Database preservation toolkit:

a flexible tool to normalize and give access to databases

DLM Forum: "Making the Information Governance Landscape in Europe"

Nov. 12-14, 2014, Lisbon, Portugal

KEEP SOLUTIONS: Projects

- DigitArq, CRAV (2003..[2008-2012])
- RODA (2006..[2008-...[)
- RCAAP (2008-...)
- PPA (2009)

- Scientific research (european projects)
 - SCAPE: Large scale preservation
 - 4C: the cost for curation
 - e-arK: presented by Kuldar

http://www.keep.pt

Database Preservation Toolkit

Developed within RODA project

Now stand-alone open-source project

http://keeps.github.io/db-preservation-toolkit/

Imports and exports between DBMS and DB formats

Supports preservation formats: DBML, SIARD

The Past: 2006 - 2009

RODA: Repositório de Objectos Digitais Autênticos

José Carlos Ramalho

Miguel Ferreira

mterreira@dsi.uminho.pt

Rui Castro

<u>Rcastro@iantt.pt</u>

01042006

Francisco Barbedo frbarbedo@iantt.pt

Cecília Henriques

Luis Corujo

corujo@iantt.pt

Luis Faria

faria@iantt.pt

What is RODA?

A digital repository created for archives, with the following features:

- Long term preservation and Autenticity
- Standards based (OAIS, EAD, PREMIS, METS, etc.)
- Following TRAC demands (Trustworthy Repositories Audit & Certification)
- Security policies
- Service Oriented Architecture (SOA)
- Nice and simple design
- Open source
- DGArq and University of Minho

CONTEXT

RODA (2006-2009)

- Metadata management (EAD)
- Digital Object management (...)
- Digital Preservation Policies and protocols
- National Project (Archives National Board)

CRiB: Preservation Services Digital Repositories (2005-2008)

- Distributed Migration Service
- Migration Service supported by knowledge base
- phd Thesis / U. Minho (Miguel Ferreira)

CONTEXT

RODA (2006-2009)

- Metadata management (EAD)
- Digital Object management (...)
- Digital Preservation Policies and protocols
- National Project (Archives National Board)

CRiB: Preservation Services Digital Repositories (2005-2008)

- Distributed Migration Service
- Migration Service supported by knowledge base
- phd Thesis / U. Minho (Miguel Ferreira)

OAIS

Migration services & preservation actions

Architecture

Communication interface

Migration services & preservation actions

Architecture

Communication interface

Ingest

Object class and format

- Object class and format
- Place in classification plan

- Object class and format
- Place in classification plan
- Descriptive metadata

- Object class and format
- Place in classification plan
- Descriptive metadata
- Preservation metadata

- Object class and format
- Place in classification plan
- Descriptive metadata
- Preservation metadata
- Technical metadata

- Object class and format
- Place in classification plan
- Descriptive metadata
- Preservation metadata
- Technical metadata
- Representation files

- Object class and format
- Place in classification plan
- Descriptive metadata
- Preservation metadata
- Technical metadata
- Representation files
- Identification of root file

 How do we keep archived databases readable and usable in the long term (at acceptable cost)?

- How do we keep archived databases readable and usable in the long term (at acceptable cost)?
- How do we separate the data from a specific database management environment?

- How do we keep archived databases readable and usable in the long term (at acceptable cost)?
- How do we separate the data from a specific database management environment?
- How can we preserve the original data semantics and structure?

- How do we keep archived databases readable and usable in the long term (at acceptable cost)?
- How do we separate the data from a specific database management environment?
- How can we preserve the original data semantics and structure?
- How can we preserve authenticity and provenance of databases?

- How do we keep archived databases readable and usable in the long term (at acceptable cost)?
- How do we separate the data from a specific database management environment?
- How can we preserve the original data semantics and structure?
- How can we preserve authenticity and provenance of databases?
- How can we preserve data while it continues to evolve? (here we can split the problem in two: operational databases and frozen databases)

- How do we keep archived databases readable and usable in the long term (at acceptable cost)?
- How do we separate the data from a specific database management environment?
- How can we preserve the original data semantics and structure?
- How can we preserve authenticity and provenance of databases?
- How can we preserve data while it continues to evolve? (here we can split the problem in two: operational databases and frozen databases)
- How can we have efficient preservation frameworks, while retaining the ability to query different database versions?

