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2 Resumo 

Esta tese propõe um método de elementos finitos, designado por S-FEM (Smoothed Finite Element 

Method), para modelação e análise mecânica de estruturas têxteis planas. Neste enquadramento 

teórico, supõe-se que a estrutura têxtil não-tecida é um material isotrópico elástico, enquanto a 

estrutura têxtil tecida é um material elástico com anisotropia ortotrópica, para os quais as leis 

constitutivas utilizam propriedades mecânicas de baixa pressão (low stress) com base na Medição 

Objetiva de Tecidos (FOM - Fabric Objective Measurement). 

As formulações de elementos finitos de baixa ordem baseadas em deslocamento quando aplicadas a 

elementos finitos de placas (plate/shell) quadriláteras de 4 nós, incluindo campos de tensão de 

cisalhamento transversal, baseiam-se nas contribuições de Raymond Mindlin e por Eric Reissner, no 

que agora se designa teoria de deformação por cisalhamento de primeira ordem (first-order shear 

deformation, do inglês, ou FSDT de forma abreviada), ou simplesmente teoria de Mindlin-Reissner, e 

nas abordagens MITC (Mixed Interpolation of Tensorial Components), são nesta tese combinadas com 

a técnica de suavização do/da gradiente/tensão nos termos dos modelos S-FEM por forma a mitigar 

problemas como são o caso da distorção de elementos finitos, da granularidade grosseira da malha, 

bem como dos bem conhecidos fenómenos de bloqueio. As malhas de quadriláteros são utilizadas 

nesta tese devido à sua capacidade de representar geometrias complexas de tecidos em resultado de 

deformações mecânicas como são os casos da recuperação face à pressão planar, flexão, 

deformação, vibração, drapejamento, etc. 

Refira-se que foi desenvolvido e implementado em Matlab um software para os novos modelos de 

elementos finitos, em grande medida devido à inexistência de modelos S-FEM em softwares de análise 

de elementos finitos (finite element analysis ou FEA), lacuna esta que ocorre quer em softwares 

comerciais, quer não comerciais, e até em códigos abertos. Exemplos numéricos para as aplicações 

básicas de engenharia no que respeita à modelação mecânica de folhas de tecido fino e de folhas de 

tecido de espessura média em estudos de casos típicos, como é o caso da recuperação face a pressão 

planar, flexão, deformação e comportamento livre de vibrações, indicam que os elementos finitos 

(plate/shell) desenvolvidos com a técnica de suavização de tensão e MITC acabam por aliviar os 

efeitos de distorção dos elementos, a granularidade grosseira da malha e efeito de bloqueio na 

modelação e análise mecânica de tecidos muito finos e até mesmo de tecidos de espessura média. 
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Os modelos de elementos finitos de placas (plate/shell) desenvolvidos durante o trajeto desta tese, 

bem como as suas propriedades mecânicas de baixa tensão em termos de FOM, são, portanto, bem 

adaptados à modelação e análise numérica de deformação macro-mecânica de folhas de tecido muito 

fino e de folhas de tecido de espessura média, incluindo ao mesmo tempo análise de deformação 

mecânica simples e complexa. 
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3 Abstract 

An S-FEM (Smoothed Finite Element Method) for mechanical analysis and modelling of the textile 

fabrics is proposed. In this theoretical framework, one assumes that the non-woven fabric is an elastic 

isotropic material, while the woven fabric is an elastic with orthotropic anisotropy for which the 

constitutive laws formulated are using low-stress mechanical properties based on FOM (Fabric 

Objective Measurement). The displacement-based low-order finite element formulations for four-node 

quadrilateral plate/shell finite element, including assumed transverse shear strain fields, are based 

on the contributions of Raymond Mindlin and by Eric Reissner as FSDT (first-order shear deformation 

theory and so-called the Mindlin-Reissner theory) together with MITC (Mixed Interpolation of Tensorial 

Components) approaches, which are combined with the gradient/strain smoothing technique in terms 

of S-FEM models contributed by G. R. Liu et al. in order to mitigate problems as element distortion, 

mesh coarseness as well as the well-known locking phenomena. Quadrilateral meshes are used due 

to ability to represent complicated geometries of complex mechanical deformation of the fabric such 

as plane stress recovery, bending, buckling, vibration, draping behavior, etc. The finite element 

computer codes were developed in MATLAB for the new formulated plate/shell finite element models 

due to the lack of FEM (Finite Element Method) packages for S-FEM models in both commercial and 

non-commercial FEA (Finite Element Analysis) computer applications, and even from open-source 

platforms. Numerical examples for the basic engineering applications of mechanical modelling of thin 

to moderately thick fabric sheet in the typical case studies such as in-plane stress recovery, bending, 

buckling and free-vibration behavior, indicate that the developed plate/shell finite elements with 

assumed strain smoothing technique and MITC, do alleviate element distortion, mesh coarseness, 

and locking effect even for mechanical analysis and modelling very thin to moderately thick fabric. The 

developed plate/shell finite element models and low-stress mechanic properties in terms of FOM are, 

therefore, well adapted for numerical analysis and modelling of macro-mechanical deformation of the 

thin to moderately thick fabric sheet including both simple and complex mechanical deformation 

analysis. 
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1 Chapter 1 

Introduction 

1.1 Overview 

Analytic modelling and numerical simulation have played important roles in science and engineering 

of textiles and clothing. In fact, together with the development of the fabric objective measurement 

technology (FOM) and the revolution of computers, they are recognized as one of the major 

technological transformations to mankind [1-8]. The engineering design is the procedure of definition 

of the dimensional and physical characteristics of a textile fabric product for the achievement of the 

desirable handle, performance and appearance [9, 10], which correspond closely to a synthesis of 

functional specifications, mechanical properties, aesthetic effects, etc., depending on the wearing 

process [2, 9, 11, 12]. Nowadays, textile materials are also being used in a broad range of technical 

products, such as the production of fibrous and reinforcements in composites in automotive, 

aerospace, marine and civil engineering applications [13, 14], smart textiles for protection [15, 16], 

textiles for medical applications, etc. [17, 18]. Therefore, the prediction of the end-product's 

mechanical properties and the aesthetic features of the textile fabrics before the actual fabrication is 

of major importance in the automation and integration of processes in the textile and clothing industry 

[19-21]. In most of the engineering sectors, advanced computational approaches in which numerical 

methods have been widely developed are applied in modelling and simulation of complex problems of 

engineering and mathematical physics to predict how a product reacts to real-world forces, vibration, 

heat, fluid flow and other physical effects, etc. [22].  This is important to verify the feasibility, benefits 

and drawbacks of the product, in terms of time, quality and cost improvements and in terms of 

capability to establish a better collaborative working approaches [7, 23]. These principal tasks have 

been analyzed, designed and implemented as computer applications, in particular CAE (Computer-

Aided Engineering) systems, which provide services and facilities to foster the intelligent and efficient 

use of the computing technologies in engineering tasks such as textile, garment and fashion [7, 19, 

24, 25]. Note that CAE solutions comprise CAD (Computer-Aided Design), FEA (Finite Element 

Analysis), CAA (Computer-Aided Analysis), CIM (Computer-Integrated Manufacturing), CAM 

(Computer-Aided Manufacturing), MRP (Material Requirements Planning) and CAP (Computer-Aided 

Planning). 
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Nowadays, CAE is an essential analysis tool in many engineering fields, namely aero engineering, civil 

engineering, medical engineering, textile and cloth engineering, in large because this technology 

enables to accurately predict the deformation behaviour of specific engineering structures under 

specific loading conditions, as illustrated in Figures 1.1 and 1.2. In this respect, FEM (Finite Element 

Method) plays an essential role in CAE systems, because it allows us to find the efficient analytical 

and numerical solution of variational problems in science and engineering, particularly in the textile 

area. Examples of FEM/FEA systems are ANSYS, ABAQUS, COMSOL, MSC Nastran, etc. [26-28]. In 

practice, FEM is also known as Finite Element Analysis (FEA), being thus considered as a computerized 

method for predicting how a product reacts to real-world forces, vibration, heat, fluid flow and other 

physical effects. 

 

Figure 1.1: Finite element predictions of the ballistic impact of Kevlar® woven fabric at high initial projectile 

velocities, yarn slip increases the time to failure and the deflection of the fabric by decreasing the warp yarn 

tension at the point of impact. Images of experiment (top) and simulated contours of the warp yarn tension 

(middle and bottom) at time after impact. [29] 
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Figure 1.2: Modelling of the damage mechanism of woven fabric composite model using CAE. [30] 

FEA shows whether a product will break, wear out or work the way it was designed. It is called analysis, 

but in the product development process, it is used to predict what is going to happen when the product 

is used. FEA works by breaking down a real object into a large number (thousands to hundreds of 

thousands) of finite elements, such as little cubes. Mathematical equations help to predict the 

behaviour of each element. A computer then adds up all the individual behaviours to predict the 

behaviour of the actual object as a whole. 

FEM is one of the most efficient numerical solutions to predict the mechanical behaviours of textile 

fabric products affected by many physical effects, including the following ones: 

 Mechanical stress 

 Mechanical vibration 

 Fatigue 

 Motion 

 Heat transfer 

 Fluid absorption 

 Electrostatics 

On the other hand, the textile fabrics are flexible, either homogeneous or inhomogeneous, and porous 

materials with elastic orthotropic anisotropy. These unique characteristics make textile structures to 

be able to deform differently when compared with other engineering sheet materials. Besides, the 

textile fabrics are characterized by an increased structural complexity because of the complex 

combination of their structural units and their interactions. These complex characteristics of the 

textiles’ mechanics and their application in many engineering areas make them ideal objects for the 

mechanical modelling and simulation using FEM/FEA, as well as computer-based methods. 
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This introductory chapter focuses on the investigation of mechanical modelling and simulation 

approaches for the textile fabrics and cloth. A brief state-of-the-art of the computational models for the 

mechanical deformation of fabric, as well as the development of quadrilateral plate and shell finite 

element models, are presented. Based on these models, the difficulties towards a comprehensive 

finite element model for modelling and simulation of the textile fabrics are highlighted in order to give 

room to motivation, scope and objectives of the present work. 

1.2 Cloth simulation approaches 

One of the first attempts at analytic modelling of woven fabric structures was reported by R. Haas [31] 

in the aerodynamic literature in German early 1910s, in the period of worldwide development of 

airships. However, it was Peirce [32] who first started off research in the bending behaviour of fabric 

and the measurement of its material properties in 1930s, having in that time presented a geometrical 

and a mathematical force model of the plain-weave structure that is today considered as the pioneering 

work in the analytical mechanical modelling of the textile fabrics [33]. These two models due to Hass 

and Peirce were extensively used and considerably developed by subsequent researchers and most 

advanced features can be found in surveys and publications [34-36]. 

In general, the analytical modelling and numerical simulation of the textile fabric products on both 

experimental and theoretical research can be subjected to simple or complex deformation behaviours 

to predict fabric performance. In case of simple deformations, the principal tests include tensile, 

shearing, bending, compression and surface, while buckling, draping behaviour and mechanical 

vibration are complex deformations [37]. Regardless of deformation of fabric be simple or complex, 

the low-stress mechanical properties play an important role, especially in handle, performance and 

appearance of fabric and is particularly indispensable in modelling and simulation of the textile fabrics 

[38-40]. It is a well-known fact that the KES-FB and SiroFAST [10] systems are based on the 

development of fabric objective measurement  related to fabric hand principle and govern the low-

stress mechanical properties of fabric to meet industry's needs for a reliable method of predicting 

fabric handle, performance and appearance [1, 2]. 

Unlike the mechanical models that are used in solving mechanical engineering problems, as needed 

to make the analysis of deformable structures, a large amount of new challenges arise from the highly 

versatile nature of the textile fabrics, several approaches for modelling and simulation were proposed, 
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from which a large number of combination of methods that have emerged and evolved as those shown 

in Table 1.1. 

Table 1.1: Features summary of cloth-modeling work 

Approach Authors Methods Time Parameters 

Geometrical Weil [41] Curve fitting, 

subdivision, relaxation 

Fast* Positions of constraint 

points 

Agui et al. 

[42] 

Polygonization, 

relaxation 

Fast* Bending angle, thresholds 

Hinds et al. 

[43] 

3D interaction, 

interpolation 

Fast* Geometrical offset from 

object 

Ng et al. [44] Mapping Fast Various functions 

Physical Feynman [45] Energy minimization, 

multigrid method 

Fast Elasticity, bending, gravity 

Terzopoulos 

et al. [46] 

Elasticity theory, 

Lagrange's theory 

Medium* Density, damping, metric, 

curvature tensor 

Aono [47] Elasticity theory, 

D'Alembert's principle, 

finite difference 

Medium* Stress, strain, Young's 

modulus, rigidity, Poisson's 

ratio, density, damping, 

Lamé constant 

Thalmann et 

al.  

[48] 

Deformable model, 

Newtonian dynamics 

Medium Deformable model's 

parameters 

Volino et al. 

[49] 

Newtonian dynamics, 

elasticity theory 

Medium on SCI Stress, strain, Young's 

modulus, rigidity, Poisson's 

coefficient, density, 

thickness 

Breen et al. 

[50] 

Energy minimization, 

Newtonian dynamics 

Long on IBM 

RS6000/320 

Repulsion, stretching, 

bending, trellis, gravity 

Okabe et al. 

[51] 

Energy minimization, 

elasticity theory 

Medium on IBM 

RS6000/320 

Elongation, shearing, 

bending, twisting, density 

Li et al. [52] Simplified Navier-

Stokes equation, 

Bernoulli's equation, 

deformable model 

Fast on SGI 

Power 

Air velocity, deformable 

model's parameters 
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Provot [53] Newtonian dynamics, 

Euler integration 

Fast on Sparc 

10 

Mass, stiffness, damping, 

viscosity 

Ng et al. [54] Energy minimization, 

multigrid method 

Fast Elasticity, bending, gravity 

Hearle et al. 

[55] 

Energy-based 

approach 

Fast* Elasticity, extension, 

bending, friction 

Hybrid Rudomin [56] Convex hull, 

deformable model 

Medium* Shape of the object, 

deformable model's 

parameters 

Kunii et al. 

[57] 

Energy minimization, 

singularity theory, 

curve fitting 

Medium* Mass, stiffness, positions 

of characteristic points 

Taillefer [58] Curve fitting, 

relaxation 

Fast* Positions of hanging 

points, stretching, bending, 

weight, self-repulsion 

Tsopelas [59] Thin-wall deformation, 

elastica, NURBS fitting 

Medium on 

Sparc 2 

Thickness, diameter, 

rigidity 

Dhande et al. 

[60] 

Swept surface 

generation 

Fast* Directrix curve, generatrix 

curve 

* is estimated. 

Source: Hing et al [36]. 

The textile cloth modeling approaches can be therefore classified into three following categories [5, 8, 

9, 34, 36, 45, 61-66]: 

 Geometrically–based – This approach has to do with cloth appearance rather than 

performance, particularly folds and creases represented by a set of geometrical equations. 

However, it is lacked of optional parameters on simulation due to not consider the physical 

properties of cloth. It requires a considerable manipulation and intervention from user that 

can be regarded as an advanced drawing tool. [67, 68] 

 Physically–based – This approach applies to both static and dynamic simulation of cloth and 

is considered as the most efficient approach (Figure 1.3). Cloth can be modeled using 

triangular or rectangular meshes of finite mass points as vertices or nodes. Physically-based 

approaches include energy-minimization and force calculation methods. The energy-based 

method represent the distributed energies on meshes as a set of equations and achieve a 

local minimum energy state by moving the discrete mass points of the mesh. The force-based 
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method computes forces acting between the discrete points and integrate over the resulting 

differential equations using numerical methods to calculate the displacement of each point at 

each time step. [54, 69-72] 

 Hybrid–based – It is the combination of physical and geometrical methods. [56, 59, 60, 73] 

 

Figure 1.3: Spring-mass models via particle system for anisotropic bending stiffness, with possible rest 

curvature defined on the surface (left), along precise lines (center) and additional stiffness with their own custom 

rest length (right). [71] 

Since the early 1980’s, cloth simulation has been an important topic in computer graphics in which 

modelling and simulation of the textile fabrics generally refers to the simulation of soft-body dynamics 

[74-76]. It focuses on visually realistic physical simulations and can be done by using a variety of 

approaches such as energy minimization methods [46, 77], shape matching [72, 78] and rigid-body 

based deformation [79]. Rendering effects produce a visually plausible emulation of textiles and 

clothing, which is used in a variety of contexts, e.g., video games, animation, film, etc. Many real-time 

graphics engines are provided by either commercial source code or open source code for soft-body 

and rigid-body dynamics simulation that may be used in collision detection and response algorithms; 

for example, Autodesk Maya nCloth, Havok Cloth, NVIDIA PhysX Technology are examples of 

commercial software, while Blender (Stichting Blender Foundation), OpenCloth are known as open 

source software and so forth as illustrated in Figure 1.4. The applicable scope of soft body dynamics 

is quite broad, not only simulation deformable materials such as clothing and fabric but also simulation 

of soft organic materials such as muscle, fat, hair and vegetation, etc. 



 

  8 
 

 

Figure 1.4: Examples of spring/mass models via particle system approach (from left to right): Maya nCloth 

simulation, Blender's built in cloth dynamics and Havok cloth simulation. [80-82] 

Up to date, there are two main methods that have been extensively used for decades to present as: 

 Mass-Spring-Damper system – It has been successfully applied to simulate many kinds of soft 

things, such as creatures and clothes via particle systems, but the actual structure of real 

cloth at the yarn level can be ignored [83-87]. They have been used extensively in cloth 

simulation [66, 88-92] since the pioneering work of Terzopoulos et al [93]. Much effort has 

been made to improve this model to address the anisotropic property of cloth in computer 

aided garment prototyping, such as the inverse dynamics procedure to eliminate super-

elongation of the springs [53]; the heuristic method of handling post-buckling instability to 

achieve stable but responsive simulation [91]; the implicit integration method to take large 

time steps [76]. However, there are several publications concerning the selection of spring 

constant for a given behaviour [94-96]. Unfortunately, it can be shown that mass-spring-

damper systems fail to describe a continuum mechanical solid because of difficulty to control 

efficiently realistic physically-based behaviors [97]. In spring/mass models, finite mass points 

act as a system of particles connected with elastic springs obeying Hooke's law. There is a 

distinction between the two solvers for spring-mass models that can be expressed as follows: 

o Force-based techniques are to determine the internal spring forces and external 

forces (due to contact, gravity, air resistance, wind, etc.) acting on the nodes at each 

time step and Newton's second law gives differential equations for the motion of the 

nodes. The simple explicit solvers, e.g. Euler integration, are appropriate to create 

high resolution cloth with realistic stiffness. 
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o Position-based dynamics techniques are based on constraint relaxation in which the 

distance between the connected nodes will be equal to the initial distance to avoid an 

expensive implicit solution of a system of ordinary differential equations, which is 

solved sequentially and iteratively, by directly moving nodes to satisfy each constraint, 

until cloth gains sufficiently stiffness. Many real-time graphics engines use position 

based dynamics as PhysX, Havok Cloth, Maya nCloth, etc. [98]. 

 Finite element simulation – This a more physically accurate approach, which uses a finite 

element based numerical method to solve the partial differential equations (PDE) and compute 

component displacements, strains and stresses under internal and external loads [99-101]. 

A body is required to be subdivided into finite elements, which has several advantages such 

as accurate representation of complex geometry, inclusion of dissimilar material properties, 

easy representation of the total solution and capture of local effects [27, 102]. The cloth/fabric 

is modeled as a three-dimensional elastic continuum by breaking its surface into a large 

number of connected finite elements and solving for the energy principles in structural 

mechanics of the fabric (e.g. stresses-strains relation, Hooke's law, bending stiffness and other 

mechanical properties) under the specific boundary conditions. The equations of motions are 

obtained by integrating the stress fields over each of elements and relating this, via Newton's 

second law, to the nodal accelerations and velocities. The finite element based numerical 

methods has been extensively used in mechanical modelling and simulation of the textile 

fabrics for many modelling scales: yarns, fabric unit cell and either single or multi fabric layer 

[64, 103-108]. However, FEM has only had a marginal role in cloth simulation compared with 

spring/mass models via particle systems [107, 109, 110]. 

In view of the above classification of approaches, physically-based simulation has been widely 

accepted as the most effective approach, which divides into two subcategories of models: simplified 

models and analysis and numerical models. 

In general, the simplified models (e.g. in case of soft body dynamics) conform to visually plausible 

emulations rather than accurate scientific/engineering simulations in order to satisfy real-time 

requirements, while analytic and numerical models are concerned with the simulation of the actual 

mechanical behavior of materials and not tied that much about time. In this thesis, we are mainly 

interested in analytic and numerical methods for the textile fabric material simulation. 
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1.3 Analytic and numerical methods in cloth simulation 

There is quite a large number of numerical methods used in the literature. The most popular methods 

for continuum modelling are FEM (Finite Element Method), FDM (Finite Difference Method) and 

Boundary Element Method (BEM). In discontinuum modelling, the most known methods are DEM 

(Distinct Element Method), DDA (Discontinuous Deformation Analysis) and BPM (Bonded Particle 

Model). There are more two other methods, MM (Meshless Methods) and Artificial Neural Networks 

(ANN) that do not fit in previous two categories. The physical and mathematical settings generally lead 

to a set of PDE (Partial Differential Equation), which are then turned into ODE (Ordinary Differential 

Equations), for which standard methods for numerical integration exist. To solve PDEs, either inside 

the continuum or on the boundaries of the discretization, they have to be discretized in space by finite 

elements, yielding a set of ODEs, which are then solved using suitable numerical time integration 

schemes [111]. Implicit integration methods require the solution of possibly large systems of 

equations that may be linear or nonlinear in space-time. Therefore, FEM emerged as a more physically 

accurate approach, which uses the widely used finite element based model to solve the PDEs which 

govern the dynamics of an elastic material [112]. 

The application of the numerical methods in the textile mechanics, in particular those concerning FEM 

(Finite Element Method), firstly appeared in the late 1960’s, when a project using computer programs 

were initiated by Hearle, Konopasek and Newton at University of Manchester Institute of Science and 

Technology (UMIST) [113]. Recent studies about the numerical analysis and modelling of textile fabrics 

implemented a modelling hierarchy based on modelling scales as follows [114-121]: 

 The micro-mechanical modelling: generally for yarn-level simulation [122-124] 

 The meso-mechanical modelling: generally for simulation at the fabric unit cell level [125-128] 

 The macro-mechanical modelling: usually for simulation at the fabric sheet level [64, 103, 

129] 

In the context of FEA in textile fabric engineering, there are many publications about analysis and 

modelling of either simple or complex deformations of woven fabric and this specific area has attracted 

the interest of many researchers from many engineering sectors. In early 1980’s, Lloyd [130, 131] 

presented a finite element model to analysis of the complex deformations of the textile fabrics, such 

as the ballistic deformation of a knitted fabric. The NONSAP finite element programs were used for 

computing the model. However, this model only considers in-plane deformations and neglected 

bending, twisting deformations and transverse shear-strain fields. During 1980’s, there was very few 
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noticeable works on finite element simulation of textile cloth. The limitation of computer hardware and 

software in addition with the traditional of textile could be the reason. 

The finite element modelling of the textile fabrics has increasingly received attention since the late 

1980's and early 1990’s. Most of the existing approaches in mechanical modelling of the textile fabrics 

are based on or related to the geometrically exact thin shell formulation proposed by Simo et al. [132, 

133]. Collier et al. [110] used geometric nonlinear shell membrane finite elements to predicted the 

draping performance. They treated the draping behaviour of fabric as an orthotropic material whose 

tensile moduli in the warp and weft direction of fabric were obtained by using the Tensile and Shear 

Tester of KES-FB (Kawabata Evaluation System for Fabric) and literature values of Poisson's ratio also 

were determined. The resulted approach agreed between experimental and predicted drape 

coefficients. 

Gan et al. [107] also used geometric nonlinear shell/plate elements to model large fabric deformation, 

such as drape. They assumed fabrics as linear elastic orthotropic material and their modelling results 

are in agreement compared with experimental data. Chen and Govindaraj [134] applied a shear 

flexible shell theory to predict fabric drape. The fabric is taken to be a continuous orthotropic medium 

and used finite element formulations to solve the governing equations under particular boundary 

conditions. Characteristics of fabric include Young’s modulus in the warp and weft directions, shear 

modulus in bias direction and Poisson’s ratio. 

Kang and Yu [135] developed a nonlinear finite element code in order to simulate the 3D drape shapes 

of woven fabrics. The fabric was assumed as an elastic material with orthotropic anisotropy and fabric 

drape was considered to be a geometric nonlinear phenomenon. Unlike former finite element 

formulations, Etzmuss et al. [136] presented a linear finite element approach based on a plane-stress 

assumption. The corotational strain formulation is used to account for arbitrary rigid body 

transformations, while bending behavior is treated separately from in-plane deformation. The resulting 

equation system is solved by using an efficient implicit time integration scheme. 

Eischen et al. [109] used software based on nonlinear shell theory to simulate 3D motions related to 

real fabric-manufacturing processes (Figure 1.5). This model is bounded to rectangular cloth surfaces 

and built from experimental curves of fabric characteristics obtained by using KES-FB. Their study 

focuses on the accuracy model by precisely simulating mechanical behavior of fabric and then 

comparing the bending and buckling properties with the mechanical property values from real fabric 

experiments. 
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Figure 1.5: Finite element modeling and control of flexible fabric parts [109] 

Chen and his coworkers [129] presented extended work of a geometrically nonlinear FVM (Finite-

Volume Method) developed by themselves to predict contact drape deformations of woven fabrics. 

This model includes the computing of the out-of-plane bending and in-plane membrane strain energies 

of the fabric sheet, which is divided into a number of structured finite volumes based on mesh lines 

along the warp and weft directions. The equilibrium equations of the fabric sheet are derived from 

employing the principle of stationary total potential energy and solved by using the Newton-Raphson 

method. They compared numerical simulation of two square fabric sheets with available experimental 

results showing a close match between them (Figure 1.6). However, the main disadvantage of a finite-

volume method is much more computations required compared to a FDM (Finite-Difference Method) 

or FEM. Thus it costs much more than numerical solutions delivered by a FDM or FEM. 

 

Figure 1.6: A finite-volume method for contact drape simulation of woven fabrics and garments. [129] 
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King et al. [137] developed a continuum model that can both simulate existing fabrics and predict the 

behavior of novel fabrics in-plane loading. They related the fabric structural configuration to the 

macroscopic deformation through an energy minimization method and used the internal forces using 

equilibrium arguments to determine the macroscopic stresses. Using this approach, authors 

developed a model for plain weave ballistic fabrics based on a pin-joined beam geometry and 

implemented this model using Abaqus FEA environment to simulate fabrics under different modes of 

deformation as illustrated in Figure 1.7. 

 

Figure 1.7: Prediction of the ballistic impact on a Kevlar® woven fabric: Yarn slip in an unloaded specimen that 

was tested at v = 362 m/s (top) and simulation of the test (bottom): (a), (a') Slip displacement in the direction 

of the weft yarns predicts unraveling of the weave at the free edges of the fabric, (b), (b ') Yarn slip in the 

direction of the weft yarns increases the warp yarn pitch at the edge of the fabric. [29] 

Sze and Liu [138] presented a bilinear stress-resultant solid-shell element with assumed natural 

transverse shear and thickness strains for drape analyses (Figure 1.8). The solid-shell element is 

partitioned into a surface, four line and four point sub-elements to reduce the computational burden 

of interpolating the assumed strain field. However, the converged solutions are non-physical. 
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Figure 1.8: (a) Top; (b) Isometric; (c) Zoomed isometric views of a 40×40 cm wool fabric of which a quadrant 

is fixed over a 20×20 cm pedestal. The bottom element edges are portrayed by chained lines. [138] 

Wang et al. [139] presented a finite-element mechanical contact model based on FSDT (Mindlin–

Reissner shell theory) for a three-dimensional garment and human body (Figure 1.9). In this model, 

the mathematical formulation of the finite-element model using 4-node thin plate shell elements is 

defined to describe the strain–stress performance of the three-dimensional garment. The mechanical 

parameters of fabric samples were obtained by using KES-FB. Due to be based on FSDT, assumed 

the existence of the transverse shear strains in the model. However, authors did not present the 

technique to mitigate shear-locking effect that may appear in thin shell finite elements based on FSDT. 

 

Figure 1.9: Pressure distribution of the body wearing the cotton one-piece dress, front (left) and back (right). 

