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We study nonlinear properties of multilayer metamaterials created by graphene sheets separated
by dielectric layers. We demonstrate that such structures can support localized nonlinear modes
described by the discrete nonlinear Schrödinger equation and that its solutions are associated with
stable discrete plasmon solitons. We also analyze the nonlinear surface modes in truncated graphene
metamaterials being a nonlinear analog of surface Tamm states.
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I. INTRODUCTION

Graphene is a unique two-dimensional (2D) material
known to exhibit remarkable physical properties includ-
ing a strong optical response related to its surface con-
ductivity and dependence on graphene’s chemical poten-
tial1,2. At certain frequencies, doped graphene behaves
like a metal, and it can support p-polarized surface plas-
mon polaritons due to the coupling of the electromagnetic
field to the electron excitations3–6.

As has been shown recently, graphene is a strongly
nonlinear material7–13. In particular, several non-
linear effects associated with a self-action correction
to graphene’s conductivity have been predicted re-
cently14–17. In order to increase the effective nonlinearity
of photonic structures with graphene, a natural idea is to
use graphene multilayers which, depending on different
wavelength regimes, may possess the basic properties of
photonic crystals and metamaterials18–20.

One of the remarkable general properties of nonlin-
ear systems is their ability to support nonlinear localized
modes – self-trapped localized states or solitons which
can propagate over long distances without changing their
shape due to a balance between nonlinearity and dis-
persion (or diffraction). A special kind of soliton, the
so-called discrete soliton, appears as intrinsic localized
mode in homogeneous periodic physical systems, such as
nonlinear atomic chains21,22, Bose-Einstein condensates
loaded into optical lattices23,24, arrays of nonlinear opti-
cal waveguides25, and semiconductor-dielectric periodic
nanostructures26. If compared to continuous localized
waves, the discrete solitons possess a number of addi-
tional properties such as the Peierls-Nabarro barrier27

and staggering transformation28. In plasmonics, dis-
crete solitons were studied in metal-dielectric multilayer
structures29–33, arrays of nanowires34–37, and arrays of
nanoparticles38,39.

Less than a decade ago, an interesting type of discrete
soliton, surface soliton, was predicted theoretically40 and
then observed experimentally41,42. It is sustained by the
boundary between a periodic structure and a uniform
medium (although the maximum of a soliton can be ei-

ther exactly at the interface40 or at some distance from
it43;, i.e. a surface soliton can be considered as a nonlin-
ear analogue of surface Tamm states44,45.

In this article, we study nonlinear graphene-based mul-
tilayer structures and demonstrate that, similar to metal-
dielectric metamaterials, they can be described by the
discrete nonlinear Schrödinger (NLS) equation and sup-

Figure 1. (Color online) Geometry of the problem. A mul-
tilayer structure is composed of graphene sheets separated
by dielectric layers with permittivity ε and thickness d. Red
curves show example profiles of the plasmonic solitons: (a)
discrete solitons in an infinite structure, and (b) surface soli-
tons in a truncated metamaterial. Shown is the absolute value
of the tangential electric field component.
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port nonlinear localized modes in the form of discrete
solitons [see Fig. 1(a)]. We also analyze such modes near
the surfaces and predict the existence of nonlinear surface
modes being a nonlinear analog of surface Tamm states,
as shown schematically in Fig. 1(b).

This article is organized as follows. In Sec. II, we dis-
cuss the nonlinear response of graphene to an external
harmonic electric field. In Sec. III, we derive the discrete
NLS equation and describe the properties of discrete soli-
tons. Section IV is devoted to the study of surface soli-
tons localized in the vicinity of a terminated layer of the
graphene metamaterial.

II. NONLINEAR CURRENT IN GRAPHENE

For the sake of completeness and clarity, first we derive
a Kerr-type nonlinear correction to the graphene con-
ductivity, considered earlier in Refs.7,8 for the ballistic
regime.

