models. This relates to integrating

models that support requirements specifications into a model-driven approach.

Associated with the transition rules, we present a subset of the QVT-Operational (-

like) code that supports the transformation intended by a given rule. The defined

transition rules, from the logical architectural diagram to the Mashed UC diagram

are as follows:

 TR1: an inbound c-type or i-type AEpc is transformed into an UCtr of the same

type (see Figure 43). By inbound we mean that the element is inside the

partition under analysis;

Figure 43: TR1 - transition rule 1

The QVT-like specification that supported the transformation implementation for TR1

is as follows:

if (AEpc.Partition=inbound) and (AEpc.4SRSstereotype=cType or

AEpc.4SRSstereotype=iType) then {

UCtr.name:=Aepc.name;

UCtr

{c, i}
AEpc

{c, i}

5 Process- and Product-level Logical Architectures

132

UCtr.4SRSstereotype:=AEpc.4SRSstereotype}

endif;

 TR2: an inbound d-type AEpc is transformed into an UCtr and an associated

actor (see Figure 44). This is due to the fact that d-type AEpc’s corresponds to

decisions not computationally supported by the system under design and, as

such, it requires an actor to activate the depicted process.

Figure 44: TR2 - transition rule 2

TR2 is supported by the following:

if (AEpc.Partition=inbound) AND (AEpc.4SRSstereotype=dType) then {

UCtr.name:=AEpc.name;

UCtr.4SRSstereotype:=AEpc.4SRSstereotype;

Actor.name:=self.name;

Actor.association:=UCtr}

endif;

Rules TR1 and TR2 are the most basic ones and the patterns they express are the most

used in the transition step 2.

 TR3: an inbound AEpc, with a given name x, which also belongs to an outbound

partition, is transformed into an UCtr of name x, and an associated actor, of

name y, being the responsible for representing the outbound actions

associated with UCtrx (see Figure 45).

Figure 45: TR3 - transition rule 3

The specification for TR3 is:

if (AEpc.Partition=multiple) and (AEpc.4SRSstereotype=cType) then

{

UCtr

{d}
AEpc

{d}

AEpcxP1 P2 UCtrx

Actor try

5.3 Creating Context for Product Implementation

133

UCtr.name:=AEpc.name;

UCtr.4SRSstereotype:=AEpc.4SRSstereotype;

Actor.name:=self.name;

Actor.association:=UCtr }

endif;

The connections between the use cases and actors produced by the previous rules

must be consistent with the existing associations between the AEpc’s. The focus of this

analysis are UCtr’s and are addressed by the following two transition rules.

 TR4: an inbound d-type UCtr of name x with connections to an (any type) UCtr

of name y and to an actor z, gives place to two UCtr’s, x and y, maintaining the

original types (see Figure 46). Both are connected to the actor z. This means

that all existing connections on the original d-type AEpc that were maintained

during execution of TR2 or TR3 are transferred to the created actor.

Figure 46: TR4 - transition rule 4

Regarding TR4, the necessary specification is:

if (UCtr.Partition=inbound) and (UCtr.4SRSstereotype=dType) and

(Actor.associations().FilterByPartition(UCtr).Count > 1) then {

Actor.Association:=

Actor.associations().FilterByPartition(UCtr _

).GetUCtr()) }

endif;

 TR5: an inbound UCtr of name x with a connection to an outbound AEpc of

name y (note that this is still an AEpc, since it was not transformed into any

other concept by the previous transition rules) gives place to both an UCtr

named x and to an actor named y (see Figure 47). AEpc’s that were not

previously transformed are now transformed by the application of this TR5; this

means that all AEpc’s which exist outside the partition under analysis having

connections with inbound UCtr’s will be transformed into actors. These actors

P1

UCtrx

{d}

Actor trzUCtry

UCtrx

{d}
UCtryActor trz

5 Process- and Product-level Logical Architectures

134

will support the representation of required external inputs to the inbounds

UCtr’s created during application of TR1, TR2, or TR3.

Figure 47: TR5 - transition rule 5

For TR5, the supporting specification is:

if (AEpc.Partition=outbound) then {

Actor.name:=Aepc.name

Actor.Association:= Actor.associations(). _

FilterByPartition(UCtr).GetUCtr()) }

endif;

A special application of TR5 can be found in Figure 48 where we can see an UCtr with a

connection to an outbound AEpc and another connection to an actor. In this case, TR5

is applied and the resulting UCtr is also connected to the original actor.

Figure 48: TR5.1 - transition rule 5.1

The application of these transition steps and rules to all the partitions of a information

system logical architecture gives origin to a set of Mashed UC models. In the next

section, we present a case study where an information system logical architecture is

transformed into a product-level Mashed UC model by executing the transition steps.

In the remaining of the transition steps, the purpose is to promote completeness and

reliability in the model. The model is complete after adding the associations that

initially connected actors (the ones who triggers the AEpc’s) and the AEpc’s, and then

by mapping those associations to the UCtr’s. The model is reliable since the

enforcement of the rules eliminates redundancy and assures that there are no gaps in

the UCtr’s associations and related actors. Only after the execution of all the transition

steps we consider the resulting model as containing product-level use cases (UCpt’s).

Actor try

P1 AEpcy P2UCtrx UCtrx

UCtrx Actor try

Actor trx

Actor trx P1
AEpcy P2UCtrx

5.4 The V+V-Model in the ISOFIN Project

135

5.4 The V+V Model in the ISOFIN Project

The applicability of the proposed approach was assessed with a real project that is

analyzed in this thesis as a case study: the ISOFIN project (ISOFIN Project Consortium,

2010). This project aimed to deliver a set of coordinating services in a centralized

infrastructure, enacting the coordination of independent services relying on separate

infrastructures. The resulting ISOFIN platform, allows for the semantic and application

interoperability between enrolled financial institutions (Banks, Insurance Companies

and others).

From the case study, we first present the process-level logical architecture, that

resulted from the execution of the 4SRS method at a process-level perspective (Nuno

Ferreira, et al., 2012b). In Figure 49, we depict the execution of TS1, i.e., the

partitioning of the process-level logical architecture, which resulted in two partitions:

(i) the ISOFIN platform execution functionalities (in the area marked as P1);

(ii) the ISOFIN supplier execution functionalities (in the area marked as P2).

The identification of the partitions will enable the application of the transition steps to

allow the application of the second V-Model to follow the macro-process execution

into the product (software) implementation.

5 Process- and Product-level Logical Architectures

136

Figure 49: Partitioning of the process-level logical architecture (TS1)

The identification of each partition is firstly made using the information that results

from the packaging and aggregation efforts of the previous 4SRS execution (step 3 of

the 4SRS method execution as described in (Nuno Ferreira, et al., 2012b)).

Nevertheless, this information is not enough to properly identify the partitions.

Information gathered in organizational configurations and on the process-level B-type

sequence diagrams must also be accounted. A partition is then created by identifying

all the relevant architectural elements that belong to all B-type sequence diagrams

that correspond to a given organizational configuration scenario. By traversing the

architectural elements that comply with the scenario definition (aligned with the

packages and aggregations presented in the logical architecture), it is possible to

properly identify the partitions.

Figure 50 shows the filtered and collapsed diagram that resulted from the P2 partition,

which (in the case study), is the partition under analysis. P2 includes the architectural

elements that belong to both partitions and that must be considered when applying

the transition rules. After being filtered and collapsed, the partitioned logical

architecture is composed not only by the architectural elements that belong to the

partition under analysis, but also by some additional architectural element belonging

to any other partition having associations with architectural elements belonging to the

<<interface>>
{AE3.7.2.i} Local SBS
Publishing Interface

{P1.3} SBS
Generator

<<interface>>
{AE3.6.i} Generate SBS

Code

<<control>>
{AE2.1.c} Access Remote

Catalogs

<<control>>
{AE2.3.1.c} IBS Internal
Structure Specification

<<control>>
{AE2.11.c} Global

Publishing Integration
Decisions

<<interface>>
{AE2.11.i} Execute

Publishing Info
Integration

<<data>>
{AE3.7.1.c} Remote SBS
Publishing Information

<<interface>>
{AE3.7.1.i} Remote SBS

Publishing Interface

{P2.2} IBS Analysis
Decisions

{P2.3} IBS Generator

<<interface>>
{AE2.6.1.i} Generate IBS

Code

<<interface>>
{AE2.6.2.i} IBS

Deployment Process

<<control>>
{AE2.7.c} IBS Publication

Decisions

<<interface>>
{AE2.7.i} Execute IBS
Publication in Catalog

<<data>>
{AE2.6.2.d} IBS

Deployment Decisions

P1

P2

5.4 The V+V-Model in the ISOFIN Project

137

partition under analysis (e.g., {AE3.6.9.i} Generate SBS Code belongs to P1, but

possesses an association with {AE3.7.1.i} Remote SBS Publishing Interface that belongs

to P1 and P2 partitions). The keeping of these outbound AEpc’s assures that outbound

interfaces information is preserved.

Figure 50: Filtered and collapsed architectural elements (TS1)

In. Figure 51 we depict an example of a subset of an information system logical

architecture composed by architectural elements that represent processes, already

partitioned (for the sake of understandability, AEpc’s are colored as presented in the

transition rules, in this case, for P2 and the ones that are common to both, the blank

AEpc is an outbound).

<<interface>>
{AE3.6.i} Generate SBS

Code

<<control>>
{AE2.1.c} Access Remote

Catalogs

<<control>>
{AE2.3.1.c} IBS Internal
Structure Specification

<<control>>
{AE2.11.c} Global

Publishing Integration
Decisions

<<interface>>
{AE2.11.i} Execute

Publishing Info
Integration

<<data>>
{AE3.7.1.c} Remote SBS
Publishing Information

<<interface>>
{AE3.7.1.i} Remote SBS

Publishing Interface

<<interface>>
{AE2.6.1.i} Generate IBS

Code

<<interface>>
{AE2.6.2.i} IBS

Deployment Process

<<control>>
{AE2.7.c} IBS Publication

Decisions

<<interface>>
{AE2.7.i} Execute IBS
Publication in Catalog

<<data>>
{AE2.6.2.d} IBS

Deployment Decisions

<<interface>>
{AE3.7.2.i} Local SBS
Publishing Interface

5 Process- and Product-level Logical Architectures

138

Table 7: Transition Steps Overview

Transition Step Description Perspective

TS1
the AEpc’s under analysis are classified by their computation
execution context

process-level

TS2
AEpc’s are transformed into software use cases and actors
that represent the system under analysis through a set of
transition patterns that must be applied as rules

product-level

TS3

the original actors that were related to the use cases from
which the architectural elements of the process-level
perspective are derived (in the first V execution) must be
included in the representation

product-level

TS4 the model is analyzed for redundancies product-level

TS5
the necessary information of any requirement that is intended
to be part of the design and that is not yet present is added, in
the form of use cases

product-level

In Table 7 it is possible to realize that the transition process starts in the process-level

perspective with AEpc’s. After TS1 the transition is still dealing with AEpc’s as input;

the execution of TS2 results in the perspective transition, since UCtr’s relate to

product-level; in the remaining transition steps, the purpose is to promote

completeness and reliability in the model. The model is complete after adding the

associations that initially connected actors (the ones who triggers the AEpc’s) and the

AEpc’s, and then by mapping those associations to the UCtr’s. The model is reliable

since the enforcement of the rules eliminates redundancy and assures that there are

no gaps in the UCtr’s associations and related actors. Only after the execution of all the

transition steps we consider the resulting model as containing product-level use cases

(UCpt’s).

5.4 The V+V-Model in the ISOFIN Project

139

Figure 51: Information system logical architecture example

In Figure 52, we depict the final mashed use case model (the first product-level artifact

in the second V), resulting from the execution of the transition rules 2 to 5. In this work

we only show the result of the execution of these four transition steps altogether. The

complete description can be found in the ISOFIN Technical Deliveries (ISOFIN Project

Consortium, 2010). The resulting mashed use cases are the result of the application of

the transition rules in TS2. It is possible to objectively recognize the effect of the

application of some transition rules previously described. TR1 was the most applied

transition rule and one example is the transformation of the AEpc named {AE2.1.c}

Access Remote Catalogs into one UCtr named {U2.1.c} Access Remote Catalogs. One

example of the application of TR2 is the transformation of the AEpc named {AE2.6.2.d}

IBS Deployment Decisions into the UCtr named {U2.6.2.d} Define IBS Deployment and

the actor named IBS Developer. TR3 was applied, for instance, in the transformation of

the AEpc named {AE3.7.1.c} Define SBS Information into the UCtr named {U3.7.1.c}

Define SBS Information and the actor named SBS Publisher. Finally, we can recognize

the application of TR5.1 in the transformation of the AEpc named {AE3.6.9.i} Generate

SBS Code into the actor named SBS Developer.

<<interface>>
{AE3.6.i} Generate SBS

Code

<<control>>
{AE2.1.c} Access Remote

Catalogs

<<control>>
{AE2.3.1.c} IBS Internal
Structure Specification

<<control>>
{AE2.11.c} Global

Publishing Integration
Decisions

<<interface>>
{AE2.11.i} Execute

Publishing Info
Integration

<<data>>
{AE3.7.1.c} Remote SBS
Publishing Information

<<interface>>
{AE3.7.1.i} Remote SBS

Publishing Interface

<<interface>>
{AE2.6.1.i} Generate IBS

Code

<<interface>>
{AE2.6.2.i} IBS

Deployment Process

<<control>>
{AE2.7.c} IBS Publication

Decisions

<<interface>>
{AE2.7.i} Execute IBS
Publication in Catalog

<<data>>
{AE2.6.2.d} IBS

Deployment Decisions

5 Process- and Product-level Logical Architectures

140

Figure 52: Mashed UC model resulting from the transition from process- to product-level

Table 8: Executed transformations to the model

SBS Publisher

{U3.7.1.c} Define
SBS Information

{U3.7.1.i} Publish
SBS Information

{U2.7.c} Define IBS
Information

{U2.7.i} Publish IBS
Information

{U2.6.1.i}
Generate IBS Code

{U2.6.2.d} Define
IBS Deployment

{U2.6.2.i} Deploy
IBS

{U2.11.c} Define
Global Publishing

Integration

{U2.11.i} Integrate
Publishing

Information

{U2.3.1.c} Define
IBS Internal

Structure

{U2.1.c} Access
Remote Catalogs

SBS Developer

IBS Business Analyst

IBS Developer

Process-level (transformation source) TR Product-level (transformation target)

AEpc {AE2.1.c} Access Remote Catalogs TR1 UCtr {U2.1.c} Access Remote Catalogs

AEpc {AE2.3.1.c} IBS Internal Structure

Specification
TR1

UCtr {U2.3.1.c} Define IBS Internal Structure

AEpc {AE2.6.1.i} Generate IBS Code TR1 UCtr {U2.6.1.i} Generate IBS Code

AEpc {AE2.6.2.d} IBS Deployment Decisions
TR2

UCtr {U2.6.2.d} Define IBS Deployment; Actor IBS

Developer

AEpc {AE2.6.2.i} IBS Deployment Process TR1 UCtr {U2.6.2.i} Deploy IBS

AEpc {AE2.7.i} Execute IBS Publication in

Catalog
TR1

UCtr {U2.7.i} Publish IBS Information

AEpc {AE2.7.c} IBS Publication Decisions TR1 UCtr {U2.7.c} Define IBS Information

AEpc {AE2.11.i} Execute Publishing Info

Integration
TR1

UCtr {U2.11.i} Integrate Publishing Information

AEpc {AE2.11.c} Global Publishing Integration

Decisions
TR1

UCtr {U2.11.c} Define Global Publishing Information

AEpc {AE3.6.i} Generate SBS Code TR5.1 Actor SBS Developer

AEpc {AE3.7.1.i} Remote SBS Publishing

Interface
TR3

UCtr {U3.7.1.i} Publish SBS Information; Actor SBS

Developer

AEpc {AE3.7.1.c} Remote SBS Publishing

Information
TR3

UCtr {U3.7.1.c} Define SBS Information; Actor SBS

Publisher

5.4 The V+V-Model in the ISOFIN Project

141

All the other actors result from the execution of TS3. We must be referred, for

instance, that the actor SBS Developer results from the execution of TS4, since the

original actor and the actor resulting from an application of TR2 and TR5.1 and also the

inclusion of the original actor in TS3, result in the same actor which brings the need to

eliminate the generated redundancy. The resulting model allows to identify potential

gaps in use cases or actors (in the execution of TS5), but in this case such wasn’t

required.