[139] 

More recent reviews on mechanical analysis of woven fabrics based on FEM can be found in the 

literature [7, 8, 62, 63, 140]. The above-referenced works can indicate that membrane and plate/shell 

finite element models are most appropriate for precise mechanical analysis and modelling of the textile 

fabrics, especially for complex deformation of the textile fabrics and cloth. The fabric objective 

measurement (FOM) technology has approved the important role in the field. Thus, mechanical 

realism is of paramount importance in a clothing modeling framework in which the mechanics of 
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woven fabrics is capturing realistic in-plane stress and out-of-plane transverse shear strains as well as 

bending behaviors. These mechanical properties of the fabrics aim to establish constitutive equations 

for FEM models including linear and nonlinear FEA. 

From the past five decades, the development of simple and efficient low-order plate/shell elements 

have been principally based on FDST (Mindlin-Reissner theory, also so-called the first-order shear 

deformation theory) due to simplicity of mesh generation and robustness (e.g. against mesh 

entanglement during large deformations) in linear and nonlinear analysis, such as the case of either 

simple or complex fabric deformations. These attempts make the FSDT more convenient and 

reasonable in practical applications. However, the well-known problem of low-order elements is the 

appearance of shear-locking effect because the thickness-to-span ratio of plate/shell becomes too 

small as it is the case of fabric sheet, where the dimensional thickness is too small to compare with 

other length or width dimensions. There have been many techniques proposed to overcome this 

phenomenon with varying success. Various approaches can be found in published works [23, 27, 

141-144]. Thus only the most recent advanced works are mentioned in sequel. 

Zienkiewiez et al. [145] and Hughes et al. [146, 147] proposed the application of selective/reduced 

integration techniques. However, thin plate elements based on these techniques are not effective in 

certain cases due to be found that extra zero energy modes caused by rank deficiency may exist. 

However, the work of MacNeal et al. [148] motivated Hughes and Tezduyar [149] to present a scheme 

in which the rank deficiency was refined by using 2x2 quadrature and the interpolation of the 

transverse shear strains, but one-point quadrature integration was the drawback of these schemes. 

Another approach by Belytschko et al. [150] and Belytschko and Tsay [151] was the stabilization 

procedure with one-point quadrature integration. Also working along the same lines, several 

mixed/hybrid elements based on the FSDT may be efficient in remedying the shear-locking effect such 

as the shear-flexible element by Wilt et al. [152] and the shear-locking-free element by Auricchio and 

Sacco [153]. However, they are usually more complex formulation and implementation in theory and 

high computational time cost in rendering, so their usage is less attractive.  

The famous discrete Kirchhoff triangular element (DKT) and discrete Kirchhoff quadrilateral element 

(DKQ) proposed by Batoz et al. [154] is a robust plate/shell bending element, which can give efficient 

results for analyzing bending problems. However, the transverse shear strain fields are regarded as 

zero, so these plate/shell elements are therefore efficient for thin plate/shell element only. Katili et al. 

[155, 156] proposed an extended DKQ element for thick plate/shell analysis is the discrete Kirchhoff-
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Mindlin elements (DKM) based on Mindlin–Reissner theory with assumed shear strain fields. A new 

concept was introduced via the work of Macneal [157], namely assumed natural strain (ANS) method. 

In this concept, the shear strains are computed through the kinematic variables at discrete collocation 

points of the element instead of using nodes of element. There were many successful models that are 

based on this new approach, being the mixed interpolation tensorial component elements (MITC) 

proposed by Bathe and his coworkers [158] one of the most popular; Bathe and Dvorkin [159] also 

proposed a well-known 4-node quadrilateral plate element based on Mindlin-Reissner theory using 

MITC; Zienkiewicz’s teamwork [160] proposed the linked interpolation for Mindlin-Reissner plate 

elements and so forth. The reader is referred to [161, 162] for more details about this subject. 

In parallel with the above developments, several recent formulations of plate elements have been 

based on the Timoshenko’s beam whose displacement function was used to develop locking-free plate 

finite elements. In the work of Ibrahimbegović [163, 164], the kinematic variables and shear strains 

along sides of element were approximated by using Timoshenko’s beam theory and then, using the 

mixed interpolation method to develop three thin and thick plate elements PQ1, PQ2, PQ3. Also, based 

on Timoshenko’s beam function method, Soh et al. [165] presented a 9-DOF triangular plate bending 

element with a scheme similar to those of DKT and DKQ elements for analysis of thick and thin plate 

and a 12-DOF quadrilateral element (ARS-Q12) was also presented [166]. Later, Cen et al. [167] 

modified the element ARS-Q12 to formulate a 4-node 20-DOF quadrilateral element (CTMQ20) by 

adding a bilinear in-plane displacement field of the mid-plane. Once again, based on the same 

Timoshenko’s beam theory, several elements were later developed e.g. a 9-DOF triangular element 

(RDKTM) [168], a 20-DOF quadrilateral Mindlin plate element (RDKQM) [169], a 20-DOF and 24-DOF 

quadrilateral elements (RDKQ-L20)[170] and (RDKQ-L24) [171] and so on. Recent reviews for the 

shear deformable plate and shell finite elements can be found in several surveys e.g. Gal et al. [161], 

Zhang et al. [172]. 

In addition to the appearance of the locking phenomenon in displacement-based low-order finite 

element formulations for thin plate and shell finite element models, such formulations also have the 

other shortcomings with regard to low accuracy due to element distortion, mesh coarseness, etc. The 

development of computational approaches based on numerical methods, in particular with FEM, have 

allowed the development of more versatile computer applications in research, design and production 

activities. Among various types of finite element methods such as AEM (Applied Element Method), 

GFEM (Generalized Finite Element Method), XFEM (Extended Finite Element Method), Spectral 

Method, etc., the new literature S-FEM (Smoothed Finite Element Methods) has been recently 
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presented in applied mechanics [173]. The application of S-FEM models to thin plate/shell finite 

element models to overcome the shear-locking phenomena, element distortion and mesh coarseness 

has been proven [173-178]. These models offer more efficient approximate solutions that are stable 

and convergent to the exact solution [174, 175, 179-185]. They have been also proven to have more 

accuracy, precision, reliability and of more practical importance. At the period of this study, the S-FEM 

models has been being developed in many engineering areas, but not yet fully developed and applied 

in textile engineering [186]. Therefore, the smoothed finite element methods, together with fabric 

objective measurement technology that respects to low-stress mechanical properties of fabric are the 

main objects and objectives in this study in order to find a numerical solution that offer a lower 

computational cost but effective performance in comparison with more conventional finite elements 

for modelling and simulation of mechanical behavior of thin to moderately thick textile fabric. 

1.4 Thesis statement 

Taking into account the existing knowledge FOM (Fabric Objective Measurement) and the new 

developments in finite element methods, in particular S-FEM (Smoothed Finite Element Methods), we 

state that application of FOM and S-FEM to displacement-based low-order finite element formulations 

based on quadrilateral plate/shell finite element models are well appropriate for numerical modelling 

and simulation in predicting the mechanical deformation behaviour of the textile fabrics, as needed in 

cloth simulation, which will lead to the perspective of widely accepted and integrated S-FEM models 

into FEA/CAE environment for textile fabric engineering. 

1.5 Objectives 

As introduced above, the scope of this study is the mechanical modelling and simulation of the textile 

fabrics based on the plate/shell finite element models. Therefore, three general objectives in this work 

are pursued. The first one is to come up to the formulation of constitutive equations based on the low-

stress mechanical properties. The second one is the study of mechanical modelling of the textile 

fabrics using finite element methods and the strain/gradient smoothing technique through S-FEM 

models. These two general objectives must lead to an efficient, robust and accurate computational 

technique based on the finite element technology to provide means to the engineering analysis of both 

simply and complex mechanical behavior of the textile fabrics, e.g. tensile, bending, buckling and 

vibration. The last objective is developing a computational tool that exchanges data for the solution of 

these objectives with other separate solvers. 
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In respect to fabric objective measurement (FOM), we have the following goal (or specific objectives): 

 To review the state of the art on fabric objective measurement and low-stress mechanical 

properties of the textile fabrics. 

 To present the major elasticity parameters of the fabric and the addition elasticity parameters 

used in this research. The KES-FB (Kawabata Evaluation System for Fabrics) system and low-

stress mechanical parameters from which the major elasticity parameters of the fabric can 

be computed is presented. 

 To propose a technique for approximating the transverse shear modulus, which acts through 

the fabric thickness. 

 To formulate the constitutive laws using low-stress mechanical properties that are applicable 

for macro-mechanical modelling of the textile fabrics of both non-woven and woven fabrics in 

terms of elastic material with  both isotropy and orthotropic anisotropy. 

In the numerical modelling and simulation of the textile fabrics, the goals are: 

 To review a brief state-of-the-art on modelling and simulation of the textile fabrics particularly 

based on plate/shell finite element models and a brief state-of-the-art on the displacement-

based low-order finite element formulations for plate/shell finite element models. 

 To develop S-FEM models for modelling and simulation of the textile fabrics to predict the 

simple and complex mechanical deformation behavior. 

 To explore existing time integration schemes for dynamic deformations and to work with the 

best choice for long time analysis periods. 

 To develop finite element computer codes for the developed S-FEM models due to the lack of 

supported FEM packages for S-FEM models in the current FEA/CAE systems. 

 To demonstrate the developed and implemented S-FEM models for the basic engineering 

applications of modelling and simulation of the textile fabrics such as plane stress recovery, 

bending, buckling and free-vibration behavior. 

All these objectives are oriented to improve and to combine the most advances of fabric objective 

measurement technology with the development of smoothed finite element methods into the textile 

engineering sector, i.e. the low-stress mechanical properties together with a stabilized conforming 

nodal integration and mesh moving algorithms, to perform the analysis of the mechanical deformation 

behaviour involving tensile, shear as well as bending properties. Besides, since the time when this 

study was initiated, S-FEM has not yet support by vast of FEA/CAE systems, applications. Thus, the 
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finite element computer codes for S-FEM models will be programmed in order to better sustain in 

practice the research described in this thesis. This also give a better interactive between theoretical 

works and practical works rather than using FEA/CAE systems, applications. 

1.6 Organization of the thesis 

The principal research topic approached in this thesis is numerical modelling for predicting the 

mechanical deformation behavior of thin to moderately thick fabrics. Thus, the development and 

implementation of this theoretical framework covers the literature of FOM (Fabric Objective 

Measurement), S-FEM (Smoothed Finite Element Methods) and FSDT (Reissner-Mindlin theory). 

Taking into consideration the thesis statement and the objectives mentioned above, the thesis here 

presented is organized as follows: 

Chapter 1 –  Introduction and outline of the thesis. In this chapter, it is presented the most recent 

advances in the investigation of mechanical modelling and simulation approaches of the textile fabrics 

and cloth, in particular with numerical methods, from which the difficulties towards a comprehensive 

finite element model for modelling and simulation of the textile fabrics are highlighted in order to give 

room to motivation, scope and objectives of the present work. 

Chapter 2 –  An understanding of the objective measurement of fabrics (FOM) is the key role of the 

success and efficiency of the theoretical work in the fields of both analytical modelling and numerical 

simulation to predict the mechanical deformation behavior of the textile fabrics and cloth. This chapter 

presents a formulation of the constitutive laws of the textile fabrics using low-stress mechanic 

properties via FOM. These constitutive equations are applicable to the formulation of plate/shell finite 

element models based on Reissner-Mindlin theory. 

Chapter 3 –  This chapter begins with the definition of elastic static and dynamic analysis of the textile 

fabrics, then the discretization of dynamics equilibrium equations in space-time will yields the 

equations of motion as well as the time integration schemes. Here the concept of gradient (strain) 

smoothing technique via S-FEM models is introduced. In the context of continuum mechanics, the 

formulation of plate and shell finite element models based on FSDT together with the strain-smoothing 

operation are presented. 
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Chapter 4 – In order to demonstrate and evaluate the developed and implemented S-FEM models, 

this chapter presents numerical modelling examples in predicting the mechanical deformation 

behavior of the textile fabrics including plane-stress, bending and buckling and free-vibration behavior. 

Chapter 5 – This chapter concludes the thesis with the main advantages and disadvantages of the 

formulated and implemented numerical models, being also presented suggestions for future research 

to be developed as a direct consequence of this work.  

1.7 Contribution of the thesis 

This thesis has a few contributions to the advance of knowledge relative to textile engineering, applied 

mechanics and applied computer science, namely: 

 Computation of the transverse shear modulus of the textile fabrics base on the objective 

measurement technology via using mechanical parameters of compression test. This shear 

modulus is needed to formulate of fabric constitutive laws for transverse shear strain relation, 

which act through the fabric thickness. 

 In textile fabric engineering, this is the first time that one applies the strain/gradient smoothing 

technique via S-FEM to displacement-based 4-node quadrilateral finite element model for 

general plate and shell structures based on FSDT in order to enhance accuracy and to alleviate 

shear locking phenomena as well as element distortion effect. These results enhance the 

capabilities of low-order flat elements in the case of quadrilateral plate/shell finite element to 

perform efficiency the mechanical analysis and modelling of thin to moderately thick fabric 

sheet as well as the numerical computational model. 

 Given the above insufficiencies of current FEA/CAE systems, this is the first time that research 

work incorporate the designs, implementation and development of the finite element 

computer codes for the developed plate/shell element model to demonstrate the basic 

engineering applications of mechanical modelling of thin to moderately thick fabric sheet in 

the typical case studies such as in-plane stress recovery, bending behavior and buckling and 

free-vibration behavior. The codes have been implemented with MATLAB v12.  
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2 Chapter 2 

Fabric objective measurement and 
Constitutive equation formulations 

Abstract 

This chapter focuses on the measurement of mechanical properties of fabric samples, which aims to 

provide physical and mechanical parameters for the formulation of fabrics constitutive laws 

corresponding to the mechanical deformation behavior of tensile, shear and bending properties. A 

brief development summary of objective measurement of fabric mechanical properties, as well as low-

stress mechanical properties, is introduced. Among the fabric objective measurement instruments, 

the KES-FB instruments was chosen to measure the low-stress physical and mechanical parameters 

of fabric samples, being then the formulation of constitutive equations represented. 

Keywords Woven fabric, non-woven fabric, fabric objective measurement, low-stress mechanics, 

KES-FB (Kawabata Evaluation System for Fabrics), SiroFAST (Fabric Assurance by Simple Testing), 

isotropic/orthotropic/anisotropic material, constitutive laws. 

2.1 Introduction 

2.1.1 Roles of fabric objective measurement 

As outlined in the literature [1], the subjective measurement techniques are properly unable to meet 

the requirements of ever-changing marketplace of textile and clothing. Thus, the development of FOM 

(Fabric Objective Measurement) has been replacing the subjective measurement technique in use 

since the pioneering work of Peirce in the 1920s [2, 3]. Fabric objective measurement technology of 

mechanical, geometrical, surface and deformation properties, provides a scientific tool to measure the 

quality and performance characteristics of woven and non-woven fabrics [4-8]. The quality and 

performance attributes of fabrics related to the basic mechanical properties via the dimensional 

properties of fabric are shown in Table 2.1. 

Test for fabric objective measurement can be broadly classified into two categories as follows [9-11]: 

 High-stress mechanical tests: In order to measure tensile strength, tear strength and abrasion 

properties of fabrics, such tests normally being conducted until the fabric fail. 
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 Low-stress mechanical tests: Reflecting the level of stresses that a fabric can undergo during 

normal use, relates to fabric handle, making-up performance and garment appearance. 

Table 2.1: The six basic fabric mechanical properties and corresponding quality and performance 
attributes of fabrics and garments 

Fabric mechanical properties Quality and mechanical performance 

Uniaxial and biaxial tension Fabric handle and drape 

Fabric formability and tailoring properties 

Shear under tension Garment appearance and seam pucker 

Pure bending Mechanical stability and shape retention 

Lateral compression Relaxation shrinkage, dimensional stability and hygral 

expansion 

Longitudinal compression and buckling Wrinkle recovery and crease retention 

Abrasion and pilling resistance 

Surface roughness and friction Mechanical and physiological comfort 

Source: Fan et al. [12] 

Nowadays, the FOM technology plays a key role in production principles for quality control of fabric 

manufacturing, finishing and refinishing operations to ensure that fabrics are easy to tailor, garments 

keep their shape during wear and provide information on fabric handle, as shown in Table 2.2, [1, 10, 

11, 13-17]. Besides, it also plays important role in the development and application of the 

FEM/FEA/CAE systems in textile and cloth engineering as presented in Section 1.1. 

The application of fabric objective measurement, as shown in Table 2.3, has become important due 

to the following main factors [8, 18, 19]: 

 To meet the increasing level of automation in both textile and clothing manufacture. 

 To carry out the production, research, development and quality control functions. 

 To satisfy the need for quick response to maintain competitiveness in business. 
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Table 2.2: Typical fabric properties measured in FOM 

Properties measured Descriptions 

Tensile and shear  Measured under low deformation forces are being also used to calculate 

properties such as deformability. This sometimes also called recovery and 

hysteresis (energy loss) properties. 

Bending rigidity Fabric bending length is generally measured and used to calculate the 

fabric rigidity. 

Compression This refers to the difference in fabric thickness under different loads, also 

termed the thickness of the surface layer and provides a measure of fabric 

softness or fullness. 

Friction and roughness They are measured either fabric-against-fabric or fabric-against-metal static 

and dynamic of friction. These properties are related to fabric handle. 

Dimensional stability Three main types of dimensional stability result from changes in the 

environment: relaxation, hygral, thermal. In practice, only the first two are 

generally considered important and measured. 

Source: Kawabata et al. [4, 11, 12] 

Table 2.3: The possibility application of fabric objective measurement technology 

1. Objective measurement of fabric quality and handle and their primary components for various 

textile products. 

2. Design and production of a diverse range of high quality yarns and fabrics using objective 

mechanical and surface-property data. 

3. Objective evaluation and control of textile processing and finishing sequences for the 

production of high quality yarns and fabrics. 

4. Objective evaluation of fabric tailorability and finished garment quality and appearance. 

5. Objective specifications by tailoring companies for fabric selection, production planning, 

process control and quality assurance, using fabric mechanical and dimensional property data. 

6. Measurement and control of the comfort, performance and stability of fabrics and clothing 

during use. 

7. Evaluation of the effect of changes in fabric finishing routines, including decatising, on fabric 

tailor ability. 

Source: Postle et al. [4, 12] 

It also represents the possibility of incorporating the experience of numerous experts working in the 

textile and clothing industries into an integrated computerized scientific database in objective terms 
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[20], for example, a new database management system for improved clothing manufacturing 

proposed by Lee [21] who listed an excellent table of controllable parameters in the tailoring process. 

The reader is referred to [1, 10-12, 20, 22] for more details about KES-FB and FAST system as well 

as  the fabric properties, as presented in Tables 2.4 and 2.5, associated with problems in fabric 

performance and appearance as well as garment making and with potential poor garment appearance 

in wear. 

In short, above notations can indicate the important and significant role of the FOM technology in 

providing the key for scientific, engineering and production principles, especially in the formulation of 

fabric constitutive laws as well as of the numerical models of this study. 

2.1.2 Fabric objective measurement, KES-FB and SiroFAST system 

The woven fabric mechanics was reported in the aerodynamic literature by the work of Haas, in 

German early 1912 [23], in the time of the worldwide development of airships. In parallel with the 

development of fabric mechanics, the development of objective measurement of fabric handle was 

introduced by the pioneering work of Peirce in United Kingdom, in 1930 [2, 3]. In 1937, Peirce [24] 

established the basic theory of fabric mechanics by investigating the basic equilibrium structure of a 

plain-weave fabric based upon the force equilibrium conditions and presented a geometrical and a 

mathematical force model of the plain-weave fabric. His work was further developed by subsequent 

researchers in the field, was towards the objective or quantitative assessment of fabric ‘handle’ and 

quality. The theoretical analysis of fabric mechanical properties such as tensile, shear, bending, 

compression and buckling came across in the work of Grosberg, Park and Swani and others during 

the 1960s [25-27]. Their contributions were on the physical and mechanical description as well as 

deformation properties of woven fabric. The extensive research in Sweden [28], Japan [4], UK [11] 

and Australia [12-16] has defined many of those mechanical, dimensional and other properties of 

fabrics that affect handle, performance in garment manufacture and the appearance of garments in 

wear. Considerable progress has been made during the last century in the development of the theory 

of geometrical structure and mechanical properties of fabrics. In order to meet demands from industry, 

the investigation of the geometry and mechanical deformation behaviour of fabrics have come off well 

through observation, explanation and prediction. Hearle, Thwaites and Amirbayat [29]  presented the 

most important mechanical properties of fabric in the book entitled ‘Mechanics of Flexible Fibre 
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Assemblies’ edited by the leading researchers as Hearle, Grosberg, Backer, Thwaites, Amirbayat, 

Postle and Lloyd [22]. 

Much experimental techniques for the measurement of those mechanical properties evolved during 

those decades by many researchers. In order to develop an objective evaluation fabric hand system, 

Kawabata and Niwa [30] organized the Hand Evaluation and Standardisation Committee (HESK) in 

1972, as a research committee of the Textile Machinery Society in Japan and 12 experts were invited 

to join this committee. Progress toward an objective evaluation system has been made possible by 

HESK and the term ‘primary fabric handle’ was defined, from which related to mechanical properties 

of the fabric, as listed in Table 2.2. The three primary handle values (PHV) comprising KOSHI 

(stiffness), NUMERI (smoothness) and FUKURAMI (fullness) were related to fabric properties 

measured with KES-FB as illustrated in Figure 2.1. However, the most important outcome at this 

period was an integrated system of fabric objective measurement, namely KES-F (Kawabata Evaluation 

System for Fabrics), which was designed to measure low-stress mechanical properties that determine 

fabric handle and garment making-up and appearance of fabrics [1, 10, 11, 20]. The KES-FB (the 

second version of KES-F) system enables a variety of fabric tests and is a sophisticated computer 

testing facility which became a standard textile test facility around the world [5, 31]. The development 

of an automatic version of the Kawabata system, called the KESFB-AUTO-A system was released in 

1997 [32]. 

 

Figure 2.1: Relationship between the three primary hand values and the mechanical properties. [30] 
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The reader is referred to [1, 10-12, 22, 31] for more details about PHV, further handle values including 

SHARI (crispness) and HARI (anti-drape stiffness), as listed in Table 2.4 and diagnosis of tailoring 

problems on these PHV as well as THV (Total Handle Value) and TAV (Total Appearance Value). These 

references also including description of the KES-FB and SiroFAST system. 

Table 2.4:  Primary fabric handle 

KOSHI Stiffness A measure of crispness in bending; springy flexural rigidity 

NUMERI Smoothness A measure of smooth, supple and soft feel 

FUKURAMI Fullness and softness A measure of bulk, with springiness in comparison; rich 

and warm 

SHARI Crispness A measure of a crisp rigid fabric surface, with a cool feel 

HARI Antidrape stiffness A measure of flare, the opposite of limp conformability 

Source: Hearle [33, 34] 

In late 1980s, the CSIRO, in Australia, developed the FAST (Fabric Assurance by Simple Testing) 

system [1, 35]. Similarly with KES-FB system, SiroFAST system can measure the low-stress 

mechanical and dimensional properties of fabric that can be used to predict performance in garment 

manufacture and the appearance of the garments in wear. It measures the resistance of fabric to 

deformation but not the recovery of the fabric from deformation. Besides, it is much cheaper than 

KES-F system and becoming more attractive to the industrial environment. These instruments also 

give information related to the fabric handle. 

In practical terms, the extension or stress applied to woven fabrics in manufacturing, finishing, 

garment construction and wear process is generally governed by the low-stress scope of their 

characteristic stress-strain behaviour. The normal stresses related to fabric deformation behaviours 

under low-stress conditions are tensile, shear, bending and compression and both KES-FB and 

SiroFAST system are applicable devices to predict these low-stress deformations. 

In general, both KES-FB and SiroFAST system can measure low-stress fabric mechanical properties, 

typically those in Table 2.2. Their results are basically similar on these two systems and can be plotted 

on control charts. Besides, both systems have been compared when applied to typical fabrics, as well 

as to diagnosis of tailoring problems [36]. 
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2.1.3 The configuration of KES-FB system 

The KES-FB system comprises of four precision instruments: 

 KES-FB1: Tensile and shear tester 

 KES-FB2: Pure bending tester 

 KES-FB3: Compression tester 

 KES-FB4: Surface characteristics tester 

These instruments can test fabrics automatically and provide continuous stress-strain curves for the 

resistance of fabric to deformation and the recovery of the fabric from deformation, as illustrated in 

Figures 2.2 to 2.8. Load, deformation and recovery are measured using sensors and recorded using 

an 𝑋-𝑌 recorder. There are five charts and 16 parameters in the warp and weft directions. The 

parameters describing mechanical and surface properties of fabric are shown in Table 2.5. 

 

Figure 2.2: The KES-FB system for measuring fabric mechanical properties. 
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Table 2.5: The parameters describing fabric mechanical and surface properties 

Instrument Symbol Notation Unit 

Tensile 

(KES-FB1) 

𝐿𝑇 Linearity of tensile load-extension curve  

𝑊𝑇 Tensile energy per unit area 𝑔𝑓. 𝑐𝑚 𝑐𝑚2⁄  

𝑅𝑇 Tensile resilience % 

𝐸𝑀𝑇 Extensibility, the strain at 500 𝑔𝑓 𝑐𝑚⁄  tensile 

load 

% 

Shear 

(KES-FB1) 

𝐺 Shear rigidity 𝑔𝑓 𝑐𝑚. 𝑑𝑒𝑔⁄  

2𝐻𝐺 Hysteresis of shear force at ±0.50 shear angle 𝑔𝑓 𝑐𝑚⁄  

2𝐻𝐺5 Hysteresis of shear force at ±50 shear angle 𝑔𝑓 𝑐𝑚⁄  

Bending 

(KES-FB2) 

𝐵 Bending rigidity 𝑔𝑓. 𝑐𝑚2 𝑐𝑚⁄  

2𝐻𝐵 Hysteresis of bending moment 𝑔𝑓. 𝑐𝑚2 𝑐𝑚⁄  

Compression 

(KES-FB3) 

𝐿𝐶 Linearity of compression-thickness curve  

𝑊𝐶 Compressional energy per unit area 𝑔𝑓. 𝑐𝑚2 𝑐𝑚⁄  

𝑅𝐶 Compressional resilience % 

𝑇0 Fabric thickness at 0.5𝑔𝑓 𝑐𝑚2⁄  𝑚𝑚 

𝑇𝑚 Fabric thickness at 50 𝑔𝑓 𝑐𝑚2⁄  𝑚𝑚 

Surface 

(KES-FB4) 

𝑀𝐼𝑈 Coefficient of fabric surface friction  

𝑀𝑀𝐷 Mean deviation of 𝑀𝐼𝑈  

𝑆𝑀𝐷 Geometrical roughness 𝑚𝑚 

Weight 𝑊 Fabric weight per unit area 𝑚𝑔 𝑐𝑚2⁄  

Source: Saville and others [1, 10-12, 20]. 

2.1.4 The configuration of SiroFAST system 

The SiroFAST system consists of three individual instruments and a test method: 

 SiroFAST-1: Compression tester 

 SiroFAST-2: Bending tester 

 SiroFAST-3: Extension tester 

 SiroFAST-4: Dimensional stability (test method) 
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The FAST system provides 14 parameters that can be measured or calculated as listed in Table 2.6. 

Similarly to the KES-FB system, the measured parameters are plotted on a control chart from which 

the prediction of the fabric performance can be derived. Although the FAST system is technically less 

complicated than the KES-FB system, it is reliable and responsive information in order to control the 

finishing and tailoring progress of fabric and garment. 

Table 2.6: The low-stress mechanical parameters measured on the FAST system 

Instrument Symbol Notation Unit 

Tensile 𝐸5 Extension at 5 𝑁/𝑚 % 

𝐸20 Extension at 20 𝑁/𝑚 % 

𝐸100 Extension at 100 𝑁/𝑚 % 

𝐸𝐵5 Bias extension % 

Shear 𝐺 Shear rigidity 𝑁 𝑚⁄  

Bending 𝐶 Bending length 𝑚𝑚 

𝐵 Bending rigidity 𝜇𝑁 ⋅ 𝑚 

Compression 𝑇2 Thickness at 2 𝑔𝑓/𝑐𝑚2 𝑚𝑚 

𝑇100 Thickness at 100 𝑔𝑓/𝑐𝑚2 𝑚𝑚 

𝑆𝑇 Surface thickness 𝑚𝑚 

𝑆𝑇𝑅 Released surface thickness 𝑚𝑚 

Dimensional 

stability 

𝑅𝑆 Relaxation shrinkage % 

𝑅𝐶 Hygral expansion % 

Derived parameter 𝐹 Formability % ⋅ 𝑚𝑚2 

Source: Saville and others [1, 10-12, 20]. 