We consider a 2D doped graphene monolayer, placed
parallel to the plane xy. Also we admit that a time-
dependent external electric field is applied to graphene.
For definiteness, the electric field is supposed to be di-

rected along the x axis, i.e., ~E = [E(t), 0, 0]. In principle,
the temporal dependence of E(t) can have an arbitrary
form, although in the calculations below it is considered
to be of the form E(t) = E0 exp(−iωt) + c.c., where E0

and ω are the amplitude and the frequency.

In the classical frequency range, ~ω ≤ EF , in the
relaxation time approximation, graphene charge-carriers
transport properties are governed by the Boltzmann ki-
netic equation written for the electrons:

∂f(~k, t)

∂t
− e

~

−→
E
∂f(~k, t)

∂
−→
k

= −γ
[

f(~k, t) − f0(~k)
]

. (1)

where f(~k, t) is the nonequilibrium distribution function,

f0(~k) is the equilibrium Fermi-Dirac distribution func-
tion, and γ is the inverse relaxation time. Equation
(1) can be solved analytically, and its exact solution at

t ≫ 1/γ is given by11,46

f(~k, t) = γe−γt

ˆ t

−∞
dt′eγt′

f0[kx +H (t, t′) , ky)] , (2)

where

H(t, t′) = e
~

´ t

t′
E(t′′)dt′′ = − e

i~ω [E0 exp(−iωt)
− E0 exp(iωt) − E0 exp(−iωt′) + E0 exp(iωt′)

]

and the overbars stand for complex conjugation.
The induced 2D current in graphene is expressed

through the function f(~k, t) as

~j = −4
e

(2π)2

ˆ

d~k f(~k, t)
∂ǫ

(

~k
)

~∂
−→
k

, (3)

where ǫ
(

~k
)

= vF ~

√

k2
x + k2

y is the Dirac cone spectrum

of charge carriers in graphene, vF is the Fermi velocity,
and the factor 4 is due to the spin and valley degeneracy.
Even though for large wave vectors the energy spectrum
becomes anisotropic (leading to the trigonal warping of
constant energy surfaces), for the levels of graphene dop-
ing, what nowadays are experimentally achievable, the
Dirac cone approximation gives reasonable accuracy in
the calculation of graphene nonlinear conductivity. A
comparison between the Dirac cone and trigonal warp-
ing approximations is presented in the Appendix. For
degenerate electrons at zero temperature (and, conse-
quently, the steplike Fermi-Dirac distribution function

f0(~k) = Θ
[

EF − ǫ
(

~k
)]

), we obtain

jx = −evF

π2
γe−γt

ˆ t

−∞
dt′eγt′

I (t, t′) , (4)

where

I (t, t′) =
´

d~k kx√
k2

x+k2
y

× Θ

[

EF − vF ~

√

{kx +H (t, t′)}2
+ k2

y

]

(5)

=
´ kF

0
k′ dk′ ´ 2π

0
dϕ

k′ cos ϕ−H(t,t′)√
{k′ cos ϕ−H(t,t′)}2+k′2 sin2 ϕ

,

EF = vF ~kF is the Fermi energy (kF is the Fermi wave
vector), Θ (x) is the Heaviside function, and the changes
of variables are kx = k′ cosϕ−H (t, t′) and ky = k′ sinϕ.

After integration with respect to k′, expression (5) can
be presented in the form

I (t, t′) =
´ 2π

0

{

√

k2
F − 2H (t, t′) kF +H2 (t, t′)

[

kF cos ϕ
2 −H (t, t′)

(

1 − 3
2 cos2 ϕ

)

]

+H2 (t, t′)
(

1 − 3
2 cos2 ϕ

)

+ 3
2H

2 (t, t′)
(

cos3 ϕ− cosϕ
)

ln

[√
k2

F
−2H(t,t′)kF +H2(t,t′)+kF −H(t,t′) cos ϕ

H(t,t′)(1−cos ϕ)

]}

dϕ.

