
Automatic Elasticity in OpenStack∗

Leander Beernaert, Miguel Matos, Ricardo Vilaça, Rui Oliveira
High-Assurance Software Laboratory
INESC TEC & Universidade do Minho

Braga, Portugal
lbb@lsd.di.uminho.pt, {miguelmatos,rmvilaca,rco}@di.uminho.pt

ABSTRACT
Cloud computing infrastructures are the most recent ap-
proach to the development and conception of computational
systems. Cloud infrastructures are complex environments
with various subsystems, each one with their own challenges.
Cloud systems should be able to provide the following fun-
damental property: elasticity. Elasticity is the ability to
automatically add and remove instances according to the
needs of the system. This is a requirement for pay-per-use
billing models.

Various open source software solutions allow companies
and institutions to build their own Cloud infrastructure.
However, in most of these, the elasticity feature is quite
immature. Monitoring and timely adapting the active re-
sources of a Cloud computing infrastructure is key to provide
the elasticity required by diverse, multi-tenant and pay-per-
use business models.

In this paper, we propose Elastack, an automated moni-
toring and adaptive system, generic enough to be applied to
existing IaaS frameworks, and intended to enable the elas-
ticity they currently lack. Our approach offers any Cloud in-
frastructure the mechanisms to implement automated mon-
itoring and adaptation as well as the flexibility to go be-
yond these. We evaluate Elastack by integrating it with the
OpenStack showing how easy it is to add these important
features with a minimum, almost imperceptible, amount of
modifications to the default installation.

Categories and Subject Descriptors
C.1.4 [Parallel Architectures]: Distributed architectures;
C.2.4 [Distributed Systems]: Distributed applications;
C.4 [PERFORMANCE OF SYSTEMS]: Reliability, avail-
ability, and serviceability; D.1.3 [Concurrent Program-
ming]: Distributed programming

∗This work is funded by FEDER through the Programa Op-
eracional Fatores de Competitivdade - COMPETE and by
Fundos Nacionais through FCT - Fundação para a Ciência
e Tecnologia in the scope of the project Stratus/FCOMP-
01-0124-FEDER-015020.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SDMCMM’12, December 3-4, 2012, Montreal, Quebec, Canada.
Copyright 2012 ACM 978-1-4503-1615-6/12/12 ...$15.00.

General Terms
Design, Management, Measurements

Keywords
Cloud Computing, Middleware, Adaptation, Elasticity, Scal-
ability, Automatization

1. INTRODUCTION
Cloud Computing has become an increasingly active topic.

The illusion of a virtually infinite computing infrastructure,
pay-per-use model and resource sharing among other projects
are a few characteristics which make this area so attractive.
Fundamental to the Cloud paradigm, and closely tied to
the pay-per-use model, is the premise of automatic elastic-
ity [16, 18, 5], in other words, the ability to rapidly increase
or decrease resources on demand. Still, most existing Cloud
Computing solutions can’t provide this feature due to unre-
solved issues with scalability [10].

There are a few open source software solutions which allow
companies and institutions to set up a Cloud infrastructure,
also known as Infrastructure as a Service (IaaS). IaaS is the
delivery of hardware (server, storage and network) and as-
sociated software (operating system virtualization technol-
ogy and file system) as a service. The provider does very
little management other than keeping the data center oper-
ational, and the users must deploy and manage the software
as they would in their own data center [5]. The deploy-
ment is achieved through creating virtual machines which
will run on the hardware supplied by the provider. These
virtual machines can also be referred to as instances.

Eucalyptus [8], OpenNebula [12] and OpenStack [14] are
three popular IaaS projects. Each of these offer the means
to manage the life cycle of instances, the underlying infras-
tructure and user access, among others. Whilst some of
these systems do not offer features which allow users or ad-
ministrators to monitor instance activity, none of them have
any form of automated elastic behavior. Our goal is to fill
the gap present in these types of software in terms of moni-
toring and adaptation with a Cloud infrastructure agnostic
framework. We decided to concentrate on OpenStack due
to the recent growth in its adoption and popularity of the
project. It has received contributions from various organi-
zations, such as NASA, RackSpace, Canonical, Dell, Citrix
and VMWare.

