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Abstract 

A kinetic study on the oxidation of hydroxy-containing aromatic compounds by 

electrogenerated HO radical and simultaneous by direct electron transfer is presented. 

First order kinetics are used to describe consumption rates of hydroquinone, benzoic 

acid and of hydroxybenzoic acid derivatives by galvanostatic electrolysis with 

simultaneous oxygen evolution at a Pt electrode. Linear correlations were established 

from the effect of electrolyses current density on kapp. The meaning of the intercept and 

of the slope is analysed. A good agreement is found between intercept values and the 

apparent rate constants from potentiostatic electrolysis without O2 evolution. 

Simultaneously, the slopes magnitude corroborate the relative reactivity order of species 

that was established considering the occurrence of positive charge densities on carbon 

atoms of the aromatic ring. Therefore, the present analysis provides kinetic information 

concerning both, the direct electron-transfer and the reaction with HO radical. 
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1. Introduction 

Electrochemical methods have proved to be adequate for the destruction of organics in 

aqueous media. A significant number of researchers has sought new electrode materials 

and improved reactors design to optimize mineralization indexes. Boron-doped 

diamond (BDD) was the most used anode material for this purpose [1–7], allowing to an 

efficient decrease of the TOC (total organic content) of aqueous solutions containing 

test compounds, such as phenol [8,9], benzoic acid [10,11], bisphenol A [12] or gallic 

acid [13]. The efficiency of organics destruction, by means of their electrooxidation 

with simultaneous oxygen evolution, was attributed to the formation of HO radicals as 

intermediaries of water electrooxidation [14–16]. The formation of this radical was 

detected in assays using anodes of Ti/IrO2, Ti/SnO2 and Pt using a radical trap [15]. The 

following mechanism was proposed for the oxidation of organics mediated by HO 

radicals [17]. 

−+ ++⎯⎯ →⎯ • eHHOOH2 HOk

 

(1) 

−+ ++⎯⎯→⎯• 2e2HOHO 2 2
2Ok

 

(2) 

Products HOn  R ⎯⎯ →⎯+ • R, HOk
 (3) 

The adsorption of HO radicals at the anode surface has a significant effect on their 

reactivity. When they are strongly adsorbed they display lower reactivity, as it happens 
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for Pt or IrO2, whereas when the adsorption strength is weak, as it happens for BDD, the 

reactivity of electrogenerated radicals is important [7]. 

Although most of the available studies deal with high oxidation power anodes, the use 

of anodes with low oxidation power can have important applications particularly when a 

certain degree of selectivity is required for oxidation. 

In a previous work [18] we have reported a kinetic study on the oxidation of two 

compounds (BA and 4-HBA) using BDD and Pt, where it was shown that consumption 

of species occurred mainly by reaction with electrogenerated HO radicals. Based on 

these results, a kinetic treatment was presented, considering the relative magnitude of 

the organics concentration towards 
2

/, OHOR kk , that allows the interpretation of 

concentrations decay during galvanostatic electrolysis. 

In this work, a kinetic study on aromatic compounds oxidation by electrogenerated HO 

radical with simultaneous direct electron transfer is presented. The possibility of 

extending our previous analysis to electroactive compounds is quite relevant as a great 

number of organic compounds is electroactive, particularly the model compounds used 

in mineralization studies. Compounds used in this work were selected regarding the 

direct electron transfer reaction features namely, the number of electrons involved (one 

or two) and the stability of the formed products (semiquinone radical or quinones). 

Kinetic data is analysed considering the presumed reactivity of these species suggested 

from charge density values on carbon atoms of the aromatic ring. 
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2. Experimental 

2.1. Chemicals 

All reagents employed were of analytical grade: benzoic acid (BA; Prolabo), 4-

hydroxybenzoic acid (4-HBA; BDH Chemicals), 2,3-dihydroxybenzoic acid (2,3-HBA; 

ACROS Organics), 2,4-dihydroxybenzoic acid (2,4-HBA; ACROS Organics), 2,5-

dihydroxybenzoic acid (2,5-HBA; ACROS Organics), 3,4,5-trihydroxybenzoic acid 

(3,4,5-HBA; Sigma), hydroquinone (HQ; May & Baker, Ltd), potassium chloride 

(Fluka), potassium ferrocyanide and potassium ferricyanide (José Gomes Santos), 

potassium dihydrogen phosphate and phosphoric acid (ACROS Organics). Methanol 

was of HPLC grade from Fisher Scientific. 