After the expansion with respect to H (t, t′) (up to the third order), the integral (5) is reduced to

I (t, t′) = −kFπH (t, t′) +
π

8kF
H3 (t, t′) . (6)
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Finally, substituting Eq. (6) into Eq. (4) and performing
integration, we obtain

jx = σ0
4EF

π~

E0 exp(−iωt)
γ−iω (7)

− σ0
9e2v2

F

πEF ~

|E0|2E0 exp(−iωt)
(γ−2iω)(γ2+ω2) + c.c.,

where σ0 = e2/4~ is the conductivity quantum. Note
that in Eq. (7) we write out only the terms with the time
dependence ∼ exp (±iωt), while the terms corresponding
to the third harmonic are omitted.

In the limit ω/γ ≫ 1, Eq. (7) can be written as

jx = i
[

ν(1) − ν(3) |E0|2
]

E0 exp(−iωt), (8)

where

ν(1) = σ0
4EF

π~ω
, ν(3) = σ0

9e2v2
F

2πEF ~ω3
.

Below, we use this result, obtained as seen by free-space
light normally incident on a graphene layer, for the ef-
fective nonlinear conductivity of surface plasmons prop-
agating along graphene layers, assuming the additional
correction due to the in-plane wavevector kx to be small,
which is well-justified if ckx/ω ≪ 300.

III. DISCRETE SOLITONS

Now we consider a periodic multilayer graphene stack,
consisting of an infinite number of parallel graphene lay-
ers arranged at equal distances d from each other at the
planes z = md with m = (−∞,∞), inside a dielec-
tric medium with relative permittivity ε. In this case,

the electric ~E and magnetic ~H fields are governed by
Maxwell’s equations:

rot~E = iωµ0
~H, div ~E = ρ

εε0
,

rot ~H = −iωε0ε ~E + ~J, div ~H = 0,

where ε0 and µ0 are free-space permittivity and perme-

ability, and ~J and ρ are full three-dimensional (3D) cur-
rent and charge densities, respectively, given by

~J =

∞
∑

m=−∞

~j(m)δ(z−md), ρ =

∞
∑

m=−∞
̺(m)δ(z−md),

(9)

where ~j(m) and ̺(m) are 2D current and charge densities
in the mth graphene layer. In all the above equations the
time-dependence exp(−iωt) is implied.

The electric and magnetic fields can be expressed

through scalar ϕ and vector ~A potentials as

~E = −gradϕ+ iω ~A, ~H =
rot ~A

µ0
. (10)

These relations, jointly with the Lorentz gauge

div ~A− (iωε/c2)ϕ = 0, (11)

result in inhomogeneous Helmholtz equations for both
scalar and vector potentials:

∆ϕ+ ω2ε
c2 ϕ = − ρ

εε0
, (12)

∆ ~A+ ω2ε
c2

~A = −µ0
~J. (13)

We assume the electromagnetic field to be uniform
along the y direction, ∂/∂y ≡ 0, and propagating in the

x direction, ~A, ~J ρ, ϕ ∼ exp (ikxx). Under these assump-
tions, Eq. (13) can be solved by using a standard Green’s
function formalism. Accordingly, a general solution of
Eq. (13) has the form

Ax (z) = −µ0

ˆ ∞

−∞
dz′G (z − z′)Jx, (14)

where

G(z) = −exp (−p |z|)
2p

, p =

√

k2
x − ω2ε

c2

is the one-dimensional Green function. The latter is a
solution of the equation

(

d2

dz2
− p2

)

G (z) = δ (z)

with the boundary conditions G (±∞) = 0, denoting the

evanescent character of waves (when k2
x > (ω/c)2 ε and

Re (p) > 0) or absence of waves coming from z = ±∞
for traveling waves, when k2

x < (ω/c)
2
ε and Im (p) < 0.

Substituting Eq. (9) into Eq. (14) and using the proper-
ties of Delta functions, we obtain

Ax (z) =
µ0

2p

∞
∑

m=−∞
j(m)

x exp(−p |z −md|).

