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Abstract

In this thesis, we study the problem of variable selection in linear regression models

in the presence of a large number of predictors. Usually, some of these predictors are

correlated, so including all of them in a regression model will not essentially improve

the model’s predictive ability. Also, models with reasonable and tractable amount

of predictors are easier to interpret than models with a large number of predictors.

Therefore, variable selection is an important problem to study. Given that there are

some popular regression methods capable of handling collinearity in data but still

requiring the removal of irrelevant predictors, so we present an algorithm that enable

these methods to perform variable selection. We review the well-known variable

selection methods, and investigate the performance of these methods as well as the

proposed approach on both simulated and real data sets. The results show that the

new algorithm performs well in selecting the relevant variables.

Also, when the data contains outliers, outlier detection and variable selection are

not two separable problems. Therefore, we propose a method capable of outlier

detection and variable selection. We review the well-known robust variable selection

methods and evaluate the performance of these methods with the proposed approach

on contaminated simulation data sets as well as on real data. The results show

that the proposed method performs well concerning both outlier detection and robust

variable selection.

Keywords: Bootstrap, least angle regression (LARS), linear regression, partial least

squares regression (PLSR), principal components regression (PCR), outlier detection,

variable selection
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Resumo

Nesta dissertação foi estudado o problema da seleção de variáveis em modelos de
regressão linear, na presença de um grande número de variáveis explicativas ou pre-
ditoras, em que usualmente, algumas das variáveis explicativas estão correlacionadas.
Um prinćıpio a ser levado em consideração é o ”prinćıpio da parcimónia”: modelos
mais simples devem ser escolhidos aos mais complexos, desde que a qualidade do
ajustamento/previsão seja similar. Estes modelos são mais fáceis de interpretar do
que os modelos com um grande número de preditores. Portanto, o estudo de métodos
de seleção de variáveis é um problema muito importante em modelos de regressão.
Dado que existem alguns métodos de regressão, já bem conhecidos, capazes de lidar
com a multicolinearidade entre os dados, mas ainda não removendo os preditores
irrelevantes, apresentamos um algoritmo que permite realizar a seleção de variáveis.
São estudados métodos de seleção de variáveis e investigados os desempenhos desses
métodos, bem como o desempenho do algoritmo proposto, com dados simulados e
com dados reais. Os resultados mostram que o novo algoritmo tem um bom desem-
penho na seleção das variáveis relevantes para o modelo. Além disso, quando os dados
contêm valores at́ıpicos, a detecção de outliers e a seleção de variáveis não podem
ser estudados como dois problemas separáveis. Assim, nesta dissertação foi proposto
um método capaz de deteção de outliers e de seleção de variáveis, em simultâneo.
Foram estudados os métodos de seleção de variáveis robustos mais conhecidos, de
forma a avaliar e comparar o desempenho desses métodos com a abordagem proposta
neste trabalho com estudos de simulação em situações de contaminação, bem como
com dados reais. Os resultados mostram que o método desenvolvido tem um bom
desempenho tanto em termos de detecção de outliers, assim como na seleção robusta
de variáveis.
Palavras-chave: Bootstrap, deteção de outliers, least angle regression (LARS), par-
tial least squares regression (PLSR), principal components regression (PCR), regressão
linear, seleção de variáveis
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Chapter 1

Introduction

Regression models have been widely used in many different areas such as health,

biology, environment, management, and etc. Motivated by various applications, there

has been a dramatic growth in the automated means of data collection, yielding data

sets with a huge number of observations and larger numbers of potentially relevant

predictor variables than before.

Usually, there are some correlated predictor variables, and including all of them in a

statistical model will not necessarily improve the model’s prediction performance. On

the other hand, the interpretation of models with fewer predictors is easier and more

tractable than for models with a large number of predictors. Therefore, finding the

best variables among all candidate predictor variables is an important and challenging

problem to study.

When the data contains atypical observations such as outliers, we need a robust vari-

able selection method that is resistant to outliers in order to select variables reliably.

In this situation, when the data contains atypical observations, outlier detection and

variable selection are inseparable problems. Therefore, a robust method that can si-

multaneously detect outliers and select variables is needed.

In this thesis, we are interested in the following problems

1



Chapter 1. Introduction

� selecting the relevant predictor variables for regression models with large number

of predictors;

� detecting outliers and robustly selecting the relevant predictor variables in the

presence of outliers in data sets with large number of predictors.

Given that there are some regression methods which are well-known and popular to

reduce the dimension of the data but still requiring the elimination of irrelevant pre-

dictor variables, we plan to present a variable selection procedure for these regression

methods in the presence of large number of predictor variables in data.

We will also present an outlier detection and robust variable selection method using

computationally efficient regression methods in dealing with contaminated data sets

with large number of predictors.

1.1 Variable Selection

Consider the design matrix X = [1 x1 . . .xp] with p predictor variables and a

response variable y, with n observations, the classical linear regression model supposes

y = Xβ + e, (1.1)

with parameters β = [β0, β1, . . . , βp]
T . The errors e = [e1, e2, . . . , en]T are assumed

to have E(e) = 0 and var(e) = σ2I, where I is the identity matrix. We aim to select

the relevant predictor variables to entering the regression model.