- How do we keep archived databases readable and usable in the long term (at acceptable cost)?
- How do we separate the data from a specific database management environment?
- How can we preserve the original data semantics and structure?
- How can we preserve authenticity and provenance of databases?
- How can we preserve data while it continues to evolve? (here we can split the problem in two: operational databases and frozen databases)
- How can we have efficient preservation frameworks, while retaining the ability to query different database versions?
- How can multi-user online access be provided to hundreds of archived databases containing terabytes of data?

- How do we keep archived databases readable and usable in the long term (at acceptable cost)?
- How do we separate the data from a specific database management environment?
- How can we preserve the original data semantics and structure?
- How can we preserve authenticity and provenance of databases?
- How can we preserve data while it continues to evolve? (here we can split the problem in two: operational databases and frozen databases)
- How can we have efficient preservation frameworks, while retaining the ability to query different database versions?
- How can multi-user online access be provided to hundreds of archived databases containing terabytes of data?
- Can we move from a centralized model to a distributed, redundant model of database preservation?

- How do we keep archived databases readable and usable in the long term (at acceptable cost)?
- How do we separate the data from a specific database management environment?
- How can we preserve the original data semantics and structure?
- How can we preserve authenticity and provenance of databases?
- How can we preserve data while it continues to evolve? (here we can split the problem in two: operational databases and frozen databases)
- How can we have efficient preservation frameworks, while retaining the ability to query different database versions?
- How can multi-user online access be provided to hundreds of archived databases containing terabytes of data?
- Can we move from a centralized model to a distributed, redundant model of database preservation?

General big questions...

• What are the salient features of a database that should be preserved? (significant properties...)

- What are the salient features of a database that should be preserved? (significant properties...)
- What are the different stages in the database preservation's life cycle?

- What are the salient features of a database that should be preserved? (significant properties...)
- What are the different stages in the database preservation's life cycle?
- What documentation is preserved together with a database, and in what format?

- What are the salient features of a database that should be preserved? (significant properties...)
- What are the different stages in the database preservation's life cycle?
- What documentation is preserved together with a database, and in what format?
- What are the legal encumbrances on database preservation?

- What are the salient features of a database that should be preserved? (significant properties...)
- What are the different stages in the database preservation's life cycle?
- What documentation is preserved together with a database, and in what format?
- What are the legal encumbrances on database preservation?
- What can be learned from traditional archival appraisal for the selection of databases for preservation?

- What are the salient features of a database that should be preserved? (significant properties...)
- What are the different stages in the database preservation's life cycle?
- What documentation is preserved together with a database, and in what format?
- What are the legal encumbrances on database preservation?
- What can be learned from traditional archival appraisal for the selection of databases for preservation?
- To what extent can the preservation strategies, and procedural policies developed by archivists be adapted for databases?

- What are the salient features of a database that should be preserved? (significant properties...)
- What are the different stages in the database preservation's life cycle?
- What documentation is preserved together with a database, and in what format?
- What are the legal encumbrances on database preservation?
- What can be learned from traditional archival appraisal for the selection of databases for preservation?
- To what extent can the preservation strategies, and procedural policies developed by archivists be adapted for databases?
- How can we mesure the quality of preservation strategies when they are applied to data- bases? What are **DB significant properties**? *(quality assurance...)*

- What are the salient features of a database that should be preserved? (significant properties...)
- What are the different stages in the database preservation's life cycle?
- What documentation is preserved together with a database, and in what format?
- What are the legal encumbrances on database preservation?
- What can be learned from traditional archival appraisal for the selection of databases for preservation?
- To what extent can the preservation strategies, and procedural policies developed by archivists be adapted for databases?
- How can we mesure the quality of preservation strategies when they are applied to data- bases? What are **DB significant properties**? *(quality assurance...)*

DATABASES: GOALS

- How do we store them?
- How do we access them?

DATABASES: GOALS

- How do we store them?
- How do we access them?

RODA questions...

Normal evolution path:

Data => Structure => Semantics

Normal evolution path:

Data => Structure => Semantics

- Data
- Structure
- Only "frozen" DBs

• Data?

Normal evolution path:

Data => Structure => Semantics

- Data
- Structure
- Only "frozen" DBs

Normal evolution path:

Data => Structure => Semantics

• Structure?

• Data?

- Data
- Structure
- Only "frozen" DBs

Normal evolution path:

Data => Structure => Semantics

- Data?
- Structure?
- Views?

- Data
- Structure
- Only "frozen" DBs

Normal evolution path:

- Data? Data => Structure => Semantics
- Structure?
- Views?
- Reports?