Due to the 2D nature of currents in graphene layers
Az ≡ 0, while the vector potential components Ax and
Ay describe p- and s-polarized waves, correspondingly.
Further we concentrate on the p-polarized waves only.
Thus, using the Lorentz gauge (11), we can express the
x component of the electric field through Ax as

Ex (z) =
c2p2

iωε
Ax (z) . (15)

After substituting this relation into Eq. (8), Ax can be
represented in the form

Ax (z) =
p

2ωε0ε

∞
∑

m=−∞

[

ν(1) − ν(3) c
4p4

ω2ε2
|Ax (md)|2

]

×Ax (md) exp(−p |z −md|).
(16)

Alternatively, Eq. (16) can be rewritten in the form of
the stationary discrete NLS equation

Ax ([n+ 1]d) +Ax ([n− 1] d) − 2Ax (nd) cosh(pd)

= − p

ωε0ε

[

ν(1) − ν(3) c
4p4

ω2ε2
|Ax (nd)|2

]

Ax (nd) sinh (pd)

(17)
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for n ∈ (−∞,∞).
The linear counterpart (when ν(3) = 0) of the discrete

NLS equation, Eq.(17), defines the linear spectrum. Do-
mains of allowed frequencies (where in the linear case
the wave propagation is possible) are parametrized by
the real Bloch wave vector q [such that Ax (nd) =
Ax (0) exp (iqnd)]. As a result, the equation

cos (qd) = cosh(pd) − p

2ωε0ε
ν(1) sinh (pd) (18)

determines the propagating bands of the spectrum ω =
Ωl (kx, q) (l ≥ 1 is the band index), which are depicted
in Figs. 2(a) and 3(a) in black (see, e.g., Ref.19).

Although generally the nonlinear equation, Eq. (17),
possesses an infinite number of solutions28, here we con-
centrate on the properties of the fundamental bright soli-
tons, bifurcating from the edge of the allowed band of the
spectrum. To describe the solitons’ properties, we intro-
duce a soliton norm as

P =

∞
∑

m=−∞
|Ex (md)|2 =

c4p4

ω2ε2

∞
∑

m=−∞
|Ax (md)|2 .

The fundamental mode of the discrete soliton is depicted
in Fig. 2. Due to effectively defocusing nonlinearity (pos-
itive cubic term) in Eq. (17), bright solitons [see Fig. 2(a)]
bifurcate from the low-frequency boundary of the first
band Ω1(kx, q) (which corresponds to the phase shift
qd = π between oscillations in adjacent graphene lay-
ers) and exist in the semi-infinite gap ω ≤ Ω1(kx, π/d).
Since in this region kx > ωε1/2/c, this type of soli-
ton is characterized by the evanescent waves in the di-
electric between the graphene layers, and these solitons
are further referred to as plasmonic solitons. For fixed
kx [Fig. 2(b)] the soliton norm P , being zero at the
band edge ω = Ω1(kx, π/d), initially grows up to values
∼ 1011 V2/m2, but after that decreases and attains zero
at zero frequency. At the same time, the frequency de-
fines the degree of soliton localization, as follows from the
comparison of Figs. 2(d)–2(f). Thus, in the vicinity of the
band edge Ω1(kx, q) the soliton is delocalized – its elec-
tric field is distributed over a large number of graphene
layers [Fig. 2(d)]. When frequency is gradually detuned
from the band edge, the soliton becomes more localized –
its electric field is either distributed over a few graphene
layers [Fig. 2(e)] or effectively concentrated in the vicin-
ity of one graphene layer, as shown in Fig. 2(f). It should
be underlined that the soliton inherits the properties of
a Bloch wave at the band edge from which it bifurcates:
signs of the electric field tangential components at adja-
cent graphene layers are opposite (staggered soliton). For
fixed frequency ω [Fig. 2(c)] the soliton norm increases
monotonically with increasing kx.