In the variable selection problem, there is uncertainty as to which subset of predictor

variables to use. This problem receives more attention especially when the number

of variables p is large and there are irrelevant and/or redundant variables in the set

of predictors. For fitting the regression model (1.1), which is as follows

ŷ = Xβ̂, (1.2)

2



Chapter 1. Introduction

where

β̂ =
(
XTX

)−1
XTy (1.3)

a variable selection technique should identify which subset of p predictors truly have

nonzero coefficients and which have zero coefficients. In order to build an accurate

linear predictor of type (1.2), we should force the coefficients of this set of variables

to nonzero and the rest to zero. In data analysis, this is a fundamental problem and

is not limited only to linear regression or to the field of statistics.

1.1.1 Need for Variable Selection

There are several advantages in using an efficient variable selection algorithm.

One reason is simplicity and interpretability. In order to understand the functional

relation between the response variable (output) and the predictor variables, finding

the most relevant and potential predictor variables leads to the dimension reduction

of the number of variables and to a simpler interpretation and understanding of the

model.

The next reason is saving time. The best subset selection methods involve considering

all possible subsets of candidate predictors for calculating a suitable model. These

methods are also difficult to apply to data sets with large number of predictors. For

instance, with p number of predictor variables 2p different models should be tried for

an extensive search of all possible subsets, and therefore considering all of these models

is very time-consuming. (Kadane and Lazar (2004)). Thus, an efficient algorithm can

save a lot of time and also the costs of finding the true model out of a large number

of models.

The other reason is prediction performance, which can be improved by selecting the

true predictors (i.e., those predictors whose regression coefficients are nonzero). In

fitting the models using least squares regression, adding each new predictors to the

model adds to the variance of the predicted values. Hence, the fewer the number

3



Chapter 1. Introduction

of estimated coefficients the lower the variance. By using efficient variable selection

methods, we can be confident to select the correct number of variables small enough

to have a small variance, but large enough to yield a good prediction performance

(see details in Hastie et al. (2009), Miller (2012)).

1.2 Outlier Detection and Robust Variable Selec-

tion

If the errors in the classical linear regression model (1.1) follow a mixture distri-

bution, for instance a mixture of Normal distribution and some general distribution

F , that is e ∼ (1− a)N(0, σ2) + aF , where 0 < a ≤ 1, then they do not follow the

assumptions of the classical linear regression model. Variable selection problem has

not been studied well in these situations, and most of the variable selection methods

use least squares in some way. Many estimation procedures like least squares can

be highly effected by a small proportion of outliers in data. Hence, robust variable

selection methods are needed to remedy this problem and do show a reliable behavior

in the presence of outliers in data. In contaminated data sets, outlier detection and

variable selection are not two separable things since selection may have effects on

what is considered as an outlier and vice versa.

1.3 Thesis Overview

1.3.1 Objectives and Achievements

In this thesis we develop principal components regression (PCR) and partial least

squares regression (PLSR) as two popular regression methods to enable them for

variable selection (Massy (1965), Helland (1988), Helland (1990), Zou et al. (2006),

Chung et al. (2013)).

4



Chapter 1. Introduction

We evaluate and compare the performance of the proposed methods with their coun-

terparts on both different simulation studies and real data sets. The proposed variable

selection algorithm for both PCR and PLSR is competitive with its counterparts pre-

sented in the literature review or even outperforms them according to the considered

simulation studies. The application of the methods on real data also confirms the

good performance of the proposed variable selection algorithms (Shahriari et al.

(2014)).

We also aim to develop and enable the powerful modified version of the forward

stage-wise procedure to perform outlier detection and robust variable selection simul-

taneously (Efron et al. (2004), Khan et al. (2007)). We investigate and compare the

performance of the proposed outlier detection and robust variable selection method

on both simulated and real data sets. This method presents a robust version of the

classical least angle regression (LARS) (Efron et al. (2004)) and is competitive with

its counterparts presented in literature review or even outperforms them (Shahriari

et al. (2014)).

1.3.2 Variable Selection Ability

We contribute with variable selection algorithms for principal components regres-

sion (PCR) (Massy (1965)) and partial least squares regression (PLSR) (Helland

(1988), Helland (1990)) as two popular applicable high-dimensional regression meth-

ods (i.e., regression methods that can be used even when p � n). The basic idea

of these algorithms is based on the significance tests of the regression coefficients

in the PCR/PLSR model. This technique automatically generates a standard error

estimates of the coefficients parameters and then, by dividing the estimated regres-

sion coefficients by their estimated standard errors, the t-test values will be obtained,

giving the significance level for each parameter. The estimated regression coefficients

are calculated using bootstrap (Efron (1982)). Based on such bootstrap estimates of

5



Chapter 1. Introduction

the regression coefficients, useless variables may be eliminated automatically in order

to simplify the model, which makes it more reliable. This approach enables PCR and

PLSR to perform variable selection.

By conducting different simulation studies, the proposed method is evaluated and

compared with its counterparts presented in the literature review. The results of dif-

ferent simulation scenarios showed that the performance of the proposed method is

competitive or outperforms in the considered simulation studies in comparison with

its counterparts. We also applied the methods to real data and the results yielded the

same achievements in simulation study.

1.3.3 Outlier Detection and Robust Variable Selection Devel-

opment

We present an algorithm for the least angle regression (LARS) (Efron et al. (2004))

which is a modified version of the forward stage-wise procedure. The LARS algorithm

is a powerful and computationally efficient method to sequence the predictor variables

for least squares regression. Since LARS is based on the pairwise correlation between

the predictor variables and the response variable, it is not robust to the presence of a

small amount of anomalies in data. We propose a method capable of outlier detection

and robust variable selection simultaneously which presents a robust sequence of

predictor variables for LARS.