The reader is referred to [1, 10-12, 20, 22] for more details about KES-FB and FAST system as well 

as  the fabric properties, as presented in Tables 2.5 and 2.6, associated to fabric performance and 

appearance as well as garment making and with potential poor garment appearance in wear. 

2.2 Mechanical parameters 

In the modelling and simulation of the textile fabric products, the major elasticity parameters of the 

textile fabrics are those listed in Table 2.7. The addition of elasticity parameters according to the 



 

  39 
 

transverse direction of the fabric, which are needed to develop the numerical models in this research, 

are listed in Table 2.8. 

Table 2.7: The major elasticity parameters of the fabric used in the mechanical modelling and 
simulation. 

Symbol Notation 

𝐸 Young’s modulus 

𝐺 Shear modulus, or rigidity modulus, expressing the shearing rigidity 

𝐵 Bending rigidity 

𝑣 Poisson’s ratio, significant for highly stretched fabric 

Table 2.8: The addition of elasticity parameters according to the transverse direction of the fabric 
needed to develop the numerical models in this research in this research. 

Symbol Notation 

𝐾 Bulk’s modulus 

𝜐 Poisson’s ratios related to transverse strain, or related to the anticlastic compression 

The directions of applied forces according to principal directions of warp yarns and weft yarns and 

bias direction of woven fabric are shown in Figure 2.3. Note that there is no distinction of the directions 

of applied forces for the non-woven fabric due to be categorized as linear homogeneous isotropic 

material. 

 

Figure 2.3: The principal directions of warp yarns, weft yarns and bias of woven fabric. 

Depending on using the KES-FB or FAST instruments, almost elasticity parameters listed in Tables 2.7 

and 2.8 can be obtained or calculated from the measured results, as shown in Table 2.9. 
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Table 2.9: Options of instruments for measuring the low-stress mechanical properties of fabric of 
which results used for calculating elasticity parameters. 

Parameter Mechanical properties 

Instrument options 

KES-FB SiroFAST 

𝐸 Tensile stress-strain KES-FB1 SiroFAST-3 

𝐺 Shear stress-strain KES-FB1 SiroFAST-3 

𝐵 Pure bending KES-FB2 SiroFAST-2 

𝐾 Compression KES-FB3 SiroFAST-1 

Together with mechanical parameters, there are two essential physical parameters, relating to 

dimension and weight, comprising fabric thickness and fabric weight, as listed in Table 2.10. 

Table 2.10: The physical parameters of fabric 

Symbol Notation Unit 

ℎ Thickness 𝑚𝑚 

𝜌 Mass per unit area (also known as basis weight and grammage) 𝑚𝑔 𝑐𝑚2⁄  

In order to measure the low-stress mechanical properties of specimen, the KES-FB system is used in 

this work. Section 2.3 provides a detailed explanation of the properties measured by the KES-FB 

system. Note that the measurement unit is defined according to the applied measurement standard 

or system. The reader is referred to [10, 11] for more details about the measurement standards and 

their corresponding measurement unit system applied for fabric testing. 

2.3 Experimental analysis of fabric properties with KES-FB system 

The descriptions in the following subsections were elaborated on those in [1, 10-12, 20, 22]. The 

corresponding figures were captured and noted from experimental analysis of fabric properties. 

2.3.1 Tensile and shear test (KES-FB1) 

The tensile properties are measured by applying the tensile–force to fabric sample clamped between 

chucks from zero to maximum preset at 10𝐾𝑔𝑓 for the specimen of 20𝑐𝑚 width and this is 

equivalent to 500𝑔𝑓 𝑐𝑚⁄  (4.9𝑁 𝑐𝑚⁄  𝑜𝑟 490𝑁 𝑚⁄ ) denoted by 𝐹𝑚. The force extension curve 

chart is plotted when applying the tensile–force from zero to maximum preset and vice versa to give 
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the pair of curves as shown in Figure 2.4, in which the recovery curve is plotted while the sample is 

being returned to its original length. 

 

Figure 2.4: Graph chart with typical curves of tensile test, plot of tensile stress–strain. 

From the control chart, tensile energy or the work done by the extension up to maximum force 𝐹𝑚 

was calculated as 

 
𝑊𝑇 = ∫ 𝐹(𝜀)

𝜀𝑚

0

𝑑𝜀 = the area under load strain curve 
 

(2.1) 

where 𝜀 is the tensile strain, 𝜀𝑚 is the strain at the upper-limit load and 𝐹 is tensile load as function 

of strain. The tensile resilience was given by 

 
𝑅𝑇 =

𝑊𝑇′

𝑊𝑇
=
𝑡ℎ𝑒 𝑎𝑟𝑒𝑎 𝑢𝑛𝑑𝑒𝑟 𝑙𝑜𝑎𝑑 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑐𝑢𝑟𝑣𝑒

𝑊𝑇
× 100 

 
(2.2) 

in which 𝑊𝑇′ is the recovery work given by 

 
𝑊𝑇′ = ∫ 𝐹′(𝜀)

𝜀𝑚

0

𝑑𝜀 = 𝑡ℎ𝑒 𝑎𝑟𝑒𝑎 𝑢𝑛𝑑𝑒𝑟 𝑙𝑜𝑎𝑑 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑐𝑢𝑟𝑣𝑒 
 

(2.3) 

where 𝐹′(𝜀) is the tensile force at the recovering process. The linearity was computed by 
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𝐿𝑇 =

𝑊𝑇

1
2𝐹𝑚𝜀𝑚

=
𝑊𝑇

𝑡ℎ𝑒 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑡𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑟 0𝐴𝐵
 

 (2.4) 

From the above expression, the maximum value of tensile strain 𝜀𝑚 at maximum load 500 𝑔𝑓 𝑐𝑚⁄  

can be written as 

 
𝜀𝑚 =

2𝑊𝑇

𝐹𝑚𝐿𝑇
=

𝑊𝑇

250𝐿𝑇
=
𝐸𝑀𝑇

100
 

 
(2.5) 

Shear properties are measured in a similar way as for tensile test, but the movement is performed 

transversally in cyclic shear deformation of ±80 shear angle under a constant tension force of 

10𝑔𝑓 𝑐𝑚⁄  or 98.1𝑚𝑁 𝑐𝑚⁄  on the chuck. 

A control chart is plotted during cyclic shear deformation as shown in Figure 2.5 and the following 

quantities are measured as 

  𝐺 =  𝑠𝑙𝑜𝑝𝑒 𝑜𝑓 𝑠ℎ𝑒𝑎𝑟 𝑓𝑜𝑟𝑐𝑒 − 𝑠ℎ𝑒𝑎𝑟 𝑠𝑡𝑟𝑎𝑖𝑛 𝑐𝑢𝑟𝑣𝑒  (2.6) 

  2𝐻𝐺 =  ℎ𝑦𝑠𝑡𝑒𝑟𝑒𝑠𝑖𝑠 𝑤𝑖𝑑𝑡ℎ 𝑜𝑓 𝑐𝑢𝑟𝑣𝑒 𝑎𝑡 0.5°  (2.7) 

  2𝐻𝐺5 =  ℎ𝑦𝑠𝑡𝑒𝑟𝑒𝑠𝑖𝑠 𝑤𝑖𝑑𝑡ℎ 𝑜𝑓 𝑐𝑢𝑟𝑣𝑒 𝑎𝑡 5°  (2.8) 

 

Figure 2.5: Graph chart with typical curves of shear test, plot of shear stress against shear strain. 
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2.3.2 Pure bending test (KES-FB2) 

The bending properties is measured based on the principle of pure bending whereby the fabric sample 

is continuously bent in the curvature ±2.5𝑐𝑚−1 in which the bend radius is 1 𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒⁄ . The 

moment-curvature relationships is recorded on an 𝑋-𝑌 recorder during the test operation as shown in 

Figure 2.6. 

 
Figure 2.6: Graph chart with typical curves of bending test, plot of bending moment against curvature. 

The bending rigidity 𝐵 and moment of hysteresis 2𝐻𝐵 are measured as follows 

  𝐺 =  𝑠𝑙𝑜𝑝𝑒 𝑜𝑓 𝑠ℎ𝑒𝑎𝑟 𝑓𝑜𝑟𝑐𝑒 − 𝑠ℎ𝑒𝑎𝑟 𝑠𝑡𝑟𝑎𝑖𝑛 𝑐𝑢𝑟𝑣𝑒  (2.9) 

  𝐵 =  𝑠𝑙𝑜𝑝𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑒𝑛𝑑𝑖𝑛𝑔 𝑚𝑜𝑚𝑒𝑛𝑡 −  𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒 𝑐𝑢𝑟𝑣𝑒  (2.10) 

  2𝐻𝐵 =  ℎ𝑦𝑠𝑡𝑒𝑟𝑒𝑠𝑖𝑠 𝑤𝑖𝑑𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑢𝑟𝑣𝑒  (2.11) 

2.3.3 Compression test (KES-FB3) 

To measure the compressional properties, the fabric sample is placed between two plates and 

compressed in its thickness (lateral) direction by a compression head. During this operation, the tester 

increases the pressure continuously until reaching the preset maximum pressure level at 50𝑔𝑓 𝑐𝑚2⁄  

or 0.49𝑁 𝑐𝑚2⁄  and vice versa for the recovery process, the load- deformation curve is recorded as 

shown in Figure 2.7. 
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Figure 2.7: Graph chart with typical curves of compression test. 

In the same manner as in the case of the tensile properties, the quantities LC, WC and RC are 

computed in a similarly way as for LT, WT and RT as shown in tensile test. A higher compressional 

resilience (RC) value indicates a better recovery from compression. 

2.3.4 Surface test (KES-FB4) 

The fabric surface properties can be measured by using two contact sensors under a constant tension, 

one for measuring frictional coefficient and the mean deviation of the coefficient of friction and the 

other for measuring geometrical surface roughness. While the fabric sample is being moved in a preset 

distance under the touch sensors with a constant tension, the parameters are recorded and computed 

directly from the calculation circuit of the instrument as shown in Figure 2.8. 

 

Figure 2.8: Graph chart with typical curves of surface frictional (a) and surface roughness (b). 
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A higher coefficient of friction (MIU) value represents a higher fabric friction, while a higher geometrical 

roughness (SMD) value indicates a rougher (i.e. less smooth) fabric surface. 

2.4 Formulation of constitutive laws for fabric deformations 

The fabric structures is in general classified into four categories as woven, nonwoven, knits and braid. 

For these types of structures, woven fabrics, whose theoretical structures and mechanical properties 

can be found in the literature [37-39], have demonstrated a greater dimensional stability in the warp 

and weft directions and highest packing density of yarn. Woven fabric is a type of textile material and 

it shares the complex deformation behaviour as other textile materials. It is not only the end products 

of spinning and weaving process, but raw materials for clothing and other industries such as 

composites and medical textiles. Every piece of woven fabric has two biases, perpendicular to each 

other and is an integration of warp and weft yarns through intersection. Thus, woven fabrics have been 

approximated as an elastic sheet material with orthotropic anisotropy in almost mathematical models 

in the field as presented in Section 1.2 and also in the present work. Besides, woven fabric is 

approximated to an elastica in some cases, which was discussed by Lloyd et al. [40]. 

Constitutive equations represent the relations between the deformations of the system and the internal 

stress-strain relationships, namely material law. The fabrics constitutive laws, which have been used 

to describe the mechanical deformation behaviours of fabrics, are indispensable to all numerical 

modeling and analysis of the fabric, virtual fabric simulation applications, computer-aided clothing 

engineering, computer-aided clothing design, etc. [41-44]. 

According to the objectives within this study, the formulation of fabric constitutive models using the 

mechanical properties via the fabric objective measurement techniques is applicable for both non-

woven and woven fabric, as well as woven fabric composites. These models capture the primary 

features of both isotropy and orthotropic anisotropy according to linearity/nonlinearity that can be 

easily implemented in a linear/nonlinear plate/shell finite element framework for general clothing-

wearer interaction modeling. The formulated constitutive equations are needed for developing 

displacement-based low-order finite elements based on quadrilateral plate/shell finite element model 

and S-FEM models via the gradient/strain smoothing technique, as presented in Chapter 3. In terms 

of the engineering constants, the plane-stress constitutive equations, as well as the constitutive 

equations for bending and out-of-plane transverse shear strain, are described the following sections. 
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2.4.1 Tensile stress and tensile strain, uniaxial applied force 

In textile engineering, the normal stress can be generally defined as the force per unit length acting 

perpendicular to the side surface of fabric or selvedge that produces normal strain, which is defined 

as the elongation (or stretch) of fabric per unit length responded to the direction of the applied force. 

Let the warp and weft directions of woven fabrics due to their yarn-based structure be denoted with 1 

and 2 and the direction normal to the 1-2 plane, also the transverse direction, be denoted with 3, as 

illustrated in Figure 2.3 and 2.9. According to material coordinates, the directions 1 and 2 coincide 

with the principal directions of orthotropic material, that is, the axes corresponding to the warp and 

weft direction of yarns of the fabric. These directions are used as indices adding to the stress, strain 

and elastic modulus indicate the direction of the applied force. Normal stress carries a single subscript 

to indicate that the stress acts on a plane normal to the axis in the subscript direction. 

 

Figure 2.9: The warp and weft directions of woven fabrics due to their yarn-based structure denoted with 1 and 

2 in orthotropic axes of sheet material and the transverse direction denoted with 3. 

With the above assumption, the stress-strain relationship can be described by at least two elastic 

moduli as follows 

 𝜎1 = 𝐸1𝜀1  (2.12) 

 𝜎2 = 𝐸2𝜀2  (2.13) 

where 𝐸𝑖 is Young's modulus and 𝜎𝑖 and 𝜀𝑖 stand for stress and strain (𝑖 = 1, 2). Note that fabric 

thickness is too small when compare with fabric width and length that can be expressed as the 

thickness-to-span ratio indicated by 
ℎ

𝐿
=

𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠

𝑙𝑒𝑛𝑔𝑡ℎ
. Thus, for plane-stress in a sheet material such as 
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fabric, with respect to the 1-2 plane, the stress field is approximated such that 𝜎33 = 𝜎23 = 𝜎13 =

0. 

For the relationship between the bending moment and bending strain, the bending stiffness of woven 

fabric can be defined by two flexural moduli (so-called bending moduli) according to direction of load. 

The flexural moduli corresponding to the warp and weft direction are denoted by 𝐵1 and 𝐵2. 

For the non-woven fabrics, which are in general classified as an isotropic linear elastic material, the 

relationship between stress and strain is therefore independent of the direction of force such that 𝐸 =

𝐸1 = 𝐸2 and 𝐵 = 𝐵1 = 𝐵2. 

2.4.2 Tensile stress and tensile strain, plane stress and bending 

In the practical terms, fabrics will experience stresses in more than one direction within the plane. 

This is referred to as in-plane stress wherein yields the Poisson’s ratio, being defined as the ratio 

between the strain perpendicular to the given loading direction and the strain parallel to this given 

loading direction. Poisson’s ratios corresponding to the warp and weft directions of the woven fabrics 

are denoted by 𝑣12 and 𝑣21, respectively, can be defined as 

 𝜀𝑤𝑒𝑓𝑡

𝜀𝑤𝑎𝑟𝑝
= 𝜈12 =

𝜀2
𝜀1

  
(2.14) 

 𝜀𝑤𝑎𝑟𝑝

𝜀𝑤𝑒𝑓𝑡
= 𝜈21 =

𝜀1
𝜀2

  (2.15) 

When a force is applied to a material, the strain fields are stretch in addition to the Poisson's 

contraction effect due to another force perpendicular to this applied force [45]. In the case of the 

textile fabric, by incorporating Equation (2.12, 2.13), the strain components are written as 

 𝜀1 =
𝜎1
𝐸1
− 𝜈21𝜀2 =

𝜎1
𝐸1
− 𝜈21

𝜎2
𝐸2

  
(2.16) 

 𝜀2 =
𝜎2
𝐸2
− 𝜈12𝜀1 =

𝜎2
𝐸2
− 𝜈12

𝜎1
𝐸1

  (2.17) 

Furthermore, the corresponding shear forces are also present. The shear stress 𝜏12 and shear strain 

𝛾21, as shown in Figure 2.10, are related by shear modulus 𝐺 (so-called modulus of rigidity) in 

directions of warp and weft on surface of woven fabric, which gives 
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 𝜏12 = 𝐺𝛾12  (2.18) 

 

Figure 2.10: Definition of shearing strains. 

Note that the first numeral of the double subscript in Equation (2.18) indicates that the plane on which 

the stress acts is normal to the axis in the subscript direction; the second numeral designates the 

coordinate direction in which the stress acts. In each of the two axes directions, the relationship 

between Poisson’s ratios and Young’s modulus is expressed as 𝜈21𝐸1 = 𝜈12𝐸2 [46]. 

Equations (2.16, 2.17 and 2.18) can be written in the matrix form as 

 

{

𝜀1
𝜀2
𝛾12
} =

[
 
 
 
 
 
 
1

𝐸1

−𝜈21
𝐸2

0

−𝜈12
𝐸1

1

𝐸2
0

0 0
1

𝐺]
 
 
 
 
 
 

{

𝜎1
𝜎2
𝜏12
} 

 

(2.19) 

Note that shear modulus 𝐺 can be approximated by using the formulas defined in [11, 47]. It is 

expressed the relationship between the shear modulus and the extension of fabric in bias direction in 

terms of elastic moduli as follows 

 1

𝐺
=

4

𝐸𝑏𝑖𝑎𝑠
− (

1 − 𝑣2
𝐸1

+
1 − 𝑣1
𝐸2

) 
 

(2.20) 

in which 𝐸𝑏𝑖𝑎𝑠 stands for elastic modulus measured in the bias direction of warp yarns and weft yarns. 
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With appropriate constitutive relations, the stress-strain relation in terms of plane stress can be 

obtained by inverting the compliance matrix in constitutive Equation (2.19), which gives 

 
[

𝜎1
𝜎2
𝜏12
] = [

𝐷11 𝐷12 0
𝐷21 𝐷22 0
0 0 𝐷66

] [

𝜀1
𝜀2
𝛾12
] 

 
(2.21) 

in which the stiffness components are defined as 

  
𝐷11 =

𝐸1
1 − 𝜈12𝜈21

=
𝐸𝑤𝑎𝑟𝑝

1 − 𝜈𝑤𝑎𝑟𝑝𝜈𝑤𝑒𝑓𝑡
 

 
(2.22a) 

  
𝐷22 =

𝐸2
1 − 𝜈12𝜈21

=
𝐸𝑤𝑒𝑓𝑡

1 − 𝜈𝑤𝑎𝑟𝑝𝜈𝑤𝑒𝑓𝑡
 

 
(2.22b) 

  
𝐷12 = 𝐷21 =

𝐸2𝜈12
1 − 𝜈12𝜈21

=
𝐸1𝜈21

1 − 𝜈12𝜈21
 

 
(2.22c) 

  𝐷66 = 𝐺  (2.22d) 

Note that the engineering-tensor interchange matrix in Equations (2.18, 2.19 and 2.21) is defined by 

 
𝑹 = [

1 0 0
0 1 0
0 0 2

] 
 

(2.23) 

such that 

 
[

𝜀1
𝜀2
𝛾12
] = 𝑹 [

𝜀1
𝜀2
𝜀12
] 

 
(2.24) 

Similarly with the constitutive relations in Equation (2.19, 2.21), the relationship between bending 

moment and bending strain is given as 

 
[

𝜎1
𝜎2
𝜏12
] = [

𝐷11 𝐷12 0
𝐷21 𝐷22 0
0 0 𝐷66

] [

𝜅1
𝜅2
𝛾12
] 

 
(2.25) 

In this case, 𝜎1 and 𝜎2 are bending stress, 𝜏12 is bending strain, 𝜅1 and 𝜅2 are bending curvature, 

𝛾12 is twist strain and the stiffness components are defined as follows 

  𝐷11 = 𝐵1  (2.26a) 

  𝐷22 = 𝐵2  (2.26b) 
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  𝐷12 = 𝐵2𝜐12 = 𝐵1𝜐21  (2.26c) 

  𝐷66 = 𝜑  (2.26d) 

in which 𝜑 is torsional rigidity, 𝜐12 and 𝜐21 stand for the parameters analogous to Poisson’s ratios 

related to the anticlastic curvature in the warp and weft directions. In the case of thin to moderately 

thick woven fabric, the anticlastic curvature is minimal, 𝜐12 and 𝜐21 are, therefore, approximated to 

zero. 

The torsional rigidity 𝜑 can be calculated from the measured flexural moduli along the bias direction 

suggested by Kilby [47]. If the fabric is bent in a direction making an angle 𝜃 with direction 1, the 

bending rigidity 𝐵1 is given by 

 𝐵𝜃 = 𝐵1(𝑐𝑜𝑠𝜃)
4 + (4𝜏 + 2𝜐12𝐵2)(𝑐𝑜𝑠𝜃)

2(𝑠𝑖𝑛𝜃)2 + 𝐵2(𝑠𝑖𝑛𝜃)
4  (2.27) 

where 𝜃 =  450 because it is taken in the bias direction, then 𝐵𝜃 = 𝐵450 stands for bending rigidity 

measured along bias direction. Therefore, the torsional rigidity is calculated by the following 

relationship 

 
𝜑 = 𝐵450 −

1

4
(𝐵1 + 𝐵2) 

 
(2.28) 

 

2.4.3 The transverse shear strain 

The thickness of thin to moderately thick fabric is generally too small to compare with other dimensions 

of fabric. Physically, this leads to the reaction of material when applied forces on the directional 

thickness of woven fabric are similar to the applied forces in the same direction of non-woven fabric, 

that is, the distinctions of mechanical properties between the warp yarns and the weft yarns in this 

direction is not necessary. 

In fact, the configurations of the KES-FB system and the FAST system, as presented in the previous 

sections, do not distinguish the direction of warp yarns or weft yarns on compression test. Therefore, 

it can be assumed that the elasticity parameters corresponding to the dimensional thickness of fabric 

can be categorized as a linear homogeneous isotropic material. Then, the relationship between Bulk’s 

modulus 𝐾 and transverse shear modulus 𝐺 is given in [45, 48], which expresses as 
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𝐾 =

2𝐺(1 + 𝜐)

3(1 − 2𝜐)
 

 
(2.29a) 

or 

 
𝜌
𝜕𝑃

𝜕𝜌
=
2𝐺(1 + 𝜐)

3(1 − 2𝜐)
 

 
(2.29b) 

where 𝜌 is density of fabric, 𝑃 is pressure and 𝜕𝑃 𝜕𝜌⁄  stands for the derivative of pressure with 

respect to density and 𝜐 is the ratio of Poisson related to transverse strain normal to the applied load. 

For thin to moderately thick fabric, the ratio of Poisson is minimal, so 𝜐 is approximated to zero. 

The transverse shear constitutive equation for woven fabric and non-woven fabric is given as 

 𝐷0
𝑠 = 𝜅𝐺 [

1 0
0 1

]  (2.30) 

where 𝜅 stands for the shear correction factor. 

2.4.4 Coordinate transformation of warp yarns and weft yarns for the loading direction 

In general, the loading direction does not coincide with the principal material directions. This required 

that the stresses and strains must be transformed into coordinates coinciding with the principal 

material directions via the coordinate transformation matrix. This matrix can be formulated by basing 

on summing forces acting along the warp or weft directions of the fabric, as shown in Figure 2.11. 

The summing forces in the warp direction with respect to free body diagrams are defined in the [49], 

as illustrated in Figure 2.11. 

Summing force in warp direction from free body diagram (a) 

 ∑𝐹1𝑎 = 𝜎1𝑑𝛢 − 𝜎𝑥(𝑑𝛢𝑐𝑜𝑠𝜃)𝑐𝑜𝑠𝜃 − 𝜎𝑦(𝑑𝛢𝑠𝑖𝑛𝜃)𝑠𝑖𝑛𝜃

− 𝜏𝑥𝑦(𝑑𝛢𝑐𝑜𝑠𝜃)𝑠𝑖𝑛𝜃 − 𝜏𝑥𝑦(𝑑𝛢𝑠𝑖𝑛𝜃)𝑐𝑜𝑠𝜃 = 0 

 
(2.31a) 

Summing force in weft direction from free body diagram (b) 

 ∑𝐹2𝑏 = 𝜎2𝑑𝛢 − 𝜎𝑥(𝑑𝛢𝑠𝑖𝑛𝜃)𝑠𝑖𝑛𝜃 − 𝜎𝑦(𝑑𝛢𝑐𝑜𝑠𝜃)𝑐𝑜𝑠𝜃

+ 𝜏𝑥𝑦(𝑑𝛢𝑐𝑜𝑠𝜃)𝑠𝑖𝑛𝜃 + 𝜏𝑥𝑦(𝑑𝛢𝑠𝑖𝑛𝜃)𝑐𝑜𝑠𝜃 = 0 

 
(2.31b) 

Summing force in warp direction from free body diagram (b) 
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 ∑𝐹1𝑏 = 𝜏12𝑑𝛢 + 𝜎𝑥(𝑑𝛢𝑠𝑖𝑛𝜃)𝑐𝑜𝑠𝜃 − 𝜎𝑦(𝑑𝛢𝑐𝑜𝑠𝜃)𝑠𝑖𝑛𝜃

− 𝜏𝑥𝑦(𝑑𝛢𝑐𝑜𝑠𝜃)𝑐𝑜𝑠𝜃 + 𝜏𝑥𝑦(𝑑𝛢𝑠𝑖𝑛𝜃)𝑠𝑖𝑛𝜃 = 0 

 
(2.31c) 

 

Figure 2.11: The free-body diagrams for the in-plane stresses in the warp yarns direction. 