As the project is relatively recent (about one year and a
half since its first version) some areas are still very immature
or in specification. Yet, the project shows great potential, as

can be seen by the quantity of new adoptions, ranging from
enthusiasts to companies, such as HP [1]. At its current
version, Essex 2012.1.2, the elasticity feature is still in an
embryonary phase. Despite supporting elastic operations
(e.g.: allocation of more resources to an instance), these need
to be performed manually by the administrator. There is no
way for OpenStack to make decisions or allocate resources
without human intervention. This can be attributed to the
lack of monitoring and adaptation mechanisms.

In this paper, we describe the implementation of a mon-
itoring and adaptation component, Elastack. It monitors
the state of the instances and collects data, which can later
be exported. The collected values are then used to manage
the infrastructure. By using standard technologies, Elastack
can easily be integrated with various Cloud infrastructures,
providing elasticity as well as other management features
(e.g.: monitoring and billing).

The remainder of this paper is organized as follows: in
Section 2 we introduce OpenStack, followed by a description
of Elastack’s architecture in Section 3. Section 4 covers the
implementation process of Elastack and Section 5 presents
our experimental results. Finally, Section 6 presents related
work, and Section 7 concludes this paper.

2. OPENSTACK
OpenStack can be regarded as the open source version of

Amazon’s EC2 and S3 services since it has an API that is
compatible with those used by Amazon’s services, besides
providing its own API [9]. The main reason for this is to
ease the porting of existing projects to its infrastructure.

OpenStack is composed of various components: Compute
(Nova), Object Storage (Swift), Identity (Keystone) and Im-
age Service (Glance). To create a minimum Cloud infras-
tructure, we require only Nova, Keystone and Glance ser-
vices which we describe below. The interaction between all
of the components can be seen in Figure 1. Swift is an elas-
tic storage service, similar to Amazon’s S3 [3] and can be
used optionally.

Nova
The Compute component, Nova, is in charge of all the pro-
cedures required to sustain an instance’s lifecycle: computa-
tional resource management, networking, authorization and
scalability. Nova, on its own, does not have any virtualiza-
tion features. It resorts to the livbirt APIs to fill this gap.

Queue Server Is the AMQP protocol communication
service used by all of OpenStack’s components. All com-
munications happen asynchronously to avoid that long op-
erations block while waiting for the result (e.g.: uploading
a new image).

Nova API Is the endpoint through which the clients and
administrators can operate on OpenStack. It is in charge
of translating the received operations to tasks which will be
executed by each of OpenStack’s components.

Nova Compute Manages the lifecycle of each instance.
In a production environment, it is usual to encounter several
of these. The compute node where an instance is launched
depends on the policy in use by the scheduler.

Nova Network Is in charge of managing network con-
figurations in the infrastructure, as well as assigning IP ad-
dresses to the instances and the automatic configurations of
VLANs.

Nova Scheduler This component decides where an in-

Figure 1: Illustration of the OpenStack architecture.

stance should be launched. The decision is based on the
current policy in use by the scheduler and can be based on
factors such as memory, system load, physical distance, CPU
architecture, among others.

Nova Volume Offers persistent storage for an instance.
By default, when an instance is terminated, the allocated
disk space disappears and all the information contained there
is lost. Through this component, it is possible to assign per-
sistent storage to an instance.

Keystone
Keystone is the central identity and authentication service
used by all the services provided by OpenStack. This com-
ponent also acts as a discovery point for all the services
present in the infrastructure. This information is obtained
after a successful authentication.

Glance
Glance is responsible for the storage and availability of the
operating system images to be used by the instances. These
images can be stored on the local file system, on the host
where Glance is running, or stored in Swift for higher avail-
ability.

3. ELASTACK
In order to bridge the gap in terms of adaptability and

monitorization in OpenStack, we propose the architecture
depicted in Figure 2. One of the objectives of our architec-
ture is to be scalable with the underlying infrastructure. As
such, we install a monitoring daemon on each Nova Com-
pute node, which will monitor the instances running on that
node. The collected information is then made available for
consumption through a JMX service.