- Data
- Structure
- Only "frozen" DBs

Normal evolution path:

• Data? Data => Structure => Semantics

- Structure?
- Views?
- Reports?
- Stored Procedure

- Data
- Structure
- Only "frozen" DBs

Normal evolution path:

Data => Structure => Semantics

- Data?
- Structure?
- Views?
- Reports?
- Stored Procedure

- First prototype:
 - Data
 - Structure
 - Only "frozen" DBs

HOW?

The need for an intermediate representation

HOW?

The need for an intermediate representation

IR: DBML

IR: DBML

DBML DESIGN PRINCIPLES

- Hardware independent;
- Software independent;
- Easy to process;
- Descriptive;
- It should be possible to add metadata;
- It should be possible to add semantics;

DBML DESIGN PRINCIPLES

- Hardware independent;
- Software independent;
- Easy to process;
- Descriptive;
- It should be possible to add metadata;
- It should be possible to add semantics;

XML was the obvious choice

SIP STRUCTURE (DB EXAMPLE)

SIP STRUCTURE (DB EXAMPLE)

SIP STRUCTURE (DB EXAMPLE)

DBML

DBML: STRUCTURE

DBML: DATA

DATABASES: RODA ANSWERS

- How do we store them?
 - ★ DBML + binaries + technical metadata
- How do we access them?
 - ★ PhpMyAdmin (hacked version)

DATABASES: RODA ANSWERS

- How do we store them?
 - ★ DBML + binaries + technical metadata
- How do we access them?
 - ★ PhpMyAdmin (hacked version)

RODA answers...

SOME PROBLEMS

- Extracting data is easy:
 - ◆ SELECT * FROM ...
- Extracting the structure is not:
 - ◆ DBMS protect this information;
 - ◆ Each DBMS stores it differently;
 - ◆ Different versions of the same DBMS can also act differently;
 - ♦ We have to "prepare/hack" the DBMS.

Two approaches emerged:

 Preserve the database and the environment allowing authentic access to the information and any accompanying applications

 Extract / migrate the raw data and table structure from the original database

Two approaches emerged:

• Preserve the database and the environment attemption strategy to the information and any accompany emulations

Relies on emulations

 Extract / migrate the raw data and table structure from the original database

Two approaches emerged:

• Preserve the database and the environment to the information and any accompany emulation strategy to the information and any accompany emulations Relies on Relies o

Relies on migration strategy re from the original Extract / migrate the raw data and table structure database

Two approaches emerged:

• Preserve the database and the environment to the information and any accompany emulation strategy to the information and any accompany emulations Relies on Relies o

Relies on migration strategy re from the original Extract / migrate the raw data and table structure database

RODA+DBML

Two approaches emerged:

• Preserve the database and the environment to the information and any accompany emulation strategy to the information and any accompany emulations Relies on Relies o

Relies on migration strategy re from the original Extract / migrate the raw data and table structure database

RODA+DBML

SIARD

Two approaches emerged:

• Preserve the database and the environment to the information and any accompany emulation strategy to the information and any accompany emulations Relies on Relies o

Relies on migration strategy re from the original Extract / migrate the raw data and table structure database

RODA+DBML

SIARD

SIARD-DK

Two approaches emerged:

• Preserve the database and the environment to the information and any accompany emulation strategy to the information and any accompany emulations Relies on Relies o

Relies on migration strategy re from the original Extract / migrate the raw data and table structure database

RODA+DBML

SIARD

SIARD-DK

DBML vs SIARD

	DBML	SIARD
Data	Yes (no segmentation)	Yes (with segmentation)
Structure	Yes (XML)	Yes (XSD)
Stored Procedures	No	Yes (XML)
Triggers	No	Yes (XML)
Views	No	Yes (XML)

db-preservation-toolkit architecture

db-preservation-toolkit architecture

db-preservation-toolkit architecture

Access

Access

Working on RDF viewer, we don't need to stay stuck in the relational model

New prototype

Msc thesis: "Database Convert Tool: exploring SIARD"

OWL model development

Triple Store Implementation

RDF endpoint implementation

SPARQL based access

DBML SIARD Preservation formats db-preservation-toolkit Lucene / Solar index Fast viewer resources Web interface & REST API Fast viewer application Future plan: Fast database viewer

Recent work

Phd thesis: Graph view dissemination, relational model reverse engineering, algorithm development (from relational to graph model) [http://repositorium.sdum.uminho.pt/handle/1822/25655]

Msc thesis: SIARD support (DBML replacement)

Msc thesis: RDF representation for databases

Questions?

José Carlos Ramalho
Engineer / Researcher / Teacher
jcr@keep.pt / jcr@di.uminho.pt

ARQUIVOS

BIBLIOTECAS

MUSEUS