Simplifying theses equations results in 

  𝜎1 = 𝜎𝑥𝑐𝑜𝑠
2 + 𝜎𝑦𝑠𝑖𝑛

2𝜃 + 2𝜏𝑥𝑦𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃  (2.32a) 

  𝜎2 = 𝜎𝑥𝑠𝑖𝑛
2𝜃 + 𝜎𝑦𝑐𝑜𝑠

2𝜃 − 2𝜏𝑥𝑦𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃  (2.32b) 

  𝜏12 = −𝜎𝑥𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 + 𝜎𝑦𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 + 𝜏𝑥𝑦(𝑐𝑜𝑠
2𝜃 − 𝑠𝑖𝑛2𝜃)  (2.32c) 

Equations (2.32) can be rewritten in matrix form as follow 

 
[

𝜎1
𝜎2
𝜏12
] = 𝑻 [

𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦

] 
 

(2.33) 

or, equivalently, as 
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[

𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦

] = 𝑻−1 [

𝜎1
𝜎2
𝜏12
] 

 
(2.34) 

where 𝑻 is the coordinate transformation matrix defined as 

 
𝑻 = [

𝑐𝑜𝑠2𝜃 𝑠𝑖𝑛2𝜃 2𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃
𝑠𝑖𝑛2𝜃 𝑐𝑜𝑠2𝜃 −2𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃

−𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 (𝑐𝑜𝑠2𝜃 − 𝑠𝑖𝑛2𝜃)
] 

 
(2.35) 

and 𝑻−1 is the inverse matrix of 𝑻, which is used for the transformation between the warp and weft 

directions of the fabric and the 𝑥 and 𝑦 directions within Cartesian coordinates (𝑥, 𝑦, 𝑧), written as 

 
𝑻−1 = [

𝑐𝑜𝑠2𝜃 𝑠𝑖𝑛2𝜃 −2𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃
𝑠𝑖𝑛2𝜃 𝑐𝑜𝑠2𝜃 2𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃

𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 (𝑐𝑜𝑠2𝜃 − 𝑠𝑖𝑛2𝜃)
] 

 
(2.36) 

This coordinate transformation matrix is also applied for strain components which gives 

 
[

𝜀1
𝜀2
𝜀12
] = 𝑻 [

𝜀𝑥
𝜀𝑦
𝜀𝑥𝑦

] 
 

(2.37) 

 
[

𝜀𝑥
𝜀𝑦
𝜀𝑥𝑦
] = 𝑻−1 [

𝜀1
𝜀2
𝜀12
] 

 
(2.38) 

Combining Equations (2.21, 2.24, 2.33 to 2.38), the in-plane stiffness matrix in Cartesian coordinates 

(𝑥, 𝑦, 𝑧) is given as 

 
[

𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦

] = 𝑫̃ [

𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦
] 

 
(2.39) 

where 𝑫̃, the in-plane stiffness matrix is defined as 

 

𝑫̃ = 𝑻−1𝑫𝑹𝑻𝑹−1 = [

𝐷̃11 𝐷̃12 𝐷̃16
𝐷̃12 𝐷̃22 𝐷̃26
𝐷̃16 𝐷̃26 𝐷̃66

] 

 

(2.40) 

in which, the components are 

 𝐷̃11 = 𝐷11𝑐𝑜𝑠
4𝜃 + 2(𝐷12 + 2𝐷66)𝑐𝑜𝑠

2𝜃𝑠𝑖𝑛2𝜃 + 𝐷22𝑠𝑖𝑛
4𝜃 (2.41a) 

 𝐷̃22 = 𝐷11𝑠𝑖𝑛
4𝜃 + 2(𝐷12 + 2𝐷66)𝑐𝑜𝑠

2𝜃𝑠𝑖𝑛2𝜃 + 𝐷22𝑐𝑜𝑠
4𝜃 (2.41b) 

 𝐷̃12 = (𝐷11 + 𝐷22 − 4𝐷66)𝑐𝑜𝑠
2𝜃𝑠𝑖𝑛2𝜃 + 𝐷12(𝑐𝑜𝑠

4𝜃 + 𝑠𝑖𝑛4𝜃) (2.41c) 
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 𝐷̃16 = (𝐷11 − 𝐷12 − 2𝐷66)𝑐𝑜𝑠
3𝜃𝑠𝑖𝑛𝜃 + (𝐷12 − 𝐷22 + 2𝐷66)𝑐𝑜𝑠𝜃𝑠𝑖𝑛

3𝜃 (2.41d) 

 𝐷̃26 = (𝐷11 − 𝐷22 − 2𝐷66)𝑐𝑜𝑠𝜃𝑠𝑖𝑛
3𝜃 + (𝐷12 − 𝐷22 + 2𝐷66)𝑐𝑜𝑠

3𝜃𝑠𝑖𝑛𝜃 (2.41e) 

 𝐷̃66 = (𝐷11 + 𝐷22 − 2𝐷12 − 2𝐷66)𝑐𝑜𝑠
2𝜃𝑠𝑖𝑛2𝜃 + 𝐷66(𝑐𝑜𝑠

4𝜃 + 𝑠𝑖𝑛4𝜃) (2.41f) 

Note that the components 𝐷̃16 ≠ 0 and 𝐷̃26 ≠ 0 if only 𝜃 ≠ 0. 

The bending stiffness matrix 𝑫̃ is obtained by substituting the defined stiffness components as given 

in Equation (2.26) into Equations (2.41). It defines the relationship between bending moment and 

bending strain in Cartesian coordinates (𝑥, 𝑦, 𝑧). 

2.5 Final remarks 

Fabric constitutive laws for mechanical analysis and modelling of the textile fabrics based on the fabric 

objective measurement (FOM) technology via Kawabata evaluation system for fabrics (KES-FB) have 

been proposed in this chapter. These constitutive equations are formulated for both woven fabric and 

non-woven fabric.  

In order to apply these constitutive equations to other sheet material, e.g. tissue, woven fabric 

composite, it is required that the major elasticity parameters, as introduced in Section 2.2, must be 

measured by an appropriate standard. For example, in the case of woven fabric composite, the high-

stress mechanics via FOM can be applied. 

The formulated constitutive equations 𝐷̃0
𝑚, 𝐷̃0

𝑏 (Section 2.4.5) and 𝐷0
𝑠 (Section 2.4.4) are applicable 

for both the existing standard FEM and S-FEM models comprising membrane finite element (for plane-

stress problem) as well as plate/shell finite element based on either Kirchhoff–Love theory (classical 

plate theory) or Mindlin–Reissner theory (first-order shear deformation theory), as summarized in Table 

2.11. 

Table 2.11: Constitutive equations for displacement-based low-order finite element formulations of 
plate and shell finite element 

Stiffness matrix 

Plane-stress Kirchhoff-Love theory Mindlin-Reissner theory 

Membrane Plate Shell Plate Shell 

𝐷̃0
𝑚 yes no yes no yes 

𝐷̃0
𝑏 no yes yes yes yes 

𝐷0
𝑠 no no no yes yes 
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Note that superscripts 𝑚, 𝑏 and 𝑠 stand for membrane, bending/curvature and shear element. 

The reader is referred to Section 3.5 for the formulation of membrane finite element model, Section 

3.4 for the formulation of plate bending finite element model with assumed transverse shear strain 

fields and Section 3.6 for the formulation of flat shell finite element model. 
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3 Chapter 3 

Theoretical formulations of S-FEM  
for textile fabrics 

Abstract  

An S-FEM (Smoothed Finite Element Method) for mechanical analysis and modelling of the textile 

fabrics is proposed in this chapter. In this theoretical framework, one assumes that the non-woven 

fabric is an elastic isotropic material, while the woven fabric is an elastic with orthotropic anisotropy 

for which the constitutive laws are formulated using low-stress mechanical properties based on FOM 

(Fabric Objective Measurement). The displacement-based low-order finite element formulations for 

four-node quadrilateral plate/shell finite element, including assumed transverse shear strain fields, 

are based on the contributions due to Raymond Mindlin [1] and by Eric Reissner [2], namely Mindlin-

Reissner theory and so-called first-order shear deformation theory (FSDT), which are combined with 

the gradient/strain smoothing technique in terms of S-FEM models due to contributed by G. R. Liu et 

al. [3] in order to mitigate problems as element distortion, mesh coarseness as well as the well-known 

locking phenomena. Quadrilateral meshes are used due to ability to generate complicated geometries 

of complex mechanical deformation of the fabric such as plane stress recovery, bending, buckling, 

vibration, draping behavior, etc. The developed plate/shell finite element models and low-stress 

mechanic properties in terms of FOM are, therefore, well adapted for numerical analysis and modelling 

of macro-mechanical deformation of the very thin to moderately thick fabric sheet, including both 

simple and complex mechanical deformation analysis. In fact, numerical examples, as those shown 

in the next chapter, indicate that the developed plate/shell elements with assumed the strain/gradient 

smoothing technique, do alleviate element distortion, mesh coarseness and locking effect even for 

modelling thin to moderately thick fabric. 

Keywords Woven fabric, non-woven fabric, Mindlin-Reissner theory, transverse shear strain, 

strain/gradient smoothing technique, smoothed finite element methods, shear-locking, element 

distortion, mesh coarseness, plate bending finite element, flat shell finite element. 
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3.1 Introduction 

A brief definition of the static and dynamic problems for elastic systems, being appropriate to finite 

element analysis and modelling of mechanical deformation of the textile fabrics, is presented in Section 

3.2, where the dynamic equilibrium equations are derived in space-time using Lagrange's equations 

of motion and the implicit time integration schemes for the space-discretized equations of motion 

based on Newmark’s method are introduced. 

The well-known locking phenomenon in displacement-based low-order finite element formulations for 

thin plate and shell finite element models and other shortcomings they may exhibit with regard to low 

accuracy e.g. element distortion, mesh coarseness, etc. were introduced in Section 1.2. These 

problems can affect the numerical results, such as in the case of finite element simulation of thin 

fabric sheet. Although a significant amount of works have been done in FEM to alleviate these 

problems, as presented in Section 1.2, some inherent issues that are related to element distortion still 

remain unsolved. Based on the existing standard FEM and the existing gradient/strain smoothing 

technique, which was proposed by Chen et al. [4] in the context of mesh-free methods [5, 6], Liu and 

his coworkers [3, 7] recently proposed S-FEM models in which each of the discretized elements is 

further divided into smoothing domain(s), being the integrals evaluated along the edges of the 

smoothing domain(s) according to the Green’s divergence theorem. This gradient/strain smoothing 

technique avoids evaluating derivatives of mesh-free shape functions at nodes and therefore eliminates 

defective modes. Liu et al. [7, 8] detailed the theoretical aspects covering stability, bound property 

and convergence about the S-FEM models, as well as revealed the majority advanced features resulted 

from the “softening” effects of the gradient/strain smoothing technique. A brief introduction, covering 

recently published works and most advanced features of S-FEM in which the smoothing operator plays 

a key role in this research are presented in Section 3.3. 

In order to define the system vectors and matrices, such as mass/stiffness matrix and load vector, 

needed for the space-discretized equations of motion that are derived in Section 3.2, the FSDT and S-

FEM models will be combined to develop quadrilateral plate/shell finite element models taking into 

account the fabric constitutive laws formulated using FOM data dealt with in the previous chapter. This 

combination resulting in the concise formulations of the four-node quadrilateral plate bending element, 

the four-node quadrilateral membrane element and the four-node quadrilateral flat shell element with 

assumed strain smoothing technique that are, respectively, presented in Sections 3.4, 3.5 and 3.6. 

Finally, this chapter ends with some final remarks. 
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3.2 Preliminaries 

3.2.1 Domains and boundaries 

The equations defined below are generally valid (with distinct definitions of the terms involved) for the 

textile fabrics, under both static and dynamic loading conditions. 

Let us assume that a woven fabric sheet occupying a domain Ω with thickness ℎ is expressed in terms 

of the elastic material with orthotropic anisotropy and constructed with the plain-weave, in which the 

interlaced warp and weft yarns and the fabric thickness are, respectively, laid on the direction of the 

𝑥-, 𝑦- and 𝑧-axes as shown in Figure 3.1. 

 

Figure 3.1: Domain, Neumann and Dirichlet boundaries. 

The reference configuration Ω is a bounded volume domain in ℝ3. The boundary denotes with Γ, 

which is formed by the complementary Dirichlet Γ𝑢 and Neumann Γ𝑡 boundary condition parts [9, 

10], Γ𝑢 ∪ Γ𝑡 =  Γ and Γ𝑢 ∩ Γ𝑡 = ∅. Let us also assume that the displacements and the tractions on 

the boundary have been prescribed. 

Note that this assumption of the woven fabric sheet is set to be the reference configuration domain Ω 

and boundary Γ through this work. 

3.2.2 Governing equations 

The dynamic equilibrium equations and compatibility conditions of an infinitesimal cut of the domain 

Ω can be defined as in [9-14]  

  𝛁 ⋅ 𝝈(𝑥, 𝑦, 𝑧, 𝑡) + 𝒃(𝑥, 𝑦, 𝑧, 𝑡) = 𝜇𝒗(𝑥, 𝑦, 𝑧, 𝑡) + 𝜌𝒂(𝑥, 𝑦, 𝑧, 𝑡) in Ω (3.1) 

  𝜺(𝑥, 𝑦, 𝑧, 𝑡) = 𝛁𝒖(𝑥, 𝑦, 𝑧, 𝑡) in Ω (3.2) 
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where the divergence operator 𝛁 ⋅ and gradient operator 𝛁 are adjoint in a geometrically linear 

structure, the vectors 𝝈(𝑥, 𝑦, 𝑧, 𝑡), 𝜺(𝑥, 𝑦, 𝑧, 𝑡) and 𝒖(𝑥, 𝑦, 𝑧, 𝑡) assemble the independent 

components of the stress fields, strain fields and the displacement components of the structure, 

respectively, and the vector 𝒃(𝑥, 𝑦, 𝑧, 𝑡) stands for the body force vector, while the symbols 𝜇 and 𝜌 

denote the damping coefficient and the density. In structural dynamic finite element problems, the 

effects of velocity 𝒗(𝑥, 𝑦, 𝑧, 𝑡) and acceleration 𝒂(𝑥, 𝑦, 𝑧, 𝑡) can be considered with respect to time 

as follows 

 𝒗(𝑥, 𝑦, 𝑧, 𝑡) = 𝒖̇(𝑥, 𝑦, 𝑧, 𝑡)  (3.3) 

 𝒂(𝑥, 𝑦, 𝑧, 𝑡) = 𝒖̈(𝑥, 𝑦, 𝑧, 𝑡)  (3.4) 

The constitutive relations are written in the alternative stiffness and flexibility forms, 

 𝝈(𝑥, 𝑦, 𝑧, 𝑡) = 𝒌𝜺(𝑥, 𝑦, 𝑧, 𝑡) in Ω (3.5) 

 𝜺(𝑥, 𝑦, 𝑧, 𝑡) = 𝒇𝝈(𝑥, 𝑦, 𝑧, 𝑡) in Ω (3.6) 

in which matrices 𝒌 and 𝒇 define the material properties. 

In the Neumann boundary conditions, 

 𝑵𝝈(𝑥, 𝑦, 𝑧, 𝑡) = 𝒕Γ(𝑥, 𝑦, 𝑧, 𝑡) on Γ𝑡 (3.7) 

where vector 𝒕Γ collects the applied surface tractions, being the components of the unit outward 

normal to the boundary organized in matrix 𝑵. 

In the Dirichlet boundary conditions, 

 𝒖(𝑥, 𝑦, 𝑧, 𝑡) = 𝒖Γ(𝑥, 𝑦, 𝑧, 𝑡) on Γ𝑢 (3.8) 

the domain displacements 𝒖 must be compatible with the imposed displacements collected in vector 

Γ𝑢. 

The initial displacements and velocities of the dynamic system in the time interval 𝑡 =  [0, Δ𝑡] and 

their components defined in vectors 𝒖0(𝑥, 𝑦, 𝑧) and 𝒗0(𝑥, 𝑦, 𝑧) are given by 

 𝒖(𝑥, 𝑦, 𝑧, 0) = 𝒖0(𝑥, 𝑦, 𝑧)  (3.9) 

 𝒗(𝑥, 𝑦, 𝑧, 0) = 𝒗0(𝑥, 𝑦, 𝑧)  (3.10) 

either of which can be replaced by a constraint on the initial acceleration.  
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In the dynamic problems, the accelerations, velocities, displacements, strains, stresses and loads are 

all time-dependent. The dynamic equilibrium equation (Eq. 3.1) can be derived using either Lagrange 

equations or Hamilton’s principle. In this study, the Lagrange equations will be used. 

3.2.3 Domain discretization and continuity conditions 

Consider a fabric sheet with thickness ℎ occupying the volume domain Ω bounded by Γ. The total 

domain of the undeformed fabric mid-plane is thus the tensor product Ω̅ ≡ Ω × (−ℎ 2⁄ , ℎ 2⁄ ). The 

boundary of the total domain consists of top surface (𝑧 = ℎ 2⁄ ) and bottom surface (𝑧 = −ℎ 2⁄ ) 

and the edge Γ̅ ≡ Γ × (−ℎ 2⁄ , ℎ 2⁄ ). In general, Γ can be either a curved surface or plane surface, 

with outward normal 𝒏̂  =  𝑛𝑥𝒆̂𝑥 + 𝑛𝑦𝒆̂𝑦, where 𝑛𝑥 and 𝑛𝑦 are the direction cosines of the unit 

normal. 

 

Figure 3.2: Example of finite elements and Neumann and Dirichlet boundaries. 

Now let the reference domain Ω be discretized into 𝑛𝑒 finite elements and connected by the nodal 

points on the element boundaries such that Ω = ⋃ Ω𝑖
𝑒𝑛𝑒

𝑖=1 , Ω𝑖
𝑒 ∩ Ω𝑗

𝑒 = ∅, 𝑖 ≠ 𝑗 (𝑖 = 1,… , 𝑛𝑒; 𝑗 =

1, … , 𝑛𝑒), where Ω𝑖
𝑒 and Γ𝑖

𝑒 denote the domain of the 𝑖th generic element and its boundary, 

respectively, as illustrated in Figure 3.2. 

Boundary Γ𝑒 is established, in general, by the complementary Neumann Γ𝑡
𝑒 and Dirichlet Γ𝑢

𝑒 parts, 

where Equations (3.7, 3.8) are prescribed, respectively, and the interior Γ𝑖
𝑒 part, where the boundary 

equilibrium and compatibility conditions must be satisfied 

  𝒕𝑖(𝑥, 𝑦, 𝑧, 𝑡) = 𝒕𝑗(𝑥, 𝑦, 𝑧, 𝑡) on Γ𝑖
𝑒 (3.11a) 

  𝒖𝑖(𝑥, 𝑦, 𝑧, 𝑡) = 𝒖𝑗(𝑥, 𝑦, 𝑧, 𝑡) on Γ𝑖
𝑒 (3.11b) 

in which the subscripts 𝑖 and 𝑗 denote the two finite elements that share the interior boundary Γ𝑖
𝑒. 
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Note that the current configuration of domain discretization and its continuity conditions is set to be 

the reference configuration through the present work. In practice, to develop the finite element 

computer codes or to implement finite element model, numbering the nodes and elements of a 

discretized problem domain in order is of paramount importance. For example, with a typical element 

Ω𝑒 from the mesh shown in Figure 3.2, let the local node numbers for the nodes of the element be 

denoted by 𝐼 (𝐼 = 1,2,3,4) and the mesh node numbers by 𝑖, then the nodal coordinates of element 

Ω𝑒 are denoted with (𝑥𝐼
𝑖 , 𝑦𝐼

𝑖). It is recommended that the nodes be numbered counterclockwise. The 

formulations that follow can also be developed with the clockwise numbering, but most FEM/FEA/CAE 

computer applications, including the ones in this research, use counterclockwise numbering, as 

otherwise some crucial signs will be wrong. This recommendation is consistent with the smoothing 

domain(s) used in the formulation of S-FEM models, as presented in the following sections. 

3.2.4 Integration in space 

The finite element solution 𝒖 of a displacement model, for instance, in 3D is expressed as follows 

 
𝒖 =∑[

𝑁𝐼 0 0
0 𝑁𝐼 0
0 0 𝑁𝐼

]

𝑛𝑛

𝐼

𝒒𝐼 = 𝑵𝒒(𝑡) 
 

(3.12) 

where 𝑛𝑛 is the total number of nodes in the mesh, 𝑁𝐼 is shape function matrix associated with node 

𝐼, 𝒒𝐼 = [𝑢0𝐼 𝑣0𝐼 𝑤0𝐼]𝑇 stands for the degrees of freedom for node 𝐼 and 𝒒 is the nodal 

displacement vector and assumed to be a function of time 𝑡. Introducing Equation (3.12) to Equation 

(3.2), the discrete strain field results in 

 𝜺 = 𝑩𝒒  (3.13) 

where 𝑩 is the discretized gradient matrix. Using Equation (3.6), the stress-strain relation is obtained 

as 

 𝝈 = 𝑫0𝜺  (3.14) 

being 𝑫0 a matrix that defines the material properties 

The dynamic equilibrium condition in Equation (3.1) can be derived by using the following Lagrange's 

equations of motion [13], which gives 

 
{
𝜕𝐿

𝜕𝑞
} =

𝑑

𝑑𝑡
{
𝜕𝐿

𝜕𝑞̇
} + {

𝜕𝑅

𝜕𝑞̇
} 

 
(3.15) 
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in which L is the Lagrange function, 𝑅 is the dissipation function, 𝑞 is the nodal displacement and 𝑞̇ 

is the nodal velocity. The Lagrange function is expressed as 

 𝐿 = 𝑇 − 𝛱  (3.16) 

where 𝑇 is the kinetic energy and 𝛱 is the potential energy. The kinetic energy and the potential 

energy of each element are given by 

  

𝑇𝑒 =
1

2
∭𝜌𝒖̇𝑇𝒖̇𝑑Ω

Ω𝑒

 

 
(3.17a) 

  

𝛱𝑒 =
1

2
∭𝜺̂𝑇𝝈̂𝑑Ω

Ω𝑒

− (∭𝒖𝑇𝒃𝑑Ω

Ω𝑒

+∬𝒖𝑻𝒕Γ𝑑Γ

Γ𝑒

) 

 

(3.17b) 

Because at equilibrium the dissipation function for element can be defined by 

  

𝑅𝑒 =
1

2
∭𝜇𝒖̇𝑇𝒖̇𝑑Ω

Ω𝑒

 

 
(3.17c) 

By substituting Equations (3.12 to 3.14) into Equation (3.17) and then introducing Equation (3.15) 

the expressions for 𝑇, 𝛱 and 𝑅 can be written as 

𝑇 = ∑𝑇𝑒

𝑁𝑒

𝑘=1

=
1

2
𝒒̇𝑇 (∑𝒎

𝑁𝑒

𝑘=1

) 𝒒̇ =
1

2
𝒒̇𝑇𝑴𝒒̇ 

 

(3.18a) 

𝛱 =∑𝛱𝑒

𝑁𝑒

𝑘=1

=
1

2
𝒒𝑇 (∑𝒌

𝑁𝑒

𝑘=1

)𝒒 − 𝒒𝑇 [(∑(𝒇𝑏 + 𝒇𝑠)

𝑁𝑒

𝑘=1

) + 𝒇𝑐(𝑡)] =
1

2
𝒒𝑇𝑲𝒒 − 𝒒𝑇𝑭 (3.18b) 

𝑅 =∑𝑅𝑒

𝑁𝑒

𝑘=1

=
1

2
𝒒̇𝑇 (∑𝒄

𝑁𝑒

𝑘=1

) 𝒒̇ =
1

2
𝒒̇𝑇𝑪𝒒̇ 

 

(3.18c) 

where 𝒒 is the global nodal displacement vector, 𝒒̇ is the global nodal velocity vector, 𝑴 and 𝑲 are 

the global mass matrix and stiffness matrix, 𝑪 is the global damping matrix, 𝑭 is total load vector and 

𝒇𝑐 is the concentrated nodal force vector. The element matrices involving the integrals associated to 

mass matrix 𝒎, damping matrix 𝒄 and stiffness matrix 𝒌 are defined as follows 
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𝒎 =∭𝜌𝑵𝑇𝑵𝑑Ω

Ω𝑒

 

 
(3.19) 

 

𝒄 =∭𝜇𝑵𝑇𝑵𝑑Ω

Ω𝑒

 

 
(3.20) 

 

𝒌 =∭𝑩̂𝑇𝑫̂𝑩̂𝑑Ω

Ω𝑒

 

 
(3.21) 

and the vector of element nodal forces produced by body forces 𝒇𝑏 and surface tractions 𝒇𝑠 can be 

written as 

 

𝒇𝑏 =∭𝑵𝑻𝒃𝑑Ω

Ω𝑒

 

 
(3.22) 

 

𝒇𝑠 =∬𝑵𝑻𝒕Γ𝑑Γ

Γ𝑒

 

 
(3.23) 

Finally, by substituting Equations (3.18) into Equation (3.16), then the dynamic equilibrium equation 

can be written in terms of displacements as 

 𝑴𝒒̈(𝑡) + 𝑪𝒒̇(𝑡) + 𝑲𝒒(𝑡) = 𝑭(𝑡)  (3.24) 

where 𝒒̈ is the vector of nodal acceleration in the global system. For simplicity, the velocity-dependent 

damping is not considered, then the semi-discrete dynamic equilibrium equation is written as 

 𝑴𝒒̈ + 𝑲𝒒 = 𝑭  (3.25) 

By assuming the external force vector 𝑭 to be zero and the displacements to be harmonic [15-21] as 

 𝒒 = 𝒒̅𝑒𝑖𝜔𝑡  (3.26) 

where 𝒒̅ is 𝑛-dimensional vector called a mode shape. The free-vibration equation of motion is then 

rewritten from Equation (3.25) as follows 

 [𝑲 + 𝜔2𝑴]𝒒̅ = 𝟎  (3.27) 

The formulation of the buckling analysis whose equation of motion can be expressed as 

 [𝑲 + 𝜆𝑐𝑟𝑲
𝑔]𝒒̅ = 𝟎  (3.28) 
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In Equations (3.27, 3.28), 𝒒̅ is the eigenvector that contains the vibration/buckling mode shapes, 𝜔 

is a non-trivial forcing frequency, 𝜆𝑐𝑟 is the so-called critical buckling load, 𝑲𝑔 is nonlinear geometric 

stiffness element matrix presented in Equations (3.72, 3.111). Note that the term 𝒒̅ used in Equation 

(3.28) is not relative to Equation (3.26). 

If the loads applied on the solid are static, the dynamic term in Equation (3.26) vanishes. The static 

equilibrium equation is then as follows 

 𝑲𝒒 = 𝑭  (3.29) 

It is clear that the above semi-discrete or so-called space-discretized dynamic equilibrium equations 

can be solved by means of a time integration scheme, as the one introduced in the next section. 

3.2.5 Integration in time 

Time integration schemes can be classified into two main categories: explicit and implicit. In explicit 

integration schemes, the dynamic equation of motion (Eq. 3.24) can be solved at time 𝑡; based on 

that, the solution at time 𝑡 + Δ𝑡 is obtained without having to solve a set of linear equations at each 

step. In explicit schemes, the time integration of the discrete momentum equations does not require 

the solution of any equations. Therefore, explicit solutions are conditionally stable with respect to the 

size of the time step. Besides, the resulting time increment is generally too small for practical 

considerations in computer effort and for the response necessary to model slowly varying loads. 

In implicit schemes, Equation (3.24) can be solved at time 𝑡 after the solution at time 𝑡 − ∆𝑡 is found. 

Therefore in implicit solutions, the time integration of the discrete momentum equations requires the 

solution of a set of algebraic equations at each time step; however, larger time steps may be used. 

Implicit methods can be conditionally or unconditionally stable. A computational model of large real 

structures generally takes a large number of periods which are smaller than the integration time step, 

so it is therefore essential to select a numerical integration method that is unconditionally stable for 

all time steps. 

In this research, the implicit integration schemes and unconditionally stable methods are applied for 

dynamic response analysis of the textile fabrics. Among the numerical integration methods available 

to integrate second order equations, the single-step integration method developed by Newmark [9, 

22] is used. 
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In 1959 Newmark [23] presented a family of single-step integration methods for solving the structural 

dynamic problems. During the past 50 years, Newmark’s method has been applied to the dynamic 

analysis of many practical engineering structures. In addition, it has been modified and improved by 

many other researchers. In 1962, Wilson [24] formulated Newmark’s method in matrix notation as 

shown in Equations (3.30, 3.31). He added stiffness and mass proportional damping and eliminated 

the need for iteration by introducing the direct solution of equations at each time step. 

Newmark’s method for the solution of the space-discrete equations of motion (Eq. 3.24) is defined by 

Newmark’s equations as follows 

 𝒒̈𝑡 = 𝑏1(𝒒𝑡 − 𝒒𝑡−Δ𝑡) + 𝑏2𝒒̇𝑡−Δ𝑡 + 𝑏3𝒒̈𝑡−Δ𝑡  (3.30) 

 𝒒̇𝑡 = 𝑏4(𝒒𝑡 − 𝒒𝑡−Δ𝑡) + 𝑏5𝒒̇𝑡−Δ𝑡 + 𝑏6𝒒̈𝑡−Δ𝑡  (3.31) 

where Δ𝑡 is the time step size and the constants 𝑏1 to 𝑏6 are given by 

  
𝑏1 =

1

𝛽Δ𝑡2
;  𝑏2 =

1

𝛽Δ𝑡
; 𝑏3 = 𝛽 −

1

2
; 

 

(3.32) 

  𝑏4 = 𝛾Δ𝑡𝑏1;  𝑏5 = 1 + 𝛾Δ𝑡𝑏2; 𝑏6 = Δ𝑡(1 + 𝛾𝑏3 − 𝛾)  

being 𝛽 and 𝛾 are the parameters that determine the stability and accuracy of the scheme. 

Newmark’s method used Equations (3.24, 3.30, 3.31) iteratively, for each time step, for each 

displacement DOF of the structural system. The term 𝒒̈𝑡 was obtained from Equation (3.30) by dividing 

the equation by the mass associated with the DOF. 

By substituting Equations (3.30, 3.31) into Equation (3.24), the Equation (3.24) at time 𝑡 can be 

written in terms of the unknown nodal displacements 𝒒𝑡 as follow 

 (𝑏1𝑴+ 𝑏4𝑪 + 𝑲)𝒒𝑡 = 𝑭𝑇 +𝑴(𝑏1𝒒𝑡−Δ𝑡 − 𝑏2𝒒̇𝑡−Δ𝑡 − 𝑏3𝒒̈𝑡−Δ𝑡) 

+𝑪(𝑏4𝒒𝑡−Δ𝑡 + 𝑏5𝒒̇𝑡−Δ𝑡 − 𝑏6𝒒̈𝑡−Δ𝑡) 

 
(3.33) 

Note that the constants 𝑏𝑖 need be calculated only once. Also, for linear systems, the effective dynamic 

stiffness matrix 𝑲 is formed and triangularized only once. 