After the execution of the transition steps, the Mashed UC model is used as input for

the product-level 4SRS method execution in order to derive the service-oriented logical

architecture for the ISOFIN platform. We depict in

Figure 53 the entire service-oriented software logical architecture obtained after the

execution of the V+V process, having as input the information system logical

architecture previously presented. The service-oriented software logical architecture is

composed by architectural elements that represent services that are executed in the

platform. It would be impossible to elicit requirements for a service-oriented logical

architecture as complex as the ISOFIN platform by adopting an approach that only

considers the product-level perspective. It is also possible to depict in

Figure 53 the alignment (supported by the transition steps) between the architecture

elements in both perspectives.

Figure 53: Subset of the ISOFIN service-oriented software logical architecture based on the information system logical architecture

5 Process- and Product-level Logical Architectures

142

5.5 Transition Rules in Other’s Work

An important view considered in our approach regards the architecture. What is

architecture? In the literature there is a plethora of definitions but most agree that an

architecture concerns both structure and behavior, with a level of abstraction that only

regards significant decisions and may be in conformance with an architectural style, is

influenced by its stakeholders and the environment where it is intended to be

instantiated and also encompasses decisions based on some rationale or method.

It is acknowledged in software engineering that a complete system architecture cannot

be represented using a single perspective (Kruchten, 1995; Sungwon & Yoonseok,

2005). Using multiple viewpoints, like logical diagrams, sequence diagrams or other

artifacts, contributes to a better representation of the system and, as a consequence,

to a better understanding of the system. Some architecture views can be seen in the

works of Clements et al (P. Clements, et al., 2003), Hofmeister et al (Hofmeister, et al.,

2000) and Krutchen (Kruchten, 1995). Krutchen's work refers that the description of

the architecture can be represented into four views: logical, development, process and

physical. The fifth view is represented by selected use cases or scenarios. Zou and

Pavlovski (Zou & Pavlovski, 2006) add another extra view, the control case view, that

complements the use case view to complete requirements across the collective system

lifecycle views. Our stereotyped usage of sequence diagrams adds more

representativeness value to the specific model than, for instance, the presented in

Krutchen's 4+1 perspective (Kruchten, 1995). This kind of representation also enables

testing sequences of system actions that are meaningful at the software architecture

level (Bertolino, et al., 2001). Additionally, the use of this kind of stereotyped sequence

diagrams at the first stage of analysis phase (user requirements modeling and

validation) provides a friendlier perspective to most stakeholders, easing them to

establish a direct correspondence between what they initially stated as functional

requirements and what the model already describes.

5.5 Transition Rules in Other’s Work

143

The relation between what the stakeholders want and what implementation teams

need requires an alignment approach to assure that there are no missing specifications

on the transition between phases.

An approach that enacts the alignment between domain-specific needs and software

solutions, is the goal oriented approach GQM+Strategies (Goal/Question/Metric +

Strategies) (Basili, et al., 2010). The GQM+Strategies approach uses measurement to

explicitly link goals and strategies from business objectives to project operations.

Another goal-oriented approach is the Balanced Scorecard (BSC) (Kaplan & Norton,

1992). BSC links strategic objectives and measures through a scorecard in four

perspectives: financial, customer, internal business processes, and learning and

growth. It is a tool for defining strategic goals from multiple perspectives beyond a

purely financial focus.

Another approach, COBIT (Information Technology Governance Institute (ITGI), 2012),

is a framework for governing and managing enterprise IT. It provides a comprehensive

framework that assists enterprises in achieving their objectives for the governance and

management of enterprise IT. It is based on five key principles:

(i) meeting stakeholder needs;

(ii) covering the enterprise end-to-end;

(iii) applying a single, integrated framework;

(iv) enabling a holistic approach;

(v) separating governance from management.

In our understanding, none of the previous approaches encompasses processes for

deriving a logical representation of the intended system processes with the purpose of

creating context for eliciting product-level requirements. Those approaches have a

broader specification concerning risk analysis, auditing, measurement, or best

practices in the overall alignment strategy.

5 Process- and Product-level Logical Architectures

144

The process architecture represents a fundamental organization of service

development, service creation, and service distribution in the relevant enterprise

context.

Designing software architecture based on a process-level perspective provides a more

accurate definition of the requirements. There are several approaches to supporting

the proper design of software architectures, like FAST (D. M. Weiss & Lai, 1999), FORM

(Kang, et al., 1998) or KobrA (Bayer, et al., 2001). These all relate to the product-level

perspective. In a process-level perspective, Tropos (Castro, et al., 2002) is

a methodology that uses notions of actor, goal and (actor) dependency as a foundation

to model early and late requirements, architectural and detailed design. Our approach

uses the functional refinement of use cases and uses them, alongside with textual

descriptions, as input to the 4SRS method to derive a logical architecture. Logical

architectures can be faced as a view of a system composed by a set of problem-specific

abstractions supporting functional requirements (Kruchten, 1995) and thus giving

detail to the design of the information system.

The defined and derived models suggested by our approach, used alone and unaligned

with each other, are of a lesser use to organizations and stakeholders. Our approach

begins in a domain-specific perspective (usually in the business-level), by defining the

organizational configurations that represent major interactions, at a very high-level, in

the chosen domain, and ends with a technological view of the system. From one

perspective to the other, alignment must be assured. The alignment we refer to relates

to domain-specific and software alignment (Campbell, 2005), and in our case, where

the domain-specific needs must be instantiated into the creation of context for proper

product design.

There are many approaches that allow deriving at a given level a view of the intended

system to be developed. Our approach clearly starts at a process-level perspective, and

by successive models derivation creates the context for transforming the requirements

expressed in an information system logical architecture into product-level context for

requirements specification. Other approaches provide similar results at a subset of our

specification.

5.5 Transition Rules in Other’s Work

145

In (Dijkman & Joosten, 2002a) and (Dijkman & Joosten, 2002b) it is specified a

mapping technique and an algorithm for mapping business process models, using UML

activity diagrams, and use cases, so functional requirements specifications support the

enterprise’s business process. In our approach, we use a information system logical

architecture diagram instead of an activity diagram, since an information system

logical architecture provides a fundamental organization of the development, creation,

and distribution of processes in the relevant enterprise context (Winter & Fischer,

2006b).

In literature, model transformations are often related to the Model-Driven

Architecture (MDA) (OMG) initiative from OMG. A MDA-based approach uses model

transformations in order to transform a high-level model (Platform-Independent

Model – PIM) to a lower-level model (Platform-Specific Model – PSM). MDA-based

model transformations are widely used but, as far as the authors know, the supported

transformations don’t regard perspective transition, i.e., are perspective agnostic since

they concern model transformations within a single perspective (typically the

product-level one). For instance, (Kaindl & Falb, 2008) describes MDA-based model

transformations from use cases and scenarios to components, but only in a product-

level perspective. Even in cases when MDA model transformations are executed using

different source and target modeling languages (for instance, in (Bauer, Müller, &

Roser, 2004) a PIM is modeled in Business Process Modeling Notation – BPMN, and its

model is transformed into a PSM modeled in Business Process Execution Language –

BPEL), the transformation only regards a single perspective. The authors in (Bezivin,

Dupé, Jouault, Pitette, & Rougui, 2003) present technological spaces and model

transformations between them, but the technological space domains also only regard

a single perspective. The concerns that must be assured by transiting from one

perspective to the other are not dealt by any of the previous works.

The existing approaches for model transformation attempt to provide an automated or

automatic execution. (Yue, et al., 2011) provides a systematic review and evaluation of

existing work on automating of transforming requirements into an analysis model and,

according to the authors, none of the compared approaches provide a practical

automated solution. The transition steps and rules presented in this work intent to

5 Process- and Product-level Logical Architectures

146

provide a certain level of automation into our approach and improve the efficiency,

validation, and traceability of the overall V+V process. The transitions depicted in the

present work are able to be fully implemented in development tools that support QVT

transformations, like the well-known Eclipse IDE.

5.6 Conclusions

In this chapter we presented an approach to create context for business software

implementation teams in contexts where requirements cannot be properly elicited.

Our approach is based on successive models construction and recursive derivation of

logical architectures, and makes use of model derivation for creating use cases, based

on high-level representations of desired system interactions.

The approach assures that validation tasks are performed continuously along the

modeling process. It allows for validating:

(i) the final software solution according to the initial expressed business

requirements;

(ii) the B-type sequence diagrams according to A-type sequence diagrams;

(iii) the logical architectures by traversing it with B-type sequence diagrams.

These validations task, specific to the V-Model, are subject of a future

publication.

We also presented a set of transition steps and transition rules in order to execute the

transition from process- to product-level perspective. These transition steps use as

basis a process-level logical architecture and stereotyped sequence diagrams to output

a product-level use case model. This approach allows requirements in a technological

(product-level) perspective to be properly aligned with organizational business

(process-level) requirements in a traceable way.

It is a common fact that domain-specific needs, namely business needs, are a fast

changing concern that must be tackled. Process-level architectures must be in a way

5.6 Conclusions

147

that potentially changing domain-specific needs are local in the architecture

representation.

Our proposed V+V process encompasses the derivation of a logical architecture

representation that is aligned with domain-specific needs and any change made to

those domain-specific needs is reflected in the logical architectural model through

successive derivation of the supporting models (OCs, A- and B-type sequence

diagrams, and use cases). Additionally, traceability between those models is built-in by

construction, and intrinsically integrated in our V+V process.

Software architecture representations serve two purposes: one is that they act as a

common abstraction of the system providing a representation of the system able to be

understood by all the stakeholders regardless of their background. Second, the

architecture is a model of the intended system to be built, modified or analyzed.

A system logical architecture can be viewed as a constructed set of the system’s design

decisions. By constructed we mean that the architecture is built using a construction

method that assures its correctness. Design decisions, at this level, can be analyzed by

looking at the non-functional requirement that the system is intended to comply. For

instance, if we intend our system to be secure, the architect should pay attention to

the communication between architectural elements represented in the logical

architecture diagram and also to the data flows between them or to the existence of

special encryption or authentication elements. If the system is required to be

redundant, the architect should care about redundant sub-systems or architectural

elements.

The V+V-Model is able to conduct reviews regarding architectural decisions, namely on

the quality attributes requirements and their alignment and satisfaction degree of

specific quality goals that are imposed to the created scenarios (A-type sequence

diagrams). The several models can be used supporting documentation that can be

provided to stakeholders and for promoting the validation of described scenarios.

These quality attributes reviews were not explicitly done in the ISOFIN project. Instead,

those requirements were imbued in design decisions related to the logical

architecture.

5 Process- and Product-level Logical Architectures

148

Our approach uses software engineering techniques, such as operational model

transformations to assure the execution of a process that begins with business needs

and ends with a logical architectural representation of a service-based system. It is a

common fact that domain-specific needs, namely business needs, are a fast changing

concern that must be tackled. Information system architectures must be modeled in a

way that potentially changing domain-specific needs are local in the architecture

representation of the intended service. Our proposed V+V process encompasses the

derivation of a logical architecture representation that is aligned with domain-specific

needs and any change made to those domain-specific needs is reflected in the logical

architectural model, and the transformation is properly assured. Since the Mashed UC

model is derived from a model transformation based on mappings, traceability

between AEpc’s and UCpt’s is guaranteed, thus any necessary change on product-level

requirements due to a change on a given business needs is easily identified and

propagated alongside the models that comprise the V+V process.

Chapter 6

Conclusion

Chapter Contents

6 CONCLUSION ... 151

6.1 FOCUS OF THE WORK ... 151
6.2 SYNTHESIS OF RESEARCH EFFORTS .. 154
6.3 SYNTHESIS OF SCIENTIFIC RESULTS .. 155
6.4 FUTURE WORK ... 157

6

Conclusion

This chapter presents the conclusion of this thesis. Here we present a final overview

on the V+V-Model approach and then we synthesize the research efforts, the major

contributions and an outlook on the research roadmap that should follow our efforts.

6.1 Focus of the Work

During an information system development process, assuring that functional

requirements fully support the stakeholder’s business needs may become a complex

and inefficient task. Additionally, the “newfound” paradigm of IT solutions (e.g.,

Cloud Computing) typically results in more difficulties for defining a business model

and for eliciting product-level functional requirements for any given project, that

properly specify how the intended services should be provided and executed. If

stakeholders experience such difficulties then software developers will have to deal

with incomplete or incorrect requirements specifications, resulting in a real problem.

In this work we have described a process that begins in a uncertain business model

definition for a software product and then, by successive model derivation,

6 Conclusion

152

perspective transition and construction of artefacts, realizes a logical architecture

representation of a service-oriented system.

The transition between the process- and the product-level perspectives are assured

by transition steps and rules that assure an alignment between process- and product-

level requirements within the execution of the V+V process.

Our approach is adopted to create context for business software implementation

teams in situations where requirements cannot be properly elicited. The V+V process

is based on successive models construction and recursive derivation of logical

architectures, and makes use of model derivation for creating use cases, based on

high-level representations of desired system interactions.

The approach assures that validation tasks are performed continuously along the

modeling process. It allows for validating:

(i) the final software solution according to the initial expressed business

requirements;

(ii) the B-type sequence diagrams according to A-type sequence diagrams;

(iii) the logical architectures by traversing it with B-type sequence diagrams.

These validation tasks, specific to the V-Model, are subject of future work.

Our approach is supported on a set of transition steps and transition rules in order to

execute the transition from process- to product-level perspective. These transition

steps use as basis an information system logical architecture to output a

product-level use case model. The product-level requirements are specified in a

service-oriented logical architecture, having as basis the information system logical

architecture. By adopting the approach, requirements for specifying services are

properly aligned with organizational information system requirements in a traceable

way.