This method is obtained by combining robust least angle regression with least trimmed

squares regression (Rousseeuw (1984), Rousseeuw and Van Driessen (2006)) on jack-

knife subsets (Efron (1982)) to detect outliers. The detected outliers are then removed

to obtain the clean data, then standard least angle regression is applied on this clean

data to robustly sequence the predictor variables in order of their importance.

6



Chapter 1. Introduction

1.3.4 Thesis Structure

The first section of this chapter consists of the description of the variable se-

lection problem and its advantages for the regression models with a large number of

predictors. Then we point to the problem of variable selection when the data contains

outliers, thus revealing the necessity for a robust variable selection method.

The following chapters of this thesis are organized as follows. In Chapter 2, we will

describe the literature related to variable selection and some popular regression meth-

ods for data sets with large number of predictors.

In Chapter 3, first we will provide the methodology of principal components regression

(PCR) and partial least squares regression (PLSR). We will also address why these two

popular methods need to be developed to perform variable selection. Second, we will

describe the existing sparse based methods for principal components regression and

partial least squares regression, and then we will explain resampling methods which

will be used inside our variable selection approach to produce automatic estimates for

the regression parameters. Finally, we will propose variable selection algorithms to

enable principal components regression and partial least squares regression in order

to find the most relevant predictor variables. Different simulation scenarios will be

conducted along by using real data to evaluate and to compare the performance of

the mentioned methods, and the results will be discussed.

In Chapter 4, we will address the sensitivity of linear regression followed by least

squares to the presence of outliers in data and will describe some popular robust vari-

able selection methods which are resistant in these situations. We will point out the

least angle regression and its sensitivity to the presence of outliers in data and will

review the existing robust least angle regression method, as our method’s counterpart.

We will also describe another robust variable selection method based on the variance

inflation factor (VIF), which also inherits the spirit of a variation of forward stage-wise

regression. Then, we will propose our approach for identifying outliers and robustly

7



Chapter 1. Introduction

selecting variables for least angle regression, simultaneously. Finally, by conducting

different simulation studies we will investigate and compare the performance of the

proposed method with its counterparts. We will also apply the mentioned methods

to real data. The results of both simulation study and real data will be discussed.

Finally, in Chapter 5, the conclusions of our study will be drawn by summarizing the

main ideas and the results of this thesis, and future developments will be addressed.

8



Chapter 2

Review: Variable Selection in Linear

Regression

2.1 Introduction

The method of least squares (LS) is a standard approach to estimate the param-

eters in regression analysis. LS minimizes the sum of squared errors, in a regression

model. There are two main reasons why we are often not convinced with least squares

estimates:

� Predictive ability : least squares estimates has low bias (zero bias) but suffers

from high variance. Therefore, it may be worth sacrificing some bias to reduce

the variance of the predicted values, and, as a consequent, to increase the

model’s predictive ability. This can be achieved by shrinking or setting some

coefficients to zero (Hastie et al. (2009), Miller (2012));

� Interpretation: it can be helpful to determine a smaller subset of variables

through a large number of predictor variables in order to simplify the model for

interpretation.

9



Chapter 2. Review: Variable Selection in Linear Regression

As we represented in Section 1.1 in Chapter 1, our aim is to select the most relevant

predictor variables in linear regression models. The selection criteria are numerous

and can be based on prediction, fit, and etc. We define some notation in order to

explain these selection criteria.

Suppose we are fitting a model, which we call submodel, with a subset of the possible

predictor variables. We define qsubmodel as the number of variables in the submodel

plus one for the intercept, which is the number of nonzero coefficients we would fit

in this model. When we use least squares to predict the response variable, given the

submodel, we name this prediction, ŷsubmodel.

We define the total sum of squares, SSTsubmodel =
n∑
i=1

(yi−ȳ)2, with ȳ the mean of the

response variable, the regression sum of squares, SSRsubmodel =
n∑
i=1

(ŷsubmodel,i− ȳ)2,

the residual sum of squares, RSSsubmodel =
n∑
i=1

(yi − ŷsubmodel,i)2, and the hat matrix

H = X(XXT )−1XT for the full model which contains p predictors plus one for the

intercept.

One simple idea in full model is to use adjusted R2 which adjusts the multiple corre-

lation coefficient for the number of parameters fitted in the model with n number of

observations

R2
adj = 1− n− 1

n− qsubmodel − 1
(1−R2), (2.1)

where

R2 =
SSRsubmodel

SSTsubmodel

= 1− RSSsubmodel
SSTsubmodel

.

A related criterion is Mallow’s Cp statistic (Mallows (1973)). For a given model where

we fit qsubmodel parameters,

Cp =
RSSsubmodel

σ̂2
+ (2qsubmodel − n), (2.2)

10



Chapter 2. Review: Variable Selection in Linear Regression

where σ̂2 =
RSSfull
n− p− 1

, where p is the number of predictors, and RSSfull =
n∑
i=1

(yi−

ŷi)
2. The motivation behind Cp was to create a statistic to estimate the mean square

prediction error (Mallows (1995)).

Some other selection criteria, such as akaike information criterion (AIC), and the

corrected AIC (AICc) (Akaike (1970), Akaike (1974), Sugiura (1978)) are as follows

AIC = nlog(
RSSsubmodel

n
) + 2qsubmodel;

AICc = nlog(
RSSsubmodel

n
) + 2(qsubmodel + 1)× n

(n− qsubmodel − 2)
.