Besides, Newmark’s method without damping is conditionally stable if 

 
𝛽 ≤

1

2
, 𝛾 ≥

1

2
  

 
(3.34) 
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but it is unconditionally stable if 

 
2𝛽 ≥ 𝛾 ≥

1

2
 

 
(3.35) 

However, if 𝛾 is greater than 1 2⁄ , errors are introduced. These errors are associated with “numerical 

damping” and “period elongation”. For large multi degree-of-freedom structural systems, the time step 

limit given by Equation (3.24) can be written as 

 Δ𝑡

𝑡𝑚𝑖𝑛
≤

1

2𝜋√
𝛾
2 − 𝛽

 
 

(3.36) 

3.3 The strain/gradient smoothing technique 

3.3.1 Introduction 

S-FEM was recently presented by Liu and his coworkers [3, 7] based on the existing standard FEM 

and the existing gradient/strain smoothing technique, which was proposed by Chen et al. [4] in the 

context of the stabilized conforming nodal integration (SCNI) mesh-free methods [5, 6]. It is a strain 

smoothing stabilization that is to compute the nodal strain as the divergence of a spatial average of 

the compatible strain field. This technique avoids evaluating derivatives of mesh-free shape functions 

at nodes and therefore eliminates defective modes. Liu and Nguyen-Thoi [3] presented the most 

advanced features of the strain/gradient smoothing technique used in the S-FEM models and the 

major differences in key numerical techniques between S-FEM and FEM, as explained in the book 

entitled ‘Smoothed Finite Element Methods’ published in 2010 and also in the newest book ‘The Finite 

Element Method: A Practical Course’ by Liu and Quek [25], published in 2013. The essential idea in 

S-FEM is to modify the compatible strain field, or construct a strain field using only the displacements 

in order to ensure stability and convergence to the exact solution. The major techniques used in S-

FEM models appear summarized in references [3, 7, 8]. 

The S-FEM models can well resolve almost the main difficult issues in the standard FEM models 

through the works of Liu et al [7, 26-32], Nguyen-Thoi et al [33-36], Nguyen-Xuan et al [37-41], 

Nguyen-Thanh et al [42, 43] and other researchers [44-71], e.g. overly stiff phenomenon leading to 

the so-called locking behavior for many problems, stress accuracy issues, mesh distortion issues, 
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meshing issues, solution certificate and computational efficiency. The versions of S-FEM models and 

properties are summarized in Table 3.1. 

Table 3.1 Versions of S-FEM Models and Properties. 

Abbreviation Full Name Formulation Features/Properties 

CS-FEM (2D) 

CS-FEM (3D) 

Cell-based smoothed 

finite element method 

using quadrilateral 

elements 

Smoothed Galerkin 

Linear or enriched PIM 

Quadrilateral cell-based 

smoothing domains 

Linearly conforming 

Good accuracy 

Softer than FEM 

Super-convergence 

Conditionally stable 

nCS-FEM (2D) 

nCS-FEM (3D) 

Cell-based smoothed 

finite element method 

using 𝑛-sided 

polygonal elements 

Smoothed Galerkin 

Linear or enriched PIM 

Triangular cell-based 

smoothing domains 

Linearly conforming 

Good accuracy 

Super-convergence 

Spatially and temporally stable 

NS-FEM 

(2D and 3D) 

Node-based 

smoothed finite 

element method 

using 𝑛-sided 

polygonal elements 

(including T3 and T4) 

Smoothed Galerkin 

Linear or enriched PIM 

Smoothing operation based 

on nodes 

Linearly conforming 

Volumetric locking free 

Upper bound 

Strong super-convergence in 

energy norm 

Spatially stable, temporally 

instable 

ES-FEM (2D) 

FS-FEM (3D) 

Edge-based (face-

based) smoothed 

finite element method 

using 𝑛-sided 

polygonal elements 

(including T3 and T4) 

Smoothed Galerkin 

Linear or enriched PIM 

Smoothing operation based 

on the edges (faces) of 

cells 

Linearly conforming 

Ultra-accuracy 

Very efficient 

Strong super-convergence in 

displacement/energy norm 

Spatially and temporally stable 

αFEM (2D) 

αFEM (3D) 

Alpha finite element 

method using T3 and 

T4 Elements 

Smoothed and standard 

Galerkin 

Linear or enriched PIM 

Smoothing operation based 

on the node and cells 

Linearly conforming 

Nearly “exact” solution 

Strong super-convergence in 

displacement/energy norm 

Upper and lower bounds 

Spatially and temporally stable 

Source: Liu and Nguyen-Thoi [3] 

The historical developments of S-FEM and most implementations of the strain smoothing techniques 

in S-FEM models can be easily found in the above-mentioned book about S-FEM [3, 25], so the reader 

is referred to them for more details. 
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3.3.2 The smoothing operator 

The strain/gradient smoothing technique is the simplest and most frequently used approach to obtain 

a smoothed strain field for an S-FEM model. The approach uses two assumptions [3]: 

 The strain at a specific location inside the smoothing domain is approximated by smoothing 

the compatible strain field or the displacement gradient in the smoothing domain, using the 

strain/gradient smoothing technique. 

 The smoothed strain field inside the entire smoothing domain is assumed to be constant and 

is the approximated strain obtained at first step. 

In this work, each of the discretized domain Ω𝑒 is subdivided into 𝑆𝐷 ∈ [1,∞) nonoverlap no-gap 

quadrilateral smoothing domains, as illustrated in Figure 3.3. Typical types of smoothing domains can 

be found in Table 3.2. 

 
Figure 3.3: Example of the division of a four-node quadrilateral element 𝛺𝑒 into the smoothing domains in CS-

FEM by connecting between the opposite mid-segment points of smoothing domains: a) 1 SD; b) 2 SDs; c) 3 

SDs; and d) 4 SDs. 

Let the 𝑘th smoothing domain and its boundary be denoted with Ω𝑘
𝑠  and Γ𝑘

𝑠, such that Ω𝑒 ≡ Ω𝑠 =

⋃ Ω𝑘
𝑠𝑆𝐷

𝑘=1  and Ω𝑖
𝑠 ∩ Ω𝑗

𝑠 = ∅, 𝑖 ≠ 𝑗 (𝑖 = 1,… , 𝑛𝑠; 𝑗 = 1,… , 𝑛𝑠). The total number of smoothing 

domain Ω𝑘
𝑠  in the system domain Ω can be computed by 𝑛𝑠 = 𝑛𝑒 × 𝑆𝐷, where 𝑛𝑒 is the total 

number of discretized domains Ω𝑒 in the system domain Ω. 
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Table 3.2 Typical types of smoothing domains 

Name 

Method for creation of smoothing domain(s) 
(number of smoothing domains, 𝑛𝑠) S-FEM models 

Problem 
domain 

Cell-based smoothing 

domain (CSD) 

Based on elements (𝑛𝑠 = 𝑛𝑒 for single 

division) or cells formed by dividing further the 

elements (𝑛𝑠 = 𝑛𝑒 × 𝑆𝐷 for multiple 

division) 

CS-FEM (S-

FEM) [7, 8, 72] 

1D, 2D, 

3D 

Node-based smoothing 

domain (NSD) 

Based on each of the nodes of the mesh by 

connecting portions of the surrounding 

elements sharing the node (in the case of the 

number of smoothing domains 𝑛𝑠 is the same 

as the number of nodes 𝑛𝑛; 𝑛𝑠 = 𝑛𝑛) 

NS-FEM [28] 1D, 2D, 

3D 

Edge-based smoothing 

domain (ESD) 

Based on each edge of the mesh by connecting 

portions of the element sharing the edge (the 

problem domain Ω being divided into 𝑛𝑠 =

𝑛𝑒𝑔 nonoverlap no-gap smoothing domains 

associated with the edges) 

ES-FEM [27] 2D 

Face-based smoothing 

domain (FSD) 

Based on each face of the element mesh by 

connecting portions of the surrounding 

elements sharing the face (in the case of the 

number of smoothing domains 𝑛𝑠 is the same 

as the number of faces 𝑛𝑓 in the mesh; 𝑛𝑠 =

𝑛𝑓) 

FS-FEM [73] 3D 

Source: Liu and Nguyen-Thoi [3] 

The smoothing operation performed over the smoothing domain Ω𝑘
𝑠  is now expressed in [3] 

 

∇̅𝒖(x𝑘) = ∫ 𝜺(x)Φ(x − x𝑘)𝑑Ω

Ω𝑖
𝑠

 

 

(3.37a) 

or, equivalently, 

 

∇̅𝒖(x𝑘) = ∫ ∇𝒖(x)Φ(x − x𝑘)𝑑Ω

Ω𝑖
𝑠

 

 

(3.37b) 

where Φ is a smoothing or weight function associated with point x𝑖 in Ω𝑘
𝑠 . This smoothing function 

has to satisfy the following basic conditions [74] 
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Φ ≥ 0 and ∫ Φ𝑑Ω

Ω𝑖
𝑠

= 1 

 

(3.38) 

By expanding the corresponding Taylor series for 𝜺 at the point x𝑘, it is obtained as follow 

 𝜺(x) = 𝜺(x𝑘) + ∇𝜺(x𝑘). (x − x𝑘) + (‖x − x𝑘‖)
2  (3.39) 

This expression indicates that the smoothed strain field is defined via the compatibility of several terms 

of higher order in the Taylor series. For simplicity, a piecewise constant function [3, 7] is applied here, 

as given by 

 
Φ(x − x𝑘) = {

1

𝐴𝑘
𝑠 , x ∈ Ω𝑘

𝑠

0, x ∉ Ω𝑘
𝑠

 
 

(3.40) 

where the area of smoothing domain 𝐴𝑘 = ∫ 𝑑Ω
Ω𝑘
𝑠 . In an S-FEM model, the strain in smoothing 

domain Ω𝑘
𝑠  can be further assumed to be a constant and equals 𝜺̅(x𝑘), which gives 

 

𝜺̅𝑘 = 𝜺̅𝑘(x) = 𝜺̅(x𝑘) =
1

𝐴𝑘
𝑠 ∫ 𝜺(x)𝑑Ω

Ω𝑘
𝑠

 

 

(3.41) 

where 𝜺̅𝑘 is the averaged/smoothed strain. The strain field in an S-FEM model is therefore piecewise 

constant. 

Now, by substituting smoothing function Φ into Equation (3.37), the smoothed gradient of 

displacement can be defined as 

 

𝜺̅(x𝑘) = ∫ ∇𝒖(x).Φ(x − x𝑘)𝑑Ω

Ω𝑘
𝑠

=
1

𝐴𝑘
𝑠 ∫ 𝒏(x). 𝒖(x)𝑑Γ

Γ𝑘
𝑠

 

 

(3.42) 

where 𝒖(x) is the generalized displacement vector and 𝒏(x) is the outward unit normal matrix 

containing the components of the outward unit normal vector to the boundary Γ𝑘
𝑠.  
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3.4 Analysis of bending, buckling and vibrational behavior of plate 

3.4.1 Introduction 

The formulation of the four-node quadrilateral plate bending element with assumed transverse shear 

strain fields based on the Mindlin-Reissner theory and the integration schemes of S-FEM models will 

be presented. The formulated plate bending element here is to predict mechanical deformations of 

thin to moderately thick fabric involved to fabric bending behavior such as buckle and free vibration 

behavior. The loads and boundary conditions are applied at the reference plane or mid-surface of the 

structure. Displacements are computed at the reference plane. According to FSDT and the thickness 

of fabric, the stresses in 𝑧 direction are not considered in the formulation since the dimensional 

thickness are too small. The problem is defined in the domain Ω bounded by Γ, as presented in 

Section 3.2.3 and illustrated in Figure 3.2. 

3.4.2 Kinetic equations 

Consider a Mindlin-Reissner plate of uniform thickness ℎ, occupying domain Ω bounded by Γ. The in-

plane displacements 𝑢, 𝑣 and the transverse displacement 𝑤 of an arbitrary point (𝑥, 𝑦, 𝑧) at a 

distance 𝑧 to the fabric mid-surface at the time 𝑡 are expressed as 

 𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝑧𝜃𝑦(𝑥, 𝑦, 𝑡)

𝑣(𝑥, 𝑦, 𝑧, 𝑡) = −𝑧𝜃𝑥(𝑥, 𝑦, 𝑡)

𝑤(𝑥, 𝑦, 𝑧, 𝑡) = 𝑤0(𝑥, 𝑦, 𝑡)

 
 

(3.43) 

where 𝑤0 is the deflection at the mid-surface, 𝜃𝑥 and 𝜃𝑦 are the rotations about the 𝑥- and 𝑦-axes, 

respectively, as illustrated in Figure 3.4. 

 
Figure 3.4: A four-node quadrilateral plate bending element. 
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In view of that displacement field, the strains can be separated into bending strains (in-plane 

components) and off-plane transverse shear deformations. Bending strains can be written as follows 

 

𝜺 = {

𝜀𝑥
𝜀𝑦

𝛾𝑥𝑦

} = 𝑧

[
 
 
 
 
 
 
𝜕

𝜕𝑥
0

0
𝜕

𝜕𝑦
𝜕

𝜕𝑦

𝜕

𝜕𝑥]
 
 
 
 
 
 

{
𝜃𝑦
−𝜃𝑥

} = 𝑧∇𝑠𝜽 = 𝑧𝜿 

 

(3.44) 

where ∇𝑠 is the symmetric-gradient operator and 𝜿 is the curvature strain vector, while those shear 

deformations are given by 

 

𝜸 = {
𝛾𝑥𝑧
𝛾𝑦𝑧
} =

[
 
 
 
𝜕

𝜕𝑥
𝜕

𝜕𝑦]
 
 
 

𝑤0 + {
𝜃𝑦
−𝜃𝑥

} = ∇𝑤0 + 𝜽 

 

(3.45) 

where ∇ stands for the gradient operator. 

In respect to bending moment applied on the fabric mid-surface, the constitutive relations between 

bending moment and bending strain are defined by 

 𝝈 = {𝜎𝑥 𝜎𝑦 𝜏𝑥𝑦}𝑇 = 𝑫0
𝑏𝜿  (3.46) 

where 𝑫0
𝑏 stands for the material matrix, while the average shear stresses relating to the transverse 

shear strain have the form 

 𝝉 = {𝜏𝑥𝑧 𝜏𝑦𝑧}𝑇 = 𝑫0
𝑠𝜸  (3.47) 

where 𝑫0
𝑠  is the material matrix related to shear deformation. The stress components 𝜎𝑥, 𝜎𝑦, 𝜏𝑥𝑦, 

𝜏𝑥𝑧 and 𝜏𝑦𝑧 lead to the force and moment resultants per unit length. 

The bending moment forces in the mid-thickness are defined by 

 

{

𝑀𝑥

𝑀𝑦

𝑀𝑥𝑦

} = ∫ {

𝜎𝑥
𝜎𝑦
𝛾𝑥𝑦
} 𝑧𝑑𝑧

ℎ
2

−
ℎ
2

 

 

(3.48) 

in which 𝑀𝑥 and 𝑀𝑦 are bending moments and 𝑀𝑥𝑦 is the twisting moment. 
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The transverse shear forces per unit length that relates to the average shear stresses can be defined 

by 

 

{
𝑄𝑥
𝑄𝑦
} = ∫ {

𝛾𝑥𝑧
𝛾𝑦𝑧
} 𝑑𝑧

ℎ
2

−
ℎ
2

 

 

(3.49) 

The total potential energy for the Mindlin-Reissner plate takes form as 

 Π = 𝑈 −𝑊  (3.50) 

where 𝑈 stands for the strain energy for the Mindlin-Reissner plate, which is defined as 

 

𝑈 =
1

2
∭𝜺𝑇𝝈𝑑Ω

Ω

+
𝛼

2
∭𝝉𝑇𝜸𝑑Ω

Ω

 

 
(3.51) 

and 𝑊 is the energy produced by the body forces defined as 

 

𝑊 =∭𝒖𝑇𝒃𝑑Ω

Ω

 

 
(3.52) 

where 𝒃 is the distributed load applied on the plate. 

The kinetic energy is specified by considering the displacement assumptions for the Mindlin-Reissner 

plate and Equations (3.17a, 3.43) given as 

 

𝑇 =
1

2
∭𝜌(𝑢̇2 + 𝑣̇2 + 𝑤̇2)𝑑Ω

Ω

 

 
(3.53) 

The geometric strain energy for the Mindlin-Reissner plate is enforced by in-plane pre-buckling stresses 

𝜎𝑥
0, 𝜎𝑦

0, 𝜎𝑥𝑦
0  is defined by 

 

𝑈𝜎 =
1

2
∭(𝜺𝑔)𝑇𝝉𝜺𝑔𝑑Ω

Ω

 

 
(3.54) 

where 𝜺𝑔 stands for the geometrical strains given by 
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𝜺𝑔 =

[
 
 
 
 
 
 
𝜕𝑤 𝜕𝑥⁄ 0 0
𝜕𝑤 𝜕𝑦⁄ 0 0

0 𝜕𝜃𝑥 𝜕𝑥⁄ 0

0 𝜕𝜃𝑦 𝜕𝑦⁄ 0

0 0 𝜕𝜃𝑦 𝜕𝑥⁄

0 0 𝜕𝜃𝑦 𝜕𝑦⁄ ]
 
 
 
 
 
 

 

 

(3.55) 

being 𝝉 written as 

 
𝝉 = [

𝝈̂0 0 0
0 𝝈̂0 0
0 0 𝝈̂0

] 
 

(3.56) 

where 𝝈̂0 is the nonlinear strain resulting from the in-plane pre-buckling stresses, which can be written 

as 

 
𝝈̂0 = [

𝜎𝑥
0 𝜎𝑥𝑦

0

𝜎𝑥𝑦
0 𝜎𝑦

0 ] 
 

(3.57) 

3.4.3 Four-node quadrilateral plate bending element 

Let us assume that each of the discretized element Ω𝑒 with boundary Γ𝑒 in the reference configuration 

is a four-node quadrilateral element. The generalized displacement vector 𝒖 can be approximated as 

follows 

 
𝒖 = {

𝑤0
𝜃𝑥
𝜃𝑦
} =∑[

𝑁𝐼 0 0
0 𝑁𝐼 0
0 0 𝑁𝐼

] 𝒒𝐼
𝑝

4

𝐼=1

 
 

(3.58) 

where 𝑁𝐼 and 𝒒𝐼
𝑝 = {𝑤0𝐼 𝜃𝑥𝐼 𝜃𝑦𝐼}𝑇 are, respectively, the bilinear Lagrange shape function and 

the vector of nodal degrees of freedom associated with node 𝐼. The curvature, shear strain and 

geometrical strain fields can be now approximated as 

 
𝜿 =∑𝑩𝑰

𝑏𝒒𝐼

4

𝐼=1

= 𝑩𝑏𝒒𝐼
𝑝 

 
(3.59) 

 
𝜸 =∑𝑩𝑰

𝑠𝒒𝐼

4

𝑖=1

= 𝑩𝑠𝒒𝐼
𝑝 

 
(3.60) 
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𝜺𝑔 =∑𝑩𝑰

𝑔
𝒒𝐼

4

𝑖=1

= 𝑩𝑔𝒒𝐼
𝑝 

 
(3.61) 

where 𝑩𝐼
𝑏, 𝑩𝐼

𝑠 and 𝑩𝐼
𝑔

 are the discretized gradient matrices and the so-called strain-displacement 

matrices for node 𝐼, respectively, written as 

 

𝑩𝐼
𝑏 =

[
 
 
 
 
 
 0 0

𝜕𝑁𝐼
𝜕𝑥

0 −
𝜕𝑁𝐼
𝜕𝑦

0

0 −
𝜕𝑁𝐼
𝜕𝑥

𝜕𝑁𝐼
𝜕𝑦 ]
 
 
 
 
 
 

 

 

(3.62) 

 

𝑩𝐼
𝑠 =

[
 
 
 
𝜕𝑁𝐼
𝜕𝑥

0 𝑁𝐼

𝜕𝑁𝐼
𝜕𝑦

−𝑁𝐼 0
]
 
 
 

 

 

(3.63) 

 

𝑩𝐼
𝑔
=

[
 
 
 
 
 
 
𝜕𝑁𝐼 𝜕𝑥⁄ 0 0

𝜕𝑁𝐼 𝜕𝑦⁄ 0 0

0 𝜕𝑁𝐼 𝜕𝑥⁄ 0

0 𝜕𝑁𝐼 𝜕𝑦⁄ 0

0 0 𝜕𝑁𝐼 𝜕𝑥⁄

0 0 𝜕𝑁𝐼 𝜕𝑦⁄ ]
 
 
 
 
 
 

 

 

(3.64) 

Substituting Equations (3.58, 3.59 and 3.60) into Equation (3.50), the involved element matrices can 

be specified as follows. The plate element stiffness matrix is defined by 𝒌𝑝 = 𝒌𝑏 + 𝒌𝑠, where the 

curvature stiffness 𝒌𝑏 and the shear stiffness 𝒌𝑠 are written as 

 

𝒌𝑏 = ∬(𝑩𝑏)𝑇𝑫𝑏𝑩𝑏𝑑Ω

Ω𝑒

 

 
(3.65) 

and 

 

𝒌𝑠 = ∬(𝑩𝑠)𝑇𝑫𝑠𝑩𝑠𝑑Ω

Ω𝑒

 

 
(3.66) 

and the load vector 𝒇 is defined as 

 

𝒇 = ∬ℎ𝑵𝑇𝒃𝑑Ω

Ω𝑒

+ 𝒇s 

 
(3.67) 
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In above expressions, 𝒇s relates to the prescribed boundary loads, 𝑫𝑏 and 𝑫𝑠 are the bending 

stiffness constitutive coefficients and the transverse shear stiffness constitutive coefficients, 

respectively. These coefficients can be written as follows 

 

𝑫𝑏 = ∫𝑫0
𝑏𝑑𝑧

ℎ
2

−
ℎ
2

=
ℎ3

12
𝑫0
𝑏 

 

(3.68) 

and 

 

𝑫𝑠 = ∫𝑫0
𝑠𝑑𝑧

ℎ
2

−
ℎ
2

= 𝛼ℎ𝐺𝑫0
𝑠  

 

(3.69) 

in which 𝛼 =
5

6
 is a shear correction factor and ℎ is the fabric thickness, being 𝑫0

𝑏 and 𝑫0
𝑠  given in 

Equations (3.39, 3.29). 

The mass matrix of plate bending element can be obtained from Equations (3.43, 3.53 and 3.58) as 

follows 

 

𝒎𝑝 =
1

2
∬𝑵𝑇𝑰𝑵𝑑Ω

Ω𝑒

 

 
(3.70) 

where 𝑵 stands for shape function matrix and 

 

𝑰 =

[
 
 
 
 
𝜌ℎ 0 0

0
𝜌ℎ3

12
0

0 0
𝜌ℎ3

12 ]
 
 
 
 

 

 

(3.71) 

The geometric stiffness matrix of plate element 𝒌𝑔is specified by 

 

𝒌𝑔 = ∬(𝑩𝑔)𝑇𝝉𝑩𝑔𝑑Ω

Ω𝑒

 

 
(3.72) 

where the gradient strain matrix 𝑩𝑔 is defined in Equation (3.64) and 
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𝝉 =

[
 
 
 
 
ℎ𝝈̂0 0 0

0
ℎ3

12
𝝈̂0 0

0 0
ℎ3

12
𝝈̂0]
 
 
 
 

 

 

(3.73) 

where 𝝈̂0 is the nonlinear strain resulting from the in-plane pre-buckling stresses defined in Equation 

(3.57). 

3.4.4 Strain-smoothing operation 

In CS-FEM models, each of the discretized element Ω𝑒 in the system domain Ω is further subdivided 

into 𝑆𝐷 ∈ [1,∞) quadrilateral smoothing domains in an non-overlapping and no-gap manner, such 

that Ω𝑒 = ⋃ Ω𝑘
𝑠𝑆𝐷

𝑘=1  and Ω𝑖
𝑠 ∩ Ω𝑗

𝑠 = ∅, 𝑖 ≠ 𝑗 (𝑖 = 1,… , 𝑆𝐷; 𝑗 = 1,… , 𝑆𝐷), where Ω𝑘
𝑠  indicates 

the 𝑘th smoothing domain of the element Ω𝑒, as illustrated in Figure 3.5. Each smoothing domain 

has the total number 𝑛𝑏
𝑠  of boundary segments that Γ𝑘

𝑠 = ⋃ Γ𝑘𝑏
𝑒𝑛𝑏

𝑠

𝑏=1  with Γ𝑖
𝑠 ∩ Γ𝑗

𝑠 = ∅, 𝑖 ≠

𝑗 (𝑖 = 1,… , 𝑛𝑏
𝑠 ; 𝑗 = 1,… , 𝑛𝑏

𝑠). The total number 𝑆𝐷 of smoothing domains within each discretized 

element Ω𝑒 can be equal to the total number of discretized elements Ω𝑒 within the system domain 

Ω. This means that one discretized elements Ω𝑒 can be used as one smoothing domain Ω𝑘
𝑠 . 

 

Figure 3.5: The problem domain 𝛺 is divided into 𝑛𝑒 quadrilateral elements 𝛺𝑒 , each discretized element of 

domain is further divided into SD smoothing domains 𝛺𝑠: a) 1 SD; b) 2 SDs; c) 3 SDs; d) 4 SDs. 
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Numbering the nodes and elements of smoothing domain(s) within a discretized element Ω𝑒 in order 

is of paramount importance. To construct smoothing domains within a discretized element Ω𝑒, this 

scheme of numbering works as follows: 

 Firstly, numbering the mid-edge points of element starting on the first edge (constructed by 

nodes 1 and 2) and ending on the last edge (constructed by nodes 4 and 1), e.g. in this case, 

those mid-edge points are {5, 6, 7, 8} as illustrated in Figures 3.5. 

 Secondly, numbering the central point of element, e.g. in this case, the central point is {9}, 

as illustrated in Figures 3.5. 

Finally, the numbering of smoothing domain(s) per discretized element Ω𝑒, e.g. in case of the number 

of smoothing domain is equal to 1: 𝑆𝐷1 = {1,2, 3,4}; 2: 𝑆𝐷1 = {1,5,7,4}, 𝑆𝐷2 =  {5,2, 3,7}; 

3: 𝑆𝐷1 = {1,5,7,4}, 𝑆𝐷2 =  {5,2,6,9}, 𝑆𝐷3 =  {9,6,3,7}; 4: 𝑆𝐷1 = {1,5,9,8}, 𝑆𝐷2 =

 {5,2,6,9}, 𝑆𝐷3 =  {9,6,3,7}, 𝑆𝐷4 =  {8,9,7,4}. 