Serpentine [11] is an adaptive middleware which allows a
service/system to adapt to changes that might occur in a
production environment without human intervention. Since
it was designed to be scalable, its components do not de-
pend on a persistent state and therefore can be organized in
a hierarchy, thus allowing a micro and macro-management
of the infrastructure. Communication occurs through JMX
and the control logic is defined through scripts provided by
the administrator. To do so, it resorts to Java’s scripting
engine in order to allow the execution of various scripting
languages (JavaScript, Python, Ruby, among others). These
scripts define the management policies to be applied to the

Figure 2: Illustration of the Elastack architecture.

system. The use of script can also help mask complex tasks
by abstracting them with functions supplied during the ex-
ecution of the script.

Our architecture is made out of three fundamental com-
ponents: monitor daemons, controller daemon and the ser-
pentine script. The monitor daemon is a background process
which will run on each nova-compute node in order to scale
with the rest of the infrastructure. Internally, it will monitor
each instance running on that node and periodically update
the collected data for all monitored instances.The monitor-
ing is performed by an instance monitor, as seen in (2) in
Figure 2. To determine when an instance is launched or ter-
minated, it listens to the events propagated by the Queue
Server (1).

Each of these monitors export a MBean which can be
accessed through the JMX service. With these MBeans,
we can directly access the latest state collected from each
instance. However, we can only do this if we know on which
host the instance resides. To circumvent this problem, the
monitor daemon itself exports a MBean through which we
can retrieve information about the physical host, query the
daemon to determine which instances are being monitored,
and access the instance’s information.

The controller daemon is another background process which,
ideally, should be run on the same host as the controller
node. However, it is also possible to run this service else-
where. Its main function is to abstract the underlying Cloud
service and to isolate the remaining Elastack components
from it, thus ensuring that it remains Cloud infrastructure
agnostic. In our case, the controller daemon exports a set
of methods through a MBean which allow us to create and
terminate instances in OpenStack. This is achieved by com-
municating with the nova-api process on the controller node
(5).

Finally, the Serpentine script defines the behavior the sys-
tem should have. First, a configuration file needs to be sup-
plied in order to connect to all the existing monitor daemons
and the controller daemon (3,4). These will then be avail-
able during the script’s runtime. With the previously de-
scribed data, the administrator can now define the behavior
of the system, which can range from elastic configurations
to a simple activity monitor.

Since Elastack operates on an instance basis, horizontal
scalability, and not on an application basis, it should be
noted that in order to achieve a true elastic behavior, the

applications installed on the instances being managed should
be ready to enter and exit at any point without leaving the
application in an inconsistent state. With some extra work,
it is also possible to have the script coordinate with the
application when it should initiate or terminate an instance,
as we shall see in Section 5.

4. IMPLEMENTATION
In order to monitor each instance, OpenStack provides a

command entitled ”diagnostics”. Sadly, this method is only
available for the XEN hypervisor through the XEN API.
However, we are using a setup with libvirt, since this hy-
pervisor allows OpenStack to manage a greater number of
hypervisors with the same API, including XEN. So, we had
to extend OpenStack to support the method with the libvirt
virtualization library. The resulting code has been submit-
ted and accepted into OpenStack and will be available start-
ing with the Folsom-3 milestone1. Unfortunately, since there
is no specification regarding the results of the command, we
have no means to assure that the current output produced
by this command will be valid in the future releases. There-
fore, we retrieve our data directly from the libvirt daemon
running on the compute nodes. This in turn enables us to
collect more data than the one supplied by the ”diagnostics”
command.

To monitor the instances we need to know when they are
created and terminated. OpenStack offers a notification sys-
tem which has a series of events that describe the activity
of an instance [15]2. The monitor daemon then subscribes
to these events, and registers the creation and termination
of each instance. Each time an instance is created, it is
put in a list of instances to be monitored. Periodically, the
daemon traverses the list and collects the state of each of
these instances. The last collected state is maintained in
memory until the instance terminates. The full collection of
collected states are written to a Swift container for future
access. The stored information could be useful for billing,
behavior analysis and traceability.

As mentioned previously, the collected data is made avail-
able through a MBean exported by the monitor daemon.
This MBean provides methods to access information regard-
ing the host machine, the number of instances running and
CPU, memory, network traffic and disk usage of each in-
stance. For simplicity’s sake, we only export basic data types
through JMX. Thus, most methods require an identifier of
the instance or a key representing a component (e.g.: in-
terface name, disk name) to be supplied if we are accessing
instance data through the monitor MBean.