Cp, AIC, and AICc tend to select too large of a subset and the data is overfit (Shao

(1993)).

The existing selection procedures can be broadly categorized into three classes ac-

cording to their general strategy and respective computational efficiency.

A first class considers the potential subsets of predictors. All possible subset selection

considers all the combination subsets of the predictors and evaluates each of these

submodels according to a fixed criterion. The model which best satisfies the selection

criteria is chosen as the optimal model. Stepwise subset selection is built on the

basis of sequential selection procedures in which a predictor at a time is added to (or

removed from) the model, based on a criterion that can change from one step to the

next and that is calculated for all potential predictor variables to add (or to exit) until

another criterion is satisfied. The second class shrinks the regression coefficients by

imposing a penalized term on their size in order to satisfy bias to reduce the variance

of the predicted values, and, as a consequent, to increase the model’s predictive abil-

ity. The third class of selection procedures is also formed of sequential procedures in

which each predictor is evaluated to enter into a model as a potential predictor. Each

predictor is evaluated once to enter as a potential predictor.

The selection criteria such as AIC, AICc (Akaike (1970), Akaike (1974)), Mallow’s

Cp (Mallows (1973)), cross-validation (see also Efron (2004)) may be categorized
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into the first class. When the number p of the predictor variables is small, one may

compute these selection criteria for all possible subsets of predictors. But as the num-

ber p of the predictor variables increases, the number of subsets grows dramatically;

as a result, the computational burden of using this approach is increased and makes

it infeasible for computation. This problem leads to the popularity of step-by-step

algorithms like forward selection and stepwise (SW) selection procedures (Weisberg

(2014)).

The second class may contain shrinkage methods in which the estimator of the re-

gression coefficients β minimizes the sum of squared errors according to a norm q as

a penalized term, i.e.,

arg min
β

{
‖y −Xβ‖22 + λq ‖β‖qq

}
, (2.3)

where X = [1 xj]j=1,...,p with 1 a column of ones, ‖β‖q =

(
p∑
j=1

|βj|q
)1/q

for q > 0,

and ‖β‖0 =
p∑
j=1

I{βj 6=0} with I{βj 6=0} = 1 if βj 6= 0 and 0 otherwise (Lin et al. (2011)).

Shrinkage methods that use q = 1 norm penalization are least absolute shrinkage and

selection operator (LASSO) (Tibshirani (1996)), and the Dantzig selector (Candes

and Tao (2007)). Ridge regression is another shrinkage method which uses q = 2

norm penalization.

The third class may include a variation of the stepwise regression that evaluates

predictors sequentially. Least angle regression (LARS) (Efron et al. (2004)) can be

categorized into this class. Streamwise regression (Zhou et al. (2006)), which evalu-

ates predictors sequentially, though each of them is considered once to enter to the

model, can also be categorized into this class. This approach uses the α-investing

rule (Foster and Stine (2008)) and is a fast procedure.

Variance inflation factor (VIF) is an improved streamwise regression approach where

the selected model is given by computing a fast test statistic based on the variance

12
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inflation factor of the candidate variable (Lin et al. (2011)).

In Section 2.2 of this chapter we will describe all possible subset selection proce-

dures, along with some classical step-by-step algorithms, such as forward stepwise

and backward elimination selection. In Section 2.3 some popular shrinkage methods

such as ridge regression and least absolute shrinkage and selection operator (LASSO)

will be reviewed. Finally, in Section 2.4 the modified versions of stagewise regression,

least angle regression (LARS) and variance inflation factor (VIF) regression will be

described.

2.2 Potential Subset Selection

In subset selection only a subset of variables is kept and the rest of them is

removed from the model. The coefficients of the potential predictors as the inputs

of the model are estimated using least squares regression. There are a number of

different strategies for subset selection.

2.2.1 All Possible Subset Selection

This approach considers all 2p possible subsets of the predictor variables and

determines the subset of the predictors of a given size that maximizes a measure of

fit or minimizes an information criterion based on a monotone function of the residual

sum of squares. The efficient algorithm ”simple leap and bound”(Furnival and Wilson

(1974)) can find the best subsets without examining all possible subsets. With a fixed

number of terms in the regression model, there are a number of criteria such as the

AIC (Akaike (1970)), Mallow’s Cp (Mallows (1973)) that one may use to evaluate a

subset of predictor variables; typically we choose the smallest model that minimizes

the residual sum of squares. So, for instance, if a subset with a fixed number of terms

satisfies a criteria among all subsets of size k, then this subset will also satisfies other

13
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selection criteria among all subsets of fixed size k. This process is not feasible for

a large number p of predictor variables, and this problem leads to the popularity of

step-by-step algorithms.

2.2.2 Forward Stepwise and Backward Elimination Selection

As we mentioned before, finding the best model among all the possible submodels

will become infeasible when p is large. Therefore, in order to decrease the computation

time we can search through all possible subsets to find a good path through them. In

this section, we review some of the most important of this kind of algorithms. Forward

stepwise selection starts with all coefficients equal to zero, and then sequentially adds

to the model the predictor that most improves the fit (in the other words, the predictor

that minimizes the criterion of interest or if an information criterion is used, then

this amounts to find the most correlated predictor with the response variable). The

procedure is continued until all predictors have been added to the model.

Backward elimination selection starts with the full model and at each step drops a

predictor with the least impact on the fit; therefore it is the opposite of forward

stepwise selection procedure. The procedure is continued until all predictors have

been deleted from the model (Weisberg (2014)).