Taking into consideration Equations (3.37, 3.40, 3.41), the averaged/smoothing strain operation for 

curvature strains in the discrete form for each of the smoothing domains Ω𝑘
𝑠  within the element 

domain Ω𝑒 can be obtained from Equations (3.44, 3.45, 3.55) as follows 

 

𝜿̅(x𝑘) =
1

𝐴𝑘
𝑠 ∫ 𝜿(x𝑘)𝑑Ω

Ω𝑘
𝑠

=
1

𝐴𝑘
𝑠 ∫ 𝒏.𝒖(x𝑘)

Γ𝑘
𝑠

𝑑Γ =∑𝑩̅𝑘𝐼
𝑏 (x𝑘). 𝒒𝐼

𝑝

4

𝐼=1

 

 

(3.74) 

where 𝑩̅𝑘𝐼
𝑏  is smoothed gradient matrix and 𝒏 is the outward normal matrix containing the 

components of the outward normal vector to the boundary Γ𝑘
𝑠. Similarly, transverse shear and 

geometrical strains are obtained as follows 

 
𝜸̅(x𝑘) =∑𝑩̅𝑘𝐼

𝑠 (x𝑘). 𝒒𝐼
𝑝

4

𝐼=1

 
 

(3.75) 

and 

 
𝜺̅𝑔(x𝑘) =∑𝑩̅𝑘𝐼

𝑔 (x𝑘). 𝒒𝐼
𝑝

4

𝐼=1

 
 

(3.76) 

The smoothed curvature gradient matrix has the following form 

 

𝑩̅𝑘𝐼
𝑏 (x𝑘) = [

0 0 𝑏̅𝑘𝐼𝑥
0 −𝑏̅𝑘𝐼𝑦 0

0 −𝑏̅𝑘𝐼𝑥 𝑏̅𝑘𝐼𝑦

] 

 

(3.77) 
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where 
 

𝑏̅𝑘𝐼𝑥 =
1

𝐴𝑘
𝑠 ∫ 𝑛𝑥𝑁𝐼
Γ𝑘
𝑠

𝑑Γ =
1

𝐴𝑘
𝑠 ∑𝑛𝑥𝑏 . 𝑁𝐼(x𝑏

𝐺). 𝑙𝑏

𝑛𝑏
𝑠

𝑏=1

 

 

(3.78a) 

 

𝑏̅𝑘𝐼𝑦 =
1

𝐴𝑘
𝑠 ∫ 𝑛𝑦𝑁𝐼
Γ𝑘,𝑐
𝑒

𝑑Γ =
1

𝐴𝑘
𝑠 ∑𝑛𝑦𝑏 . 𝑁𝐼(x𝑏

𝐺). 𝑙𝑏

𝑛𝑏
𝑠

𝑏=1

 

 

(3.78b) 

being 𝐴𝑘
𝑠 = ∫ 𝑑Ω

Ω𝑘
𝑠  the area of the 𝑘th smoothing domain Ω𝑘

𝑠 ⊂ Ω𝑒, 𝑛𝑥𝑏 and 𝑛𝑦𝑏 indicate the 

components of the outward unit normal to the 𝑏th boundary segment and x𝑏
𝐺  is the coordinate value 

of Gauss point of the 𝑏th boundary segment. The values of shape functions corresponding to the local 

points in the element are shown in Figure 3.6. 

 

Figure 3.6: The shape function of local point in the element. 𝑙1 is the proportion of 𝑏 to 𝑎 and similarly to 𝑙2. 

The smoothed transverse shear gradient matrix of the smoothing domain Ω𝑘
𝑠  can be expressed as 

 
𝑩̅𝑘𝐼
𝑠 (x𝑘) = [

𝑏̅𝑘𝐼𝑥 0 𝑏̅𝑘𝐼
𝑏̅𝑘𝐼𝑦 −𝑏̅𝑘𝐼 0

] 
 

(3.79) 

where 

 

𝑏̅𝑘𝐼 =
1

𝑛𝑛
𝑠 ∑𝑁𝑖𝐼

𝑛𝑛
𝑠

𝑛=1

 

 
(3.80) 

with 𝑛𝑛
𝑠 = 𝑛𝑏

𝑠  denoting the total number of the nodes of the 𝑘th smoothing domain Ω𝑘
𝑠  and 𝑁𝑖𝐼 

indicating the shape function value of the 𝑖th node of the 𝑘th smoothing domain Ω𝑘
𝑠 . 
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Similarly, the smoothed gradient matrix for the geometrical strain operating over the smoothing 

domain Ω𝑘
𝑠  can be specified as follows 

 

𝑩̅𝑘𝐼
𝑔 (x𝑘) =

[
 
 
 
 
 
 
 
𝑏̅𝑘𝐼𝑥 0 0

𝑏̅𝑘𝐼𝑦 0 0

0 𝑏̅𝑘𝐼𝑥 0

0 𝑏̅𝑘𝐼𝑦 0

0 0 𝑏̅𝑘𝐼𝑥
0 0 𝑏̅𝑘𝐼𝑦]

 
 
 
 
 
 
 

 

 

(3.81) 

with 𝑏̅𝑘𝐼𝑥 and 𝑏̅𝑘𝐼𝑦 are given as in Equation (3.78). 

The relationship between the strain fields and the nodal displacements can be modified by replacing 

the corresponding gradient matrix 𝑩 with the smoothed gradient matrix 𝑩̅. Thus, the smoothed 

stiffness 𝒌̅𝑏 , 𝒌̅𝑠 and 𝒌̅𝑔 of elements can be formulated as follows 

  

𝒌̅𝑏 = ∬(𝑩̅𝑏)𝑇𝑫𝑏𝑩̅𝑏𝑑Ω

Ω𝑒

=∑(𝑩̅𝑘𝐼
𝑏 (x𝑘))

𝑻

𝑫𝑏 (𝑩̅𝑘𝐼
𝑏 (x𝑘))

𝑆𝐷

𝑘

𝐴𝑘
𝑠  

 
(3.82) 

  

𝒌̅𝑠 = ∬(𝑩̅𝑠)𝑇𝑫𝑠𝑩̅𝑠𝑑Ω

Ω𝑒

=∑(𝑩̅𝑘𝐼
𝑠 (x𝑘))

𝑻
𝑫𝑠(𝑩̅𝑘𝐼

𝑠 (x𝑘))

𝑆𝐷

𝑘

𝐴𝑘
𝑠  

 
(3.83) 

  

𝒌̅𝑔 = ∬(𝑩̅𝑔)𝑇𝝉𝑩̅𝑔𝑑Ω

Ω𝑒

=∑(𝑩̅𝑘𝐼
𝑔 (x𝑘))

𝑻

𝝉 (𝑩̅𝑘𝐼
𝑔 (x𝑘))

𝑆𝐷

𝑘

𝐴𝑘
𝑠  

 
(3.84) 

The smoothed stiffness matrix of plate bending element can be then obtained as follows 

𝒌̅𝑝 = 𝒌̅𝑏 + 𝒌̅𝑠 = ∬(𝑩̅𝑏)𝑇𝑫𝑏𝑩̅𝑏𝑑Ω

Ω𝑒

+∬(𝑩̅𝑠)𝑇𝑫𝑠𝑩̅𝑠𝑑Ω

Ω𝑒

 (3.85) 

Note that the element shear stiffness matrix 𝒌̅𝑠 in Equations (3.83, 3.85) will be formulated by using 

a classical reduced integration and mixed interpolation of tensorial components (MITC) approaches, 

which proposed by Bathe and Dvorkin [75]. It is used to eliminate the shear locking of shell models 

that will be presented in Section 3.6. The approximation of the shear strain fields 𝜸 can be interpolated 

in the natural coordinates system as follows 

𝜸 = [
𝛾𝑥𝑧
𝛾𝑦𝑧
] = 𝑱−1 [

𝛾𝜉
𝛾𝜂
] (3.86) 
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with 

𝛾𝜉 =
1

2
[(1 − 𝜂)𝛾𝜉

𝐵 + (1 − 𝜂)𝛾𝜉
𝐷] (3.87a) 

𝛾𝜂 =
1

2
[(1 − 𝜉)𝛾𝜂

𝐴 + (1 − 𝜉)𝛾𝜂
𝐶] (3.87b) 

and 𝑱
(𝜉,𝜂)

(𝑥,𝑦)
 stands for the Jacobian transformation matrix and superscripts 𝐴, 𝐵, 𝐶 and 𝐷 are the mid-

side node, as shown in Figure 3.4. Expressing 𝛾𝜂
𝐴, 𝛾𝜂

𝐶 and 𝛾𝜉
𝐵, 𝛾𝜉

𝐷 in terms of the discretized fields 𝒖, 

the shear part of the stiffness matrix is then rewritten as 

𝑩̅𝑠𝐼 = 𝐉−1

[
 
 
 
 
𝜕𝑁𝐼
𝜕𝜉

𝑏𝐼
11
𝜕𝑁𝐼
𝜕𝜉

𝑏𝑖
12
𝜕𝑁𝐼
𝜕𝜉

𝜕𝑁𝐼
𝜕𝜂

𝑏𝐼
21
𝜕𝑁𝐼
𝜕𝜂

𝑏𝑖
22
𝜕𝑁𝐼
𝜕𝜂 ]
 
 
 
 

 (3.88) 

where 

𝑏𝑖
11 = 𝜉𝑖

𝜕𝑥𝑀

𝜕𝜉
; 𝑏𝑖

12 = 𝜉𝑖
𝜕𝑦𝑀

𝜕𝜉
; 𝑏𝑖

21 = 𝜂𝑖
𝜕𝑥𝐿

𝜕𝜂
; 𝑏𝑖

22 = 𝜂𝑖
𝜕𝑦𝐿

𝜕𝜂
 (3.89) 

The coordinates of the unit square are 𝜉𝑖 ∈ {−1,1,1,−1} and 𝜂𝑖 ∈ {−1,−1,1,1} and the allocation 

of the mid-side nodes to the corner nodes of element are given as (𝑖;𝑀;  𝐿) ∈

{(1; 𝐵; 𝐴); (2; 𝐵;  𝐶 ); (3; 𝐷;  𝐶 ); (4; 𝐷; 𝐴)}.  

By using Equation (3.88), the shear part of the stiffness matrix 𝒌̃𝑠 can be evaluated using full 

integration (2 𝑥 2 Gauss Quadrature). This element is referred as MITC4. 
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3.5 Analysis of plane-stress problems 

3.5.1 Introduction 

In this section, a brief review of the strain smoothing approach for the four-node quadrilateral 

membrane/shell element with normal rotation is presented. The loads and boundary conditions are 

applied at the reference plane or mid-surface of the structure. Displacements are computed at the 

reference plane. The problem is defined in the domain Ω bounded by Γ, as represented in Section 

3.2.3 and illustrated in Figure 3.2. The four-node quadrilateral membrane/shell element is also a part 

of the formulation of the four-node quadrilateral flat shell element, which will be introduced bellow. 

 
Figure 3.7: A four-node quadrilateral membrane element with normal rotation. 

3.5.2 Four-node quadrilateral membrane element with normal rotation 

Let us consider a four node quadrilateral element with domain Ω𝑒 bounded by Γ𝑒, so that the in-plane 

displacements can be approximated as 

 
𝒖 =∑[

𝑁𝐼 0
0 𝑁𝐼

] 𝒒𝐼

4

𝐼=1

= 𝑵𝒒𝐼
𝑚 

 
(3.90) 

where 𝒖 = {𝑢0 𝑣0}𝑇 is the displacement vector, 𝑵 is the element shape function matrix and 𝒒𝐼
𝑚 =

{𝑢0𝐼 𝑣0𝐼}𝑇 is the vector of nodal degrees of freedom for element node 𝐼, as illustrated in Figure 

3.7. Then the discrete strain fields are defined as 

 
𝜺𝑚 = ∇𝑠𝒖 =∑𝑩𝐼

𝑚𝒒𝐼

4

𝐼=1

= 𝑩𝑚𝒒𝐼
𝑚 

 
(3.91) 
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where 𝑩𝑚 = ∇𝑠𝑵 is the discretized strain–displacement matrix and  

 

𝑩𝐼
𝑚 =

[
 
 
 
 
 
 
𝜕𝑁𝐼
𝜕𝑥

0

0
𝜕𝑁𝐼
𝜕𝑦

𝜕𝑁𝐼
𝜕𝑦

𝜕𝑁𝐼
𝜕𝑥 ]
 
 
 
 
 
 

 

 

(3.92) 

The constitutive relationship can be expressed as 

 𝝈𝑚 = {𝜎𝑥 𝜎𝑦 𝛾𝑥𝑦}𝑇 = 𝑫0
𝑚𝜺𝑚  (3.93) 

The stress resultants that are in the form of the in-plane membrane forces can be formulated as 

 

{

𝑁𝑥
𝑁𝑦
𝑁𝑥𝑦

} = ∫ {

𝜎𝑥
𝜎𝑦
𝛾𝑥𝑦
} 𝑑𝑧

ℎ
2

−
ℎ
2

 

 

(3.94) 

The total potential energy for the membrane element can be defined as 

 

𝛱 =
1

2
∭(𝜺𝑚)𝑻𝝈𝑚𝑑Ω

Ω𝑒

−∭𝒖𝑇𝒃𝑑Ω

Ω𝑒

−∬𝒖𝑇𝒕Γ𝑏𝑑Γ

Γ𝑒

 

 
(3.95) 

Substituting Equations (3.90, 3.91, 3.93) into the previous expression, it is obtained the element 

membrane stiffness matrix 𝒌𝑚 and the vector of element nodal forces produced by body forces 𝒇𝑏 

and tractions 𝒇𝑠, written as 

 

𝒌𝑚 = ∬(𝑩𝑚)𝑻𝑫𝑚𝑩𝑚𝑑Ω

Ω𝑒

 

 

(3.96) 

and 

 

𝒇 = 𝒇𝑏 + 𝒇𝑠 = ∬ℎ𝑵𝑇𝒃𝑑Ω

Ω𝑒

+ ∫ ℎ𝑵𝑇𝒕Γ𝑑Γ

Γ𝑒

 

 
(3.97) 

in which 𝑫𝑚 is the membrane stiffness constitutive coefficients defined by 

 

𝑫𝑚 = ∫𝑫0
𝑚𝑑𝑧

ℎ
2

−
ℎ
2

= ℎ𝑫0
𝑚 

 

(3.98a) 
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where 𝑫0
𝑚 is given in Equation (2.39). 

Substituting Equation (3.90) into Equation (3.17a), the element mass matrix is defined as 

 

𝒎𝑚 =∭𝜌𝑵𝑇𝑵𝑑Ω

Ω𝑒

= ∬ℎ𝜌𝑵𝑇𝑵𝑑Ω

Ω𝑒

 

 
(3.98b) 

3.5.3 Strain-smoothing operation 

Similarly to the procedure of strain-smoothing operation for plate bending element in Section 3.4.4, 

the averaged/smoothing strain operation for membrane strains in the discrete form for each of the 

smoothing domains Ω𝑘
𝑠  within the element domain Ω𝑒 can be obtained from Equations (3.91) as 

follows 

 
𝜺̅(x𝑘) =∑𝑩̅𝑘𝐼

𝑚(x𝑘). 𝒒𝐼
𝑚

4

𝐼=1

 
 

(3.99) 

where 𝑩̅𝑘𝐼
𝑚(x𝑘) is the smoothed strain-displacement matrix given by 

 

𝑩̅𝑘𝐼
𝑚(x𝑘) = [

𝑏̅𝑘𝐼𝑥 0

0 𝑏̅𝑘𝐼𝑦

𝑏̅𝑘𝐼𝑦 𝑏̅𝑘𝐼𝑥

] 

 

(3.100) 

and where 

 

𝑏̅𝑘𝐼𝑥 =
1

𝐴𝑘
𝑠 ∫ 𝑛𝑥𝑁𝐼
Γ𝑘
𝑠

𝑑Γ =
1

𝐴𝑘
𝑠 ∑𝑛𝑥𝑏 . 𝑁𝐼(x𝑏

𝐺). 𝑙𝑏

𝑛𝑏
𝑠

𝑏=1

 

 

(3.101a) 

and 

 

𝑏̅𝑘𝐼𝑦 =
1

𝐴𝑘
𝑠 ∫ 𝑛𝑦𝑁𝐼
Γ𝑘,𝑐
𝑒

𝑑Γ =
1

𝐴𝑘
𝑠 ∑𝑛𝑦𝑏 . 𝑁𝐼(x𝑏

𝐺). 𝑙𝑏

𝑛𝑏
𝑠

𝑏=1

 

 

(3.95a) 

Finally, we end up having the element smoothed stiffness matrix defined as 

 

𝒌̅𝑚 = ∬(𝑩̅𝑚)𝑇𝑫𝑚𝑩̅𝑚𝑑Ω

Ω𝑒

=∑(𝑩̅𝑘𝐼
𝑚(x𝑘))

𝑻
𝑫𝑚(𝑩̅𝑘𝐼

𝑚(x𝑘))

𝑆𝐷

𝑘

𝐴𝑘
𝑠  

 
(3.102) 
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3.6 Analysis of shell structures 

3.6.1 Four-node quadrilateral flat shell element 

The four-node isoparametric quadrilateral flat shell element is derived by superposition of the plate 

bending element with the membrane element or so-called plane-stress element (see Figure 3.8), 

assuming that all of their four nodes are located at the mid-plane of the shell shown in Figure 3.9 [10, 

76, 77]. 

 

Figure 3.8: Formation of the four-node shell element. 

When all four nodes of a quadrilateral flat shell element are placed in the mid-plane of the shell, the 

generalized displacement vector can be expressed as 

 𝒖 = {𝒒1 𝒒2 𝒒3 𝒒4}𝑇  (3.103) 

in which 𝒒𝐼 is the nodal degrees of freedom vector associated to element node 𝐼 (𝐼 = 1,2,3,4). Each 

nodal DOFs vector has three translational displacements in the 𝑥, 𝑦 and 𝑧 directions and three 

rotational deformations with respect to the 𝑥, 𝑦 and 𝑧 axes. Figure 3.9 illustrates the middle plane of 

a four-node quadrilateral flat shell element and the DOFs at the nodes. Thus, the nodal displacement 

vector 𝒒𝐼 corresponding with node 𝐼 is defined as 

 
𝒒𝐼 = {

𝒒𝐼
𝑚

𝒒𝐼
𝑝

𝜃𝑧𝐼

} = {𝑢0𝐼 𝑣0𝐼 𝑤0𝐼 𝜃𝑥𝐼 𝜃𝑦𝐼 𝜃𝑧𝐼}𝑇 
 

(3.104) 

Note that the sixth degree of freedom 𝜃𝑧 is included in the above equation, which is attached with the 

shell normal rotation, which is the so-called drilling degree of freedom [78-81]. 



 

  89 
 

 

Figure 3.9: A four-node quadrilateral flat shell element undergoes bending and twisting, as well as in-plane 

deformation. 

The generalized stress vector 𝝈̃ and strain vector 𝜺̃ are expressed as follows 

 
𝝈̃ = {

𝑵
𝑴
𝑸
} 

 
(3.105) 

 
𝜺̃ = {

𝜺𝑚

𝜿
𝜸
} 

 
(3.106) 

in which 𝑵 = {𝑁𝑥 𝑁𝑦 𝑁𝑥𝑦}𝑇 is the in-plane force resultant given in Equation (3.94),  

𝑴 = {𝑀𝑥 𝑀𝑦 𝑀𝑥𝑦}𝑇 is the out-of-plane moment resultant given in Equation (3.48) and  

𝑸 = {𝑄𝑥 𝑄𝑦}𝑇 is the out-of-plane force resultant given in Equation (3.49), these resultants are 

defined as acting per unit length. The discretized strain fields 𝜿, 𝜸 and 𝜺𝑚 are given in Equations 

(3.58, 3.59 and 3.91). The constitutive relationship is defined as 

 𝝈̃ = 𝑫̃𝜺̃  (3.107) 

where 

 
𝑫̃ = [

𝑫0
𝑚 0 0

0 𝑫0
𝑏 0

0 0 𝑫0
𝑠

] 
 

(3.108) 

in which 𝑫0
𝑚 is the membrane stiffness constitutive coefficients, 𝑫0

𝑏 is the bending stiffness 

constitutive coefficients and 𝑫0
𝑠  is the transverse shear stiffness constitutive coefficients. 

The flat shell element stiffness matrix takes form as 

 

𝒌 = ∬(𝑩̃)
𝑻
𝑫̃𝑩̃𝑑Ω

Ω𝑒

 

 
(3.109) 
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with 

 
𝑩̃ = {

𝑩𝑚

𝑩𝑏

𝑩𝑠
} 

 
(3.110) 

and where 𝑩𝑚, 𝑩𝑏 and 𝑩𝑠 are, respectively, strain-displacement matrices corresponding to 

membrane, curvature and shear element. 

According to the four-node quadrilateral flat shell element, the nodal stiffness matrix 𝒌𝐼 and the nodal 

mass matrix 𝒎𝐼 at each node 𝐼 can be formed by the corresponding sub-matrices as follows 

 

𝒌𝐼 = [

[𝒌𝐼
𝑚]2𝑥2 [0]2𝑥3 [0]2𝑥1
[0]3𝑥2 [𝒌𝐼

𝑝]
3𝑥3

[0]3𝑥1

[0]1𝑥2 [0]1𝑥3 [0]1𝑥1

] 

 

(3.111) 

and 

 

𝒎𝐼 = [

[𝒎𝐼
𝑚]2𝑥2 [0]2𝑥3 [0]2𝑥1

[0]3𝑥2 [𝒎𝐼
𝑝]
3𝑥3

[0]3𝑥1

[0]1𝑥2 [0]1𝑥3 [0]1𝑥1

] 

 

(3.112) 

Hence, the shell element stiffness and mass matrix have the dimension of 24𝑥24 can be written as 

follows 

 

𝒌 =

[
 
 
 
[𝒌11]6𝑥6 [𝒌12]6𝑥6 [𝒌13]6𝑥6 [𝒌14]6𝑥6
[𝒌21]6𝑥6 [𝒌22]6𝑥6 [𝒌23]6𝑥6 [𝒌24]6𝑥6
[𝒌31]6𝑥6 [𝒌32]6𝑥6 [𝒌33]6𝑥6 [𝒌34]6𝑥6
[𝒌41]6𝑥6 [𝒌42]6𝑥6 [𝒌43]6𝑥6 [𝒌44]6𝑥6]

 
 
 

 

 

(3.113) 

 

𝒎 =

[
 
 
 
[𝒎11]6𝑥6 [𝒎12]6𝑥6 [𝒎13]6𝑥6 [𝒎14]6𝑥6
[𝒎21]6𝑥6 [𝒎22]6𝑥6 [𝒎23]6𝑥6 [𝒎24]6𝑥6
[𝒎31]6𝑥6 [𝒎32]6𝑥6 [𝒎33]6𝑥6 [𝒎34]6𝑥6
[𝒎41]6𝑥6 [𝒎42]6𝑥6 [𝒎43]6𝑥6 [𝒎44]6𝑥6]

 
 
 

 

 

(3.114) 

Note that the geometrical stiffness matrix of plate element 𝒌𝑔, as given in Equation (3.72), can be 

used in the case of buckling analysis of shell structures, which gives 

 

𝒌𝑔 = ∬(𝑩𝑔)𝑇𝝉𝑩𝑔𝑑Ω

Ω𝑒

 

 
(3.115) 

where the discretized geometric (strain-displacement) matrix associated to element node 𝐼 must be 

rewritten according to nodal DOFs of flat shell element as follows 
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𝑩𝐼
𝑔
=

[
 
 
 
 
 
 
𝜕𝑁𝐼 𝜕𝑥⁄ 0 0 0 0 0

𝜕𝑁𝐼 𝜕𝑦⁄ 0 0 0 0 0

0 𝜕𝑁𝐼 𝜕𝑥⁄ 0 0 0 0

0 𝜕𝑁𝐼 𝜕𝑦⁄ 0 0 0 0

0 0 𝜕𝑁𝐼 𝜕𝑥⁄ 0 0 0

0 0 𝜕𝑁𝐼 𝜕𝑦⁄ 0 0 0]
 
 
 
 
 
 

 

 

(3.116) 

In general, the shell element has five degrees of freedom per node [25, 76, 77], one out-of-plane 

displacement (𝑤0) and two in-plane rotations (𝜃𝑥, 𝜃𝑦) from the plate bending element as presented 

in Section 3.4.2 and two in-plane displacements (𝑢0, 𝑣0) from the plane stress element as presented 

in Section 3.5.2. The resulting flat shell has five degrees of freedom per node and the either stiffness 

or mass matrix of a 4-node quadrilateral flat shell element has size of 20𝑥20 [10, 14, 75]. Using the 

extended 24 × 24 stiffness and mass matrix that makes it more advantageous to solve engineering 

problems in practice [9, 78, 82], i.e. it is more convenient for programming, implement and 

maintenance and transforming the matrix from the local coordinate system into the global coordinate 

system. Thus, the simplest approach [14] is to insert an arbitrary stiffness coefficient, 𝑘𝜃𝑧𝐼 at the 

additional degree of freedom 𝜃𝑧𝐼, as shown in Equation (3.104), which is defined as 

 𝑘𝜃𝑧𝐼𝜃𝑧𝐼 = 𝟎  (3.117) 

However, there is no stiffness value associated with the local rotation degrees of freedom 𝜃𝑧 [14], the 

global stiffness matrix will be therefore rank deficient when all the elements meeting at a node are 

coplanar. There are various approaches reported in the literature [14, 83] in order to estimate and 

improve the performance of the element with drilling degrees of freedom. To improve the performance 

of the element with drilling degrees of freedom 𝜃𝑧𝐼 in this context, the arbitrary stiffness co-efficient 

𝑘𝜃𝑧𝐼 is chosen to be 103 times the maximum diagonal value of the element stiffness matrix [80]. 

Then the nodal stiffness matrix in Equation (3.111) can be expressed as 

 

𝒌𝐼 = [

[𝒌𝐼
𝑚]2𝑥2 [0]2𝑥3 [0]2𝑥1
[0]3𝑥2 [𝒌𝐼

𝑝]
3𝑥3

[0]3𝑥1

[0]1𝑥2 [0]1𝑥3 max(𝑘𝜃𝑧𝐼) 10
−3

] 

 

(3.118) 

The smoothed stiffness sub-matrices corresponding with each element node 𝐼 given by 

 

𝒌̅𝐼 = [

[𝒌̅𝐼
𝑚]

2𝑥2
[0]2𝑥3 [0]2𝑥1

[0]3𝑥2 [𝒌̅𝐼
𝑝]
3𝑥3

[0]3𝑥1

[0]1𝑥2 [0]1𝑥3 max(𝑘̅𝜃𝑧𝐼) 10
−3

] 

 

(3.119) 
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Thus, the smoothed stiffness matrix of shell element is formed from the smoothed stiffness sub-

matrices of plate element and membrane element which yields 

 

𝒌̅ =

[
 
 
 
 
 
[𝒌̅11]6𝑥6 [𝒌̅12]6𝑥6 [𝒌̅13]6𝑥6 [𝒌̅14]6𝑥6
[𝒌̅21]6𝑥6 [𝒌̅22]6𝑥6 [𝒌̅23]6𝑥6 [𝒌̅24]6𝑥6
[𝒌̅31]6𝑥6 [𝒌̅32]6𝑥6 [𝒌̅33]6𝑥6 [𝒌̅34]6𝑥6
[𝒌̅41]6𝑥6 [𝒌̅42]6𝑥6 [𝒌̅43]6𝑥6 [𝒌̅44]6𝑥6]

 
 
 
 
 

 

 

(3.120) 

3.6.2 The warped configuration 

The flat shell element is placed on the mid-plane of the shell is defined by the input nodal points 𝐼 ∈

{1,2,3,4} and the local coordinate system 𝑥𝑦𝑧 is defined via taking the cross product of the diagonal 

vectors or 𝑉𝑧 = 𝑉1−3𝑉2−4 show in Figure 3.10. The distance vector is defined as the normal distance 

between the flat shell element node points and input node points at the mid-plane of the shell, denoted 

as 𝑑 and calculated by [77] 

 
𝑑 = ±

(𝑧1 + 𝑧3) − (𝑧2 + 𝑧4)

2
 

 
(3.121) 

where 𝑧𝐼 (|𝑧𝐼| = ℎ) is the warpage offset at each node 𝐼 perpendicular to the flat shell element. 

For most shells, the finite element nodes are generally positioned at the mid-plane nodes of the shell 

and satisfy force equilibrium at the mid- surface of the shell structure, i.e. the rotations about the local 

𝑧-axes in the warped and projected planes can be taken as equal and the distance 𝑑 is zero. 

 

Figure 3.10: Warped and projected quadrilateral shell element to flat geometric transformation. 

In the case of the distance 𝑑 is not equal to zero, e.g. shells with double curvature, the flat shell 

element stiffness must be modified before the transformation to the global 𝑋𝑌𝑍 coordinate system. 

This can be solved by using the rigid link correction suggested by Taylor [14]. It is a transformation of 
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the flat shell element stiffness matrix to the mid-surface locations via applying the displacement 

transformation equation at each node given as follow 

 

{
  
 

  
 
𝑢0𝐼
′

𝑣0𝐼
′

𝑤0𝐼
′

𝜃𝑥𝐼
′

𝜃𝑦𝐼
′

𝜃𝑧𝐼
′ }
  
 

  
 

=

[
 
 
 
 
 
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
−𝑧𝐼 0 0 1 0 0
0 𝑧𝐼 0 0 1 0
0 0 0 0 0 1]

 
 
 
 
 

{
 
 

 
 
𝑢0𝐼
𝑣0𝐼
𝑤0𝐼
𝜃𝑥𝐼
𝜃𝑦𝐼
𝜃𝑧𝐼}
 
 

 
 

= 𝒘𝒒𝐼 

 

(3.122) 

where 𝒘 is the projection matrix in the local coordinate system. 