 

2.2. HPLC 

Oxidation reactions were monitored following the concentration decrease along 

galvanostatic electrolyses by HPLC. HPLC experiments were performed using a Jasco, 

PU-2080 Plus system equipped with a RP 18 column from Grace Smart (250 mm × 4.6 

mm, 5 µm particle size) and using Clarity HPLC software from Jasco (Jasco 870 / UV 

detector). A flow rate of 0.6 ml min-1 and a loop of 20 µl were used. A mixture of 

methanol, water and phosphoric acid (60:39:1) (v/v) was used as mobile phase. The 

detection wavelength was selected according to species: 210 nm for 2,3-HBA and 2,4-

HBA; 230 nm for BA, 4-HBA and 2,5-HBA; and 280 nm for 3,4,5-HBA and HQ. The 

quantification was performed using calibration curves. 
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2.3. Electrochemical measurements 

Voltammetric measurements and galvanostatic / potentiostatic electrolyses were 

performed using a potentiostat (Autolab type PGSTAT30, Ecochemie) controlled by 

GPES 4.9 software provided by Ecochemie. 

2.3.1. Cyclic voltammetry 

Cyclic voltammetry experiments were carried out from -0.25 to 1.4 V using an 

undivided three-electrode cell. The working electrodes were of glassy carbon (GC; 3 

mm diameter disk electrode, CHI104, CH Instruments, Inc.) and of Pt (EM-EDI, 

Radiometer Analytical). An Ag /AgCl, 3.0 M (CHI111, CH Instruments, Inc.) was used 

as reference electrode and a Pt wire as counter electrode. The surface of the GC 

electrode was cleaned between scans by polishing with polycrystalline diamond 

suspension (3F µm; Buehler) for ≈1 min. The Pt electrode was electrochemically 

cleaned in 0.10 M phosphate buffer pH 3.5 at the oxygen evolution region (0.02 A) 

during 600 s. 

2.3.2. Electrolysis 

Galvanostatic electrolyses were carried out using current densities from 50 to 1250 A m-

2 in a two compartments cell separated by a glass frit membrane. The volume of the 

anodic compartment was 9.0 ml and the solution was mechanically stirred with a 

magnetic stir bar (300 rpm). The anode is made of a piece (20 mm ×	
 10 mm) of Pt 

gauze (52 mesh woven from 0.1 mm diameter wire, 99.9%, from Alfa Aesar). Before 

each experiment the anode was cleaned electrochemically in 0.1 M phosphate buffer pH 

3.5 during 600 s at a constant current of 0.02 A. The area of the Pt working electrode 

(5.6 cm2) was determined in a chronoamperometry experiment using 1.00 mM of 

K3[Fe(CN)6] in 0.1 M KCl [19]. 
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Reported apparent rate constants from oxidation of hydroxybenzoic acid derivatives and 

of HQ were determined using data of at least two electrolyses and displayed 

uncertainties correspond to standard deviations. 

 

2.4. Diffusion coefficients  

Diffusion coefficients (D) were estimated from the slope of Ip vs. 2/1v  (regarding 

voltammetric data from 20 to 100 mV s-1) for hydroxybenzoic acids derivatives whose 

first oxidation peaks involve a single electron. α values were estimated considering (Ep-

Ep/2) = 48 / (α n) (Table 1). The number of electrons of the first oxidation peak in Table 

1 were obtained from literature [20–23]. As the homogeneous rate constants were not 

known, the selection of the scan rates was based on the fit to a linear dependence of Ip 

with 2/1v . In this way, linearity between Ip and 2/1v  at the higher scan rates confirms 

that the contribution of double layer charging current is negligible vis a vis the faradaic 

current as double layer charging current varies linearly with v and not with 2/1v . On the 

other hand, pure kinetic behaviour (lower scan rates) was discarded as in this region Ip 

of EC processes changes only slightly with 2/1v  [24]. Despite a pure diffusion 

behaviour is not assured the introduced uncertainty is known to be low for EC processes 