2.2.3 Forward Stagewise Regression

Forward stagewise (FS) regression is similar to forward stepwise regression but it is

more constrained (Hastie et al. (2009)). It starts like forward stepwise regression with

an intercept equal to ȳ, with all coefficients equal to zero. At each step, the most

correlated variable with the current residual enters into the model. Then, the simple

linear regression coefficient of the residual on this selected variable is estimated and

then added to the current coefficient for that variable. This process is continued until

none of the variables have correlation with the residuals. Since none of the variables
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is adjusted when a predictor is entered into the model, therefore it can take many

steps in the direction of the same predictor in order to reach the least squares fit.

2.3 Shrinkage Methods

In subset selection procedure, a subset of the predictor variables is kept and the

rest are removed; as a result, a model that is interpretable with lower prediction error

than the full model is obtained. But since this procedure proceeds in a discreet way,

i.e. variables are either kept or removed, it often shows high variance, and so does not

reduce the prediction error of the full model. Shrinkage methods are more continuous,

and do not suffer as much from high variability (Hastie et al. (2009)).

2.3.1 Ridge Regression

Ridge regression (Hoerl and Kennard (1970)) shrinks regression coefficients by

penalizing their size. The ridge estimates minimize a penalized residual sum of squares,

β̂
ridge

= arg min
β

{
n∑
i=1

(yi − xTi β)2 + λ

p∑
j=1

β2
j

}

= arg min
β

{
‖y −Xβ‖22 + λ ‖β‖22

}
(2.4)

Here λ ≥ 0 is a penalty parameter which controls the amount of shrinkage; i.e. the

larger the value of λ, the greater the amount of shrinkage. When λ = 0, we get

the least squares estimates; when λ ' ∞, we get β̂
ridge

= 0; when λ is between

these two values, we are balancing two ideas: fitting the linear regression model, and

shrinking the coefficients.
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An equivalent form of writing the ridge problem is

β̂
ridge

= arg min
β

(y −Xβ)2 , (2.5)

subject to
p∑
j=1

β2
j ≤ t,

where t is a tuning parameter varied over a certain range.

This rewriting form makes explicit how ridge regression puts constraint on the size

of the parameters. Parameter λ in (2.4) has a one-to-one correspondence with t in

(2.5).

In the presence of many correlated variables in a linear regression model, their co-

efficients can become poorly determined and show high variance. One variable with

a large positive coefficient can be canceled by a similarly negative coefficient as its

correlated cousin. Imposing a constraint on the size of the coefficients, as in (2.5),

this problem is thus conciliated. It should be noticed that the intercept term has left

out the penalty term, the solution for β̂0 = ȳ, and so we assume that the inputs have

been standardized before solving (2.4).

2.3.2 Least Absolute Shrinkage and Selection Operator

Least absolute shrinkage and selection operator (LASSO) (Tibshirani (1996))

shrinks the regression coefficients by imposing norm 1 as the penalty parameter.

LASSO is like ridge regression but the penalty term is ‖β‖1 instead of ‖β‖2 as in

ridge regression. The LASSO estimate is defined as

β̂
lasso

= arg min
β

{
n∑
i=1

(yi − xTi β)2 + λ
p∑
j=1

|βj|

}

= arg min
β

{
‖y −Xβ‖22 + λ

∑p
j=1 |βj|

}
= arg min

β

{
‖y −Xβ‖22 + λ ‖β‖1

}
. (2.6)
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Figure 2.1: Estimation picture for LASSO (left) and ridge regression (right).
Shown are contours of the error and constraint functions. The solid blue areas
are the constraint regions |β1|+ |β2| ≤ t and β21 +β

2
2 ≤ t2, respectively, while

the red ellipses are the contours of the least squares error function [Tibshirani
(1996)].

Just as in ridge regression, we can rewrite (2.6) as

β̂
lasso

= arg min
β

(y −Xβ)2 , (2.7)

subject to
p∑
j=1

|βj| ≤ t,

where t is a tuning parameter over a certain range.

Because of using q = 1 norm penalization as you can see in Figure 2.1, LASSO

can shrink the regression coefficients exactly to zero, and therefore can perform vari-

able selection. The LASSO estimator can be computed using the efficient least angle

regression algorithm (LARS), which is a modified version of forward stagewise proce-

dure. Like ridge regression, the inputs are standardized and the solution for β̂0 = ȳ,

and thereafter we fit a model without an intercept.
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LASSO and Ridge Regression As we mentioned in Section 2.3.1, when there are

many correlated variables in a linear regression model, the estimates may exhibit high

variance. Ridge regression, by imposing a restriction on the size of the regression

coefficients, tries to alleviate this problem.

Ridge regression shrinks the regression coefficient toward zero but is not able to set

some coefficients exactly equal to zero; thus, unlike LASSO, cannot perform variable

selection.

2.4 Modified Versions of Stepwise Regression

In this section we describe two modified and improved versions of stepwise re-

gression which are fast to compute and sequence the predictor variables in their

importance.

2.4.1 Least Angle Regression

Least angle regression (LARS) (Efron et al. (2004)) enters variables in the model

in order of their importance. LARS is related to forward stagewise (FS) procedure,

which sequentially adds variables to the model in small steps. FS uses in each step the

most correlated variable with the residuals, and updates the fit by adding only a small

fraction of the least squares contribution of this variable to the model. Usually, FS

takes a large number of steps using the same variable before another variable yields a

higher correlation with the remaining residual. Therefore, FS is not computationally

efficient. By deriving a simple mathematical formula for the optimal step size of

a selected variable, LARS largely reduces the number of steps and speeds up the

computation time.