Our approach uses software engineering techniques, such as operational model

transformations to assure the execution of a process that begins with business needs

6.1 Focus of the Work

153

and ends with a logical architectural representation of a system. It is a common fact

that domain-specific needs, namely business needs, are a fast changing concern that

must be tackled. Information system architectures must be in a way that potentially

changing domain-specific needs are local in the architecture representation.

Our proposed V+V process encompasses the derivation of a logical architecture

representation that is aligned with domain-specific needs and any change made to

those domain-specific needs is reflected in the logical architectural model, and the

transformation is properly assured. Since the Mashed UC model is derived from a

model transformation based on mappings (from AEpc’s to UCtr’s), traceability

between AEpc’s and UCpt’s is guaranteed, thus any necessary change on product-

level requirements due to a change on a given business needs is easily identified and

propagated alongside the models that comprise the V+V process.

We conducted a case analysis supported by the ISOFIN project throughout this work,

in order to support the validation efforts required to assure our proposed approach.

The ISOFIN project had his requirements elicited and was able of developing a

platform that provides interoperability between financial institutions by providing

services in a cloud environment, and by adopting a model-based approach to create

context for business software implementation teams in situations where

requirements cannot be properly elicited.

Each of the V-Models is able to conduct reviews regarding architectural decisions,

namely on the quality attributes requirements and their alignment and satisfaction

degree of specific quality goals that are imposed to the created scenarios (A-type

sequence diagrams). The several models can be used supporting documentation that

can be provided to stakeholders and for promoting the validation of described

scenarios (Ferreira, Santos, Machado, & Gasevic, 2013 (accepted for publication)).

These quality attributes reviews were not explicitly done in the ISOFIN project.

Instead, those requirements were imbued in design decisions related to the logical

architecture. The V+V-Model is also able to conduct such review by merging both V-

Models.

6.2 Synthesis of Research Efforts

6.2 Synthesis of Research Efforts

The required efforts to establish a process able to define a representation of a system

from a set of misunderstood and badly specified requirements should be understood

by the scientific community with the purpose of fully realizing the advantages of

having an architecture derivation method that supports the design decisions in the

process.

We began this thesis by introducing the problem that we were facing and the activity

elicitation technique PL.AC.E that we used to create context for the Organizational

Configuration definition. We framed the design decisions for the information system

within cloud-related paradigms and then described the V-Model, able to derive the

information system logical architecture.

The process-level 4SRS method was introduced and detailed to provide information

on the vertex of the V-Model. A vertex, as any mathematician might say, is the

strongest part of any shape, and in the V-Model approach, the 4SRS vertex assures

the transition between domains and artifacts.

Next we introduced the V+V-Model approach. This approach is composed by two V-

Models, one on the process-level perspective (left side), able to derive an information

system architecture and other, on the product-level perspective (right side), able to

derive a service-oriented logical architecture.

Either the V-Model as the V+V-Model approaches were assessed using ARID, an

architectural evaluation method, adapted to our approach. The adapted ARID

method proved itself useful by adding extra information to the modeled artifacts and

also by promoting the refinement through iterations of the 4SRS method of the

logical architecture representation.

6.2 Synthesis of Research Efforts

155

All the presented research efforts were validated using the ISOFIN project, a real

industrial case study. All the techniques and approach were also applied in the

project.

6.3 Synthesis of Scientific Results

The work carried out in this thesis partially shows that by beginning an analysis in the

information systems perspective has potential to create a more robust system. There

is a small number of projects and initiatives that currently use the V-Model approach

to ensure an accurate definition of the requirements. From those, we would like to

enhance:

 MSc Thesis “Requirements and Logical Architecture of an Information System

to Manage Innovation”, to be presented in 2013 at the University of Minho.

This thesis uses the process-level V-Model to create a logical representation of

the processes that should be implemented in an enterprise content

management system for supporting the Portuguese Standard for Research,

Innovation and Development (NP4457);

 Project AA4ALL (http://www.aal4all.org/). This project uses the V-Model

approach for requirements elicitation, executed in order to derive a

process-level logical architecture diagram for an Ambient Assisted Living (AAL)

platform. The intended AAL platform allows for interoperability between AAL

software solutions and encompasses four AAL life settings that were identified

in a roadmap for ageing and ICT development.

 The presented ISOFIN Project (http://isofincloud.i2s.pt/)

Concerning scientific publications, we would like to identify the following, all

accepted in renowned conferences:

 Nuno Ferreira, Ricardo J. Machado, Dragan Gaševic. An Ontological Approach

to Model-Driven Software Product Line Development. Proceedings of the 4th

http://www.aal4all.org/
http://isofincloud.i2s.pt/

6 Conclusion

156

International Conference on Software Engineering Advances - ICSEA'2009,

Session on SEDES’2009 Workshop, September, 2009, pp. 559-564, IEEE

Computer Society Press, Los Alamitos, California, U.S.A., [ISBN: 978-0-7695-

3777-15].

 Nuno Ferreira, Nuno Santos, Ricardo J. Machado, Dragan Gaševic. Derivation

of Process-Oriented Logical Architectures: An Elicitation Approach for Cloud

Design. Oscar Dieste, Andreas Jedlitschka, Natalia Juristo (Eds.), Product-

Focused Software Process Improvement, pp. 45-58, LNCS Series vol. 7343,

Springer-Verlag, Berlin Heidelberg, Germany, June, 2012, [ISSN: 0302-9743],

[ISBN: 978-3-642-31063-8]. (Proceedings of the 13th International Conference

on Product Focused Software Development and Process Improvement -

PROFES'2012, Madrid, Spain, June, 2012).

 Nuno Ferreira, Nuno Santos, Pedro Soares, Ricardo J. Machado, Dragan

Gaševic. Transition from Process- to Product-Level Perspective by Recursive

Derivation of Logical Architectures for Business Software. Proceedings of the

6th IFIP International Conference on Research and Practical Issues of

Enterprise Information Systems - CONFENIS'2012, Track on Enterprise System

Design, Ghent, Belgium, September, 2012, LNBIP Series, Springer-Verlag,

Berlin Heidelberg, Germany.

 Nuno Ferreira, Nuno Santos, Ricardo J. Machado, Dragan Gaševic. Aligning

Domain-related Models for Creating Context for Software Product Design.

Proceedings of the 5th Software Quality Days Conference - SWQD'2013,

Scientific Track, LNBIP Series, Springer-Verlag, Berlin Heidelberg, Germany,

Vienna, Austria, January, 2013.

 Nuno Ferreira, Nuno Santos Ricardo J. Machado, José Eduardo Fernandes,

Dragan Gaševic. A V-Model Approach for Business Process Requirements

Elicitation in Cloud Design. Book chapter accepted for publication on the Web

Services Handbook 2012 (by Springer-Verlag).

6.3 Synthesis of Scientific Results

157

We are expecting the results from our submissions to the following:

 Nuno Santos, Juliana Teixeira, António Pereira, Nuno Ferreira, Ana Lima,

Ricardo Simões, Ricardo J. Machado. A Demonstration Case on the Derivation

of Process-Level Logical Architectures for Ambient Assisted Living Ecosystems.

Book chapter submitted for reviewing on the Ambient Assisted Living Book

(Taylor and Francis / CRC Press (USA))

 Nuno Ferreira, Nuno Santos, Ricardo J. Machado, Dragan Gaševic. Steps and

Rules for the Transition of Process- to Product-level Perspective within

Business Software Design. Journal article submitted to the IEEE Transactions

on Industrial Informatics - Special Section on Enterprise Systems Journal.

 Nuno Ferreira, Nuno Santos, Pedro Soares, Ricardo J. Machado, Dragan

Gaševic. A Case Study Analysis on the Derivation of Service-Oriented Logical

Architectures: Transition from Process- to Product-level UML Models. Paper

submitted to the International Conference on Exploring Service Science 1.3, by

Springer LNBIP.

Additionally we are preparing submissions regarding the future work to be

presented in the next section.

6.4 Future Work

We are conscious that our work does not covers all the problems that we felt related

to the requirements elicitation methods and architecture derivation. Along the years

that we tackled such problems, others arose and we would like to point out the major

issues that the research community could embrace:

 Detail the use case input to the 4SRS. Establish a direct relation between the

use cases and the architectural elements.

6 Conclusion

158

 Map the product-level logical architecture to development teams, namely

SCRUM teams, by providing the architecture diagram and a combined multiple

view, made of the B-Type sequence diagrams, the logical architecture portion

that must be developed and the major components and interfaces that must

be respected. This is partially based on the analysis made in Figure 63, found

on Annex B.

 Define a set of patterns that obey to the target deployment logic and inject

them in the 4SRS method, to generate aggregations and associations in the

method, fully compliant with the intended software product.

 Promote the process-level V-Model as a method of creating context also for

existing product architectures. The derived logical architecture of the process-

level V-Model has information that is used to configure existing systems.

The development of the V+V model approach opened a research topic that joined

multiple research teams and lecturers. It is expected to see in the near future a more

detailed and refined version of the V+V-Model approach.

References

Abran, A., Moore, J. W., Dupuis, R., Dupuis, R., & Tripp, L. L. (2001). Guide to the software
engineering body of knowledge (SWEBOK). 2004 ed P Bourque R Dupuis A Abran and
JW Moore Eds IEEE Press.

Alter, S. (2002). The work system method for understanding information systems and
information systems research. Communications of the Association for Information
Systems, 9(1), 6.

Alter, S. (2008). Service system fundamentals: Work system, value chain, and life cycle. IBM
Systems Journal, 47(1), 71-85.

Atkinson, C., & Kuhne, T. (2003). Model-Driven Development: A Metamodeling Foundation.
IEEE Softw., 20(5), 36-41.

Azevedo, S., Machado, R. J., Bragança, A., & Ribeiro, H. (2010). Systematic Use of Software
Development Patterns through a Multilevel and Multistage Classification. Model-
Driven Domain Analysis and Software Development: Architectures and Functions, 304.

Azevedo, S., Machado, R. J., Muthig, D., & Ribeiro, H. (2009). Refinement of Software Product
Line Architectures through Recursive Modeling Techniques Paper presented at the On
the Move to Meaningful Internet Systems: OTM 2009 Workshops.
http://dx.doi.org/10.1007/978-3-642-05290-3_53

BABOK. BABOK - Guide to Business Analysis Body of Knowledge Retrieved March 2011, from
http://www.theiiba.org/AM/Template.cfm?Section=Body_of_Knowledge

Barrett, S., & Konsynski, B. (Dec., 1982). Inter-Organization Information Sharing Systems. MIS
Quarterly, 6(Special Issue: [1982 Research Program of the Society for Management
Information Systems]), 93-105

Basili, V. R., Lindvall, M., Regardie, M., Seaman, C., Heidrich, J., Munch, J., . . . Trendowicz, A.
(2010). Linking Software Development and Business Strategy Through Measurement.
Computer, 43(4), 57-65. doi: 10.1109/mc.2010.108

http://dx.doi.org/10.1007/978-3-642-05290-3_53
http://www.theiiba.org/AM/Template.cfm?Section=Body_of_Knowledge

References

160

Bauer, B., Müller, J. P., & Roser, S. (2004). A Model-driven Approach to Designing Cross-
Enterprise Business Processes. Paper presented at the MIOS Workshop in OTM
Conference.

Bayer, J., Muthig, D., & Göpfert, B. (2001). The library system product line. A KobrA case
study. Fraunhofer IESE.

Bensaou, M., & Venkatraman, N. (1993). Interorganizational relationships and information
technology: A conceptual synthesis and a research framework. European Journal of
Information Systems, 5, 84-91.

Bertolino, A., Inverardi, P., & Muccini, H. (2001). An explorative journey from architectural
tests definition down to code tests execution. Paper presented at the Proceedings of
the 23rd International Conference on Software Engineering, Toronto, Ontario,
Canada.

Bezivin, J., Dupé, G., Jouault, F., Pitette, G., & Rougui, J. E. (2003). First experiments with the
ATL model transformation language: Transforming XSLT into XQuery. Paper
presented at the 2nd OOPSLA Workshop on Generative Techniques in the context of
MDA, Anaheim, CA, USA.

Bosch, J. (2000). Design and use of software architectures: adopting and evolving a product-
line approach: ACM Press/Addison-Wesley Publishing Co.

Bragança, A., & Machado, R. (2009). A model-driven approach for the derivation of
architectural requirements of software product lines. [10.1007/s11334-009-0078-3].
Innovations in Systems and Software Engineering, 5(1), 65-78.

Browning, T. R., & Eppinger, S. D. (2002). Modeling impacts of process architecture on cost
and schedule risk in product development. IEEE Trans on Engineering Management,
49(4), 428-442.

Campbell, B. (2005). Alignment: Resolving ambiguity within bounded choices.

Campbell, B., Kay, R., & Avison, D. (2005). Strategic alignment: a practitioner's perspective.
Journal of Enterprise Information Management, 18(6), 653-664.

Cardoso, E. C. S., Almeida, J. P. A., & Guizzardi, G. (2009). Requirements engineering based on
business process models: A case study. Paper presented at the Enterprise Distributed
Object Computing Conference Workshops, 2009. EDOCW 2009. 13th.

Castro, J., Kolp, M., & Mylopoulos, J. (2002). Towards requirements-driven information
systems engineering: the Tropos project. Information Systems.

Cerpa, N., & Verner, J. M. (2009). Why did your project fail? Commun. ACM, 52(12), 130-134.
doi: 10.1145/1610252.1610286

Checkland, P. (1981). Systems Thinking, Systems Practice: John Wiley & Sons.

Checkland, P. (1985). Achieving 'Desirable and Feasible' Change: An Application of Soft
Systems Methodology. The Journal of the Operational Research Society, 36(9), 821-
831.

Annex A

161

Checkland, P. (2000). Soft systems methodology: a thirty year retrospective. Systems
Research, 17, S11-S58.

Chen, Y., & Tsai, W. (2010). Service-Oriented Computing and Web Data Management,
Kendall: Hunt Publishing.

Clements, P., Garlan, D., Little, R., Nord, R., & Stafford, J. (2003). Documenting software
architectures: views and beyond.

Clements, P. C. (2000). Active Reviews for Intermediate Designs.: Technical Note CMU/SEI-
2000-TN-009.

CMMI Product Team. (2006). Capability Maturity Model Integration version 1.2 CMMI for
Development.

Conradi, R., & Jaccheri, M. (1999). Process Modelling Languages. Paper presented at the
Software Process: Principles, Methodology, and Technology.
http://dx.doi.org/10.1007/3-540-49205-4_3

Davenport, T. H. (1993). Process innovation: reengineering work through information
technology: Harvard Business Press.

Dijkman, R. M., & Joosten, S. M. M. (2002a). An algorithm to derive use cases from business
processes. Paper presented at the SEA'02, Cambridge, MA, USA.

Dijkman, R. M., & Joosten, S. M. M. (2002b). Deriving use case diagrams from business
process models. Technical report, CTIT Tecnhical Report.