Equation (17) possesses two approximate types of so-
lutions. The first type, the so-called continuum limit, is
valid for low amplitude solutions. To obtain this solution,
we use the ansatz Ax (nd) = ǫ (−1)

n
ψ(ζ), with ǫ being

a small parameter and ζ = ǫn. As a result, the function

Figure 2. (Color online) (a)–(c) Dependence of soliton norm
P (in MV2/m2) upon frequency ω and wave vector kx [panel
(a)], upon frequency ω for fixed value kx = 0.05 µm−1[panel
(b)], or upon frequency kx for fixed value ω = 1 meV [panel
(c)]. Dependencies in panels (b) and (c) are taken along the
vertical and horizontal lines in panel (a), respectively. Depen-
dencies in panel (a) as well as those in panels (b) and (c) [de-
picted by solid lines] are calculated by the numerical solution
of Eq. (17), while continuum (dash-and-dot lines) and anti-
continuum (dashed lines) limit approximations in panels (b)
and (c) are calculated according to Eqs. (21) and (22). (d)–(f)
Soliton spatial profiles for kx = 0.05 µm−1 and ω = 1.98 meV
[panel (d)], ω = 1.6 meV [panel (e)], or ω = 0.52 meV [panel
(f)]. The parameters of panels (d), (e), and (f) correspond to
points A, B, and C in panel (a), respectively. Other param-
eters are EF = 0.157 eV, d = 40 µm, and ε = 3.9.

ψ (ζ) satisfies the nonlinear Schrodinger equation

d2ψ

dx2
+ ν(3) c4p5

ω3ε0ε3
sinh (pd)ψ3(x) =

2 cosh(β) − 2

ǫ2
ψ(x),

(19)
which is parametrized by parameter β such that

cosh (β) =
p

2ωε0ε
ν(1) sinh (pd) − cosh(pd). (20)
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The parameter β can be formally considered as the imag-
inary part of the Bloch wavevector q = (π + iβ) /d (note,
inside the gap the Bloch wave vector is complex that in
the linear case corresponds to the evanescent wave). Us-
ing the exact solution of Eq. (19), we now approximate
solution of Eq. (17) in the continuum limit:

Ax (nd) =

√

2ω3ε0ε3

c4p5ν(3) sinh (pd)

(−1)
n √

2 cosh(β) − 2

cosh
(

√

2 cosh(β) − 2n
) .

Consequently, the soliton norm in the continuum limit
can be expressed as

P =
2ωε0ε [2 cosh(β) − 2]

pν(3) sinh (pd)

∞
∑

n=−∞

1

cosh2
(

√

2 cosh(β) − 2n
)

≈ 4ωε0ε
√

2 cosh(β) − 2

pν(3) sinh (pd)
.

(21)
In the last equation the summation has been replaced
by the integration. As seen from Fig. 2, the con-
tinuum approximation (depicted by blue dash-and-dot
line) is valid in the narrow domain in the vicinity of
band edge Ω1(kx, π/d) [more specifically, in domains 1.95
meV. ω .1.987 meV in Fig. 2(b) and 0.0236µm−1 .
kx .0.0245µm−1 in Fig. 2(c)].

The other type of approximate solutions, so-called
anticontinuum limit, is valid far from the band edge
Ω1(kx, π/d) (deeply in the gap). Hence, introducing
scaled dimensionless variables

an =

(

ν(3) c4p5

ε0ω3ε3

sinh (pd)

2 cosh(β)

)1/2

Ax (nd) ,

and taking into account Eq. (20), we obtain

an+1 + an−1

2 cosh(β)
+ an − a3

n = 0.

As a result, when β → ∞, an become independent and
acquire one of the following three values: an = −1,
an = 0, or an = +1. In this limit, the fundamental
mode [see, e.g., Fig. 2(e)] corresponds to the case where
an = δn,0. This case allows for the approximate analyti-
cal continuation valid for large values of β:

a0 = 1 − 1

4 cosh2(β)
,

a1 = a−1 = − 1

2 cosh(β)
− 1

8 cosh3(β)
,

a2 = a−2 =
1

4 cosh2(β)
.

As a result, the soliton norm can be represented in the
form

P =
ε0ωε

pν(3)

2 cosh(β)

sinh (pd)

[

a2
0 + 2a2

1 + 2a2
2

]

(22)

=
ε0ωε

pν(3)

1

sinh (pd)

[

2 cosh(β) +
7

8 cosh3(β)

]

.