[24]. Validation of determined D values cannot be performed as there are not available 

D values for most of the compounds analysed. For 3,4,5-HBA the calculated value of D 

is in agreement with that reported elsewhere based on simulation results [22] with a 

deviation of 5%. Reported uncertainties were calculated using the standard deviation of 

the slope of Ip vs. 2/1v . 
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Table 1: Voltammetric data (regarding the first oxidation peak) of the different hydroxybenzoic acid derivatives, 

hydroquinone and of potassium hexacyanoferrate estimated from results in Figure 1. Diffusion coefficients of species 

whose first oxidation peak involves a single electron were determined by from the slope of Ip vs. 2/1v . 

 Ep (V)  Ip (10-6A) Ep - Ep/2 (mV) Ep
a - Ep

c (mV) n α D (10-5 cm2 s-1) 

4-HBA 1.002 ± 0.004 7.36 ± 0.02 78 − 1 [20] 0.62 3.5 ± 0.1 

2,3-HBA 0.496 ± 0.007 10.54 ± 0.07 69 − 1 [21] 0.70 3.6 ± 0.6 

2,4-HBA 0.996 ± 0.006 9.56 ± 0.04 74 − 1 [20] 0.65 3.8 ± 0.3 

2,5-HBA 0.430 ± 0.004 8.75 ± 0.04 51 135 2 [27] a) − 

3,4,5-HBA 0.527 ± 0.001 7.72 ± 0.03 73 − 1 [22] 0.66 3.7 ± 0.2 

HQ 0.477 ± 0.004 5.91 ± 0.03 71 288 2 [23] a) − 

[Fe(CN)6]4- 0.281 ± 0.001 3.07 ± 0.02 60 65 1 [24] b) 0.77 ± 0.03 

a) ECEC mechanism 

b) reversible electron transfer 

 
2.5. Hydrodynamics characterization of the electrolysis cell 

The mass transport efficiency of the electrochemical cell was characterized by analysis 

of j - t curves from electrolyses (1.2 V) of 0.50 mM K4[Fe(CN)6] in 0.15 M phosphate 

buffer pH 3.5 (Eq. (4)) [24] . 

⎟⎟⎠

⎞
⎜⎜⎝

⎛
−= t

V
A k

 
j
j appexp
0

  (4) 

where, A is the anode surface area, V is the volume of the solution in the anodic 

compartment, kapp is the apparent rate constant that characterizes the consumption of the 

substrate and t is time. As oxidation of [Fe(CN)6] 4- is a very fast one-electron transfer, 

the process is mass transport controlled and therefore kapp = km: 

δ
Dkm =   (5) 

where, km is the mass transport coefficient and δ is the diffusion-layer thickness.  
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From Eq. (5) δ = 2.53 × 10-3 cm was determined using km = 3.04 × 10-3 cm s-1 

(evaluated from j - t curve of potentiostatic electrolysis) and D = 7.7 × 10-6 cm2 s-1 (from 

voltammograms recorded in 0.15 M phosphate buffer pH 3.5 and using Cottrell 

equation). Calculated values of D for [Fe(CN)6]4- is in agreement with that reported 

[25]. 

 

2.6. Charge density calculations  

Charge density values were calculated using MarvinSketch, a Java based chemical 

editor, provided by platform ChemAxon. Representation of molecules was drawn also 

using MarvinSketch. 

 

3. Results and discussion 

Electrogeneration of HO radicals from water occurs at potentials higher than those 

required for oxidation of most hydroxybenzoic acid derivatives, therefore it is expected 

that their direct oxidation occurs simultaneously with the oxidation via HO radicals. 

Characterization of voltammetric response of these compounds is consequently relevant 

for interpretation of their oxidation kinetics. 