EABOK. EABOK - Guide to the Enterprise Architecture Body of Knowledge Retrieved March
2011, from
http://www.mitre.org/work/tech_papers/tech_papers_04/04_0104/04_0104.pdf

Evan, W. M. (1965). Toward a theory of inter-organizational relations. Management Science,
217-230.

Fernandes, J., Machado, R. J., Monteiro, P., & Rodrigues, H. (2006). A Demonstration Case on
the Transformation of Software Architectures for Service Specification. In B.
Kleinjohann, L. Kleinjohann, R. Machado, C. Pereira & P. Thiagarajan (Eds.), From
Model-Driven Design to Resource Management for Distributed Embedded Systems
(Vol. 225, pp. 235-244): Springer Boston.

Ferreira, N., Machado, R. J., & Gašević, D. (September, 2009). An Ontology-based Approach to
Model-Driven Software Product Lines. Paper presented at the 4th International
Conference on Software Engineering Advances - ICSEA 2009, Sessions of SEDES'2009
Workshop, Oporto, Portugal.

Ferreira, N., Santos, N., Machado, R. J., Fernandes, J. E., & Gasevic, D. (2013). A V-Model
Approach for Business Process Requirements Elicitation in Cloud Design. Paper
presented at the Web Services Handbook 2012

Ferreira, N., Santos, N., Machado, R. J., & Gasevic, D. (2012a). Derivation of Process-Oriented
Logical Architectures: An Elicitation Approach for Cloud Design. Paper presented at
the PROFES'12, Madrid, Spain.

http://dx.doi.org/10.1007/3-540-49205-4_3
http://www.mitre.org/work/tech_papers/tech_papers_04/04_0104/04_0104.pdf

References

162

Ferreira, N., Santos, N., Machado, R. J., & Gasevic, D. (2012b). Derivation of Process-Oriented
Logical Architectures: An Elicitation Approach for Cloud Design. Paper presented at
the 13th International Conference on Product-Focused Software Development and
Process Improvement - PROFES 2012, Madrid, Spain.

Ferreira, N., Santos, N., Machado, R. J., & Gasevic, D. (2013 (accepted for publication)).
Aligning Domain-related Models for Creating Context for Software Product Design.
Paper presented at the SWQD'13, Vienna, Austria.

Ferreira, N., Santos, N., Machado, R. J., & Gaševic, D. (2013). Aligning Domain-related Models
for Creating Context for Software Product Design. Paper presented at the 5th
Software Quality Days Conference - SWQD'2013, Vienna, Austria.

Ferreira, N., Santos, N., Soares, P., Machado, R. J., & Gasevic, D. (2012). Transition from
Process- to Product-level Perspective for Business Software. Paper presented at the
Proceedings of the 6th IFIP International Conference on Research and Practical Issues
of Enterprise Information Systems - CONFENIS'2012, Track on Enterprise System
Design, Ghent, Belgium

Frakes, W., Prieto-Diaz, R., & Fox, C. (1998). DARE: Domain analysis and reuse environment.
Annals of Software Engineering, 5, 125-141.

Furht, B., & Escalante, A. (2010). Handbook of Cloud Computing: Springer.

G2SEBoK. G2SEBoK - Guide to Systems Engineering Body of Knowledge Retrieved March
2011, from http://g2sebok.incose.org/

Gillett, S. E., & Kapor, M. (1996). The Self-governing Internet: Coordination by Design.
Retrieved from http://ccs.mit.edu/papers/CCSWP197/CCSWP197.html

Haitham, S. H. (2011). A Domain Analysis Method for Evolvable Software Product Line
Architectures.

Hammer, M. (1997). Beyond reengineering: How the process-centered organization is
changing our work and our lives: Harper Paperbacks.

Hanisch, J., & Corbitt, B. (2007). Impediments to requirements engineering during global
software development. European Journal of Information Systems, 16(6), 793-805. doi:
10.1057/palgrave.ejis.3000723

Haskins, C., & Forsberg, K. (2011). Systems Engineering Handbook: A Guide for System Life
Cycle Processes and Activities; INCOSE-TP-2003-002-03.2. 1.

Hevner, A., & Chatterjee, S. (2010). Design Research in Information Systems: Theory and
Practice (Vol. 22): Springer.

Hofmeister, C., Nord, R., & Soni, D. (2000). Applied software architecture: Addison-Wesley
Professional.

IDC. IDC Cloud Research Retrieved November 2012, from
http://www.idc.com/prodserv/idc_cloud.jsp

IEEE Computer Society. (2000). IEEE Recommended Practice for Architectural Description of
Software Intensive Systems - IEEE Std. 1471-2000.

http://g2sebok.incose.org/
http://ccs.mit.edu/papers/CCSWP197/CCSWP197.html
http://www.idc.com/prodserv/idc_cloud.jsp

Annex A

163

IEEE Guide to Software Design Descriptions. (1993). IEEE Std 1016.1-1993, 0_1.

Information Technology Governance Institute (ITGI). (2012). COBIT v5 - A Business Framework
for the Governance and Management of Enterprise IT: ISACA.

Instituto Português da Qualidade (IPQ). (2007). NP 4457: 2007 - Gestão da Investigação
Desenvolvimento e Inovação (IDI). Requisitos do sistema de gestão da IDI.

International Organization for Standardization. (2008-11-25). ISO/IEC TR 15504-7:2008 -
Process assessment - Part 7: Assessment of organizational maturity.
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber
=50519.

ISOFIN Consortium. (2010). ISOFIN Research Project, from http://isofincloud.i2s.pt

ISOFIN Project Consortium. (2010). ISOFIN Research Project, from http://isofincloud.i2s.pt

Jacobson, I., Griss, M., & Jonsson, P. (1997). Software Reuse: Architecture, Process and
Organization for Business Success: Addison Wesley Longman.

Kaindl, H., & Falb, J. (2008). Can We Transform Requirements into Architecture? Paper
presented at the ICSEA'08.

Kang, K. C., Cohen, S. G., Hess, J. A., Novak, W. E., & Peterson, A. S. (1990). Feature-Oriented
Domain Analysis (FODA) Feasibility Study: Technical Report CMU/SEI-90-TR-21,
Software Engineering Institute, Carnegie Mellon University.

Kang, K. C., Kim, S., Lee, J., Kim, K., Shin, E., & Huh, M. (1998). FORM: A feature-oriented
reuse method with domain-specific reference architectures. Annals of Sw
Engineering.

Kaplan, R. S., & Norton, D. P. (1992). The balanced scorecard–measures that drive
performance. Harvard business review, 70(1), 71-79.

Kazman, R. (1996). Tool support for architecture analysis and design. Paper presented at the
Joint proc. of the second intern. sw arch. workshop (ISAW-2) and intern. workshop on
multiple perspectives in sw. dev. (Viewpoints '96) on SIGSOFT '96 workshops, San
Francisco, California, United States.

Kim, J., Park, S., & Sugumaran, V. (2008). DRAMA: A framework for domain requirements
analysis and modeling architectures in software product lines. J. Syst. Softw., 81(1),
37-55. doi: http://dx.doi.org/10.1016/j.jss.2007.04.011

Kruchten, P. (1995). The 4+1 View Model of Architecture. IEEE Softw., 12(6), 42-50. doi:
10.1109/52.469759

Krutz, R. L., & Vines, R. D. (2010). Cloud Security - A Comprehensive Guide to Secure Cloud
Computing: Wiley.

Luftman, J., & Ben-Zvi, T. (2010). Key issues for IT executives 2010: judicious IT investments
continue post-recession. MIS Quarterly Executive, 9(4), 263-273.

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=50519
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=50519
http://isofincloud.i2s.pt/
http://isofincloud.i2s.pt/
http://dx.doi.org/10.1016/j.jss.2007.04.011

References

164

Machado, R., Lassen, K., Oliveira, S., Couto, M., & Pinto, P. (2007). Requirements Validation:
Execution of UML Models with CPN Tools. International Journal on Software Tools for
Technology Transfer (STTT), 9(3), 353-369. doi: 10.1007/s10009-007-0035-0

Machado, R. J., & Amaral, L. (Fevereiro, 2011). Sobre os Actos da Profissão no âmbito do
Colégio de Engenharia Informática. INFO – Revista Informativa da Ordem dos
Engenheiros Região Norte.

Machado, R. J., & Fernandes, J. (2002). Heterogeneous Information Systems Integration:
Organizations and Methodologies. In M. Oivo & S. Komi-Sirviö (Eds.), Product Focused
Software Process Improvement (Vol. 2559, pp. 629-643): Springer Berlin / Heidelberg.

Machado, R. J., Fernandes, J., Monteiro, P., & Rodrigues, H. (2006a). Refinement of Software
Architectures by Recursive Model Transformations. Paper presented at the Product-
Focused Software Process Improvement. http://dx.doi.org/10.1007/11767718_38

Machado, R. J., Fernandes, J., Monteiro, P., & Rodrigues, H. (2006b). Refinement of Software
Architectures by Recursive Model Transformations. Paper presented at the
PROFES'06. http://dx.doi.org/10.1007/11767718_38

Machado, R. J., Fernandes, J. M., Monteiro, P., & Rodrigues, H. (2005). Transformation of
UML Models for Service-Oriented Software Architectures. Paper presented at the
Proceedings of the 12th IEEE International Conference and Workshops on
Engineering of Computer-Based Systems.

Maibaum, T. (2006). On specifying systems that connect to the physical world. New Trends in
Software Methodologies, Tools and Techniques.

Matinlassi, M., Niemelä, E., & Dobrica, L. (2002). Quality-driven architecture design and
quality analysis method, A revolutionary initiation approach to a product line
architecture: VTT Tech. Research Centre of Finland.

Medvidovic, N., & Taylor, R. N. (2000). A classification and comparison framework for
software architecture description languages. Software Engineering, IEEE Transactions
on, 26(1), 70-93.

Mell, P., & Grance, T. (2009). The NIST Definition of Cloud Computing.

Mintzberg, H. (1989). Mintzberg on Management - Inside our strange world of organizations

Monteiro, P., Machado, R. J., & Kazman, R. (2009). Inception of Software Validation and
Verification Practices within CMMI Level 2.

Neighbors, J. M. (1980). Software construction using components. PhD, University of
California, Irvine

NIST. (2009). National Institute of Standards and Technology - The NIST Definition of Cloud
Computing Retrieved January 2011, from
http://www.nist.gov/itl/cloud/upload/cloud-def-v15.pdf

OMG. MDA Guide Version 1.0.1: OMG Std.

OMG. Software & Systems Process Engineering Meta-Model (SPEM).
http://www.omg.org/spec/SPEM/.

http://dx.doi.org/10.1007/11767718_38
http://dx.doi.org/10.1007/11767718_38
http://www.nist.gov/itl/cloud/upload/cloud-def-v15.pdf
http://www.omg.org/spec/SPEM/

Annex A

165

OMG. (2010). Business Motivation Model (BMM) v1.1, from
http://www.omg.org/spec/BMM/1.1/

OMG. (2011a). Meta Object Facility (MOF) 2.0 Query/View/Transformation (QVT), from
http://www.omg.org/spec/QVT/1.1

OMG. (2011b). Unified Modeling Language (UML) Superstructure Version 2.4.1 Retrieved
January 2012, from http://www.omg.org/spec/UML/2.4.1/

Project Management Institute. (2008). A Guide to the Project Management Body of
Knowledge (PMBOK® Guide) (4th ed.).

Reese, G. (2009). Cloud Application Architectures: O'Reilly.

Roberto, C. (2010). Cloud Computing: Oportunidades, Drivers de Sucesso & Cases Study PT
Virtual Desktop. Semana Informática.

Ruparelia, N. B. (2010). Software Development Lifecycle Models. SIGSOFT Softw. Eng. Notes,
35(3), 8-13. doi: 10.1145/1764810.1764814

Schwaber, K., & Beedle, M. (2001). Agile Software Development with Scrum: Prentice Hall
PTR.

Selic, B. (2003). The pragmatics of model-driven development. Software, IEEE, 20(5), 19-25.
doi: 10.1109/ms.2003.1231146

Simos, M., Creps, D., Klinger, C., Levine, L., & Allemang, D. (14 June 1996). Organization
Domain Modeling (ODM) Guidebook, Version 2.0. . Informal Technical Report for
STARS, STARS-VC-A025/001/00.

Simos, M. A. (1995). Organization domain modeling (ODM): formalizing the core domain
modeling life cycle. SIGSOFT Softw. Eng. Notes, 20(SI), 196-205. doi:
10.1145/223427.211845

Sungwon, K., & Yoonseok, C. (2005). Designing logical architectures of software systems.
Paper presented at the Sixth International Conference on Software Engineering,
Artificial Intelligence, Networking and Parallel/Distributed Computing, 2005 and First
ACIS International Workshop on Self-Assembling Wireless Networks. SNPD/SAWN
2005. .

The Open Group. (2009). TOGAF Version 9 - The Open Group Architecture Framework
(TOGAF).

Vaishnavi, V. K., & Jr., W. K. (2008). Design Science Research Methods and Patterns Innovating
Information and Communication Technology: Auerbach Publications.

Vargo, S. L., & Lusch, R. F. (2004). The four service marketing myths. Journal of Service
Research, 6(4), 324.

Velte, A. T., Velte, T. J., & Elsenpeter, R. (2010). Cloud Computing: A Practical Approach:
McGraw-Hill.

Weiss, D. (1998). Commonality Analysis: A Systematic Process for Defining Families

http://www.omg.org/spec/BMM/1.1/
http://www.omg.org/spec/QVT/1.1
http://www.omg.org/spec/UML/2.4.1/

References

166

Development and Evolution of Software Architectures for Product Families. In F. van der
Linden (Ed.), (Vol. 1429, pp. 214-222): Springer Berlin / Heidelberg.

Weiss, D. M., & Lai, C. T. R. (1999). Software Product-Line Engineering: A Family-Based
Software Development Process: Addison-Wesley Professional.

Weiss, J. (2010). What Insurers Need to Know to Develop a Cloud Computing Strategy.
Insurance & Technology. Retrieved from
http://www.insurancetech.com/architecture-infrastructure/225800122

Winter, R., & Fischer, R. (2006a). Essential Layers, Artifacts, and Dependencies of Enterprise
Architecture. Paper presented at the 10th IEEE International Enterprise Distributed
Object Computing Conference Workshops (EDOCW).

Winter, R., & Fischer, R. (2006b). Essential Layers, Artifacts, and Dependencies of Enterprise
Architecture. Paper presented at the EDOCW'06.

Yin, R. K. (2003). Case Study Research - Design Methods (3rd ed.): SAGE Publications.

Yipeng, J., Hailong, S., Xudong, L., Jin, Z., & Shangda, B. (2009). A Decentralized Framework for
Executing Composite Services Based on BPMN. Paper presented at the
COMPUTATIONWORLD '09.

Yourdon Inc. (1993). Yourdon systems method: model-driven systems development: Prentice
Hall International Editions.

Yue, T., Briand, L. C., & Labiche, Y. (2011). A Systematic Review of Transformation Approaches
between User Requirements and Analysis Models. Requirements Engineering,
Vol.16(Issue 2).