At the moment, the Controller MBean contains a set of
methods which allow instances to be created or terminated.
Each of these requests invoke a Python script which uses the
official OpenStack API to carry out each operation.

Although the implementation above is targeted specifi-
cally at OpenStack’s infrastructure, other platforms can be
targeted with little work. There are two possible approaches,
implement the interfaces present in the monitor and the con-

1For more details please see commit
ad54ed53cf6a475ad0f8042f8b95454a8c0b35a4 on
https://github.com/openstack/nova/
2These notifications are disabled by default. To en-
able them it is necessary to add notification_driver =
nova.notifier.rabbit_notifier to the nova configuration
file.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 100 200 300 400 500 600 700 800

T
o

ta
l
C

P
U

 (
%

)

Time (seconds)

Inst. 1
Inst. 2
Inst. 3

Inst. 4
Inst. 5
Inst. 6

Figure 3: Evolution of the instance’s CPU load.

troller or implement a new MBean with the same method
set. The first approach reuses most of the existing logic
in the monitor and controller daemon, only platform spe-
cific methods need to be added in order to retrieve the list
of running instance and information collection. The latter
allows the monitor and controller deamon to be swapped
out with other implementations. These implementations are
only required to export the same MBean methods to main-
tain compatibility with the Serpentine script.

5. EXPERIMENTAL EVALUATION
To test our proposed architecture, we prepared an instal-

lation of OpenStack with four nova-compute nodes and one
controller node. Each of the machines is equipped with a
i3-2100 processor clocked at 3.10GHz, 4GB RAM and a 250
GB SATA II hard drive. We intend to demonstrate how
the system would react to a sudden increase in workload.
When the workload rises, new instances need to be created
to accommodate the new requests, and when the workload
decreases, instances are removed in order to avoid wasting
unnecessary resources. Each instance will be launched with
4 CPU cores and 3GB of RAM.

To simulate the workload, we developed a small load bal-
ancer written in Java which distributes a collection of tasks
throughout the running instances. Each instance is precon-
figured to run the client process which will receive the tasks
from the load balancer. Each task executes the stress com-
mand for one CPU core during 22 seconds. In order to de-
tect new instances and to avoid terminating instances which
still have tasks running, the Serpentine script coordinates
the creation and termination of instances with the load bal-
ancer. For the sake of simulating a variable workload, the
load balancer sleeps for a certain amount of seconds before
distributing a new set of tasks to the instances. A greater
sleep time will result in a reduced workload.

When an instance is created by Serpentine, it will inform
the load balancer of such. The load balancer will then at-
tempt to connect to the client running on that instance.
When a connection is made, it will start distributing tasks
to this instance. Before terminating an instance, Serpentine
first informs the load balancer that the instance is marked
for termination. The load balancer will then cease to dis-
tribute tasks to that instance and, when all pending tasks
have finished executing, mark it as ready to be terminated.
In the meantime Serpentine will query the load manager for

 0

 10

 20

 30

 40

 50

 60

 0 100 200 300 400 500 600 700 800
 0

 1

 2

 3

 4

 5

T
a

s
k
s
/s

A
c
ti
v
e

 I
n

s
t.

Time (seconds)

Load
Inst.

Figure 4: Evolution of the number of instances ac-
tive and the number of tasks launched per second.

the termination status of the instance. Once a positive reply
is given, Serpentine terminates the instance. New instances
are created when x ≥ (90.0 × n), where x is the combined
CPU usage of all instances and n the number of instances.
Instances are removed when the total CPU usage can be
distributed throughout the remaining instances.

In order to make the decision process more adaptable to
sudden changes in workload and to avoid sequential decision
patterns (such as: create instance, remove instance, create
instance) the script supplied to Serpentine uses a simple hys-
teresis mechanism. It essentially requires that an addition
or removal decision is made twice before acting accordingly.
To do so, it stores the previous decision at the end of the
first execution of the script. When the script runs a second
time, the current decision is compared to the previous one.
If the decisions are contradictory or no decision is made, the
previous decision is rendered invalid.