Transformation of the flat shell element stiffness matrix to the mid-plane locations by using the 

projection matrix is obtained as follow 

 𝒌 = 𝒘𝑇𝒌𝑓𝑙𝑎𝑡𝒘  (3.123) 

and similarly for the smoothed stiffness matrix of element, which gives 

 𝒌̅ = 𝒘𝑇𝒌̅𝑓𝑙𝑎𝑡𝒘  (3.124) 

This physically states that the flat shell element nodes are stiffly positioned to the mid-plane nodes 

and the distance 𝑑 reaches to zero. Thus, the elements become smaller and the flat shell element 

results will converge to the shell solution [77]. 

3.6.3 Elements in the global coordinate system 

The global stiffness matrix and force vector associated to the flat shell is constructed by transforming 

each element matrix into the global coordinate system prior to assembly. The matrices for shell 

elements in the global coordinates 𝑋𝑌𝑍 system can be accomplished by performing the 

transformations as follows [9, 12] 

 𝑲𝑒 = 𝑻𝑇𝒌𝑻  (3.125) 

 𝑲̅𝑒 = 𝑻𝑇𝒌̅𝑻  (3.126) 

 𝑴𝑒 = 𝑻𝑇𝒎𝑻  (3.127) 

in which 𝑻 is the transformation matrix according to the four-node quadrilateral flat shell element, 

defined by 
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𝑻 =

[
 
 
 
 
 
 
 
𝑹 0 0 0 0 0 0 0
0 𝑹 0 0 0 0 0 0
0 0 𝑹 0 0 0 0 0
0 0 0 𝑹 0 0 0 0
0 0 0 0 𝑹 0 0 0
0 0 0 0 0 𝑹 0 0
0 0 0 0 0 0 𝑹 0
0 0 0 0 0 0 0 𝑹]

 
 
 
 
 
 
 

 

 

(3.128) 

where matrix 𝑹 stores the direction cosines of {𝑥, 𝑦, 𝑧} with respect to {𝑋, 𝑌, 𝑍} and 

 
𝑹 = [

𝑙𝑥 𝑚𝑥 𝑛𝑥
𝑙𝑦 𝑚𝑦 𝑛𝑦
𝑙𝑧 𝑚𝑧 𝑛𝑧

] 
 

(3.129) 

where 𝑙𝑖, 𝑚𝑖 and 𝑛𝑖 (𝑖 = 𝑥, 𝑦, 𝑧) are direction cosines (see [9, 12, 80] for more details), which are 

given as follows 

 𝑙𝑥 = 𝑐𝑜𝑠(𝑥, 𝑋), 𝑚𝑥 = 𝑐𝑜𝑠(𝑥, 𝑌), 𝑛𝑥 = 𝑐𝑜𝑠(𝑥, 𝑍)

𝑙𝑦 = 𝑐𝑜𝑠(𝑦, 𝑋), 𝑚𝑦 = 𝑐𝑜𝑠(𝑦, 𝑌), 𝑛𝑦 = 𝑐𝑜𝑠(𝑦, 𝑍)

𝑙𝑧 = 𝑐𝑜𝑠(𝑧, 𝑋), 𝑚𝑧 = 𝑐𝑜𝑠(𝑧, 𝑌), 𝑛𝑧 = 𝑐𝑜𝑠(𝑧, 𝑍)

 
 

(3.130) 

In practice, it is convenient for the local coordinates 𝑥𝑦𝑧 to be defined under the global coordinates 

𝑋𝑌𝑍 system using the four-node quadrilateral flat shell element. 
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3.7 Final remarks 

A smoothed finite element method for mechanical analysis and modelling of the textile fabrics has 

been proposed in this chapter. Using Lagrange’s equations, a set of system equations defining both 

static and dynamic mechanical analysis and modelling of the textile fabrics was presented. The 

appropriate time integration schemes using Newmark’s methods was also presented. These system 

equations are applicable for both the existing standard FEM and the developed S-FEM models by 

replacing the terms 𝑲 and 𝑲𝒈 with 𝑲̅ and 𝑲̅𝒈, as summarized in Table 3.3. 

Table 3.3: List of space-discretized equations of motions 

Equations Space-discretized equations of motions 

Analysis and simulation 

(principle for structural mechanic problems) 

(3.24) 𝑴𝒒̈ + 𝑪𝒒̇ + 𝑲̅𝒒 = 𝑭 Linear and non-linear dynamics including the 

velocity and acceleration effects 

(3.25) 𝑴𝒒̈ + 𝑲̅𝒒 = 𝑭 Linear and non-linear dynamics including the 

acceleration effects 

(3.29) 𝑲̅𝒒 = 𝑭 Linear and non-linear static 

(3.27) [𝑲̅ + 𝜔2𝑴]𝒒̅ = 𝟎 Free-vibration behavior 

(3.28) [𝑲̅ + 𝜆𝑐𝑟𝑲̅
𝒈]𝒒̅ = 𝟎 Non-linear pre-buckling behavior 

For those motion equations shown in Table 3.3, recall that 𝒒̇ and 𝒒̈ stand for the vector of global 

nodal velocity and nodal accelerations; 𝒒̅ denotes the eigenvector that contains the vibration/buckling 

mode shapes; 𝜔 is a non-trivial forcing frequency, 𝜆𝑐𝑟 expresses critical buckling load; 𝑲̅ and 𝑲̅𝒈 are 

the global stiffness matrix and the global geometric stiffness matrix which are developed using S-FEM 

models via the strain/gradient smoothing technique; 𝑴 is the global mass matrix and 𝑭 is total load 

vector. Note that the term 𝒒̅ in Equation (3.27) is defined in Equation (3.26). 

Three dimensional problems of mechanical deformation of the textile fabrics are successfully analyzed 

and modelled by the proposed method. The numerical examples are presented in the next chapter in 

which each of the discretized elements in the problem domain that played role of fabric samples was 

further subdivided into the number of appropriate smoothing domains. Theoretically and practically, 

the dynamic modelling results at last time step can be approximated to the static modelling results. 
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The implementation and debugging of developed finite element computer codes as well as testing of 

these developed S-FEM models have produced a significant amount of works. However, the 

computational implementation served mostly to assess the applicability of theoretical ideas, meaning 

that, in their current stage of development, the use of S-FEM by an external analyst is hindered by the 

lack of a unified and fully automatic analysis tool. In fact, this is in general the case for S-FEM, which 

is still a very rare presence in commercially available FEA computer applications and almost non-

existent in general purpose open-source platforms. Good convergence has been observed for finite 

quantities and numerical values of singular quantities are determined with orders of magnitude that 

correctly reflect the strengths of material properties. 
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4 Chapter 4 

Numerical examples and discussions 

In order to spot the advantages of the proposed techniques, this chapter carries out a series of 

numerical tests and experiments in order to compare numerical modelling results of the developed S-

FEM models to those of the corresponding standard FEM models. This aims to examine the 

applicability of S-FEM models to macro-mechanical modelling of textile fabrics.  

4.1 Numerical examples 

In this respect, the 4-node isoparametric quadrilateral membrane, plate and flat shell finite elements 

were implemented to solve problems of plane-stress, bending, buckling and free-vibration behavior of 

woven fabric sheet. The number of degrees of freedom (DOFs) per Q4 element corresponding to the 

4-node isoparametric quadrilateral membrane, plate and flat shell element are, respectively, 8, 12 

and 24 (as presented Sections 3.4, 3.5, 3.6). For convenience, a 4-node isoparametric quadrilateral 

plate/shell element with assumed strain/gradient smoothing technique will be denoted by Q4SD𝑆𝐷𝑠 

for S-FEM in which 𝑆𝐷𝑠 stands for the number of smoothing domains per 4-node quadrilateral flat 

shell element and a 4-node isoparametric quadrilateral flat shell element will be denoted by MITC4 for 

standard FEM. It is clear that 𝑆𝐷𝑠 is in range of {1,2,3,4}. 

For numerical examples, a plain-woven fabric sheet of which both length and width is taken as 𝐿 =

100𝑐𝑚 and 𝑙 = 𝐿√2 stands for the bias direction. These dimensional quantities are applied to fabric 

samples in terms of quadrilateral mesh (Q4 mesh), as illustrated in Figure 4.1. 

 
Figure 4.1: General configuration of geometrical and mechanical properties of fabric sample. 
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The low-stress mechanical properties of two plain-woven fabric samples are listed in Table 4.2. Note 

that shear modulus and transverse shear modulus are computed by using Equations (2.20, 2.29). 

Both uniform pressure and uniaxial applied force are taken as 𝑃 = 1. 

Table 4.1: Mechanical properties of plain-woven fabric samples 

Parameter Symbol Sample 1 Sample 2 Measurement unit 

Thickness ℎ 0.2834 0.7484 [𝑚𝑚] 

Mass per unit area 𝜌 10.6775 24.2720 [𝑚𝑔/𝑐𝑚2] 

Elastic modulus 𝐸𝑤𝑎𝑟𝑝 13034.4108 3823.7993 [𝑔𝑓/𝑐𝑚] 

𝐸𝑤𝑒𝑓𝑡 8278.1457 14092.4464 [𝑔𝑓/𝑐𝑚] 

𝐸𝑏𝑖𝑎𝑠 2313.7436 6896.5517 [𝑔𝑓/𝑐𝑚] 

Poisson’s ratio 𝑣𝑤𝑎𝑟𝑝 0.2500 0.0210  

𝑣𝑤𝑒𝑓𝑡 0.1600 0.0780  

Bending rigidity 𝐵𝑤𝑎𝑟𝑝 0.0239 0.1237 [𝑔𝑓. 𝑐𝑚2 𝑐𝑚⁄ ] 

𝐵𝑤𝑒𝑓𝑡 0.0177 0.1333 [𝑔𝑓. 𝑐𝑚2 𝑐𝑚⁄ ] 

𝐵𝑏𝑖𝑎𝑠 0.0172 0.0880 [𝑔𝑓. 𝑐𝑚2 𝑐𝑚⁄ ] 

According to finite element procedure, woven fabric sheet will be divided into a number of 4-node 

isoparametric quadrilateral finite elements in terms of Q4 mesh that is referred as mesh density, as 

listed in Table 4.2. 

Table 4.2: Geometrical configurations for numerical examples 

Index Meshes Total elements Total nodes 

1 5𝑥5 25 36 

2 10𝑥10 100 121 

3 15𝑥15 225 256 

4 20𝑥20 400 441 

5 25𝑥25 625 676 

6 30𝑥30 900 961 

7 35𝑥35 1225 1296 

8 40𝑥40 1600 1681 
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The mixed boundary conditions including simply-supported (S) and clamped (C) are listed in Table 4.3 

[1]. 

Table 4.3: Dirichlet boundary conditions 

1 CCCC Sides and ends clamped 

2 SSSS Sides and ends simply-supported 

3 CSCS Ends clamped, sides simply-supported 

4 SCSF One side free, one side clamped, end simply-supported 

5 SFSF Ends simply-supported, sides free 

6 SSFF Ends simply-supported, sides free 

7 CFFF End clamped, sides free 

8 SFFF End simply-supported, sides free 

Numerical examples in modeling of low-stress mechanical deformation of fabric samples will be 

presented in case of buckling behavior of woven fabric, buckling behavior of woven fabric in terms of 

free-vibration behavior, as well as bending and plane-stress behavior. 

4.1.1 Buckling behavior of woven fabric 

Fabric wrinkles generally appear in fabric and cloth products in common use. Wrinkles pop up because 

fabric sheet is very flexible in bending and can easily buckle in space when bent under its own weight 

or compressive stresses arise. The formation of wrinkle phenomenon is one of buckling and post-

buckling deformation behaviors in terms of structural mechanics. Thus, it is of interest to examine the 

ability of the developed numerical models in previous chapter in modelling of buckling and post-

buckling deformations of fabric sheets. 

Let us consider a configured fabric sheet as illustrated in Figure 4.1. The numerical modelling results 

of post-buckling deformation phenomenon of fabric sheet, which was implemented for all mesh indices 

as listed in Table 4.2 and 𝑆𝐷𝑠 = {1,2,3,4}, are presented for a CCCC/SSSS/SCSF/CFFF plain-

woven fabric sheet with different ratio of length to thickness ℎ1/𝑙 =  0.0002 and ℎ2/𝑙 =  0.0005, 

and buckling factor kb = L2λ/π2Df11. 

In order to expose the numerical error between S-FEM and standards FEM, twelve eigenbuckling 

modes are listed in Tables 4.4 and 4.5 for both S-FEM and FEM. However, only the numerical results 

for twelve eigenbuckling modes of S-FEM using 1 𝑆𝐷 are listed in these tables, because the numerical 
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results for twelve eigenbuckling modes of S-FEM using 4 𝑆𝐷𝑠 are identical to that of FEM. These 

tables contain numerical output of CS-FEM that is denoted by Q4SD1 according to 𝑆𝐷𝑠 = 1 and the 

numerical output of the corresponding standard FEM finite element model is denoted by MITC4. 

Table 4.4: Numerical output of twelve eigenbuckling modes for a CCCC/SSSS/SCSF/CFFF plain-
woven fabric sheet with ℎ1/𝑙, using 20 × 20 Q4 elements and 1 smoothing domain per element 
(Q4SD1) 

ℎ1/𝑙 CCCC SSSS SCSF CFFF 

Mode Q4SD1 MITC4 Q4SD1 MITC4 Q4SD1 MITC4 Q4SD1 MITC4 

1 10.0032 10.0033 4.3717 4.3732 3.6874 3.6886 0.9311 0.9314 

2 12.2498 12.2622 6.8545 6.8587 6.5634 6.5660 1.7699 1.7705 

3 20.6561 20.6767 11.9583 11.9669 9.3715 9.3776 4.8148 4.8162 

4 26.1402 26.2036 17.5648 17.5903 14.0151 14.0327 8.4654 8.4747 

5 28.3047 28.3810 19.5110 19.5261 15.5930 15.6046 9.2844 9.2948 

6 29.4193 29.4490 21.0477 21.0910 19.9731 20.0043 10.0052 10.0077 

7 39.8011 39.9302 23.6448 23.6600 23.7719 23.8234 13.0735 13.0840 

8 41.4700 41.5552 27.9898 28.0589 24.3559 24.3750 16.1340 16.1607 

9 43.8303 43.8734 29.7920 29.8158 31.7338 31.8245 17.5818 17.5862 

10 51.7327 51.7366 38.0381 38.0422 32.2944 32.3758 23.0635 23.0666 

11 53.4177 53.4304 39.9132 39.9452 36.1490 36.1781 23.6570 23.7147 

12 56.6439 56.8089 43.2551 43.2903 42.7123 42.7292 23.8194 23.8697 

Table 4.5: Numerical output of twelve eigenbuckling modes for a CCCC/SSSS/SCSF/CFFF plain-
woven fabric sheet with ℎ2/𝑙, using 20 × 20 Q4 elements and 1 smoothing domain per element 

(Q4SD1) 

ℎ2/𝑙 CCCC SSSS SCSF CFFF 

Mode Q4SD1 MITC4 Q4SD1 MITC4 Q4SD1 MITC4 Q4SD1 MITC4 

1 10.9780 10.9869 4.9312 4.9329 3.9818 3.9833 1.0605 1.0608 

2 12.0399 12.0520 6.9720 6.9763 7.4434 7.4464 1.8177 1.8183 

3 19.0377 19.0557 11.4406 11.4489 9.4400 9.4456 4.7365 4.7378 

4 25.0535 25.0773 17.6095 17.6230 14.3444 14.3635 8.8534 8.8617 

5 26.7768 26.8396 18.9345 18.9616 14.5756 14.5861 9.4520 9.4547 

6 27.3419 27.4159 20.7583 20.8002 21.2437 21.2764 9.5542 9.5650 
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7 34.6371 34.6748 25.2165 25.2360 21.3109 21.3272 14.8002 14.8092 

8 34.6437 34.7375 25.6169 25.6782 22.9439 22.9904 15.5404 15.5637 

9 38.8888 38.9973 29.1894 29.2071 28.8293 28.8987 15.7637 15.7675 

10 43.5578 43.5954 32.2585 32.3429 29.5418 29.5646 21.0346 21.0685 

11 48.4511 48.4913 34.0603 34.0766 30.0226 30.0499 22.7324 22.7842 

12 48.5332 48.5550 40.0134 40.0397 35.7162 35.7197 22.8255 22.8286 

From the results listed in Tables 4.4 and 4.5, it can be found that the present method is of high 

accuracy and the number of smoothing domains per Q4 element in range of {1,2,3,4} was 

approximated for each of eigenbuckling modes with mixed boundary conditions, clearly showing the 

stable and well-balanced feature of the CS-FEM for both the thin and moderately thick fabric sheets. 

In fact, the numerical results for strain energy of twelve buckling modes between S-FEM and FEM are 

identical as illustrated in Figures 4.2, 4.3, 4.4 for thin fabric sample (ℎ1/𝑙) and Figures 4.5, 4.6, 4.7 

for moderately thick fabric sample (ℎ2/𝑙). These figures of strain energy indicate that S-FEM 

possesses strain energy convergence for both the thin (ℎ1) and moderately thick (ℎ2) fabric sheets 

with different boundary conditions and mesh density. 

 

Figure 4.2: Numerical results for strain energy of twelve buckling modes of a CSCS plain-woven fabric sheet 
(ℎ1/𝑙) with different mesh density subjected uniform load. 
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Figure 4.3: Numerical results for strain energy of twelve buckling modes of a SCSF plain-woven fabric sheet 
(ℎ1/𝑙) with different mesh density subjected uniform load. 

 

Figure 4.4: Numerical results for strain energy of twelve buckling modes of a CFFF plain-woven fabric sheet 
(ℎ1/𝑙) with different mesh density subjected uniform load. 
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Figure 4.5: Numerical results for strain energy of twelve buckling modes of a CSCS plain-woven fabric sheet 
(ℎ2/𝑙) with different mesh density subjected uniform load. 

 

Figure 4.6: Numerical results for strain energy of twelve buckling modes of a SCSF plain-woven fabric sheet 
(ℎ2/𝑙) with different mesh density subjected uniform load. 
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Figure 4.7: Numerical results for strain energy of twelve buckling modes of a CFFF plain-woven fabric sheet 
(ℎ2/𝑙) with different mesh density subjected uniform load. 

Note that, compared to the standard FEM, the present method S-FEM is straightforward to in 

implementation and no extra sampling points are introduced. It is found that the smoothed strain 

gradient matrix of the Q4SD1 element is approximated to the strain gradient matrix of the MITC4 

element using the reduced integration of one Gauss point. Although the present solution of S-FEM can 

be solved by using one smoothing domain per Q4 element (1 𝑆𝐷), four smoothing domains (4 𝑆𝐷𝑠) 

can produce more accurate numerical results. 

According to the output numeric results presented in above tables and figures, there are also 

geometrical results to illustrate the low-stress mechanical deformation of fabric samples. The post-

buckling geometry of twelve buckling modes and the corresponding resultant displacement magnitude 

of twelve buckling modes for a CSCS/SCSF/CFFF plain-woven fabric sheet with both ℎ1/𝑙 and ℎ2/𝑙 

are illustrated in Figure 4.8 to 4.15. Although fabric samples underwent complex deformation under 

different buckling modes and boundary conditions, these figures indicate that the Q4 elements (Q4 

mesh) implemented by S-FEM is well refined, less distorted and not coarse even with low mesh density. 
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The post-buckling geometry of twelve buckling modes and the corresponding resultant displacement 

magnitude of twelve buckling modes for a CFFF plain-woven fabric sheet with ℎ1/𝑙 are illustrated in 

Figures 4.8 and 4.9 as follows 

 

Figure 4.8: Buckling modes of a CFFF plain-woven fabric sheet with ℎ1/𝑙, using 20 × 20 Q4 elements and 1 
smoothing domain per element. 
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Figure 4.9: Resultant displacement magnitude for buckling modes of a CFFF plain-woven fabric sheet with 
ℎ1/𝑙. 
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The post-buckling geometry of twelve buckling modes and the corresponding resultant displacement 

magnitude of twelve buckling modes for a CSCS plain-woven fabric sheet with ℎ1/𝑙 are illustrated in 

Figures 4.10 and 4.11 as follows 

 

Figure 4.10: Buckling modes of a CSCS plain-woven fabric sheet with ℎ1/𝑙, using 20 × 20 Q4 elements and 
1 smoothing domains per element. 
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Figure 4.11: Resultant displacement magnitude for buckling modes of a CSCS plain-woven fabric sheet with 
ℎ1/𝑙. 
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The post-buckling geometry of twelve buckling modes and the corresponding resultant displacement 

magnitude of twelve buckling modes for a SCSF plain-woven fabric sheet with ℎ2/𝑙 are illustrated in 

Figures 4.12 and 4.13 as follows 

 

Figure 4.12: Buckling modes of a SCSF plain-woven fabric sheet with ℎ2/𝑙, using 20 × 20 Q4 elements and 
1 smoothing domains per element. 
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Figure 4.13: Resultant displacement magnitude for modes of buckling of a SCSF plain-woven fabric sheet with 
ℎ2/𝑙. 
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The post-buckling geometry of twelve buckling modes and the corresponding resultant displacement 

magnitude of twelve buckling modes for a CFFF plain-woven fabric sheet with ℎ2/𝑙 are illustrated in 

Figures 4.14 and 4.15 as follows 

 

Figure 4.14: Buckling modes of a CFFF plain-woven fabric sheet with ℎ2/𝑙, using 20 × 20 Q4 elements and 
1 smoothing domains per element. 
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Figure 4.15: Resultant displacement magnitude for modes of buckling of a CFFF plain-woven fabric sheet with 
ℎ2/𝑙.  
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4.1.2 Buckling behavior of woven fabric in terms of free-vibration behavior 

Let us consider a configured fabric sheet as illustrated in Figure 4.1. The numerical modelling results 

of post-buckling deformation phenomenon of fabric sheet in terms of free-vibration behavior, which 

was implemented for all mesh indices, as listed in Table 4.2 and 𝑆𝐷𝑠 = {1,2,3,4}, are presented 

for a CSCS/SCSF/CFFF plain-woven fabric sheet with different ratio of length to thickness ℎ1/𝑙 =

 0.0002 and ℎ2/𝑙 =  0.0005. 

Similar to the previous example, the numeric error between S-FEM and standards FEM for twelve 

eigenvibration modes are listed in Tables 4.6 and 4.7 for both S-FEM and FEM. Only the numerical 

results for twelve eigenbuckling modes of S-FEM using 1 𝑆𝐷 and 4 𝑆𝐷 are listed in these tables in 

order to find the numerical errors between the implemented number of soothing domains per Q4 

element. In Tables 4.6 and 4.7, numerical results of CS-FEM is denoted by Q4SD1 and Q4SD4 

according to 𝑆𝐷𝑠 = {1,4} and the numerical output of the corresponding standard FEM finite 

element model is denoted by MITC4. 

Table 4.6: Numerical output of twelve eigenvibration modes for a CSCS/SCSF/CFFF plain-woven 

fabric sheet with ℎ1/𝑙, using 20 × 20 Q4 elements and 𝑆𝐷𝑠 = {1,4} smoothing domains per 

element 

ℎ1/𝑙 CSCS SCSF CFFF 

Mode Q4SD1 Q4SD4 MITC4 Q4SD1 Q4SD4 MITC4 Q4SD1 Q4SD4 MITC4 

1 0.0020 0.0020 0.0020 0.0009 0.0009 0.0009 0.0002 0.0002 0.0002 

2 0.0040 0.0040 0.0040 0.0026 0.0026 0.0026 0.0007 0.0007 0.0007 

3 0.0046 0.0046 0.0046 0.0027 0.0028 0.0028 0.0014 0.0014 0.0014 

4 0.0068 0.0068 0.0068 0.0047 0.0048 0.0048 0.0021 0.0021 0.0021 

5 0.0075 0.0076 0.0076 0.0055 0.0055 0.0055 0.0024 0.0024 0.0024 

6 0.0085 0.0085 0.0085 0.0059 0.0059 0.0059 0.0038 0.0038 0.0038 

7 0.0104 0.0104 0.0105 0.0080 0.0080 0.0080 0.0045 0.0045 0.0045 

8 0.0109 0.0109 0.0109 0.0080 0.0080 0.0080 0.0048 0.0048 0.0048 

9 0.0127 0.0127 0.0127 0.0099 0.0099 0.0099 0.0050 0.0050 0.0050 

10 0.0138 0.0138 0.0138 0.0104 0.0104 0.0104 0.0074 0.0075 0.0075 

11 0.0146 0.0147 0.0148 0.0115 0.0116 0.0116 0.0076 0.0076 0.0076 

12 0.0156 0.0156 0.0157 0.0125 0.0125 0.0125 0.0076 0.0076 0.0076 
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Table 4.7: Numerical output of twelve eigenvibration modes for a CSCS/SCSF/CFFF plain-woven 

fabric sheet with ℎ2/𝑙, using 20 × 20 Q4 elements and 𝑆𝐷𝑠 = {1,4} smoothing domains per 

element 

ℎ2/𝑙 CSCS SCSF CFFF 

Mode Q4SD1 Q4SD4 MITC4 Q4SD1 Q4SD4 MITC4 Q4SD1 Q4SD4 MITC4 

1 0.0028 0.0028 0.0028 0.0013 0.0013 0.0013 0.0003 0.0003 0.0003 

2 0.0052 0.0052 0.0052 0.0034 0.0034 0.0034 0.0010 0.0010 0.0010 

3 0.0066 0.0066 0.0066 0.0040 0.0040 0.0040 0.0020 0.0020 0.0020 

4 0.0092 0.0093 0.0093 0.0064 0.0064 0.0064 0.0027 0.0027 0.0027 

5 0.0096 0.0096 0.0096 0.0069 0.0070 0.0070 0.0034 0.0034 0.0034 

6 0.0124 0.0124 0.0124 0.0086 0.0087 0.0087 0.0057 0.0057 0.0057 

7 0.0136 0.0137 0.0137 0.0104 0.0105 0.0105 0.0059 0.0059 0.0059 

8 0.0152 0.0152 0.0152 0.0111 0.0111 0.0111 0.0061 0.0061 0.0061 

9 0.0159 0.0159 0.0160 0.0123 0.0124 0.0124 0.0071 0.0071 0.0071 

10 0.0197 0.0198 0.0199 0.0153 0.0154 0.0154 0.0096 0.0097 0.0097 

11 0.0199 0.0200 0.0201 0.0155 0.0155 0.0156 0.0103 0.0104 0.0104 

12 0.0203 0.0203 0.0203 0.0160 0.0161 0.0161 0.0114 0.0114 0.0114 

The numerical results of free-vibration deflection for two fabric samples under natural frequency are 

listed in Tables 4.6 and 4.7, from where we again conclude that the present method is highly accurate 

and the number of smoothing domains per Q4 element is approximated for each of eigenvibration 

modes for both the thin and moderately thick fabric sheets with different boundary conditions. 

For studied cases of buckling modes of woven fabric in terms of free-vibration behavior, the number 

of smoothing domains per Q4 element in range of {1,2,3,4} once again was approximated for each 

of eigenbuckling modes with mixed boundary conditions, which clearly show the stable and well-

balanced feature of the CS-FEM. It is also found that the stiffness matrix of the Q4SD1 element is 

identical to that one of FEM using the reduced integration (one Gauss point). 

The numerical results for strain energy of twelve buckling modes between S-FEM and FEM are identical 

as illustrated in Figures 4.16, 4.17, 4.18 for thin fabric sample (ℎ1/𝑙) and Figures 4.19, 4.20, 4.21 

for moderately thick fabric sample (ℎ2/𝑙). These figures also indicate that strain energy of deformed 

fabric sheet implemented by S-FEM possesses convergence for both the thin (ℎ1) and moderately 

thick (ℎ2) fabric sheets with different boundary conditions and mesh density. 
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Figure 4.16: Numerical results for strain energy of twelve vibration modes of a CSCS plain-woven fabric sheet 
(ℎ1/𝑙) with different mesh density subjected natural frequency. 

 

Figure 4.17: Numerical results for strain energy of twelve vibration modes of a SCSF plain-woven fabric sheet 
(ℎ1/𝑙) with different mesh density subjected natural frequency. 
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Figure 4.18: Numerical results for strain energy of twelve vibration modes of a CFFF plain-woven fabric sheet 
(ℎ1/𝑙) with different mesh density subjected natural frequency. 