The steps of the LARS algorithm can be summarized as follows:

1. Start with all coefficients equal to zero and set the initial residual vector equal
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to response vector y;

2. Find the predictor that is most correlated with the response variable, say x1;

3. Take the largest step possible in the direction of this predictor until some other

predictor, say x2, has the same maximal correlation (in an absolute value) with

the current residual;

4. Proceed in the equiangular direction of the two predictors until a third variable

x3 earns its way into the ”most correlated”set. The equiangular direction is the

direction in which the correlation of the predictors decreases at the same pace

so that these correlations remain equal at all times;

5. Repeat until all predictors have been entered.

LARS is only based on the means, variances and correlations of the data, and so it is

sensitive to the presence of contamination in the data. In Chapter 4 we will discuss

about its sensitivity and to remedy this problem we will present a robust version of

this algorithm and evaluate the performance of our method against its counterparts.

LARS and LASSO LARS and LASSO are closely connected. LARS can provide an

efficient algorithm to compute the LASSO path. By modifying the LARS algorithm,

the LASSO path can be obtained as follows: if a non-zero coefficient crosses zero,

remove its variable from the active set of variables and recompute the best direction,

that is, current joint least squares direction.

2.4.2 Variance Inflation Factor (VIF)

Variance inflation factor (VIF) regression (Lin et al. (2011)) also inherits the spirit

of a variation of stepwise regression. VIF regression searches over the predictor vari-

ables to test each potential predictor variable for addition to the model. VIF regression
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selects those predictors among other available predictors that can reduce a statistically

sufficient part of the variance in the predictive model. VIF regression approximates

the partial correlation of each candidate variable with response variable by correcting

(using VIF) the marginal correlations.

The characteristics of the VIF algorithm are the following two components:

� Evaluation step: the partial correlation of each candidate variable xj, j =

1, . . . , p, with the response variable y is approximated by correcting (using

the variance inflation factor) the marginal correlation using a small presampled

set of data;

� Search step: each variable is tested sequentially using an α-investing rule (Fos-

ter and Stine (2008)). The α-investing rule purveys high accurate models and

guarantees no model overfitting.

Let XS be the design matrix that contains the selected variables at stage S, and

X̃S = [XS zj] with zj the new candidate to be evaluated for inclusion. Consider

the following models:

y = XSβS + zjβj + estep, estep ∼ N (0, σ2
stepI), (2.8)

rS = zjγj + estage, estage ∼ N (0, σ2
stageI), (2.9)

where rS =
(
I−XS(XT

SXS)−1XT
S

)
y are the residuals of the fit of y on XS, I is

the identity matrix, βS are slope parameters, and γj is the slope parameter of the fit

of zj on the residuals rS.
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When there are some collinear predictors in the data, all known estimators of param-

eters βj, σ
2
step, and γj, σ

2
stage will provide different estimates and, as a consequent,

significance tests based on estimates of βj or γj do not necessarily lead to the same

conclusions. While in stepwise regression the significance of βj in model (2.8) is at

the core of the selection procedure, in VIF regression it is more convenient to estimate

γj.

When least squares (LS) are used to estimate,

γ̂j = ρ2β̂j, (2.10)

where ρ2 = zTj

(
I−XS

(
XT
SXS

)−1
XT
S

)
zj Lin et al. (2011). Then, a t-statistic

Tγj =
γ̂j
ρ̂σ̂

with proper estimates for ρ and σ is computed and compared to the

standard normal distribution to decide whether or not zj should be entered to the

current model. This procedure is named VIF regression because 1/ρ is called the VIF

for zj (see Marquaridt (1970)).

Test statistic Tγj is very sensitive to outliers since it is based on the following:

� the LS estimator γ̂j;

� ρ, in turn based on the design matrix XS and zj;

� the classical estimator of σ, a form of the model deviation.

In Chapter 4 we will describe the robust version of this method and discuss its per-

formance in different simulation scenarios as well as on real data.

2.5 Discussion and Conclusions

All possible subset selection procedure which seeks through all possible 2p subsets

of the predictor variables in order to find the best subset of a given size, which max-

imizes a measure of fit or minimizes an information criterion based on a monotone
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function of the residual sum of squares, is not computationally efficient, and will be

infeasible when the number p of the predictor variables is large.

Forward stepwise selection is a greedy algorithm which produces a nested sequence

of models, therefore in this sense it might seem suboptimal compared to all possible

subset selection procedure. But there are two main reasons why forward stepwise

selection procedure might be preferred rather than all possible subset selection pro-

cedure:

� Computationally : when the number p of the predictor variables is large it is

not feasible to compute the best subset sequence; however, forward stepwise

selection can always compute the best subset (even when p � n, n is the

number of observations);

� Statistically : a cost is paid in variance for determining the best subset of each

size; forward stepwise is a more constrained search, with lower variance but

perhaps more bias.

The drawback of backward stepwise selection in comparison with forward stepwise

is that it can only be used when n > p, while the later can be used at all times.

In forward stagewise, unlike forward stepwise regression, none of the variables are

adjusted when a term is entered to the model, and therefore forward stagewise takes

many more than p steps to achieve the least squares fit.