 

3.1. Cyclic voltammetry and potentiostatic electrolysis 

Cyclic voltammetry of 4-HBA, 2,3-HBA, 2,4-HBA, 2,5-HBA, 3,4,5-HBA and HQ in 

phosphate buffer pH 3.5 was carried out at Pt and GC electrodes. Voltammograms of 

BA (both at Pt and at GC) and of 4-HBA (at Pt) are not significantly different from 

those of blank solution. For the other compounds, voltammograms recorded at Pt 

electrode are not well defined due to Pt oxide formation current (not shown). Fig. 1 

reports voltammetric responses of 4-HBA, 2,3-HBA, 2,4-HBA, 2,5-HBA and 3,4,5-
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HBA at a GC electrode in phosphate buffer pH 3.5. Voltammogram of HQ is also 

reported in Fig. 1 as a reference compound. Table 1 contains voltammetric data from the 

first oxidation process (Ip, Ep, Ep-Ep/2 and Ep
a-Ep

c) as well as experimental values of D 

(section 2.4).Oxidation of the monohydroxybenzoic acid, 4-HBA, corresponds to a 

single electron transfer [20]. The peak potential, Ep, is very positive as compared to HQ 

peak potential and no significant reverse peak is noticeable. The oxidation process is 

assigned to the formation of a semiquinone and is accomplished by the abstraction of a 

proton. The semiquinone radical is very unstable and therefore its formation is followed 

by other reactions, including dimerization and polymerization [20,26].  

Polyhydroxybenzoic acids with two or more HO groups can be oxidized by one or more 

electrons. This is clearly observed in the voltamograms of 2,3-HBA and of 3,4,5-HBA 

where the HO groups are in ortho position in respect to each other. In this configuration 

the semiquinone radical formed by the first electron-transfer reaction is further oxidized 

to quinone in a second process [21,22]. In this case the first oxidation is rather 

facilitated and occurs at a low potential, comparable to that of HQ. Nevertheless, no 

reverse peak is observed. Voltammogram of 2,4-HBA also displays two peaks (partially 

overlapped) that can correspond to two successive electron transfer processes. The first 

oxidation peak occurs at a potential comparable to that of 4-HBA and superior to that of 

2,3-HBA and to that of 3,4,5-HBA. The HO groups in 2,5-HBA are located in para 

position in respect to each other, like in HQ and both compounds are oxidized in a 

single step involving the transfer of 2 electrons accomplished by the abstraction of 2 

protons [23,27]. Although the processes are irreversible by an electrochemical 

perspective the formed quinone can be reduced back in the reverse scan. 

As global trend, it can be remarked that voltammograms of species that enable the 

formation of a para-quinone (as for 2,5-HBA and HQ) display a single oxidation 
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process with a reverse peak, while when a ortho-quinone can be formed oxidation 

occurs by two one-electron processes and without reverse peak (as for 2,3-HBA and 

3,4,5-HBA). In both cases (formation of ortho or para-quinone) the first peak potential 

is rather low compared to that of species that do not afford the formation of quinones 

(as for 4-HBA and 2,4-HBA). 

 

Fig. 1: Cyclic voltammograms (from top to bottom) of 0.50 mM 4-HBA, 2,4-HBA, 2,5-HBA, 2,3-HBA, 3,4,5-HBA 

and HQ in 0.15 M phosphate buffer solution pH 3.5, recorded at 20 mV s-1 using a GC electrode. 

Potentiostatic electrolysis were carried out with BA, 4-HBA, 2,4-HBA, 2,3-HBA, 2,5-

HBA, 3,4,5-HBA and HQ at 1.2 V. This potential is much higher than the peak 



	
  

11	
  
	
  

potential of these species (of voltammograms recorded in carbon electrodes) but is 

lower than the required for oxygen evolution. Concentration decrease was monitored by 

HPLC and apparent rate constants were determined according to Eq. (6) that is 

characteristic of 1st order kinetics: 

⎟⎟⎠

⎞
⎜⎜⎝

⎛
−= t

V
 Ak

 
C
C appexp
0  (6) 

where, C is the concentration at a given time and C0 is the initial concentration. 

Calculated values for the apparent rate constant for 2,3-HBA, 2,5-HBA, 3,4,5-HBA and 

HQ are presented in Table 2 as k0
app. For BA and for 4-HBA current dropped to zero 

almost at the start of potentiostatic electrolysis, indicating that electron transfer reaction 

did not occur at Pt. For 2,4-HBA an abrupt drop of current was observed at the first 

instants of potentiostatic electrolysis due to anode passivation probably due to formation 

of polymers at the electrode surface. Values of km calculated by means of Eq. (5), using 

D values reported in Table 1, are much higher than experimental k0
app values (Table 2). 