Figure 3. (Color online) Dependence of soliton norm P (in
MV2/m2) upon frequency ω (in the second gap) and wave
vector kx [panel (a)] or upon frequency ω for fixed value kx =
0.05 µm−1[panel (b)]. Dependence in panel (b) is taken along
the vertical line in panel (a). (c)–(e) Soliton spatial profiles
for kx = 0.05 µm−1 and ω = 9.7 meV [panel (c)], ω = 9.5 meV
[panel (d)], or ω = 9.36 meV [panel (e)]. The parameters of
panels (c), (d), and (e) correspond to points A, B, and C
in panel (b), respectively. Other parameters are the same as
those in Fig. 2.

As seen from Fig. 2, the anticontinuum limit approxima-
tion (depicted by the green dashed line) well describes
the solution in domains 0. ω .1.95 meV [in Fig. 2(b)]
and kx &0.0245µm−1 [in Fig. 2(c)].

Solitons can also exist in the upper (finite) gaps of the
spectrum. Notice that in those gaps kx < ωε1/2/c, and
solitons are characterized by propagating waves in the
dielectric between graphene layers (this type of soliton is
further referred to as a photonic soliton). An example of
photonic solitons is shown in Fig. 3. Photonic solitons
are characterized by considerably larger soliton norms P
if compared to the plasmonic ones [soliton norm is of the
order of 500 MV2/m2 in Fig. 3(a) and 0.1 MV2/m2 in
Fig. 2(a)]. Photonic solitons bifurcate from the upper
edge of the gap – the soliton norm, being zero at the
high-frequency boundary of the gap Ω3 (kx, π/d), is in-
creased when the frequency is decreased [see Fig. 3(b)].
The decrease of the frequency also leads to the growth
of the soliton amplitude [compare Figs. 3(c)–3(e)]. At
the same time, photonic solitons are considerably wider
than plasmonic ones, and at large amplitudes they be-
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Figure 4. (Color online) Dependence of surface soliton norm
P (in MV2/m2) upon frequency ω for the fixed value kx =
0.05 µm−1[panel (a)] or upon frequency kx for the fixed value
ω = 1 meV [panel (b)]. (c)–(e) Soliton spatial profiles for
kx = 0.05 µm−1 and ω = 1.89 meV [panel (c)], ω = 1.6 meV
[panel (d)], or ω = 0.52 meV [panel (e)]. The parameters of
panels (c), (d), and (e) correspond to points A, B, and C in
panel (a), respectively.

come two-hump [Figs. 3(d) and 3(e)]. This happens due
to the fact that, by contrast to plasmonic solitons, for
photonic solitons local maxima and minima of the elec-
tromagnetic field are generally not located at graphene
layers.

IV. DISCRETE SURFACE SOLITONS

Finally, we consider a semi-infinite array of graphene
layers, arranged at equal distances d from each other at
planes z = md with m = [0,∞), as shown in Fig. 1(b). In
other words, graphene layers are embedded inside a semi-
infinite dielectric medium at z ≥ 0, while at z < 0 there
is just a homogeneous dielectric. The 3D current and
charge density for this semi-infinite array can be written
as

~J =

∞
∑

m=0

~j(m)δ(z −md), ρ =

∞
∑

m=0

̺(m)δ(z −md),

(23)

and the solution of the wave equation, Eq. (13), has [in
full analogy with Eq. (16)] the form

Ax (z) =
p

2ωε0ε

∞
∑

m=0

[

ν(1) − ν(3) c
4p4

ω2ε2
|Ax (md)|2

]

×Ax (md) exp(−p |z −md|),
(24)

or

Ax ([n+ 1] d) +Ax ([n− 1]d) − 2Ax (nd) cosh(pd)

= − p

ωε0ε

[

ν(1) − ν(3) c
4p4

ω2ε2
|Ax (nd)|2

]

×Ax (nd) sinh (pd) , for n > 0;

Ax (d) −Ax (0) exp(pd)

= − p

ωε0ε

[

ν(1) − ν(3) c
4p4

ω2ε2
|Ax (0)|2

]

×Ax (0) sinh (pd) .