 

Figure 4.19: Numerical results for strain energy of twelve vibration modes of a CSCS plain-woven fabric sheet 
(ℎ2/𝑙) with different mesh density subjected natural frequency. 
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Figure 4.20: Numerical results for strain energy of twelve vibration modes of a SCSF plain-woven fabric sheet 
(ℎ2/𝑙) with different mesh density subjected natural frequency. 

 

Figure 4.21: Numerical results for strain energy of twelve vibration modes of a CFFF plain-woven fabric sheet 
(ℎ2/𝑙) with different mesh density subjected natural frequency. 
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sheet with both ℎ1/𝑙 and ℎ2/𝑙 are, respectively, illustrated in Figures 4.22 to 4.29. These figures once 

again indicate that the Q4 elements (Q4 mesh) implemented by S-FEM is well refined, less distorted 

and not coarse even with low mesh density and complex deformed. 

 
Figure 4.22: Modes of vibration for a CFFF plain-woven fabric sheet with ℎ1/𝑙, using 20 × 20 Q4 elements 
and 1 smoothing domains per element. 
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Figure 4.23: Resultant displacement magnitude for modes of free-vibration for a CFFF plain-woven fabric sheet 
with ℎ1/𝑙. 
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Figure 4.24: Modes of vibration for a CSCS plain-woven fabric sheet with ℎ1/𝑙, using 20 × 20 Q4 elements 
and 1 smoothing domains per element. 
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Figure 4.25: Resultant displacement magnitude for modes of free-vibration for a CSCS plain-woven fabric sheet 
with ℎ1/𝑙. 
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Figure 4.26: Modes of vibration for a SCSF plain-woven fabric sheet with ℎ2/𝑙, using 20 × 20 Q4 elements 
and 1 smoothing domains per element. 
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Figure 4.27: Resultant displacement magnitude for modes of free-vibration of a SCSF plain-woven fabric sheet 
with ℎ2/𝑙. 
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Figure 4.28: Modes of vibration for a CFFF plain-woven fabric sheet with ℎ2/𝑙, using 20 × 20 Q4 elements 
and 1 smoothing domains per element. 
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Figure 4.29: Resultant displacement magnitude for modes of free-vibration of a CFFF plain-woven fabric sheet 
with ℎ2/𝑙. 
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4.1.3 Bending behavior of woven fabric 

Mechanical bending properties of textile fabrics govern many aspects of fabric appearance and 

performance, such as wrinkle/buckle, hand and drape [2-4]. These are one of the most important 

characteristics in complex deformation analysis and modelling of textile fabrics. Numerical modelling 

of large-deflection elastic structural mechanics from numerical models have been widely applied to 

examine specific textile fabric engineering and apparel industry problems [5-7]. For example, the 

prediction of the robotic movement to control the laying of fabric onto a preset work surface [8, 9]. It 

requires the combination of the relationship between the structural features of the fabric, fabric 

bending rigidity and the tensile/bending properties of the constituent yarns. 

The applicability of mechanical modelling of the bending behavior of textile fabrics is very limited 

because it requires a large number of mechanical parameters and is, therefore, difficult to express in 

a closed form [5, 10, 11]. The most detailed analysis of the bending behaviour of plain-woven fabrics 

can be found in the typical works of Abbott et al. [12], De Jong and Postle [13], Ghosh et al. [14-16], 

Lloyd et al. [17]. The bending properties of woven fabrics have, therefore, received considerable 

attention in both literature and model experiments. 

Let us consider a configured fabric sheet as illustrated in Figure 4.1. The numerical modelling results 

for non-dimensional transverse displacement results of a woven fabric sheet under uniform pressure, 

which was implemented for all mesh indices as listed in Table 4.2 and SDs ={1,2,3,4}, are presented 

for a SSSS/CCCC/SCSF plain-woven fabric sheet in case of length-to-thickness ratio for the first 

sample ℎ1 𝑙⁄  and the second sample ℎ2 𝑙⁄ .  

The non-dimensional transverse displacement 𝑤̅ of the SSSS/CCCC/SCSF plain-woven fabric sheet 
is taken as follows 

 
𝑤̅ = 𝑤

𝐵

𝑃𝑙4
 

 
(4.1) 

where 𝑤 stands for transverse displacement, 𝐵 is bending rigidity, 𝑃 is uniform pressure and 𝑙 is 

length in the bias direction of fabric sheet. 

The numerical results for non-dimensional transverse displacements of the woven fabric sheet with 

various length-to-thickness ratio and boundary conditions, as well as various mesh densities are listed 

in Table 4.8, where S-FEM finite element are denoted by Q4SD𝑆𝐷𝑠, with 𝑆𝐷𝑠 standing for the number 

of smoothing domains per Q4 element, being that the corresponding standard FEM model that was 

implemented with MITC technique is denoted by MITC4. 
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Table 4.8: Non-dimensional bending displacement of a square fabric sheet with various mesh 
densities, under uniform pressure, simply-supported (SSSS), clamped (CCCC) and (SCSF) boundary 
conditions. 

  CCCC SSSS SCSF 

ℎ 𝑙⁄  Mesh Q4SD1 Q4SD4 MITC4 Q4SD1 Q4SD4 MITC4 Q4SD1 Q4SD4 MITC4 

0.0002 5𝑥5 2.5373 2.4392 2.4082 7.5432 7.4077 7.3636 19.9474 19.755 19.6916 

10𝑥10 2.9613 2.9352 2.9266 8.2677 8.2326 8.2210 21.2488 21.199 21.1824 

15𝑥15 3.0041 2.9931 2.9894 8.2517 8.2364 8.2313 21.4161 21.3945 21.3872 

20𝑥20 3.1766 3.1704 3.1684 8.4387 8.4300 8.4272 21.8543 21.8422 21.8381 

25𝑥25 3.3213 3.3175 3.3162 8.5460 8.5405 8.5387 22.1843 22.1767 22.1742 

30𝑥30 3.5313 3.5286 3.5277 8.7457 8.7419 8.7406 22.6472 22.6419 22.6402 

35𝑥35 3.7455 3.7435 3.7429 8.9305 8.9277 8.9268 23.0973 23.0935 23.0923 

40𝑥40 4.0077 4.0062 4.0058 9.1785 9.1763 9.1756 23.6419 23.6391 23.6381 

0.0005 5𝑥5 0.0264 0.0256 0.0253 0.0725 0.0712 0.0708 0.1732 0.1718 0.1713 

10𝑥10 0.0421 0.0419 0.0418 0.0900 0.0896 0.0895 0.2069 0.2065 0.2064 

15𝑥15 0.0603 0.0602 0.0601 0.1072 0.1071 0.1071 0.2395 0.2394 0.2393 

20𝑥20 0.0869 0.0869 0.0869 0.1339 0.1339 0.1338 0.2846 0.2845 0.2845 

25𝑥25 0.1198 0.1197 0.1197 0.1665 0.1664 0.1664 0.3380 0.3379 0.3379 

30𝑥30 0.1607 0.1607 0.1607 0.2074 0.2074 0.2074 0.4029 0.4029 0.4029 

35𝑥35 0.2082 0.2082 0.2082 0.2549 0.2548 0.2548 0.4776 0.4775 0.4775 

40𝑥40 0.2638 0.2637 0.2637 0.3104 0.3104 0.3104 0.5639 0.5639 0.5639 

Similar to the previous numerical examples, it can be found that the numerical results for non-

dimensional transverse displacements of the woven fabric sheet with various length-to-thickness ratio 

and boundary conditions, as well as various mesh densities are approximated and accurate for the 

number of smoothing domains per Q4 element in range of {1,2,3,4} with various boundary conditions. 

It clearly show the stable and well-balanced feature of the CS-FEM. 

The numerical results for strain energy of non-dimensional transverse displacements between S-FEM 

and FEM are identical as illustrated in Figures 4.30 for thin fabric sample (ℎ1 𝑙⁄ ) and Figures 4.31 

for moderately thick fabric sample (ℎ2 𝑙⁄ ). These figures indicate that S-FEM has a highly strain 

energy convergence for both the thin and moderately thick fabric sheets with different boundary 

conditions and mesh density under uniform pressure. 
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Figure 4.30: Numerical results for strain energy of non-dimensional transverse displacements of the plain-woven 
fabric sheet (ℎ1/𝑙) with different mesh density and boundary conditions subjected uniform load. 

 

Figure 4.31: Numerical results for strain energy of non-dimensional transverse displacements of a plain-woven 
fabric sheet (ℎ2/𝑙) with different mesh density and boundary conditions subjected uniform load. 

Following the output numeric results as presented in above tables and figures, the low-stress 

mechanical deformation of fabric samples for a CCCC/SSSS/CSCS/SCSF/SFCF/SSFF plain-woven 

fabric sheet is illustrated in Figures 4.32 and 4.33. Similar to buckling modes and free-vibration modes 

in previous numerical examples, these figures once again express that the Q4 elements (Q4 mesh) 

implemented by S-FEM is well refined, less distorted and not coarse even with low mesh density and 

various boundary conditions under uniform pressure. 
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Figure 4.32: Bending behavior of plain-woven fabric sheet with ℎ2/𝑙, using 20 × 20 Q4 elements and 1 
smoothing domains per element with different boundaries. 

 

Figure 4.33: Resultant displacement magnitude for bending behavior of plain-woven fabric sheet with ℎ2/𝑙. 
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4.1.4 Plane-stress problems of woven fabric 

Tensile properties are considered as the most important factor that govern the performance 

characteristics of textile fabrics [18]. The investigation of tensile properties encounters many difficulties 

due to the complexity of fabric structure leading to variation strain during deformation [19]. In general, 

each fabric sheet consists of a large amount of constituent fibers and yarns which will response 

subsequently to a series of complex movements under any deformation state. This makes the 

mechanical properties of textile fabrics more complicated due to both fibers and yarns behaving in a 

non-Hookean law during deformation and presenting hysteresis effect [20]. 

Peirce (1937) [21] was the pioneer in the investigation of tensile properties of woven fabrics. He 

proposed a geometrical model in which the cross-section of the yarns in the fabrics is assumed as 

circular, but this assumption is highly theoretical. This model was modified by many researchers in 

order to analyze tensile behaviour of woven fabric. For example, Grosberg and Kedia (1966) [22] 

analyzed the small strain under the initial load-extension curve, while Weissenberg (1949) [23] 

introduced the trellis model in which the theory of strain, stress and the relationship between them 

and the Poisson’s effect are defined. 

Chadwick et al. (1949) [24] studied the deformation of a woven fabric in the bias direction applying 

the trellis model under a simple pull. Their study indicated that the warp and weft yarns deforms not 

only in the principal direction of pull but also in length and spacing under bias extension. Cooper 

(1963) [25] examined the relationship between extension and shear in bias direction of yarns. Kilby 

(1963) derived elasticity moduli of woven fabric in any direction other than the directions of warp and 

weft yarns. He showed that bias extension is related to shear modulus. Spivak et al. (1968) [26] 

presented an analysis of the geometrical tests of bias extension and simple shear for plain woven 

fabric which indicated that it is impossible to predict the complete stress-strain properties of a fabric 

in simple shear from measurements of bias extension.  

Anandjiwala and Leaf (1991) [27, 28] mainly focused on the tensile and shear moduli of plain-woven 

fabrics. There are no numerical models to be found in prediction of the anisotropic properties of fabric 

tensile using mechanical properties obtained from KES-FB (Kawabata Evaluation System for Fabric), 

such as tensile work (WT), tensile elongation (EMT), tensile linearity (LT) and tensile resilience (RT). 

Kawabata and Bassett used a numerical linearization method for modelling of the biaxial tensile stress-

strain relation of fabrics and Kageyama et al. (1988) verified this validity [29]. Bassett (1988) [30] 
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determined constitutive laws of fabrics and used these properties to calculate stress-strain in garment-

like systems. The work of Kawabata and Bassett uses very complicated procedures and it is still related 

to implementation of function between tensile stress and tensile strain for deformation of woven 

fabrics.  

In this numerical example, macro-mechanical modelling of tensile deformation of woven fabrics aims 

to examine the proposed CS-FEM models via evaluation of the distortion and coarseness of Q4 

membrane element, as presented in Section 3.5. Let us consider a configured fabric sheet as 

illustrated in Figure 4.34. 

 

Figure 4.34: Configuration of tensile stress and tensile strain, uniaxial applied force in the direction of warp and 
weft yarns. 

For numerical examples of modelling of tensile behavior of plain-woven fabric sheet, Figure 4.1 is 

reconfigured according to uniaxial applied force in the direction of warp and weft yarns as shown in 

Figure 4.34. 

Numerical examples for modelling of tensile behavior also produced a highly accurate numerical 

results implemented by the number of smoothing domains per Q4 element in range of {1,2,3,4}, which 

clearly show the stable and well-balanced feature of the S-FEM. Besides, S-FEM also possesses fast 

strain energy convergence for both the thin and moderately thick fabric sheets with the prescribed 

boundary conditions and various mesh densities. In order to demonstrate mesh density, only 

geometrical results are presented in this experiment. 

Numerical results for the plane-stress deformations, resultant load vectors and magnitude of the plane-

stress of a plain-woven fabric sheet with ℎ1/𝑙, under uniaxial applied force in warp direction, using 

70 × 70 Q4 elements and 4 smoothing domains per element are presented in Figure 4.35 to 4.40. 
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For a plain-woven fabric sheet with ℎ2/𝑙, numerical results for the plane-stress deformations, resultant 

load vectors and magnitude of the plane-stress are presented in Figure 4.41 to 4.46. 

Figures 4.35, 4.38, 4.41 and 4.44 exhibit that the Q4 membrane elements implemented by S-FEM 

are well refined, less distorted and not coarse even with low mesh density and complex deformed. 

Note that fabric samples are deformed according to uniaxial applied force in the direction of warp and 

weft yarns in this experiment, while fabric samples are deformed according to uniform pressure, as in 

previous experiments of fabric buckling and bending. 

The numerical results also show that more mesh density is refined, more the numerical modelling are 

accurately and realistic, as well as CPU time increases exponentially with the DOFs (Degrees of 

Freedom), as presented in Section 4.2.2. 

 

Figure 4.35: The plane-stress deformation of a plain-woven fabric sheet with ℎ1/𝑙, under uniaxial applied force 
in warp direction, using 70 × 70 Q4 elements and 1 smoothing domains per element. 
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Figure 4.36: Resultant load vector for plane-stress deformation of a plain-woven fabric sheet with ℎ1/𝑙, under 
uniaxial applied force in warp direction. 

 

Figure 4.37: The magnitude of the stress of a plain-woven fabric sheet with ℎ1/𝑙, under uniaxial applied force 
in warp direction. 
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Figure 4.38: The plane-stress deformation of a plain-woven fabric sheet with ℎ1/𝑙, under uniaxial applied force 
in weft direction, using 70 × 70 Q4 elements and 1 smoothing domains per element. 

 

Figure 4.39: Resultant load vector for plane-stress deformation of a plain-woven fabric sheet with ℎ1/𝑙, under 
uniaxial applied force in weft direction. 
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Figure 4.40: The magnitude of the stress of a plain-woven fabric sheet with ℎ1/𝑙, under uniaxial applied force 
in weft direction. 

 

Figure 4.41: The plane-stress deformation of a plain-woven fabric sheet with ℎ2/𝑙, under uniaxial applied force 
in warp direction, using 70 × 70 Q4 elements and 1 smoothing domains per element. 
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Figure 4.42: Resultant load vector for plane-stress deformation of a plain-woven fabric sheet with ℎ2/𝑙, under 
uniaxial applied force in warp direction. 

 

Figure 4.43: The magnitude of the stress of a plain-woven fabric sheet with ℎ2/𝑙, under uniaxial applied force 
in warp direction. 
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Figure 4.44: The plane-stress deformation of a plain-woven fabric sheet with ℎ2/𝑙, under uniaxial applied force 
in weft direction, using 40 × 40 Q4 elements and 1 smoothing domains per element. 

 

Figure 4.45: Resultant load vector for plane-stress deformation of a plain-woven fabric sheet with ℎ2/𝑙, under 
uniaxial applied force in weft direction. 
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Figure 4.46: The magnitude of the stress of a plain-woven fabric sheet with ℎ2/𝑙, under uniaxial applied force 
in weft direction. 

4.2 Discussions 

4.2.1 Number of smoothing domains 

Numerical examples indicated that the used number of smoothing domains per 4-node isoparametric 

quadrilateral element in range of {1,2,3,4} is approximated to that one of 4-node isoparametric 

quadrilateral element with one-point quadrature in evaluation of element strain-displacement matrix. 

Through numerical examples, it is found that from one to four smoothing domains for bending strain 

energy integration and one for shear strain energy integration per element produces identical solutions 

compared with the existing FEM techniques. 

Numerical examples also indicated that the stiffness matrix of 4-node quadrilateral element 

implemented with 1 smoothing domain per Q4 element (Q4SD1) in CS-FEM is identical to the 

corresponding standard FEM using the reduced integration that is evaluated by one Gauss point. 

Therefore, the non-local strain displacement components as given in Equations (3.77, 3.100) can be 

rewritten as follows 

 
𝑏̅𝑘𝐼𝑥 =

1

2𝐴𝑒
(𝑛𝑥𝑖𝑙𝑖 + 𝑛𝑥𝑗𝑙𝑗) 

 
(4.2a) 

 
𝑏̅𝑘𝐼𝑦 =

1

2𝐴𝑒
(𝑛𝑦𝑖𝑙𝑖 + 𝑛𝑦𝑖𝑙𝑗) 

 (4.2b) 

where 𝐴𝑒 stands for the area of element Ω𝑒, 𝑛𝑥𝑖 and 𝑛𝑦𝑖 stand for the normal vector on edge 𝑙𝑖, the 

indices 𝑖 and 𝑗 are defined by a recursive rule such that 𝑖𝑗 =  {14, 21, 32, 43}. Thus, the smoothed 
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strain/gradient matrix in Equations (3.82, 3.102) can be implemented and evaluated in terms of one 

smoothing domain per 4-node Q4 element as follows 

  
𝑩̅𝑏 =

1

2𝐴𝑒
[

0 0 𝑦24 0 0 𝑦31 0 0 𝑦42 0 0 𝑦13
0 𝑥24 0 0 𝑥31 0 0 𝑥42 0 0 𝑥13 0
0 𝑦42 𝑥42 0 𝑦13 𝑥13 0 𝑦24 𝑥24 0 𝑦31 𝑥31

] (4.3) 

  
𝑩̅𝑚 =

1

2𝐴𝑒
[
𝑦24 0 𝑦31 0 𝑦42 0 𝑦13 0
0 𝑥42 0 𝑥13 0 𝑥24 0 𝑥31
𝑥42 𝑦24 𝑥13 𝑦31 𝑥24 𝑦42 𝑥31 𝑦13

] (4.4) 

where 𝑥𝑖𝑗 = 𝑥𝑖 − 𝑥𝑗 and 𝑦𝑖𝑗 = 𝑦𝑖 − 𝑦𝑗. 

Note that Equations (4.3, 4.4) applies to 4-node Q4 element that is implemented with one smoothing 

domain. 

4.2.2 CPU time variation 

To better expose the influence of the cost of computation times on the numerical simulation results of 

bending behavior of a plain-woven fabric sheet using S-FEM, it was implemented a series of 4-node 

isoparametric quadrilateral plate/shell elements with varying number of system DOFs (System 

Degrees of Freedom) while recording the CPU-time variation for different number of smoothing 

domains per element such that 𝑆𝐷𝑠 =  {1,2,3,4}, as shown in Figure 4.47. Besides, it was also 

implemented the corresponding standard FEM models in order to indicate the difference of the cost 

of computation times between the developed S-FEM models and standard FEM models. 

 

Figure 4.47: Recorded of CPU time on the numerical simulation results of bending behavior of a plain-woven 
fabric sheet using S-FEM and standard FEM. 
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The benchmark results have numerically indicated that one smoothing domain (𝑆𝐷𝑠 =  1) per Q4 

element is the best solution in terms of CPU time when compared with standard FEM, while four 

smoothing domains (𝑆𝐷𝑠 =  4) per Q4 element is more expensive in CPU time. 

A decrease occurs in cost of computation time for the evaluation of gradient matrix, stiffness and 

geometric matrices of membrane, and curvature element can be applied by the fact that the shape 

functions of a ‘smoothed’ Q4 element are constant, while the shape functions of an Q4 element are 

those of bilinear Lagrange shape functions in natural coordinates (𝜉, 𝜂, 𝜁) that are needed to be 

transformed into Cartesian coordinates (𝑥, 𝑦, 𝑧) when one evaluates strain gradient matrix. This 

requires a Jacobian transformation matrix and needs to be evaluated by one or more Gauss points. 

Thus S-FEM gives a better solution in terms of CPU time and high accuracy when compared with 

standard FEM. 

4.3 Final remarks 

Numerical results of low-stress mechanical deformations of woven fabric have confirmed the following 

features of our method: 

 Although the transverse shear contribution for the geometric stiffness matrix is negligible for 

thin woven fabric sheet, its effects can be significant for thick woven fabric. 

 S-FEM shows that field gradients of smoothing domains of elements are evaluated directly 

only using their shape functions without derivative such that reduce the requirement on the 

smoothness of shape functions. Moreover, the shape functions are established in a trivial, 

simple and explicit manner. 

 S-FEM gives a better solution in terms of CPU time, and has a higher accuracy and strain 

energy convergence for both the thin and moderately thick fabric sheet when compared with 

standard FEM. One smoothing domain (𝑆𝐷𝑠 =  1) per Q4 element is the best solution in 

terms of CPU time when compared with standard FEM. However, depending on the 

requirement on the accuracy and stability, each finite element may be further subdivided into 

a finite number of smoothing domains; in particular, dividing a quadrilateral element can be 

divided into four smoothing domains can avoid the spurious zero-energy mode. 

 Q4 elements, including membrane element, plate and flat shell elements, that are 

implemented by S-FEM is well refined, less distorted and not coarse even with low mesh 

density and complex deformed. 
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 S-FEM via CS-FEM models are well appropriate for numerical modelling and simulation in 

predicting the mechanical deformation behaviour of the textile fabrics, as needed in cloth 

simulation, which will lead to the perspective of widely accepted and integrated S-FEM models 

into FEA/CAE environment for textile fabric engineering. 

So, the application of FOM and S-FEM to displacement-based low-order finite element formulations 

based on quadrilateral plate/shell finite element models are well appropriate for numerical modelling 

and simulation in predicting the mechanical deformation behaviour of the textile fabrics.  
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5 Chapter 5 

Conclusions 

In this thesis, the formulation of fabric constitutive laws based on the fabric objective measurement 

technology (FOM) and Kawabata evaluation system for fabric (KES-FB) have been presented. In 

addition, a class of novel and robust displacement-based low-order finite element formulations for 

mechanical modelling of textile fabric at sheet level have been also formulated and proposed. The 

finite elements are based on the Mindlin-Reissner theory (i.e., the so-called first-order shear 

deformation theory) and smoothed finite element methods (S-FEM) via the strain smoothing technique 

of the stabilized conforming nodal integration mesh-free method. 

5.1 Research outcomes 

In respect to fabric objective measurement (FOM), a major research outcome has been attained with 

the successful formulation and implementation of fabric constitutive laws using low-stress mechanical 

properties that are applicable for macro-mechanical modelling of the textile fabrics of both non-woven 

and woven fabrics in terms of elastic material with both isotropy and orthotropic anisotropy. In 

particular, the transverse shear modulus is approximated by using low-stress compression properties 

via KES-FB. These constitutive equations are used for displacement-based low-order finite element 

formulations of plate and shell finite element. 

In the numerical modelling and simulation of the textile fabrics, another important research outcome 

is the successful formulation and implementation of two simple, robust, and high-performance low-

order quadrilateral plate and flat shell elements for macro-mechanical modelling of general textile 

fabric sheet that have the advantage of being applicable to thin to moderately thick fabric, being at the 

same time less time-consuming, but even so accurate. 

The new displacement-based low-order flat quadrilateral plate/shell finite elements have some 

advanced properties due to be inherited from the strain smoothing technique of the stabilized 

conforming nodal integration mesh-free method and the mixed interpolation of tensorial components 

approach as follows: 
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 The formulated finite elements are reliable and have good predictive capability in modelling 

arbitrary deformed geometries of thin to moderately thick fabric because they are based on 

the equivalent single-layer and first-order shear deformation theory. 

 The decrease in cost of computation time for the evaluation of gradient matrix, stiffness and 

geometric matrices of membrane and curvature element is mainly due to be computed by 

integration along the boundary of smoothing elements, what is in contrast to domain 

integration. 

 The developed thin plate/shell elements are free from membrane and shear locking without 

any spurious zero-energy modes. These elements not only optimize shape distortion but also 

optimize accuracy even with coarse meshes or warping geometries. Besides, these elements 

also imply the convergence of solutions with mesh refinement. 

Numerical simulations have been studied and demonstrated in textile engineering involving analysis 

of mechanical deformation of fabric sheet in terms of plate/shell structures with various geometric 

shapes and materials. The numerical results have demonstrated the robustness and accuracy of 

numerical methods for various applications of macro-mechanical modelling of textile fabric, including 

plane-stress, bending, buckling and free vibration analysis. The numerical results also have provided 

a definitive and better understanding of the effect of modulus ratios, yarn orientations and different 

mixed boundary conditions on the mechanical behaviour of woven fabric. Finally, the smoothed finite 

element methods (S-FEM), together with fabric objective measurement technology (FOM) that satisfies 

to low-stress mechanical properties of fabric via Kawabata evaluation system for fabric (KES-FB) are 

in agreement with objectives of this study, which is to find a numerical solution that offer a lower 

computational cost but effective performance in comparison with more conventional finite elements 

for modelling and simulation of mechanical behavior of textile fabrics. 

5.2 Limitations 

Despite FOM technology via KES-FB system is able to meet the requirements in the formulation of 

fabric constitutive laws in this research, there are some limitations in experimental analysis of 

mechanical properties of fabric such as the lack of tester for measuring the Poisson’s effect, which is 

important in many engineering applications and computer simulations of technical textile fabrics. 

Besides, there is also the lack of a tester for measuring the damping effect factor of fabric. 
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The computational implementation of S-FEM served mostly to assess the applicability of theoretical 

ideas, meaning that, in its current stage of development, the use of S-FEM by an external analyst is 

hindered by the lack of a unified and fully automatic analysis tool. In fact, this is in general the case 

for S-FEM, which is still a very rare presence in commercially available FEA computer applications and 

almost non-existent in general purpose open-source platforms. 

5.3 Future works 

Despite the objectives of this research has been attained, there are many issues that must continue 

to develop and improve in the future. In respect to fabric objective measurement (FOM), we have in 

mind the following research goals (or specific objectives): 

 For numerical modelling of mechanical deformation behavior of both single and multilayer 

woven fabric composite materials, we will continue to develop fabric constitutive laws that are 

based on fabric objective measurement via high-stress mechanical properties. 

 For numerical modelling of heat transfer properties of woven fabrics and woven fabric 

composite materials, fabric constitutive laws will be developed by using mechanical properties 

measured via ASTM's textile standards. 

We also intend to pursue the following research lines to the future development of S-FEM models of 

this work: 

 To adapt the developed finite element computer codes for modelling and simulation of draping 

behavior of textile fabric, especially for wearing models. 

 To continue to develop the finite element computer codes for S-FEM models that bases on 

GPU computing in order to save computer time for complex analysis of fabric and cloth. 

 To continue to improve the developed CS-FEM models and the other S-FEM models, e.g. NS-

FEM and ES-FEM, for geometrical non-linear finite element analysis of textile fabrics under the 

complex boundary conditions. 

5.4 Final remarks 

The application of FOM and S-FEM to displacement-based low-order finite element formulations based 

on quadrilateral plate/shell finite element models offer a lower computational cost but effective 

performance and higher accurate in comparison with more conventional finite elements for modelling 

and simulation of mechanical behavior of thin to moderately thick textile fabric. 
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The application of FOM and S-FEM are well appropriate for numerical modelling and simulation in 

predicting the mechanical deformation behaviour of the textile fabrics, as needed in cloth simulation, 

which will lead to the perspective of widely accepted and integrated S-FEM models into FEA/CAE 

environment for textile fabric engineering. 

In conclusion, we are able to state that application of FOM and S-FEM to displacement-based low-

order finite element formulations based on quadrilateral plate/shell finite element models are well 

appropriate for numerical modelling and simulation in predicting the mechanical deformation 

behaviour of the textile fabrics, as needed in cloth simulation, which will lead to the perspective of 

widely accepted and integrated S-FEM models into FEA/CAE environment for textile fabric engineering. 
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