Figures 3 and 4 represent the average CPU load of each of
the instances and the number of tasks launched per second
versus the number of active instances, respectively. Each of
the measurements are taken in a 15 second interval. The in-
terval at which the measurements are taken is configurable;
we assessed that 15 seconds would be the optimal value for
this test case. It should be noted that the interval time is
inversely proportional to the number of update cycles exe-
cuted by the monitor. In both figures we can observe that
when the CPU load reaches its peak or the number of tasks
per second increases, new instances are created. We can
also make out a certain delay from the point where the load
reaches its peak and a new instance is launched. This is
mainly due to two factors: decision time and instance start
up time. The first is a consequence of the hysteresis mech-
anism that requires two complete consecutive executions of
the script to reach the same decision. This alone requires an
interval of at least 30 seconds. The latter can be attributed
to the time it takes for an instance to start and is limited
by the hardware in use. This is also visible when the load
reduces and instances are removed.

6. RELATED WORK
In terms of monitoring, there are some projects which

aim to fill the gap for this feature or provide a way to inte-
grate the monitoring component in a custom management
software, such as Zenoss [19]. For instance, the project re-

ferred in [7] registers the total usage of each resource by
the infrastructure. This makes it suitable only for billing
purposes, since the collected data does not contain suitable
information for the adaptation process. Finally, the Open-
Stack community is working on an official implementation
which aims to bring monitoring and billing components to
the infrastructure [13]. This solution will build on our con-
tribution and, when finished, will present a standard method
to obtain instance and host data as well as retrieve stored
data for further reference.

The architecture proposed by [10] is similar to ours. The
controller observes the system’s load and according to the
model in use, equivalent to the scripts in Serpentine, decides
how many new instances need to be launched. The controller
is also capable of using previously collected data to improve
the decisions being made. The system works directly with
the XEN API while ours aims to be Cloud agnostic.

The framework CloudScale [17] performs a series of previ-
sions about the behavior of the instance and, based on the
collected data, adds resources to or removes resources from
the instance. CloudScale also works on the XEN API and
acts directly on the instance instead of launching new ones,
in other words, it scales that instance vertically. Whilst
Elastack is agnostic to underlying hypervisor, it currently
only scales the system horizontally. However, a specific
script could easily be written to scale an instance vertically,
since all the features required for this action are already in
place.

Amazon’s Auto-Scale [2] is very similar to Elastack’s ar-
chitecture. First, a user must group together a set of similar
instances. The Auto Scale will then act on this group. In
order for it to work, the user must define a launch configura-
tion for new instances and a set of triggers. Each trigger is
composed of a CloudWatch metric, which is triggered when
a certain condition is met, and a policy which defines how to
handle the metric and when the group should be scaled up or
down. Elastack, on the other hand, integrates these param-
eters all in one script together and is not tied to Amazon’s
infrastructure.

Finally, Kaleidoscope [6] introduces the concept of micro-
elasticity. Instead of launching new instances from scratch to
satisfy the system’s demand, each instance is cloned with a
copy of the complete or partial state of the original instance.
Contrary to a normal start in which the operating system
needs to start and no information is cached, Kaleidoscope
tries to copy most of the information marked as important
into the clone. This allows for a new instance to boot up
and rapidly respond to requests since it can take advantage
of the data provided by the original instance. To determine
which sections should be copied, Kaleidoscope installs itself
into the machine and communicates with another process
residing on the host. The problem with this approach is
that it needs to be deeply integrated with the Cloud infras-
tructure. For instance, in our case, to effectively use this,
OpenStack should have knowledge of this framework’s exis-
tence in order to install it on every launched instance and
provide a separate option to perform the cloning operation.

7. CONCLUSIONS
Automatic elasticity, the ability to quickly increase or de-

crease the resources as necessary, is one of the most desir-
able characteristics of Cloud infrastructures. Without elas-
ticity, the service providers can neither offer a true pay-per-

use payment model nor maximize their resource monetiza-
tion. While elasticity does not directly increase the providers
profit, it certainly offers a more competitive advantage.

In this paper we proposed an adaptation and monitoring
component for Cloud infrastructures (IaaS), Elastack. The
evaluation of Elastack demonstrated a good adaptability to
the submitted load by answering with the increase or de-
crease in the number of virtual machines in order to satisfy
all requests.