Zachman, J. A. (1987). A framework for information systems architecture. IBM Syst. J., 26(3),
276-292.

Zou, J., & Pavlovski, C. J. (2006). Modeling Architectural Non Functional Requirements: From
Use Case to Control Case. Paper presented at the e-Business Engineering, 2006. ICEBE
'06. IEEE International Conference on.

Zowghi, D., & Coulin, C. (2005). Requirements elicitation: A survey of techniques, approaches,
and tools. Engineering and managing software requirements, Springer, Heidelberg,
19-46.

http://www.insurancetech.com/architecture-infrastructure/225800122

Annex A

This annex presents the initial use case context for the process-level V-Model and the

evolution of the process-level 4SRS logical architecture through iterations #1 to #4.

We also present a view of the logical architecture packages associated with actors.

This view, in Figure 59, allows having an understanding of the interactions that the

packages will have with the actors.

Figure 54: Process-level ISOFIN functionalities

Business

User

Process-level ISOFIN Functionalities

SBS DeveloperSBS Business

Analyst

IBS DeveloperIBS Business

Analyst

Auditor

{U1.} Perform
Busines Activities

{U3.} Develop
SBS

{U2.} Develop IBS

{U4.} Perform
Audit Procedures

{U5.} Perform

System

Maintenance

<<uses>>

<<uses>>

System Administrator

Native Business Services

Remote

Business

Program

ISOFIN

Customer

Annex A

168

Figure 55: Process-level 4SRS iteration #1

<<interface>>
{AE1.1.i} Send

Commands to ISOFIN
Application

<<interface>>
{AE1.2.i} Receive

Information from ISOFIN
Application

<<data>>
{AE1.4.d} ISOFIN

Application
Configurations

<<data>>
{AE1.5.d} Subscription

Requirements

<<data>>
{AE1.6.d} IBS

Configuration Decisions

<<control>>
{AE1.7.c} Alert
Configurations

<<interface>>
{AE1.7.i} Create Alert

<<data>>
{AE1.8.d} IBS

Configurations

<<interface>>
{AE1.8.i} Interfaces

Configuration Commands

<<control>>
{AE1.9.c1} Validate

Platform Subscription

<<control>>
{AE1.9.c2} Validate
ISOFIN Customer

<<interface>>
{AE1.9.i} Send

Commands to IBS

<<interface>>
{AE1.10.i} Receive

Information from IBS

<<data>>
{AE1.11.d} Business

Needs Requirements

<<control>>
{AE2.1.c} Browse

Interfaces Catalogs

<<data>>
{AE2.1.d} ISOFIN
Functionalities

Requirements List

<<control>>
{AE2.3.1.c} IBS Internal
Structure Specification

<<interface>>
{AE2.3.1.i} Compose IBS

<<control>>
{AE2.3.2.c} ISOFIN

Application Specification

<<interface>>
{AE2.3.2.i} Compose
ISOFIN Application

<<data>>
{AE2.4.1.d} ISOFIN
Supplier Request

Decisions

<<control>>
{AE2.4.2.c} Execute
Conformance Tests

<<data>>
{AE2.4.2.d} ISOFIN
Customer Request

Decisions

<<interface>>
{AE2.4.2.i} Subscription

Request Analysis

<<data>>
{AE2.4.3.d} ISOFIN

Platform Supplier Policy

<<control>>
{AE2.4.4.c} Grant Access

to ISOFIN Platform

<<data>>
{AE2.4.4.d} ISOFIN

Platform Customer Policy

<<interface>>
{AE2.4.4.i} Communicate

Subscription Request
Status

<<control>>
{AE2.8.1.c1} Generic

Interface Design Rules

<<data>>
{AE2.9.d} ISOFIN

Application Configuration
Decisions

<<interface>>
{AE2.9.i} Pre-runtime

Interfaces Configuration

<<control>>
{AE2.11.c} Global

Publishing Integration
Decisions

<<interface>>
{AE2.11.i} Execute

Publishing Info
Integration

<<data>>
{AE3.1.d} Business
Requirements List

<<control>>
{AE3.2.c} Define NBS

Specs Subset

<<data>>
{AE3.3.d} SBS Catalog

Subscription
Requirements

<<interface>>
{AE3.3.i} Request

Platform Subscription

<<data>>
{AE3.4.d} SBS Design

Decisions

<<data>>
{AE3.5.d} NBS

Implementation
Decisions

{P1} Configurations

{P2} Subscriptions {P3} Browse/Select in Catalogs

{P4} Design

<<control>>
{AE5.1.c} Install Patches

<<data>>
{AE5.1.d} Infrastructure
Management Decisions

<<interface>>
{AE5.1.i} Manage

Infrastructure

<<data>>
{AE5.2.d} Infrastructure

Requirements List

<<data>>
{AE5.3.d} Service-level

Agreements

<<data>>
{AE5.4.d} Infrastructure-
related Risks Decisions

<<data>>
{AE5.5.d} Future

Maintenance Tasks List

{P8} System Maintenance

<<data>>
{AE4.1.d} Audit

Requirements Analysis

<<data>>
{AE4.2.d} Audit

Preparation

<<control>>
{AE4.3.c} Execute Service

Testing

<<interface>>
{AE4.3.i} Service Audits

<<data>>
{AE4.4.d} Delivery and

Support Decisions

<<data>>
{AE4.5.d} Process

Monitoring Decisions

<<interface>>
{AE4.6.i} Rate Audit

Goals

<<data>>
{AE4.7.d} Audit Results

{P7} Audit

<<control>>
{AE2.6.1.c} IBS Code

Organization Decisions

<<data>>
{AE2.6.2.d} IBS

Deployment Decisions

<<control>>
{AE2.8.1.c2} ISOFIN

Application Interface
Decisions

<<interface>>
{AE2.8.1.i} Generate

Code

<<data>>
{AE2.8.2.d} ISOFIN

Application Deployment
Decisions

<<interface>>
{AE2.8.2.i} Deploy

Interfaces

<<data>>
{AE3.6.d} SBS

Implementation
Decisions

<<interface>>
{AE3.6.i} Deploy SBS

{P5} Implementation

<<control>>
{AE2.10.c} Interfaces
Publication Decisions

<<interface>>
{AE2.10.i} Interfaces
Catalog Publication

<<data>>
{AE3.7.1.d} Remote SBS
Publishing Information

<<interface>>
{AE3.7.1.i} Remote SBS

Publishing Interface

<<data>>
{AE3.7.2.d} Local SBS

Publishing Information

<<interface>>
{AE3.7.2.i} Local SBS
Publishing Interface

{P6} Publish

Annex A

169

Figure 56: Process-level 4SRS iteration #2

<<interface>>
{AE1.1.i} Send

Commands to ISOFIN
Application

<<interface>>
{AE1.2.i} Receive

Information from ISOFIN
Application

<<data>>
{AE1.4.d} ISOFIN

Application
Configurations

<<data>>
{AE1.5.d} Consumer

Subscription
Requirements

<<data>>
{AE1.6.d} IBS

Configuration Decisions

<<control>>
{AE1.7.c} Alert
Configurations

<<interface>>
{AE1.7.i} Create Alert

<<data>>
{AE1.8.d} IBS

Configurations

<<interface>>
{AE1.8.i} Interfaces

Configuration Commands

<<control>>
{AE1.9.c1} Validate

Platform Subscription

<<control>>
{AE1.9.c2} Validate

Platform Access

<<interface>>
{AE1.9.i} Send

Commands to IBS

<<interface>>
{AE1.10.i} Receive

Information from IBS

<<control>>
{AE2.1.c} Browse

Interfaces Catalogs

<<data>>
{AE2.1.d} ISOFIN
Functionalities

Requirements List

<<control>>
{AE2.3.1.c} IBS Internal
Structure Specification

<<interface>>
{AE2.3.1.i} Compose IBS

<<control>>
{AE2.3.2.c} ISOFIN

Application Specification

<<interface>>
{AE2.3.2.i} Compose
ISOFIN Application

<<data>>
{AE2.4.1.d} ISOFIN
Supplier Request

Decisions

<<control>>
{AE2.4.2.c} Execute
Conformance Tests

<<data>>
{AE2.4.2.d} ISOFIN
Customer Request

Decisions

<<interface>>
{AE2.4.2.i} Subscription

Request Analysis

<<data>>
{AE2.4.3.d} ISOFIN

Platform Supplier Policy

<<control>>
{AE2.4.4.c} Grant Access

to ISOFIN Platform

<<data>>
{AE2.4.4.d} ISOFIN

Platform Customer Policy

<<interface>>
{AE2.4.4.i} Communicate

Subscription Request
Status

<<control>>
{AE2.8.1.c1} Generic

Interface Design Rules

<<data>>
{AE2.9.d} ISOFIN

Application Configuration
Decisions

<<control>>
{AE2.11.c} Global

Publishing Integration
Decisions

<<interface>>
{AE2.11.i} Execute

Publishing Info
Integration

<<data>>
{AE3.1.d} Business
Requirements List

<<control>>
{AE3.2.c} Define NBS

Specs Subset

<<data>>
{AE3.3.d} SBS Supplier

Subscription
Requirements

<<interface>>
{AE3.3.i} Request

Platform Subscription

<<data>>
{AE3.4.d} SBS Design

Decisions

<<data>>
{AE3.5.d} NBS

Implementation
Decisions

<<control>>
{AE5.1.c} Install Patches

<<data>>
{AE5.1.d} Infrastructure
Management Decisions

<<interface>>
{AE5.1.i} Manage

Infrastructure

<<data>>
{AE5.2.d} Infrastructure

Requirements List

<<data>>
{AE5.3.d} Service-level

Agreements

<<data>>
{AE5.4.d} Infrastructure-
related Risks Decisions

<<data>>
{AE5.5.d} Future

Maintenance Tasks List

{P8} System Maintenance

<<data>>
{AE4.1.d} Audit

Requirements Analysis

<<data>>
{AE4.2.d} Audit

Preparation

<<control>>
{AE4.3.c} Execute Service

Testing

<<interface>>
{AE4.3.i} Service Audits

<<data>>
{AE4.4.d} Delivery and

Support Decisions

<<data>>
{AE4.5.d} Process

Monitoring Decisions

<<interface>>
{AE4.6.i} Rate Audit

Goals

<<data>>
{AE4.7.d} Audit Results

{P7} Audit

<<control>>
{AE2.6.1.c} IBS Code

Organization Decisions

<<data>>
{AE2.6.2.d} IBS

Deployment Decisions

<<control>>
{AE2.8.1.c2} ISOFIN

Application Interface
Decisions

<<data>>
{AE2.8.2.d} ISOFIN

Application Deployment
Decisions

<<data>>
{AE3.6.d} SBS

Implementation
Decisions

<<interface>>
{AE3.6.i} Deploy SBS

<<data>>
{AE3.7.1.c} Remote SBS
Publishing Information

<<interface>>
{AE3.7.1.i} Remote SBS

Publishing Interface

<<data>>
{AE3.7.2.c} Local SBS

Publishing Information

<<interface>>
{AE3.7.2.i} Local SBS
Publishing Interface

{P1.1} SBS
Requirements

{P1.2} SBS
Analysis Decisions

{P1.3} SBS Generator

{P1.4} SBS

{P2.4} IBS

{P2.1} IBS
Requirements

{P2.2} IBS Analysis
Decisions

{P2.3} IBS Generator

<<interface>>
{AE1.6.i} Configure pre-

runtime IBS

<<data>>
{AE1.11.d1} Business
Needs Requirements

<<data>>
{AE1.11.d2} Business

Needs Fulfillment
Request

<<interface>>
{AE2.6.1.i} Generate IBS

Code

<<interface>>
{AE2.6.2.i} IBS

Deployment Process

<<control>>
{AE2.7.c} IBS Publication

Decisions

<<interface>>
{AE2.7.i} Execute IBS
Publication in Catalog

<<interface>>
{AE2.8.1.i} Interface

Generation

<<interface>>
{AE2.8.2.i} ISOFIN

Application Deployment
Process

<<interface>>
{AE2.9.i} Configure pre-

runtime ISOFIN
Application

<<control>>
{AE2.10.c} ISOFIN

Application Publication
Decisions

<<interface>>
{AE2.10.i} Execute ISOFIN
Application Publication in

Catalog

{P3.1} ISOFIN
Application

Requirements

{P3.2} ISOFIN
Application Analysis

Decisions

{P3.3} ISOFIN Application
Generator

{P3.4} ISOFIN Application

{P7} ISOFIN Platform Generic Tools

{P1.} SBS Development {P2} IBS Development {P3} ISOFIN Application
Development

{P6} ISOFIN Platform
Subscriptions Management

<<generates>>
<<generates>>

<<generates>>

Annex A

170

Figure 57:Process-level 4SRS iteration #3

<<interface>>
{AE1.1.i} Send

Commands to ISOFIN
Application

<<interface>>
{AE1.2.i} Receive

Information from ISOFIN
Application

<<data>>
{AE1.4.d} ISOFIN

Application
Configurations

<<data>>
{AE1.5.d} Consumer

Subscription
Requirements

