
Do-It-Yourself Shared-Storage Cluster with an Off-the-Shelf DBMS∗

Luı́s Soares
University of Minho
los@di.uminho.pt

José Pereira
University of Minho
jop@di.uminho.pt

1. Motivation

Database server clustering, used ubiquitously for
dependability and scalability, is commonly based on
one of two competing approaches. The first, a shared
storage cluster such as Oracle RAC, is based on dis-
tributed locking and a distributed cache invalidation
protocol [3]. Its main advantage is flexibility, as one
uses as many nodes as required for processing the work-
load and to ensure the desired availability, while the
storage is configured solely according to the desired
storage bandwidth and disk resilience. Unfortunately,
it can be implemented only with a deep refactoring of
server software; the reliance on distributed locking lim-
its scalability; and by directly sharing a physical copy
of data it becomes harder to ensure data integrity. These
reasons make it costly to develop and deploy, as attested
by most of the mainstream database servers not provid-
ing this option.

The second, a shared nothing cluster such as C-
JDBC, can be implemented strictly at the middleware
level by intercepting client requests and propagating up-
dates to all replicas [1]. The resulting performance and
scalability is good, especially, with currently common
mostly read-only workloads. Moreover, as each replica
is physically independent, this strategy can easily cope
with a wider range of faults [2]. The main problem is
that in a shared-nothing cluster a separate physical copy
of data is required for each node. Therefore, even if a
only few copies are required for dependability, a large
cluster with hundreds of nodes must be configured also
with sufficient storage capacity for hundreds of copies
of data.

The naive combination of both approaches by
simply sharing the data volume would obviously not
work, as asynchronous propagation of updates and non-
deterministic physical data layout would lead to data

∗This work was partially supported by project “PASTRAMY:
Persistent and highly Available Software TRansactional MemorY”
(PTDC/EIA/72405/2006).

inconsistency and ultimately to corruption. Simultane-
ously obtaining the advantages of both approaches is
however appealing.

2. Approach

Our approach [5] achieves such goal, of running
shared nothing server software on a shared storage clus-
ter and combining the advantages of both, by adding a
system level I/O interceptor layer as shown in Fig. 1.
This layer intercepts all file I/O operations issued by the
DBMS server and provides it the abstraction of multiple
non-shared physical copies as described below. In de-
tail, one of the nodes (1), the writer, is allowed to write
back to shared-storage. Other nodes (2), the copiers,
perform copy-on-write locally to volatile storage (3),
e.g., a RAM disk, when necessary to ensure that future
read operations will not observe pages modified else-
where.

During normal operation, all nodes try to update
the shared volume as they commit replicated updates.
One makes sure that updates by each copier are not vis-
ible elsewhere by storing a local copy of the page in
volatile storage, and using it for subsequent reads. Up-
dates by the writer can only proceed after ensuring that
the page is stable, i.e., that all other nodes, the copiers,

Stability

SAN

Interceptor
(writer)

Interceptor
(copier)

Interceptor
(copier)

Replication
DBMS
server
replica

DBMS
server
replica

DBMS
server
replica

Shared storage

Node Node Node

(2)(2)(1) (3) (3)

Cluster Management

Figure 1. Proposed architecture.

 0

 500

 1000

 1500

 2000

 400 600 800 1000 1200 1400 1600 1800 2000

La
te

nc
y

(m
s)

TPM

Base
SN
SS

Figure 2. Throughput and latency results.

have a local copy of that page. Stability is ensured by
the following protocol: When the writer node issues a
write request, it is blocked and all nodes requested to
fetch the previous value of the data from shared storage
and store it as a local copy. Upon receiving replies from
all nodes, the write request can proceed. Read and sync
requests are not intercepted at the writer. This needs
to be done only once for each block, thus reducing the
number of distributed interactions required. Write re-
quests from copier nodes are directly routed to the copy
without any distributed interaction whatsoever. Read
requests are first served from the local copy and if un-
available, because yet unwritten, from the shared stor-
age. Sync requests are ignored, since there is no persis-
tent storage involved.

To prevent volatile local copies of becoming in-
creasingly large, as pages are updated by different nodes
and copies need to be created, each copier is periodi-
cally restarted, thus flushing its local cache and restart-
ing from the shared copy maintained by the writer node.
The net result is a shared-storage cluster with minimal
changes to existing DBMS software, where a single
copy of the data, indistinguishable from what a single
DBMS instance would create, is shared.

3. Discussion

To evaluate the feasibility of the proposed ap-
proach, we have implemented it on MySQL Server 5.1
by intercepting all file I/O system calls issued by the
InnoDB subsystem. Then we compared the resulting
shared-storage configuration (SS) with two configura-
tions that can be achieved with the original server soft-
ware: a shared-nothing configuration (SN) and a base-
line configuration using a single server (Base). All tests
were performed on the same 2 server cluster hardware
and used the same workload generated according to
the TPC-W benchmark ordering mix. In detail, read-
only transactions are evenly distributed among available
servers while update transactions are executed by all of
them.

The results are shown in Fig. 2, showing aggre-
gate throughput and average latency as load is increased
by adding emulated clients. Namely, the Base configu-
ration peaks at approximately 800 TPM while, as ex-
pected in such a small cluster, the SN configuration
achieves roughly linear scalability, doubling the max-
imum achievable throughput. Most interestingly, our
SS configuration, using the same storage resources as
Base, provides performance comparable to SN which
must use twice the storage space and bandwidth. This
means that the SS configuration can be configured with
exactly as much storage redundancy as desired, exactly
as Base and other shared-storage approaches, in con-
trast to the SN configuration in which one must use at
least as many physical disk copies as cluster nodes.

Current work focuses on experimental evalua-
tion [4] to determine the overhead of the stability
and garbage collection mechanisms. The current im-
plementation based on MySQL 5.1 is available at
http://holeycow.org. Preliminary results ob-
tained indicate that indeed the overhead of the stability
protocol is negligible. By measuring the growth of local
copies, one can also conclude that garbage collection by
periodical restarts should be feasible.

Finally, the containment of each replica by its lo-
cal copy-on-write file should also provide important re-
silience guarantees in face of faults, such as software
bugs in the DBMS server, that lead to memory and
disk corruption. Moreover, the limited dependency on
shared structures introduced by our approach should
also be advantageous to enable on-line upgrade of the
DBMS server to a new version.

References

[1] E. Cecchet, J. Marguerite, and W. Zwaenepoel. Partial
replication: Achieving scalability in redundant arrays of
inexpensive databases. In Intl Conf. Principles of Dis-
tributed Systems (OPODIS), 2003.

[2] I. Gashi, P. Popov, and L. Strigini. Fault tolerance via
diversity for off-the-shelf products: A study with sql
database servers. IEEE Tran. Dependable and Secure
Computing, 4(4):280–294, Oct.-Dec. 2007.

[3] T. Lahiri, V. Srihari, W. Chan, N. Macnaughton, and
S. Chandrasekaran. Cache fusion: Extending shared-disk
clusters with shared caches. In Intl. Conf. Very Large
Databases (VLDB), 2001.

[4] Luı́s Soares and José Pereira. Implementation
and evaluation of the HoleyCoW proof-of-concept.
http://holeycow.org, 2009.

[5] Luı́s Soares and José Pereira. A simple approach to
shared storage database servers. In Proc. of 3rd Ws.
Depdendable Distributed Data Management (with Eu-
roSys’09), 2009.