Taking into account the design of Elastack’s architecture,
it can be used with various Cloud infrastructures. Addition-
ally, due to the nature of the exported data and the control
flexibility offered by Serpentine, Elastack can be used for a
wide variety of tasks beyond providing elasticity and moni-
toring capabilities. These will in turn better equip the ad-
ministrator to manage the infrastructure and provide better
QoS, resource usage, reduce power consumption and satisfy
its costumers’ needs.

In terms of future work, Elastack should be adapted in
order to be integrated with OpenStack’s official monitoring
solution [13] as soon as it is available. Statistical machine
learning [4] could be added to Elastack to enable dynamic
scaling. Finally, a custom DSL could be added in order
to aid system administrators in the creation of the control
scripts.

8. REFERENCES
[1] http://www.openstack.org/blog/2012/04/openstack-

foundation-update/.

[2] Amazon. Amazon auto scale home webpage.
http://aws.amazon.com/autoscaling/.

[3] Amazon. Simple storage service.
http://aws.amazon.com/s3/. Scalable and reliable
storage service.

[4] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph,
R. Katz, A. Konwinski, G. Lee, D. Patterson,
A. Rabkin, I. Stoica, and M. Zaharia. A view of cloud
computing. Commun. ACM, 53(4):50–58, Apr. 2010.

[5] S. Bhardwaj, L. Jain, and S. Jain. Cloud computing:
A study of infrastructure as a service (iaas).
International Journal of engineering and information
Technology, 2(1):60–63, 2010.

[6] R. Bryant, A. Tumanov, O. Irzak, A. Scannell,
K. Joshi, M. Hiltunen, A. Lagar-Cavilla, and
E. de Lara. Kaleidoscope: cloud micro-elasticity via
vm state coloring. In Proceedings of the sixth
conference on Computer systems, EuroSys ’11, pages
273–286, New York, NY, USA, 2011. ACM.

[7] G. Dynamics. Nova-billing.
https://github.com/griddynamics/nova-billing.

[8] Eucalyptus home page. http://www.eucalyptus.com/.
Eucalyptus Cloud Infrastructure.

[9] O. Foundation. Openstack compute api.
http://docs.openstack.org/api/openstack-
compute/1.1/content/. Complete reference of the
OpenStack v1.1 API.

[10] S. J. Malkowski, M. Hedwig, J. Li, C. Pu, and
D. Neumann. Automated control for elastic n-tier
workloads based on empirical modeling. In Proceedings
of the 8th ACM international conference on
Autonomic computing, ICAC ’11, pages 131–140, New
York, NY, USA, 2011. ACM.

[11] M. Matos, A. Correia, Jr., J. Pereira, and R. Oliveira.
Serpentine: adaptive middleware for complex
heterogeneous distributed systems. In Proceedings of
the 2008 ACM symposium on Applied computing, SAC
’08, pages 2219–2223, New York, NY, USA, 2008.
ACM.

[12] Opennebula home page. http://www.opennebula.org/.
OpenNebula Cloud Infrastructure.

[13] OpenStack. Efficient metering in openstack blueprint.
http://wiki.openstack.org/EfficientMetering.
Especification of the monitoring project.

[14] Openstack home page. http://www.openstack.org/.
OpenStack Cloud Infrastructure.

[15] OpenStack. Openstack system usage data.
http://wiki.openstack.org/SystemUsageData.
Especification of the eventos triggered by the
notification system.

[16] D. Owens. Securing elasticity in the cloud. Commun.
ACM, 53(6):46–51, June 2010.

[17] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes.
Cloudscale: elastic resource scaling for multi-tenant
cloud systems. In Proceedings of the 2nd ACM
Symposium on Cloud Computing, SOCC ’11, pages
5:1–5:14, New York, NY, USA, 2011. ACM.

[18] L. M. Vaquero, L. Rodero-Merino, and R. Buyya.
Dynamically scaling applications in the cloud.
SIGCOMM Comput. Commun. Rev., 41(1):45–52.

[19] Zenoss. Openstack plugin for zenoss.
https://github.com/zenoss/ZenPacks.zenoss.OpenStack.