The difference between these two parameters is quite significant and cannot be assigned 

to the inaccuracy of D values related to the presence of the coupled chemical reaction as 

previously discussed. The discrepancy between km and k0
app provide a strong evidence 

that the electron transfer rate is low at the present conditions and the electrolysis rate is 

not limited by mass transport. 

 

3.2. Galvanostatic electrolysis 

Galvanostatic electrolyses of BA, hydroxybenzoic acid derivatives and of HQ (0.50 

mM) in 0.15 M phosphate buffer pH 3.5 using Pt anode were conducted at a current 

density of 1250 A m-2 with simultaneous oxygen evolution. Concentration decrease, 

expressed by means of the concentrations ratio C/C0, was quantified by HPLC and is 

plotted against electrolysis time. Values of concentration decrease of BA and of 3,4,5-
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HBA are presented in Fig. 2. Curves displayed are fitted to experimental data 

considering Eq. (6). 

 

Fig. 2: Concentration decrease during galvanostatic electrolyses (Pt anode at 1250 A m-2) of 0.50 mM solutions: (l) 

BA (C/C0 = exp ((-3.8 ± 0.1) × 10-4 t), r = 0.99) and (n) 3,4,5-HBA (C/C0) = exp ((-3.6± 0.2) × 10-3 t), r = 0.99). 

Equations and curves were obtained by regression analysis. 

 

Concentrations decrease of 3,4,5-HBA can be assigned to its oxidation by 

electrogenerated HO radicals and also by direct electron-transfer, while for BA is 

mainly due to oxidation by HO radicals (as there is no evidence of direct electron 

transfer by voltammetric studies). Experimental kapp value of 3,4,5-HBA (66 × 10-6 m s-

1) is quite different from that of BA (6.10 × 10-6 m s-1) and is considerable lower than 

the calculated mass transport coefficient, km (146 × 10-6 m s-1). Values of km are much 

higher than experimental kapp values for all the analyzed hydroxybenzoic acid 

derivatives (Table 2). If the process was controlled by mass transport kapp values should 

be higher than the calculated km values using the δ obtained from potentiostatic 

electrolyses without O2 evolution. Due to bubbles formation, convection is increased 

and thus δ must be thinner, what would imply higher mass transport efficiency, in 

opposition to what is observed. These results provide an unequivocal indication that kapp 
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is not limited by mass transport. Instead kapp provides a measure of the rate of whole 

oxidation reactions associated to the consumption of species, by direct electron transfer 

and by electrogenerated HO radicals. 

 

3.3. Current density effect 

The effect of current density on the consumption of 2,4-HBA is illustrated in Fig. 3, 

where C/C0 values against time are reported for 50, 268, 625 and 1250 A m-2. All 

galvanostatic electrolyses were performed with simultaneous O2 evolution.  

 

Fig. 3: Concentration decrease during galvanostatic electrolyses of 2,4-HBA (C0 = 0.50 mM) at a Pt anode: (l) 50 A 

m-2 (C/C0 = exp ((-0.7 ± 0.1) × 10-3 t), r = 0.99), (n) 268 A m-2, (C/C0 = exp ((-1.36 ± 0.02) × 10-3 t), r = 0.999), (u) 

628 A m-2, (C/C0 = exp ((-2.6 ± 0.2) × 10-3 t), r = 0.99) and (�)1250 A m-2, (C/C0 = exp ((-3.9 ± 0.5) × 10-3 t), r = 

0.99). Equations and curves were obtained by regression analysis. 

 

Experimental kapp values are reported in Table 2 together with the corresponding values 

of other hydroxybenzoic acid derivatives and of HQ. An increase of kapp with current 

density is evident for all the compounds studied. The origin of this variation cannot be 

attributed to an increase of mass transport rate associated to a raise of oxygen bubbles 

formation as the processes are not mass transport limited, as explained in the previous 
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section. Therefore this variation must be related to the kinetic variables that control the 

oxidation rates of these compounds. 

 

Table 2: Apparent rate constants from potentiostatic electrolysis (k0
app) and from galvanostatic electrolysis (kapp) at 

different current densities. Values of (kapp)j = 0  correspond to the intercept of the straight lines in Fig. 4. The mass 

transport coefficient values (km) reported were calculated using δ = 2.53 × 10 -5 m (according to results from 

[Fe(CN)6] 4- reported in section 2.5.) and the diffusion coefficients of Table 1. 