Properties of plasmonic surface solitons are summa-
rized in Fig. 4. The principal difference between the cases
of surface and bulk solitons is the nonexistence of the low-
amplitude surface soliton in the vicinity of the band edge
Ω1 (kx, π/d) [compare, e.g., Figs. 4(a) and 2(b), as well
as Figs. 4(b) and 2(c)]. More specifically, there exists
an end point of the spectrum, at which the fundamental
mode bifurcates with the other type of the surface soliton
mode (for details see, e.g., Ref.47). In the vicinity of the
end point of the spectrum soliton norm P achieves a lo-
cal minimum. At the same time, from the comparison of
Figs. 4(c)-4(e) it follows that, similar to the case of bulk
solitons, lower frequencies correspond to more localized
solitons (when the power is mostly concentrated at the
graphene layer, truncating the photonic crystal).

It is also worth noting that the principal difference
between linear and nonlinear cases is the possibility to
have the nonlinear surface state (namely, surface soliton)
in the uniform structure (semi-infinite array of equally

doped graphene layers, placed at equal distances from
each other, and embedded into the uniform dielectric
medium), while in the linear case the existence of the
surface state is possible only in the nonuniform structure
– it is necessary to have either the defect of the peri-
odicity at the surface of the photonic crystal45 or the
defect of graphene doping at the surface, or to truncate
the photonic crystal with the dielectric, characterized by
the dielectric constant, different from that of the medium
inside the photonic crystal.

V. CONCLUSIONS

We have analyzed nonlinear graphene-based multilayer
metamaterials and demonstrated that they can support
spatially localized nonlinear modes in the form of dis-
crete plasmon solitons. We have described the properties
of this novel class of discrete solitons, including the de-
pendence of their parameters on graphene conductivity.
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Figure 5. (Color online) (a) 2D Fermi surface (for Fermi en-

ergy EF = ǫ(s)(~k) = 0.5 eV) of graphene with trigonal warping
(A2) near two Dirac points: s = 1 (red line) or s = −1 (blue

line). (b) Ratios ν
(1)
w /ν(1) and ν

(3)
w /ν(3) as functions of the

Fermi energy EF .

We have also predicted the existence of nonlinear surface
modes in the form of discrete surface solitons.
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Appendix A: Nonlinear current in graphene under

trigonal warping

In the hexagonal lattice of a monolayer graphene each
of the carbon atoms is connected to its three near-
est neighbors through vectors ~δ1 = (− 1

2 ,
√

3
2 )a0, ~δ2 =

(− 1
2 ,−

√
3

2 )a0, and ~δ3 = (1, 0)a0, where a0 is the carbon-
carbon interatomic distance. The spectrum of charge
carriers in graphene can be obtained by the standard
procedure (see, e.g., Ref.48) and in the conduction band
it is represented as

ǫ (~q) = t0

[

3 + 2 cos
(√

3qya0

)

+4 cos

(
√

3

2
qya0

)

cos

(

3

2
qxa0

)]1/2

, (A1)

where ~q is the wave vector in the graphene plane and
t0 is the nearest-neighbor hopping energy. Notice that
the first Brillouin zone, − π

3a0
≤ qx ≤ π

3a0
, − 2π√

3a0
≤ qy ≤

2π√
3a0

, contains two Dirac points ~K
(s)
D =

(

0, s 4π
3

√
3a0

)

(s =

±1), in the vicinity of which the expansion ~q = ~K
(s)
D + ~k

results in49,50

ǫ(s)
(

~k
)

= ~vF

[

k2
x + k2

y + s
a0

2
ky

(

3k2
x − k2

y

)