By keeping a subset of the predictor variables and dropping the rest, subset selection

produces an interpretable model which has lower prediction error compared to the

full model. However, since it proceeds in a discrete path, that is, variables are either

kept or dropped, therefore it does not reduce the prediction error of the full model.

Shrinkage methods are more continuous, and are not affected as much by high vari-

ability.

Ridge regression does a proportional shrinkage in order to shrink the regression coef-

ficients toward zero but does not set them exactly equal to zero. LASSO performs
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variable selection by setting the predictor variables exactly equal to zero.

LARS and VIF regression inherit the spirit of a variation of stepwise regression. These

methods are sensitive when data contains outliers, and in Chapter 4 we will discuss

their sensitivity to outliers.
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Chapter 3

Sparsity for Principal Component

and Partial Least Squares

Regression

3.1 Introduction

High-dimensional regression (regression analysis when the number of predictors is

larger than the number of observations) has captured the attention of many statis-

ticians worldwide, because of its interesting applications, as well as the unique chal-

lenges faced. Motivated by interesting applications, there has been a dramatic growth

in the development of statistical methodology in the analysis of high-dimensional data

(p � n), particularly related to regression (model selection, estimation and predic-

tion).

The problem of high-dimensional variable selection has received tremendous atten-

tion during the last decades because variable selection plays an important role in

high-dimensional statistical modeling (Fan and Li (2001) and Lin et al. (2011) among

many others). The usual variable selection procedure using least squares and a penalty
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which involves the number of parameters in the candidate submodel (e.g. AIC) is

infeasible to compute exhaustively (Bühlmann and Van de Geer (2011)). Forward

selection strategies are computationally fast but they can be very instable, yielding

poor results (Breiman (1996)). Best subset selection methods involve considering

all possible subsets of candidate predictors for calculating a suitable model. These

methods are also difficult to apply to high dimensional data. For instance, if the

number of predictors is p, then 2p different models should be tried for an exten-

sive search of all possible subsets. This value, even for moderate values of p, grows

exponentially and makes the search impractical (Trevor et al. (2001)). Although sev-

eral search-based strategies such as artificial neural network (Burden et al. (1997))

and genetic algorithms (Jouan-Rimbaud et al. (1995)) have been successfully applied

to variable selection problems, these methods still have some drawbacks. Several

variable selection (VS) methods in high dimensional data in the unified framework

of penalized likelihood estimator are ridge regression (Frank and Friedman (1993)),

LASSO (Tibshirani (1996)), elastic net (Zou and Hastie (2005)), the new smoothed

LASSO (Meier and Bühlmann (2007)) and boosting algorithms (Fan and Lv (2010)

and Bühlmann and Van de Geer (2011)).

Principal components regression (PCR) and partial least squares regression (PLSR)

are well-known techniques in dealing with high-dimensional data whose number of pre-

dictors p is larger than sample size n (Engelen et al. (2004), Helland (1988), Helland

(1990) and Hubert and Verboven (2003)). PCR (Massy (1965)) and PLSR (Wold

(1966)) are two related families of methods that contain selecting a subspace of the

column space of the predictors on which to project the response vector. These meth-

ods latter appeared in chemometrics, sensory evaluation and food research (Wold

(1975b), Wold et al. (1984), Geladi and Kowalski (1986), Martens and Martens

(2000), Martens and Næs (1989), Stone and Brooks (1990), and De Jong (1993b)).

PCR and PLSR as two dimension reduction techniques that have recently obtained

much attention in high dimensional genomic data (Boulesteix and Strimmer (2007)).
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Although PCR and PLSR are two popular techniques that can handle multicollinearity

among predictors even when there are more predictors than observations, it is still

necessary to eliminate irrelevant predictors in high-dimensional data. The drawback of

PCR and PLSR is that, when using these two methods, the number of variables used

is not reduced, since the components are linear combinations of all the predictors.

This drawback makes it often difficult to interpret the derived principal components

(PC). In order to help practitioners to interpret principal components, rotation tech-

niques are commonly used (Jolliffe (1995)). There is a technique which restricts the

loadings in principal components to take values from a small set of given integers

such as 0, 1, -1 (Vines (2000)).

Existing irrelevant variables can influence the PCR and PLSR models. Imposing spar-

sity in the midst of dimension reduction step may lead to variable selection. Huang et

al. (2004) recently proposed a penalized PLS method that thresholds the final PLS

estimator (Huang et al. (2004)). Chun and Keleş (2010) formulated sparse partial

least squares (SPLS) regression by relating it to sparse principal component analysis

(SPCA) (Jolliffe et al. (2003), Zou et al. (2006)). SPCA involves formulating prin-

cipal component (PC) analysis as a regression-type optimization problem, and then

obtaining sparse loadings by imposing LASSO (Tibshirani (1996)) (and a generaliza-

tion of LASSO, elastic net) constraint on the regression coefficients. Therefore, it is

important to reduce the size of the explicitly used variables (i.e., variable selection)

besides having dimension reduction for PCR and PLSR. We introduce an approach

which is based on bootstrap technique for significance tests of the regression coeffi-

cients to perform variable selection inside PCR and PLSR.

The rest of this chapter is organized as follows. First, in Section 3.2 we will give

an introduction of the methodology for PCR and PLSR, and will compare PCR and

PLSR. Then, in Section 3.3 we will review jack-knife and bootstrap as two resampling

methods. We will explain some variable selection methods for PCR and PLSR, along

with our proposed approach in Section 3.4. We will conduct a simulation study in
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Section 3.5 to compare the performance of the presented variable selection methods

for PCR and PLSR. In Section 3.6, we will show the results of the simulation study.