 1.2 V    50 (A m-2) 268 (A m-2) 625 (A m-2) 1250 (A m-2)   

 k0
app (10-6 m s-1)  (kapp)j=0 (10-6 m s-1)  kapp (10-6 m s-1)  km (10-6 m s-1) 

BA a)  -0.3 ± 0.5  0.38 ± 0.05 1.21 ± 0.06 3.60 ± 0.03 6.10 ± 0.01  c) 

4-HBA a)  -0.1 ± 1.2  2.57 ± 0.06 8 ± 1 24 ± 4 45 ± 4  138 ± 21 

2,3-HBA 18.2 ± 0.6  21 ± 1  21.1 ± 0.5 30 ± 2 37 ± 4 52 ± 3  142 ± 31 

2,4-HBA b)  9.8 ± 0.2  11 ± 2 22 ± 1 41 ± 3 67 ± 3  150± 26 

2,5-HBA 19.0 ± 0.5  21.5 ± 0.7  22 ± 2 27 ± 3 34 ± 3 46 ± 2  d) 

3,4,5-HBA 30 ± 8  30 ± 2  32 ± 2 39 ± 3 45 ± 4 66 ± 6  146 ± 23 

HQ 38.2 ± 0.4  38 ± 1  39.6 ± 0.3 47 ± 1 53 ± 2 73 ± 4  d) 

a) no faradaic current was measured 

b) not possible to measure due to the anode passivation during potentiostatic electrolysis. 

c) not determined as no voltammetric response was obtained. 

d) not calculated as the 1st peak corresponds to a ECEC mechanism. 

 

As consumption of hydroxybenzoic acid derivatives can be due to direct electron 

transfer as well as to reaction with HO radicals, Eq. (7) must be considered in addition 

to Eq. (3):  

Products ne  R ,- ⎯⎯→⎯+ eRk  (7) 

Therefore the rate of consumption of species results from the contribution of these two 

processes: 

eRHORR vvv ,, +=  (8) 
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where vR,HO is the rate of the reaction with HO radicals and vR,e is the rate of the 

oxidation by electron transfer. Eq. (8) can be rewritten as: 

ReRsHORR Ckkv )( ,, +Γ= θ  (9) 

where, kR,HO is the apparent rate constant of the reaction with HO radicals (Eq. (3)), θ Γs 

is the HO radical surface concentration at the anode, kR,e is the electron transfer rate 

constant (Eq. (7)) and CR is the concentration of the species. Hence kapp in Eq. (6) 

corresponds to: 

eRsHORapp kkk ,, +Γ= θ  (10) 

Analysis of kapp variation with current density must take into account the effect of j on 

each variable in Eq. (10). Whereas kR,HO and Γs (saturation concentration of HO 

radicals) should not be affected by current density, the anode coverage degree, θ, and 

the heterogeneous rate constant kR,e can depend on it.  

The heterogeneous rate constant kR,e may increase with current density if the reaction is 

not diffusion limited as it is the present case. Although in voltammetric experiments a 

diffusion control regime was achieved for all species for E > 1.04 V, in electrolysis a 

diffusion control regime was not attained because the diffusion layer is thinner due to 

forced convection. Therefore the increase of kR,e may occur if the anode potential 

increases with j. Indeed, when current density is varied from 50 to 268 A m-2 the 

potential increase is not negligible in opposition to what happens for the subsequent 

variations of current density (from 268 to 628 and from 628 to 1250 A m-2) as the slope 

of E - j curves tend to zero for j ≥ 268 A m-2 (results not shown). Thus variation of kR,e 

could only explain an increase of kapp for the lower concentration densities. However, as 

the augmentation of kapp is considerable for higher current densities, the variation of kR,e 

cannot be overall justified by kR,e increase. 

On the other hand, the rate of formation of HO radicals (Eq. (1)) is controlled by j [28]: 
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Fz
jvHO =•

 (11)
 

Furthermore, in conditions of low CR it was demonstrated that [18]: 

2
F2 O

s kz
jΓθ =  (12) 

where, 
2Ok is the rate constant of O2 formation (Eq. (2)). 