]1/2

,(A2)

where the Fermi velocity vF = 3t0a0/(2~).
From Eq. (A2) it follows that shapes of the spectrum

in the vicinity of Dirac points ~K
(+)
D and ~K

(−)
D are not

equivalent, as demonstrated in Fig. 5(a). As a result,
due to the trigonal warping nonequilibrium distribution
functions,

f (s)(~k, t) = γe−γt

ˆ t

−∞
dt′eγt′

×Θ
{

EF − ǫ(s)[kx +H (t, t′) , ky ]
}

(A3)

are different for valleys s = ±1 [compare with Eq. (2)].
In this case the total current in the armchair (x) direction
can be expressed as

jx = −2
e

(2π)2

∑

s=±1

ˆ

d~k f (s)(~k, t)
∂ǫ(s)

(

~k
)

~∂kx
=

−evF

2π2
γe−γt

ˆ t

−∞
dt′eγt′

∑

s=±1

I(s)
w (t, t′) ,(A4)

where

I(s)
w (t, t′) =

ˆ K(s)
+

K(s)

−

dk′
y

ˆ B(k′

y)

−B(k′

y)

dk′
x

{k′
x −H (t, t′)}

(

1 + s 3a0

2 k′
y

)

√

{k′
x −H (t, t′)}2 (

1 + s 3a0

2 k′
y

)

+ k′2
y − sa0

2 k
′3
y

,(A5)

with new variables k′
x = kx + H (t, t′) and k′

y = ky. In
Eq. (A5) the limits of integration are

B(k′
y) =

√

k2
F − k′2

y + sa0

2 k
′3
y

1 + s 3a0

2 k′
y

,

and K(s)
± are the roots of the equation B(K(s)

± ) = 0 [de-
picted in Fig. 5(a)]. Performing the integration with
respect to k′

x, and expanding the result in series up to
the third order [similar to Eq. (6)], we obtain

I(s)
w (t, t′) = −kF η

(s)
1 (kF )H (t, t′)

+
η

(s)
3 (kF )

8kF
H3 (t, t′) . (A6)

Here η
(s)
1 and η

(s)
1 are the following integrals

η
(s)
1 (kF ) = 2

ˆ K(s)
+ /kF

K(s)
−

/kF

dκ

√

1 − κ2 + s
a0kF

2
κ3 (A7)

×
√

1 + s
3kFa0

2
κ,

η
(s)
3 (kF ) = 8

ˆ K(s)
+ /kF

K(s)
−

/kF

dκ

√

1 − κ2 + s
a0kF

2
κ3 (A8)

×κ2

√

1 − s
kF a0

2
κ

(

1 + s
3kFa0

2
κ

)
3
2

.
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Due to the fact that K(s)
± = −K(−s)

∓ , the integrals (A7)

and (A8) have the properties η
(+)
1 (kF ) = η

(−)
1 (kF ) and

η
(+)
3 (kF ) = η

(−)
3 (kF ).

Further, in full similarity with Sec. II, substituting the
expansion (A6) into Eq. (A4), integrating with respect
to t′, and then putting γ = 0, we obtain a final expression
for the nonlinear current in the form

jx = i
[

ν(1)
w − ν(3)

w |E0|2
]

E0 exp(−iωt), (A9)

where

ν(1)
w = σ0

4EF η
(+)
1 (kF )

π2~ω
, ν(3)

w = σ0
9e2v2

F η
(+)
3 (kF )

2π2EF~ω3
.

Thus, when trigonal warping is taken into account,

for finite EF both linear ν
(1)
w and nonlinear ν

(3)
w parts

of the conductivity slightly exceed the values ν(1) and
ν(3) calculated within the Dirac cone approximation [see

Fig.5(b)] and the ratios ν
(1)
w /ν(1) and ν

(3)
w /ν(3) grow

monotonically with an increase of EF . Nevertheless, tak-
ing into account the trigonal warping gives only relatively
small correction to the conductivity: for typical values of
the Fermi energy in graphene, EF . 0.5 eV, the difference

between ν
(1)
w and ν(1) is within 0.3 %, while that between

the nonlinear conductivities ν
(3)
w and ν(3) is below 2 %.
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