<<data>>
{AE1.6.d} IBS

Configuration Decisions

<<control>>
{AE1.7.c} Alert
Configurations

<<interface>>
{AE1.7.i} Create Alert

<<data>>
{AE1.8.d} IBS

Configurations

<<interface>>
{AE1.8.i} Interfaces

Configuration Commands

<<control>>
{AE1.9.c1} Validate

Platform Subscription

<<control>>
{AE1.9.c2} Validate

Platform Access

<<interface>>
{AE1.9.i} Send

Commands to IBS

<<interface>>
{AE1.10.i} Receive

Information from IBS

<<control>>
{AE2.1.c} Access Remote

Catalogs

<<data>>
{AE2.1.d} ISOFIN
Functionalities

Requirements List

<<control>>
{AE2.3.1.c} IBS Internal
Structure Specification <<control>>

{AE2.3.2.c} ISOFIN
Application Specification

<<data>>
{AE2.4.1.d} ISOFIN
Supplier Request

Decisions

<<control>>
{AE2.4.2.c} Execute
Conformance Tests

<<data>>
{AE2.4.2.d} ISOFIN
Customer Request

Decisions

<<interface>>
{AE2.4.2.i} Subscription

Request Analysis

<<data>>
{AE2.4.3.d} ISOFIN

Platform Supplier Policy

<<control>>
{AE2.4.4.c} Grant Access

to ISOFIN Platform

<<data>>
{AE2.4.4.d} ISOFIN

Platform Customer Policy

<<interface>>
{AE2.4.4.i} Communicate

Subscription Request
Status

<<control>>
{AE2.8.1.c1} Generic

Interface Design Rules

<<data>>
{AE2.9.d} ISOFIN

Application Configuration
Decisions

<<control>>
{AE2.11.c} Global

Publishing Integration
Decisions

<<interface>>
{AE2.11.i} Execute

Publishing Info
Integration

<<data>>
{AE3.1.d} Business
Requirements List

<<control>>
{AE3.2.c} Define NBS

Specs Subset

<<data>>
{AE3.3.d} SBS Supplier

Subscription
Requirements

<<interface>>
{AE3.3.i} Request

Platform Subscription

<<data>>
{AE3.4.d} SBS Design

Decisions

<<data>>
{AE3.5.d} NBS

Implementation
Decisions

<<control>>
{AE5.1.c} Install Patches

<<data>>
{AE5.1.d} Infrastructure
Management Decisions

<<interface>>
{AE5.1.i} Manage

Infrastructure

<<data>>
{AE5.2.d} Infrastructure

Requirements List

<<data>>
{AE5.3.d} Service-level

Agreements

<<data>>
{AE5.4.d} Infrastructure-
related Risks Decisions

<<data>>
{AE5.5.d} Future

Maintenance Tasks List

{P5} System Maintenance

<<data>>
{AE4.1.d} Audit

Requirements Analysis
<<data>>

{AE4.2.d} Audit
Preparation

<<control>>
{AE4.3.c} Execute Service

Testing

<<interface>>
{AE4.3.i} Service Audits

<<data>>
{AE4.4.d} Delivery and

Support Decisions

<<data>>
{AE4.5.d} Process

Monitoring Decisions

<<interface>>
{AE4.6.i} Rate Audit

Goals

<<data>>
{AE4.7.d} Audit Results

{P4} Audit

<<control>>
{AE2.6.1.c} IBS Code

Organization Decisions

<<data>>
{AE2.6.2.d} IBS

Deployment Decisions

<<control>>
{AE2.8.1.c2} ISOFIN

Application Interface
Decisions

<<data>>
{AE2.8.2.d} ISOFIN

Application Deployment
Decisions

<<data>>
{AE3.6.d} SBS

Implementation
Decisions

<<interface>>
{AE3.6.i} Deploy SBS

<<data>>
{AE3.7.1.c} Remote SBS
Publishing Information

<<interface>>
{AE3.7.1.i} Remote SBS

Publishing Interface

<<data>>
{AE3.7.2.c} Local SBS

Publishing Information

<<interface>>
{AE3.7.2.i} Local SBS
Publishing Interface

{P1.1} SBS
Requirements

{P1.2} SBS
Analysis Decisions

{P1.3} SBS Generator

{P1.4} SBS

{P2.4} IBS

{P2.1} IBS
Requirements

{P2.2} IBS Analysis
Decisions

{P2.3} IBS Generator

<<interface>>
{AE1.6.i} Configure pre-

runtime IBS

<<data>>
{AE1.11.d1} Business
Needs Requirements

<<data>>
{AE1.11.d2} Business

Needs Fulfillment
Request

<<interface>>
{AE2.6.1.i} Generate IBS

Code

<<interface>>
{AE2.6.2.i} IBS

Deployment Process

<<control>>
{AE2.7.c} IBS Publication

Decisions

<<interface>>
{AE2.7.i} Execute IBS
Publication in Catalog

<<interface>>
{AE2.8.1.i} Interface

Generation <<interface>>
{AE2.8.2.i} ISOFIN

Application Deployment
Process

<<interface>>
{AE2.9.i} Configure pre-

runtime ISOFIN
Application

<<control>>
{AE2.10.c} ISOFIN

Application Publication
Decisions

<<interface>>
{AE2.10.i} Execute ISOFIN
Application Publication in

Catalog

{P3.1} ISOFIN
Application

Requirements

{P3.2} ISOFIN
Application

Analysis Decisions

{P3.3} ISOFIN Application
Generator

{P3.4} ISOFIN Application

{P1.} SBS Development {P2} IBS Development

{P3} ISOFIN Application
Development

{P6} ISOFIN Platform Subscriptions Management

«generates»

<<control>>
{AE3.1.c} Access Local

Catalogs

«generates»

«generates»

Annex A

171

Figure 58: Process-level 4SRS iteration #4

<<interface>>
{AE1.1.i} Send

Commands to ISOFIN
Application

<<interface>>
{AE1.2.i} Receive

Information from ISOFIN
Application

<<data>>
{AE1.4.d} ISOFIN

Application
Configurations

<<data>>
{AE1.5.d} Consumer

Subscription
Requirements

<<data>>
{AE1.6.d} IBS

Configuration Decisions

<<control>>
{AE1.7.c} Alert
Configurations

<<interface>>
{AE1.7.i} Create Alert

<<data>>
{AE1.8.d} IBS

Configurations

<<interface>>
{AE1.8.i} Interfaces

Configuration Commands

<<control>>
{AE1.9.c1} Validate

Platform Subscription

<<control>>
{AE1.9.c2} Validate

Platform Access

<<interface>>
{AE1.9.i} Send

Commands to IBS

<<interface>>
{AE1.10.i} Receive

Information from IBS

<<control>>
{AE2.1.c} Access Remote

Catalogs

<<data>>
{AE2.1.d} ISOFIN
Functionalities

Requirements List

<<control>>
{AE2.3.1.c} IBS Internal
Structure Specification <<control>>

{AE2.3.2.c} ISOFIN
Application Specification

<<data>>
{AE2.4.1.d} ISOFIN
Supplier Request

Decisions

<<control>>
{AE2.4.2.c} Execute
Conformance Tests

<<data>>
{AE2.4.2.d} ISOFIN
Customer Request

Decisions

<<interface>>
{AE2.4.2.i} Subscription

Request Analysis

<<data>>
{AE2.4.3.d} ISOFIN

Platform Supplier Policy

<<control>>
{AE2.4.4.c} Grant Access

to ISOFIN Platform

<<data>>
{AE2.4.4.d} ISOFIN

Platform Customer Policy

<<interface>>
{AE2.4.4.i} Communicate

Subscription Request
Status

<<control>>
{AE2.8.1.c1} Generic

Interface Design Rules

<<data>>
{AE2.9.d} ISOFIN

Application Configuration
Decisions

<<control>>
{AE2.11.c} Global

Publishing Integration
Decisions

<<interface>>
{AE2.11.i} Execute

Publishing Info
Integration

<<data>>
{AE3.1.d} Business
Requirements List

<<control>>
{AE3.2.c} Define NBS

Specs Subset

<<data>>
{AE3.3.d} SBS Supplier

Subscription
Requirements

<<interface>>
{AE3.3.i} Request

Platform Subscription

<<data>>
{AE3.4.d} SBS Design

Decisions

<<data>>
{AE3.5.d} NBS

Implementation
Decisions

<<control>>
{AE5.1.c} Install Patches

<<data>>
{AE5.1.d} Infrastructure
Management Decisions

<<interface>>
{AE5.1.i} Manage

Infrastructure

<<data>>
{AE5.2.d} Infrastructure

Requirements List

<<data>>
{AE5.3.d} Service-level

Agreements

<<data>>
{AE5.4.d} Infrastructure-
related Risks Decisions

<<data>>
{AE5.5.d} Future

Maintenance Tasks List

{P5} System Maintenance

<<data>>
{AE4.1.d} Audit

Requirements Analysis
<<data>>

{AE4.2.d} Audit
Preparation

<<control>>
{AE4.3.c} Execute Service

Testing

<<interface>>
{AE4.3.i} Service Audits

<<data>>
{AE4.4.d} Delivery and

Support Decisions

<<data>>
{AE4.5.d} Process

Monitoring Decisions

<<interface>>
{AE4.6.i} Rate Audit

Goals

<<data>>
{AE4.7.d} Audit Results

{P4} Audit

<<control>>
{AE2.6.1.c} IBS Code

Organization Decisions

<<data>>
{AE2.6.2.d} IBS

Deployment Decisions

<<control>>
{AE2.8.1.c2} ISOFIN

Application Interface
Decisions

<<data>>
{AE2.8.2.d} ISOFIN

Application Deployment
Decisions

<<data>>
{AE3.6.d} SBS

Implementation
Decisions

<<interface>>
{AE3.6.i} Generate SBS

Code

<<data>>
{AE3.7.1.c} Remote SBS
Publishing Information

<<interface>>
{AE3.7.1.i} Remote SBS

Publishing Interface

<<data>>
{AE3.7.2.c} Local SBS

Publishing Information

<<interface>>
{AE3.7.2.i} Local SBS
Publishing Interface

{P1.1} SBS
Requirements

{P1.2} SBS
Analysis Decisions

{P1.3} SBS Generator

{P1.4} SBS

{P2.4} IBS

{P2.1} IBS
Requirements

{P2.2} IBS Analysis
Decisions

{P2.3} IBS Generator

<<interface>>
{AE1.6.i} Configure pre-

runtime IBS

<<data>>
{AE1.11.d1} Business
Needs Requirements

<<data>>
{AE1.11.d2} Business

Needs Fulfillment
Request

<<interface>>
{AE2.6.1.i} Generate IBS

Code

<<interface>>
{AE2.6.2.i} IBS

Deployment Process

<<control>>
{AE2.7.c} IBS Publication

Decisions

<<interface>>
{AE2.7.i} Execute IBS
Publication in Catalog

<<interface>>
{AE2.8.1.i} Interface

Generation <<interface>>
{AE2.8.2.i} ISOFIN

Application Deployment
Process

<<interface>>
{AE2.9.i} Configure pre-

runtime ISOFIN
Application

<<control>>
{AE2.10.c} ISOFIN

Application Publication
Decisions

<<interface>>
{AE2.10.i} Execute ISOFIN
Application Publication in

Catalog

{P3.1} ISOFIN
Application

Requirements

{P3.2} ISOFIN
Application

Analysis Decisions

{P3.3} ISOFIN Application
Generator

{P3.4} ISOFIN Application

{P1.} SBS Development {P2} IBS Development

{P3} ISOFIN Application
Development

{P6} ISOFIN Platform Subscriptions Management

«generates»

<<control>>
{AE3.1.c} Access Local

Catalogs

«generates»

«generates»

Annex A

172

Figure 59: Logical Packages with Actors

{P8} System
Maintenance

{P7} Audit

{P1.1} SBS
Requirements

{P1.2} SBS
Analysis

Decisions

{P1.3} SBS
Generator

{P1.4} SBS

{P2.4} IBS

{P2.1} IBS
Requirements

{P2.2} IBS
Analysis

Decisions

{P2.3} IBS
Generator

{P3.1} ISOFIN
Application

Requirements

{P3.2} ISOFIN
Application

Analysis Decisions

{P3.3} ISOFIN
Application
Generator

{P3.4} ISOFIN
Application

{P1.} SBS
Development {P2} IBS Development {P3} ISOFIN Application

Development

{P6} ISOFIN Platform Subscriptions Management

«generates»

Business

User

SBS Developer

SBS Business

Analyst

IBS Developer

IBS Business

Analyst

Auditor

System Administrator

Native Business Services

Remote

Business

Program

ISOFIN

Customer

«generates»

<<data>>
{AE1.11.d1} Business
Needs Requirements

«generates»

Annex B

This annex presents the initial use case context for the product-level V-Model and the

evolution of the product-level 4SRS logical architecture through iterations #1 to #3

and also the full representation of the main software products that can be extracted

from the logical architecture – see Figure 63: Product-level Logical Architecture Main

Products. This main product representation allows to identifying the architectural

elements that make up the intended software solution and overlaps regarding

architectural elements.