From Eq. (12) it is expected that the surface concentration of HO radicals increases 

steadily with j. As a consequence of this concentration increase, and based on Eq. (10) it 

is foreseen a linear variation of kapp with j: 

eR
O

HOR
app kj

k
k

z
k ,

,

2
F2
1 +=  (13) 

The observation of this linear trend implies that kR,e does not vary significantly with j. 

 

3.4. Correlation between apparent rate constant and current density 

In Fig. 4 the apparent rate constant of BA, hydroxybenzoic acid derivatives and of HQ 

are plotted against current density. Open symbols (k0
app) correspond to potentiostatic 

electrolyses (E = 1.2 V), whereas solid symbols (kapp) correspond to galvanostatic 

electrolyses. Straight lines were obtained from regression analysis considering only kapp 

values. 

Plots in Fig. 4 for all species display linear trends of kapp vs. j as predicted by Eq. (13). 

The magnitudes of the intercept differ significantly among them. While a null intercept 

is found for BA and 4-HBA, noteworthy intercepts are found for all the other species. 

The origin of the intercept can be explained as follows. As current density approaches 

zero the amount of O2 produced vanishes and no HO radicals will be generated; 

therefore the oxidation reaction will only take place by direct electron transfer. The fact 

that zero intercepts are found for BA and 4-HBA means that no significant consumption 
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of these species is observed in the absence of HO radicals, which is consistent with the 

absence of a voltammetric response at Pt. Besides, the match between the straight lines 

intercept and k0
app values from potentiostatic electrolysis (open symbols) provides a 

clear evidence that the intercept is a measure of the apparent rate constant of oxidation 

via direct electron transfer. The similarity between the experimental (k0
app) and 

extrapolated (kapp)j=0 (Fig. 4(a) and Table 2) is also an evidence that kR,e was not 

significantly affected by current density increase (see section 3.3). 

The meaning of the slope of kapp vs. j was thoroughly discussed by us in a previous 

work considering different conditions (i.e. different magnitude of CR with regard to 

 ,2 HORO kk ) [18]. In brief, the slope is a measure of the degree of susceptibility of kapp 

to an increase of HO radicals concentration at the anode, that is related to the relative 

magnitude of kR,HO towards
2Ok . 

 

 

Fig. 4: Effect of current density on the rate of consumption of: (a) (l) 3,4,5-HBA, (n) 2,3-HBA, (u), 2,5-HBA, (�) 

HQ; (b) (n) BA, (�) 4-HBA, (l) 2,4-HBA. Solid symbols (kapp) correspond to electrolyses with simultaneous 

oxygen evolution whereas open symbols (k0
app) correspond to electrolyses carried out at E = 1.2 V (vs. Ag / AgCl, 3.0 

M). 

When pseudo-first order kinetics is achieved (characterized by a logarithmic 

concentration decay along time) the slope of kapp vs. j is given by ) F2(
2, OHOR kzk  (Eq. 
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(13)). Values of 
2

 , OHOR kk  displayed in Table 3 were calculated from slopes of plots in 

Fig. 4. 

Analysis of the intercept and slope contributions to kapp can provide important insight on 

the reactivity of the species accordingly to the meaning of each parameters. 

 

3.5. Kinetic data analysis 

As discussed in sections 3.3 and 3.4 the rates of consumption of all species are much 

below the calculated values assuming mass transport control (Table 2), demonstrating 

that important kinetic hindrances are present. 

Regarding the contribution of direct electron transfer reaction for the global oxidation, 

evaluated through the extrapolated (kapp)j=0, the obtained values depended on the nature 

of species. Moreover, a correlation of 0.87 was observed between (kapp)j=0 and the 

reciprocal of Ep. This serendipitous correlation can be explained considering that both 

variables are affected by a common parameter, i.e. the exchange current density (j0). 

Low j0 values can be at the origin of high Ep and simultaneously of low electron transfer 

rates. 4-HBA and 2,4-HBA display simultaneously the higher Ep and the lower (kapp)j=0, 

at the same time 2,3-HBA, 2,5-HBA, 3,4,5-HBA and HQ exhibit lower Ep and have 

higher values of (kapp)j=0. A better correlation between these two variables is difficult to 

attain since potential parameters reflect not only the kinetic but also the thermodynamic 

properties of a system [29], whereas (kapp)j=0 reflects exclusively kinetic features. 