Annex B

174

Figure 60: Product-level 4SRS iteration #1

Repositories

6x

6x

6x

6x

3x

3x

Alert Editor

<<data>>
{AE4.1.d} Configured Alert

Information

<<interface>>
{AE4.1.i} Alert Configuration

Interface

Alert Installer

<<control>>
{AE4.2.1.c} Alert Code

Generator

<<control>>
{AE4.2.2.c1} Schedule Alert

<<control>>
{AE4.2.2.c2} Execute Alert

ISOFIN App
Communication

<<interface>>
{AE3.5.1.i} Send Information

From ISOFIN App

<<interface>>
{AE3.5.2.i} Receive

Information in ISOFIN App

<<interface>>
{AE3.6.1.i} Send Configuration
Commands From ISOFIN App

<<interface>>
{AE3.6.2.i} Receive

Configuration Commands to
ISOFIN App

<<interface>>
{AE3.6.3.i} Send Usage

Commands From ISOFIN App

<<interface>>
{AE3.6.4.i} Receive Usage
Commands to ISOFIN App

ISOFIN App Installer

<<interface>>
{AE3.3.1.i} ISOFIN Application

Publisher Interface

<<control>>
{AE3.3.2.c} ISOFIN App

Deployer

<<interface>>
{AE3.3.2.i} ISOFIN App
Deployment Interface

<<control>>
{AE3.3.3.c} Export ISOFIN App

Code

<<control>>
{AE3.3.4.c} ISOFIN App

Documentation Generator

<<interface>>
{AE3.3.4.i} ISOFIN App
Documentation Editor

<<control>>
{AE3.4.2.c} Test ISOFIN

Application Before
Deployment

Security
Management

<<control>>
{AE1.6.c} Grant Access to

ISOFIN Platform

<<interface>>
{AE1.6.i} ISOFIN Platform

Access and Usage
Management

<<control>>
{AE2.2.6.c1} Selected Object

permissions

<<control>>
{AE2.4.1.c} IBS

Communication Validation

<<control>>
{AE3.5.1.c} ISOFIN App

Communication Validation Logs Management

<<interface>>
{AE2.4.1.i1} IBS Log Manager

<<interface>>
{AE3.5.1.i1} ISOFIN App Log

Manager

<<interface>>
{AE4.3.i1} Alert Log Manager

<<interface>>
{AE1.3.5.i1} Subscription Log

Manager

Supplier Subscription
Management

<<control>>
{AE1.3.1.c} Evaluate Supplier

subscription

<<interface>>
{AE1.3.1.i} Supplier

subscription evaluation
interface

<<interface>>
{AE1.3.3.i} Supplier’s

Subscriptions Requirements
Interface

<<interface>>
{AE1.5.1.i} Publish SBS

Subscsription in Catalog
Interface

Customer
Subscription
Management

<<control>>
{AE1.3.2.c} Evaluate Customer

subscription

<<interface>>
{AE1.3.2.i} Customer

subscription evaluation
interface

<<interface>>
{AE1.3.4.i} Customer’s

Subscriptions Requirements
Interface

<<interface>>
{AE1.5.2.i} Publish Customer

Subscsription in Catalog
Interface

IBS Communication

<<interface>>
{AE2.4.1.i} Send Information

From IBS

<<interface>>
{AE2.4.2.i} Receive
Information in IBS

<<interface>>
{AE2.5.1.i} Send Configuration

Commands From IBS

<<interface>>
{AE2.5.2.i} Receive

Configuration Commands to
IBS

<<interface>>
{AE2.5.3.i} Send Usage
Commands From IBS

<<interface>>
{AE2.5.4.i} Receive Usage

Commands to IBS

IBS Installer

<<control>>
{AE2.2.7.c} IBS Interface

Generator

<<data>>
{AE2.2.7.d} IBS Interface

Repository

<<interface>>
{AE2.3.1.i} IBS Publisher

Interface

<<control>>
{AE2.3.2.c} IBS Deployer

<<interface>>
{AE2.3.2.i} IBS Deployer

Interface

<<control>>
{AE2.3.3.c} IBS Documentation

Generator

<<interface>>
{AE2.3.3.i} IBS Documentation

Editor

<<control>>
{AE2.7.2.c} Test IBS Before

Deployment

IBS Editor

<<control>>
{AE2.1.2.c1} Selected Object

configurations

<<data>>
{AE2.1.2.d} IBS Configuration

Repository

<<interface>>
{AE2.1.2.i} Low-level IBS
Configuration Interface

<<data>>
{AE2.1.3.d} IBS Structure

Repository

<<interface>>
{AE2.1.3.i} Update IBS

Structure Interface

<<control>>
{AE2.1.4.c} Compiles IBS

information

<<interface>>
{AE2.1.4.i} Update IBS

Interface

<<interface>>
{AE2.2.3.i} IBS Structure

interface

<<control>>
{AE2.2.4.c} Define IBS Code

Gaps

<<interface>>
{AE2.2.4.i} IBS Coding and

Compiling Interface

<<control>>
{AE2.2.5.c} Compile IBS code

<<data>>
{AE2.2.5.d} IBS Pre-
Deployment Storage

<<interface>>
{AE2.2.6.i} Permissions

Interface

<<control>>
{AE2.7.1.c} IBS Customization

Filter

<<interface>>
{AE2.7.1.i} IBS Customization

Interface

<<interface>>
{AE2.6.3.i} IBS

Interconnectivity interface

IBS Repository

<<data>>
{AE2.1.1.d} IBS Repository

<<interface>>
{AE2.6.1.i} IBS Repository

Interface

SBS Repository

<<data>>
{AE2.6.2.d} SBS Repository

<<interface>>
{AE2.6.2.i} SBS Repository

Interface

Alert Repository

<<data>>
{AE4.3.d} Alert Repository

<<interface>>
{AE4.3.i/c} Scheduled Alert

Dispatcher

Subscription
Repository

<<control>>
{AE1.3.5.c1} Subscription

Duplicity Verification

<<data>>
{AE1.3.5.d} ISOFIN Platform
Subscription Info Repository

<<interface>>
{AE1.3.5.i} Subscription

Repository Interface

<<data>>
{AE1.4.d} ISOFIN Platform
Subscription Assessment

Repository

<<interface>>
{AE1.8.1.i} Manage ISOFIN

Suppliers

<<interface>>
{AE1.8.2.i} Manage ISOFIN

Customers

Logs Repository

<<data>>
{AE2.4.1.d} IBS Logs

Repository

<<data>>
{AE3.5.1.d} ISOFIN App Logs

Repository

<<data>>
{AE4.3.d1} Alert Logs

Repository

<<interface>>
{AE4.3.i2} Log Repository

Interface

<<data>>
{AE1.3.5.d1} Subscription Logs

Repository

Security Repository

<<data>>
{AE1.2.1.d} ISOFIN Platform

Policies Repository

<<data>>
{AE1.6.d} ISOFIN Platform

Access Repository

ISOFIN App
Repository

<<data>>
{AE3.3.1.d} ISOFIN App

Repository

<<interface>>
{AE3.3.1.i1} ISOFIN App

Repository

Policies Management

<<interface>>
{AE1.2.1.i} Configure Supplier

Policies Interface

<<interface>>
{AE1.2.2.i} Configure

Customer Policies Interface

Subscription Management

<<interface>>
{AE1.1.1.i} Fulfillment

Subscription Requirements
Interface

<<control>>
{AE1.1.2.c1} Verifiy

Subscription data duplicity

<<control>>
{AE1.1.2.c} Validate

subscription requirement
fulfillment

<<interface>>
{AE1.1.2.i} Manual

Subscription Validation
Interface

<<interface>>
{AE1.4.i} Subscription Request

Interface

<<control>>
{AE1.7.c} Control Subscription

Requests

<<interface>>
{AE1.7.i} Suscription Request

Status Interface

ISOFIN App Editor

<<interface>>
{AE3.1.i} ISOFIN Application

Model Editor

<<interface>>
{AE3.2.1.i} IBS Information

Retrieval

<<control>>
{AE3.2.2.c} Generate ISOFIN

App Code

<<interface>>
{AE3.2.2.i} ISOFIN Application

Coding and Compiling
Interface

<<interface>>
{AE3.2.3.i} ISOFIN Application

Model Interface

<<control>>
{AE3.2.4.c} Associate Visual

Representation to
Functionality

<<interface>>
{AE3.4.1.i} ISOFIN Application

Customization Interface

««GENERATES»»

««GENERATES»»

Annex B

175

Figure 61: Product-level 4SRS iteration #2

Repositories

6x

6x

6x

6x

3x

3x

Alert Editor

<<data>>
{AE4.1.d} Configured Alert

Information

<<interface>>
{AE4.1.i} Alert Configuration

Interface

Alert Installer

<<control>>
{AE4.2.1.c} Alert Code

Generator

<<control>>
{AE4.2.2.c1} Schedule Alert

<<control>>
{AE4.2.2.c2} Execute Alert

ISOFIN App
Communication

<<interface>>
{AE3.5.1.i} Send Information

From ISOFIN App

<<interface>>
{AE3.5.2.i} Receive

Information in ISOFIN App

<<interface>>
{AE3.6.1.i} Send Configuration
Commands From ISOFIN App

<<interface>>
{AE3.6.2.i} Receive

Configuration Commands to
ISOFIN App

<<interface>>
{AE3.6.3.i} Send Usage

Commands From ISOFIN App

<<interface>>
{AE3.6.4.i} Receive Usage
Commands to ISOFIN App

ISOFIN App Installer

<<interface>>
{AE3.3.1.i} ISOFIN Application

Publisher Interface

<<control>>
{AE3.3.2.c} ISOFIN App

Deployer

<<interface>>
{AE3.3.2.i} ISOFIN App
Deployment Interface

<<control>>
{AE3.3.3.c} Export ISOFIN App

Code

<<control>>
{AE3.3.4.c} ISOFIN App

Documentation Generator

<<interface>>
{AE3.3.4.i} ISOFIN App
Documentation Editor

<<control>>
{AE3.4.2.c} Test ISOFIN

Application Before
Deployment

Security
Management

<<control>>
{AE1.6.c} Grant Access to

ISOFIN Platform

<<interface>>
{AE1.6.i} ISOFIN Platform

Access and Usage
Management

<<control>>
{AE2.2.6.c1} Selected Object

permissions

<<control>>
{AE2.4.1.c} IBS

Communication Validation

<<control>>
{AE3.5.1.c} ISOFIN App

Communication Validation Logs Management

<<interface>>
{AE2.4.1.i1} IBS Log Manager

<<interface>>
{AE3.5.1.i1} ISOFIN App Log

Manager

<<interface>>
{AE4.3.i1} Alert Log Manager

<<interface>>
{AE1.3.5.i1} Subscription Log

Manager

Supplier Subscription
Management

<<control>>
{AE1.3.1.c} Evaluate Supplier

subscription

<<interface>>
{AE1.3.1.i} Supplier

subscription evaluation
interface

<<interface>>
{AE1.3.3.i} Supplier’s

Subscriptions Requirements
Interface

<<interface>>
{AE1.5.1.i} Publish SBS

Subscsription in Catalog
Interface

Customer
Subscription
Management

<<control>>
{AE1.3.2.c} Evaluate Customer

subscription

<<interface>>
{AE1.3.2.i} Customer

subscription evaluation
interface

<<interface>>
{AE1.3.4.i} Customer’s

Subscriptions Requirements
Interface

<<interface>>
{AE1.5.2.i} Publish Customer

Subscsription in Catalog
Interface

IBS Communication

<<interface>>
{AE2.4.1.i} Send Information

From IBS

<<interface>>
{AE2.4.2.i} Receive
Information in IBS

<<interface>>
{AE2.5.1.i} Send Configuration

Commands From IBS

<<interface>>
{AE2.5.2.i} Receive

Configuration Commands to
IBS

<<interface>>
{AE2.5.3.i} Send Usage
Commands From IBS

<<interface>>
{AE2.5.4.i} Receive Usage

Commands to IBS

IBS Installer

<<control>>
{AE2.2.7.c} IBS Interface

Generator

<<data>>
{AE2.2.7.d} IBS Interface

Repository

<<interface>>
{AE2.3.1.i} IBS Publisher

Interface

<<control>>
{AE2.3.2.c} IBS Deployer

<<interface>>
{AE2.3.2.i} IBS Deployer

Interface

<<control>>
{AE2.3.3.c} IBS Documentation

Generator

<<interface>>
{AE2.3.3.i} IBS Documentation

Editor

<<control>>
{AE2.7.2.c} Test IBS Before

Deployment

IBS Editor

<<control>>
{AE2.1.2.c1} Selected Object

configurations

<<data>>
{AE2.1.2.d} IBS Configuration

Repository

<<interface>>
{AE2.1.2.i} Low-level IBS
Configuration Interface

<<data>>
{AE2.1.3.d} IBS Structure

Repository

<<interface>>
{AE2.1.3.i} Update IBS

Structure Interface

<<control>>
{AE2.1.4.c} Compiles IBS

information

<<interface>>
{AE2.1.4.i} Update IBS

Interface

<<interface>>
{AE2.2.3.i} IBS Structure

interface

<<control>>
{AE2.2.4.c} Define IBS Code

Gaps

<<interface>>
{AE2.2.4.i} IBS Coding and

Compiling Interface

<<control>>
{AE2.2.5.c} Compile IBS code

<<data>>
{AE2.2.5.d} IBS Pre-
Deployment Storage

<<interface>>
{AE2.2.6.i} Permissions

Interface

<<control>>
{AE2.7.1.c} IBS Customization

Filter

<<interface>>
{AE2.7.1.i} IBS Customization

Interface

<<interface>>
{AE2.6.3.i} IBS

Interconnectivity interface

IBS Repository

<<data>>
{AE2.1.1.d} IBS Repository

<<interface>>
{AE2.6.1.i} IBS Repository

Interface

SBS Repository

<<data>>
{AE2.6.2.d} SBS Repository

<<interface>>
{AE2.6.2.i} SBS Repository

Interface

Alert Repository

<<data>>
{AE4.3.d} Alert Repository

<<interface>>
{AE4.3.i/c} Scheduled Alert

Dispatcher

Subscription
Repository

<<control>>
{AE1.3.5.c1} Subscription

Duplicity Verification

<<data>>
{AE1.3.5.d} ISOFIN Platform
Subscription Info Repository

<<interface>>
{AE1.3.5.i} Subscription

Repository Interface

<<data>>
{AE1.4.d} ISOFIN Platform
Subscription Assessment

Repository

<<interface>>
{AE1.8.1.i} Manage ISOFIN

Suppliers

<<interface>>
{AE1.8.2.i} Manage ISOFIN

Customers

Logs Repository

<<data>>
{AE2.4.1.d} IBS Logs

Repository

<<data>>
{AE3.5.1.d} ISOFIN App Logs

Repository

<<data>>
{AE4.3.d1} Alert Logs

Repository

<<interface>>
{AE4.3.i2} Log Repository

Interface

<<data>>
{AE1.3.5.d1} Subscription Logs

Repository

Security Repository

<<data>>
{AE1.2.1.d} ISOFIN Platform

Policies Repository

<<data>>
{AE1.6.d} ISOFIN Platform

Access Repository

ISOFIN App
Repository

<<data>>
{AE3.3.1.d} ISOFIN App

Repository

<<interface>>
{AE3.3.1.i1} ISOFIN App

Repository

Policies Management

<<interface>>
{AE1.2.1.i} Configure Supplier

Policies Interface

<<interface>>
{AE1.2.2.i} Configure

Customer Policies Interface

Subscription Management

<<interface>>
{AE1.1.1.i} Fulfillment

Subscription Requirements
Interface

<<control>>
{AE1.1.2.c1} Verifiy

Subscription data duplicity

<<control>>
{AE1.1.2.c} Validate

subscription requirement
fulfillment

<<interface>>
{AE1.1.2.i} Manual

Subscription Validation
Interface

<<interface>>
{AE1.4.i} Subscription Request

Interface

<<control>>
{AE1.7.c} Control Subscription

Requests

<<interface>>
{AE1.7.i} Suscription Request

Status Interface

ISOFIN App Editor

<<interface>>
{AE3.1.i} ISOFIN Application

Model Editor

<<interface>>
{AE3.2.1.i} IBS Information

Retrieval

<<control>>
{AE3.2.2.c} Generate ISOFIN

App Code

<<interface>>
{AE3.2.2.i} ISOFIN Application

Coding and Compiling
Interface

<<interface>>
{AE3.2.3.i} ISOFIN Application

Model Interface

<<control>>
{AE3.2.4.c} Associate Visual

Representation to
Functionality

<<interface>>
{AE3.4.1.i} ISOFIN Application

Customization Interface

««GENERATES»»

««GENERATES»»

Annex B

176

Figure 62: Product-level 4SRS iteration #3

Repositories

Alert Editor

<<data>>
{AE4.1.d} Configured Alert

Information

<<interface>>
{AE4.1.i} Alert Configuration

Interface

Alert Installer

<<control>>
{AE4.2.1.c} Alert Code

Generator

<<control>>
{AE4.2.2.c1} Schedule Alert

<<control>>
{AE4.2.2.c2} Execute Alert

ISOFIN App
Communication

<<interface>>
{AE3.5.1.i} Send Information

From ISOFIN App

<<interface>>
{AE3.5.2.i} Receive

Information in ISOFIN App

<<interface>>
{AE3.6.1.i} Send Configuration
Commands From ISOFIN App

<<interface>>
{AE3.6.2.i} Receive

Configuration Commands to
ISOFIN App

<<interface>>
{AE3.6.3.i} Send Usage

Commands From ISOFIN App

<<interface>>
{AE3.6.4.i} Receive Usage
Commands to ISOFIN App

ISOFIN App Installer

<<interface>>
{AE3.3.1.i} ISOFIN Application

Publisher Interface

<<control>>
{AE3.3.2.c} ISOFIN App

Deployer

<<interface>>
{AE3.3.2.i} ISOFIN App
Deployment Interface

<<control>>
{AE3.3.3.c} Export ISOFIN App

Code

<<control>>
{AE3.3.4.c} ISOFIN App

Documentation Generator

<<interface>>
{AE3.3.4.i} ISOFIN App
Documentation Editor

<<control>>
{AE3.4.2.c} Test ISOFIN

Application Before
Deployment

Security Management

<<control>>
{AE1.6.c} Grant Access to

ISOFIN Platform

<<interface>>
{AE1.6.i} ISOFIN Platform

Access and Usage
Management

<<control>>
{AE2.2.6.c1} Selected Object

permissions

<<control>>
{AE2.4.1.c} IBS

Communication Validation

<<control>>
{AE3.5.1.c} ISOFIN App

Communication Validation

Logs Management

<<interface>>
{AE2.4.1.i1} IBS Log Manager

<<interface>>
{AE3.5.1.i1} ISOFIN App Log

Manager

<<interface>>
{AE4.3.i1} Alert Log Manager

<<interface>>
{AE1.3.5.i1} Subscription Log

Manager

Supplier Subscription
Management

<<control>>
{AE1.3.1.c} Evaluate Supplier

subscription

<<interface>>
{AE1.3.1.i} Supplier

subscription evaluation
interface

<<interface>>
{AE1.3.3.i} Supplier’s

Subscriptions Requirements
Interface

<<interface>>
{AE1.5.1.i} Publish SBS

Subscsription in Catalog
Interface

Customer
Subscription
Management

<<control>>
{AE1.3.2.c} Evaluate Customer

subscription

<<interface>>
{AE1.3.2.i} Customer

subscription evaluation
interface

<<interface>>
{AE1.3.4.i} Customer’s

Subscriptions Requirements
Interface

<<interface>>
{AE1.5.2.i} Publish Customer

Subscsription in Catalog
Interface

IBS Communication

<<interface>>
{AE2.4.1.i} Send Information

From IBS

<<interface>>
{AE2.4.2.i} Receive
Information in IBS

<<interface>>
{AE2.5.1.i} Send Configuration

Commands From IBS

<<interface>>
{AE2.5.2.i} Receive

Configuration Commands to
IBS

<<interface>>
{AE2.5.3.i} Send Usage
Commands From IBS

<<interface>>
{AE2.5.4.i} Receive Usage

Commands to IBS

IBS Installer

<<control>>
{AE2.2.7.c} IBS Interface

Generator

<<data>>
{AE2.2.7.d} IBS Interface

Repository

<<interface>>
{AE2.3.1.i} IBS Publisher

Interface

<<control>>
{AE2.3.2.c} IBS Deployer

<<interface>>
{AE2.3.2.i} IBS Deployer

Interface

<<control>>
{AE2.3.3.c} IBS Documentation

Generator

<<interface>>
{AE2.3.3.i} IBS Documentation

Editor

<<control>>
{AE2.7.2.c} Test IBS Before

Deployment

IBS Editor

<<control>>
{AE2.1.2.c1} Selected Object

configurations

<<data>>
{AE2.1.2.d} IBS Configuration

Repository

<<interface>>
{AE2.1.2.i} Low-level IBS
Configuration Interface

<<data>>
{AE2.1.3.d} IBS Structure

Repository

<<interface>>
{AE2.1.3.i} Update IBS

Structure Interface

<<control>>
{AE2.1.4.c} Compiles IBS

information

<<interface>>
{AE2.1.4.i} Update IBS

Interface

<<interface>>
{AE2.2.3.i} IBS Structure

interface

<<control>>
{AE2.2.4.c} Define IBS Code

Gaps

<<interface>>
{AE2.2.4.i} IBS Coding and

Compiling Interface

<<control>>
{AE2.2.5.c} Compile IBS code

<<data>>
{AE2.2.5.d} IBS Pre-
Deployment Storage

<<interface>>
{AE2.2.6.i} Permissions

Interface

<<control>>
{AE2.7.1.c} IBS Customization

Filter

<<interface>>
{AE2.7.1.i} IBS Customization

Interface

<<interface>>
{AE2.6.3.i} IBS

Interconnectivity interface

IBS Repository

<<data>>
{AE2.1.1.d} IBS Repository

<<interface>>
{AE2.6.1.i} IBS Repository

Interface

SBS Repository

<<data>>
{AE2.6.2.d} SBS Repository

<<interface>>
{AE2.6.2.i} SBS Repository

Interface

Alert Repository

<<data>>
{AE4.3.d} Alert Repository

<<interface>>
{AE4.3.i/c} Scheduled Alert

Dispatcher

Subscription
Repository

<<control>>
{AE1.3.5.c1} Subscription

Duplicity Verification

<<data>>
{AE1.3.5.d} ISOFIN Platform
Subscription Info Repository

<<interface>>
{AE1.3.5.i} Subscription

Repository Interface

<<data>>
{AE1.4.d} ISOFIN Platform
Subscription Assessment

Repository

<<interface>>
{AE1.8.1.i} Manage ISOFIN

Suppliers

<<interface>>
{AE1.8.2.i} Manage ISOFIN

Customers

Logs Repository

<<data>>
{AE2.4.1.d} IBS Logs

Repository

<<data>>
{AE3.5.1.d} ISOFIN App Logs

Repository

<<data>>
{AE4.3.d1} Alert Logs

Repository

<<interface>>
{AE4.3.i2} Log Repository

Interface

<<data>>
{AE1.3.5.d1} Subscription Logs

Repository

Security Repository

<<data>>
{AE1.2.1.d} ISOFIN Platform

Policies Repository

<<data>>
{AE1.6.d} ISOFIN Platform

Access Repository

ISOFIN App
Repository

<<data>>
{AE3.3.1.d} ISOFIN App

Repository

<<interface>>
{AE3.3.1.i1} ISOFIN App

Repository

Policies Management

<<interface>>
{AE1.2.1.i} Configure Supplier

Policies Interface

<<interface>>
{AE1.2.2.i} Configure

Customer Policies Interface

Subscription Management

<<interface>>
{AE1.1.1.i} Fulfillment

Subscription Requirements
Interface

<<control>>
{AE1.1.2.c1} Verifiy

Subscription data duplicity

<<control>>
{AE1.1.2.c} Validate

subscription requirement
fulfillment

<<interface>>
{AE1.1.2.i} Manual

Subscription Validation
Interface

<<interface>>
{AE1.4.i} Subscription Request

Interface

<<control>>
{AE1.7.c} Control Subscription

Requests

<<interface>>
{AE1.7.i} Suscription Request

Status Interface

ISOFIN App Editor

<<interface>>
{AE3.1.i} ISOFIN Application

Model Editor

<<interface>>
{AE3.2.1.i} IBS Information

Retrieval

<<control>>
{AE3.2.2.c} Generate ISOFIN

App Code

<<interface>>
{AE3.2.2.i} ISOFIN Application

Coding and Compiling
Interface

<<interface>>
{AE3.2.3.i} ISOFIN Application

Model Interface

<<control>>
{AE3.2.4.c} Associate Visual

Representation to
Functionality

<<interface>>
{AE3.4.1.i} ISOFIN Application

Customization Interface

««GENERATES»»

<<interface>>
{AE2.7.2.i} IBS Test Generator

<<interface>>
{AE2.6.2.i1} SBS Pallet

Retrieval Interface

<<interface>>
{AE2.6.1.i1} IBS Pallet

Retrieval Interface

2x

6x

6x

6x

6x

5x

6x

6x

2x

2x

2x

3x

3x

««GENERATES»»

Annex B

177

Figure 63: Product-level Logical Architecture Main Products

Repositories

Alert Editor

<<data>>
{AE4.1.d} Configured Alert

Information

<<interface>>
{AE4.1.i} Alert Configuration

Interface

Alert Installer

<<control>>
{AE4.2.1.c} Alert Code

Generator

<<control>>
{AE4.2.2.c1} Schedule Alert

<<control>>
{AE4.2.2.c2} Execute Alert

ISOFIN App
Communication

<<interface>>
{AE3.5.1.i} Send Information

From ISOFIN App

<<interface>>
{AE3.5.2.i} Receive

Information in ISOFIN App

<<interface>>
{AE3.6.1.i} Send Configuration
Commands From ISOFIN App

<<interface>>
{AE3.6.2.i} Receive

Configuration Commands to
ISOFIN App

<<interface>>
{AE3.6.3.i} Send Usage

Commands From ISOFIN App

<<interface>>
{AE3.6.4.i} Receive Usage
Commands to ISOFIN App

ISOFIN App Installer

<<interface>>
{AE3.3.1.i} ISOFIN Application

Publisher Interface

<<control>>
{AE3.3.2.c} ISOFIN App

Deployer

<<interface>>
{AE3.3.2.i} ISOFIN App
Deployment Interface

<<control>>
{AE3.3.3.c} Export ISOFIN App

Code

<<control>>
{AE3.3.4.c} ISOFIN App

Documentation Generator

<<interface>>
{AE3.3.4.i} ISOFIN App
Documentation Editor

<<control>>
{AE3.4.2.c} Test ISOFIN

Application Before
Deployment

Security Management

<<control>>
{AE1.6.c} Grant Access to

ISOFIN Platform

<<interface>>
{AE1.6.i} ISOFIN Platform

Access and Usage
Management

<<control>>
{AE2.2.6.c1} Selected Object

permissions

<<control>>
{AE2.4.1.c} IBS

Communication Validation

<<control>>
{AE3.5.1.c} ISOFIN App

Communication Validation

Logs Management

<<interface>>
{AE2.4.1.i1} IBS Log Manager

<<interface>>
{AE3.5.1.i1} ISOFIN App Log

Manager

<<interface>>
{AE4.3.i1} Alert Log Manager

<<interface>>
{AE1.3.5.i1} Subscription Log

Manager

Supplier Subscription
Management

<<control>>
{AE1.3.1.c} Evaluate Supplier

subscription

<<interface>>
{AE1.3.1.i} Supplier

subscription evaluation
interface

<<interface>>
{AE1.3.3.i} Supplier’s

Subscriptions Requirements
Interface

<<interface>>
{AE1.5.1.i} Publish SBS

Subscsription in Catalog
Interface

Customer
Subscription
Management

<<control>>
{AE1.3.2.c} Evaluate Customer

subscription

<<interface>>
{AE1.3.2.i} Customer

subscription evaluation
interface

<<interface>>
{AE1.3.4.i} Customer’s

Subscriptions Requirements
Interface

<<interface>>
{AE1.5.2.i} Publish Customer

Subscsription in Catalog
Interface

IBS Communication

<<interface>>
{AE2.4.1.i} Send Information

From IBS

<<interface>>
{AE2.4.2.i} Receive
Information in IBS

<<interface>>
{AE2.5.1.i} Send Configuration

Commands From IBS

<<interface>>
{AE2.5.2.i} Receive

Configuration Commands to
IBS

<<interface>>
{AE2.5.3.i} Send Usage
Commands From IBS

<<interface>>
{AE2.5.4.i} Receive Usage

Commands to IBS

IBS Installer

<<control>>
{AE2.2.7.c} IBS Interface

Generator

<<data>>
{AE2.2.7.d} IBS Interface

Repository

<<interface>>
{AE2.3.1.i} IBS Publisher

Interface

<<control>>
{AE2.3.2.c} IBS Deployer

<<interface>>
{AE2.3.2.i} IBS Deployer

Interface

<<control>>
{AE2.3.3.c} IBS Documentation

Generator

<<interface>>
{AE2.3.3.i} IBS Documentation

Editor

<<control>>
{AE2.7.2.c} Test IBS Before

Deployment

IBS Editor

<<control>>
{AE2.1.2.c1} Selected Object

configurations

<<data>>
{AE2.1.2.d} IBS Configuration

Repository

<<interface>>
{AE2.1.2.i} Low-level IBS
Configuration Interface

<<data>>
{AE2.1.3.d} IBS Structure

Repository

<<interface>>
{AE2.1.3.i} Update IBS

Structure Interface

<<control>>
{AE2.1.4.c} Compiles IBS

information

<<interface>>
{AE2.1.4.i} Update IBS

Interface

<<interface>>
{AE2.2.3.i} IBS Structure

interface

<<control>>
{AE2.2.4.c} Define IBS Code

Gaps

<<interface>>
{AE2.2.4.i} IBS Coding and

Compiling Interface

<<control>>
{AE2.2.5.c} Compile IBS code

<<data>>
{AE2.2.5.d} IBS Pre-
Deployment Storage

<<interface>>
{AE2.2.6.i} Permissions

Interface

<<control>>
{AE2.7.1.c} IBS Customization

Filter

<<interface>>
{AE2.7.1.i} IBS Customization

Interface

<<interface>>
{AE2.6.3.i} IBS

Interconnectivity interface

IBS Repository

<<data>>
{AE2.1.1.d} IBS Repository

<<interface>>
{AE2.6.1.i} IBS Repository

Interface

SBS Repository

<<data>>
{AE2.6.2.d} SBS Repository

<<interface>>
{AE2.6.2.i} SBS Repository

Interface

Alert Repository

<<data>>
{AE4.3.d} Alert Repository

<<interface>>
{AE4.3.i/c} Scheduled Alert

Dispatcher

Subscription
Repository

<<control>>
{AE1.3.5.c1} Subscription

Duplicity Verification

<<data>>
{AE1.3.5.d} ISOFIN Platform
Subscription Info Repository

<<interface>>
{AE1.3.5.i} Subscription

Repository Interface

<<data>>
{AE1.4.d} ISOFIN Platform
Subscription Assessment

Repository

<<interface>>
{AE1.8.1.i} Manage ISOFIN

Suppliers

<<interface>>
{AE1.8.2.i} Manage ISOFIN

Customers

Logs Repository

<<data>>
{AE2.4.1.d} IBS Logs

Repository

<<data>>
{AE3.5.1.d} ISOFIN App Logs

Repository

<<data>>
{AE4.3.d1} Alert Logs

Repository

<<interface>>
{AE4.3.i2} Log Repository

Interface

<<data>>
{AE1.3.5.d1} Subscription Logs

Repository

Security Repository

<<data>>
{AE1.2.1.d} ISOFIN Platform

Policies Repository

<<data>>
{AE1.6.d} ISOFIN Platform

Access Repository

ISOFIN App
Repository

<<data>>
{AE3.3.1.d} ISOFIN App

Repository

<<interface>>
{AE3.3.1.i1} ISOFIN App

Repository

Policies Management

<<interface>>
{AE1.2.1.i} Configure Supplier

Policies Interface

<<interface>>
{AE1.2.2.i} Configure

Customer Policies Interface

Subscription Management

<<interface>>
{AE1.1.1.i} Fulfillment

Subscription Requirements
Interface

<<control>>
{AE1.1.2.c1} Verifiy

Subscription data duplicity

<<control>>
{AE1.1.2.c} Validate

subscription requirement
fulfillment

<<interface>>
{AE1.1.2.i} Manual

Subscription Validation
Interface

<<interface>>
{AE1.4.i} Subscription Request

Interface

<<control>>
{AE1.7.c} Control Subscription

Requests

<<interface>>
{AE1.7.i} Suscription Request

Status Interface

ISOFIN App Editor

<<interface>>
{AE3.1.i} ISOFIN Application

Model Editor

<<interface>>
{AE3.2.1.i} IBS Information

Retrieval

<<control>>
{AE3.2.2.c} Generate ISOFIN

App Code

<<interface>>
{AE3.2.2.i} ISOFIN Application

Coding and Compiling
Interface

<<interface>>
{AE3.2.3.i} ISOFIN Application

Model Interface

<<control>>
{AE3.2.4.c} Associate Visual

Representation to
Functionality

<<interface>>
{AE3.4.1.i} ISOFIN Application

Customization Interface

««GENERATES»»

<<interface>>
{AE2.7.2.i} IBS Test Generator

<<interface>>
{AE2.6.2.i1} SBS Pallet

Retrieval Interface

<<interface>>
{AE2.6.1.i1} IBS Pallet

Retrieval Interface

2x

6x

6x

6x

6x

5x

6x

6x

2x

2x

2x

3x

3x

««GENERATES»»