The evaluated ratios 
2

/, OHOR kk  are listed in Table 3 along with structural representation 

of the HBA derivatives and with charge density values on the carbon atoms of the 

aromatic ring. The increase of 
2

/, OHOR kk  does not follow the number of HO groups of 

the molecule since the three most reactive species comprise a tri-, a mono- and a di-

hydroxybenzoic acid derivative. Alternatively, this kinetic parameter must be related to 
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electronic properties of the species that can control reactions between HO radical and 

aromatic compounds. The presence of HO groups bonded to the aromatic ring induces 

negative charge densities on the carbon atoms of the ring. Considering the electrophilic 

nature of HO radical, the presence of negative charge densities on carbon atoms of the 

aromatic ring bonded to a hydrogen atom favours hydroxylation reaction resulting from 

HO radical electrophilic attack [30,31]. A relative reactivity order is proposed taking in 

consideration the number of negatively charged carbons as well as the magnitude of the 

charge density at positions where an HO group can be added (Table 3). The six 

compounds studied can be divided into three groups. The less reactive BA (with lower 

2
/, OHOR kk ) exhibits positive charge densities at C2, C4 e C6 and slightly negative 

charge densities (almost null) at C3 and C5. The species 2,3-HBA and 2,5-HBA, more 

reactive than BA (higher 
2

/, OHOR kk ), have one carbon with a significant negative 

charge density at C5 (-0.026) and C3 (-0.039), respectively. The most reactive species 

3,4,5-HBA, 4-HBA and 2,4-HBA have two carbons with negative charge density. 3,4,5-

HBA, the less reactive of these three compounds, displays the lower charge densities (-

0.010, -0.010); 4-HBA (with higher 
2

/, OHOR kk ) has intermediary charge densities (-

0.039, -0.039) and 2,4-HBA the most reactive species exhibits the highest charge 

densities (-0.083, -0.063). 
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Table 3: Values of 
2

/, OHOR kk calculated for benzoic acid and for hydroxybenzoic acid derivatives from the slope of 

kapp vs. j using Eq. (13). Values of charge density are reported for carbon atoms from the aromatic ring that are 

bonded to a hydrogen atom. Negative values of charge density are in bold. kR,HO / kO2  

 
 

  
 

   

kR,HO / kO2   

(10-3 m3 mol-1) 

0.941 ± 0.08 4.0 ± 0.8 4.7 ± 0.4 5.3 ± 0.5 7.0 ± 0.4 8.9 ± 0.4 

Charge 

density 
C2 0.058   -0.010 0.059  

 C3 -0.002 -0.039   -0.039 -0.083 

 C4 0.049 0.014 0.008    

 C5 -0.002  -0.026  -0.039 -0.063 

 C6 0.058 0.013 0.026 -0.010 0.059 0.058 

 

4. Conclusions 

Apparent rate constants were determined from the consumption of seven hydroxy-

containing aromatic compounds. These values are much lower than the calculated 

considering mass transport control and depend on the nature of species, demonstrating 

that electrolyses rates are controlled by the kinetics of oxidation reactions. Values of 

kapp were found to increase linearly with the current density of galvanostatic electrolysis 

with simultaneous O2 evolution. The intercept, (kapp)j=0, of the linear dependence 

between kapp and j matches the apparent rate constant of potentiostatic electrolysis 

without O2 evolution. Thus, (kapp)j=0 was deemed as a measure of the apparent rate 

constant of oxidation by direct electron transfer. From the slope of kapp vs. j values of 

2
/, OHOR kk  were determined for all species. These ratios of rate constants provide 
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information concerning the reactivity of the species towards OH radicals. A good 

agreement between 
2

/, OHOR kk  values and the occurrence of negative charge densities on 

carbon atoms of the aromatic ring was observed. The consistency between the 

determined kinetic ratios and electronic properties of molecules substantiates the 

presented methodology for the kinetic study of oxidation by electrogenerated HO 

radical with simultaneous direct electron transfer. 
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