We will also apply these methods to a real data in 3.7; and finally in Section 3.8 we

will conclude.

3.2 Principal Components Regression and Partial

Least Squares Regression

As mentioned before in Section 1.1 in Chapter 1, a linear regression model assumes

that there is a linear relationship between the response variable and the set of the

predictor variables. There are various methods to estimate the slope parameters β

in a linear regression model. In the presence of large number of predictors in the

model, LS can be used; however, if the number of predictors gets too large (more

than the number of observations, p � n, the matrix XTX gets singular), the

corresponding multiple linear regression (MLR) model obtained by LS is not able

to fit the sampled data well and simultaneously predict the new data well; that is

the problem of overfitting. To remedy this problem, PCR and PLSR can be used,

since they reduce the dimension of the design matrix X. Also, they can handle the

multicollinearity in the data.

PCR and PLSR are two multivariate regression methods concerned with explaining

the variance-covariance structure of the data through a small number of components

which are linear combinations of the original variables (Engelen et al. (2004)). The

basis of both techniques is a bilinear model that explains the existence of a relation

between a set of p-dimensional predictors and a response variable through the latent

component matrix T n×k = (t1, . . . , tk) where the ti, i = 1, . . . , k are the score
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vectors, with k � p. By considering the observations (X,y), we assume that,

X = 1x̄+ TP T + ν, (3.1)

y = 1ȳ + Tq + ξ. (3.2)

Here x̄ is the p-dimensional mean vector of predictors, ȳ the mean of the response

variable, P the p × k matrix of loadings and q represents the k-component slope

parameters in the regression of y on the ti. The error terms are denoted by the n×p

matrix ν and the vector ξ with n elements. These corresponding errors show the

unique variation in X and y that is not explained by the k-component bilinear struc-

ture. The errors may be due to operator mistakes, measurement noise, mis-specified

model, etc. In order to make inference on the ordinary least squares estimator of q,

an assumption on the errors of ξ ∼ N(0, σ2I) is needed. This condition is equivalent

to assuming y|q ∼ N(1ȳ + Tq, σ2I) which represents that the variance-covariance

matrix of y depends only on one parameter σ2; such a matrix is also known as a

scalar covariance matrix.

Figure 3.1 shows the major two stages of PCR and PLSR. In the first step, due to

(3.1), the latent components ti are built as linear combinations of the original predictor

variables or, in the other words, the high-dimensional observations X are summarized

in latent components tis of dimension k � p. The model’s predictive ability depends

on the number k of components selected. If too few components are chosen, the valid

structure in the data is left and the model under-fits the data. Choosing too many

components will lead to over-fitting in the data, pulling too much noise which will

diminish model prediction. Various different criteria (such as Adjusted R2, root mean

squared error (RMSE)) can be used in order to select the number of components k

(Aucott et al. (2000)). Cross-validation (CV) or independent test set validation are

usually applied to select the optimal number of components. If the amount of existing

29



Chapter 3. Sparsity for Principal Component and Partial Least Squares Regression

Figure 3.1: PCR and PLSR schematic representation. The left hand plot
shows the first stage of the bilinear model. The red arrows represent the
direction of the first 2 components. The general process of PCR and PLSR
are illustrated in the right plot.

data is limited, especially for high-dimensional data, cross-validation is preferable to

independent test set validation (Martens and Næs (1989)).

For the second step of the algorithm, due to (3.2), these k latent components

will become the regressors for the y. The objective of the second step is to find a

k-dimensional regression hyperplane that best fits the data (y,T n×k). At last, the

estimates for the parameters of the original predictor variables, β̂, can be obtained

from the bilinear model.

A large body of literature has compared PCR and PLSR (Martens and Næs (1989),

Stone and Brooks (1990), Wentzell and Vega Montoto (2003), Schumann et al.

(2013)). Both methods construct new predictors, known as components, as linear

combinations of the original predictors, but they construct those components in differ-

ent ways. The construction of the k-dimensional scores vector ti by PCR and PLSR
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is not the same. PCR creates components to explain the observed variability in the

predictors, without considering the response variable at all, and thus using a variance

criterion. On the other hand, PLSR does take the response variable into account,

and therefore often leads to models that are able to fit the response variable with

fewer components, i.e., PLSR finds linear combinations of the predictors that best

explain the response by maximizing a covariance criterion between the predictors and

the response variable (Frank (1987), Næs et al. (2002)). With the same number of

latent variables, PLSR will cover more of the variation in response variable and PCR

will cover more variation of the original predictor variables.

In practice, however, there is hardly any difference between the use of PCR and

PLSR; by construction, it is thus expected that PLSR requires less components than

PCR (Frank and Friedman (1993), Mevik and Wehrens (2007)). In most situations,

both methods achieve similar prediction performances, although by construction it is

expected that PLSR gives improved prediction results with fewer components than

PCR (De Jong (1993a), Garthwaite (1994)). Some components from a PCR model

fit may serve primarily to describe the variation in the predictors, and may include

large weights for variables that are not strongly correlated with the response. Thus,

PCR can lead to retaining variables that are unnecessary for prediction.

3.2.1 Principal Components Regression Algorithm

Principal component analysis (PCA) is a popular statistical method which can ex-

plain the covariance structure of the data through a small number of components

which are linear combinations of the original predictor variables (Jolliffe (2005)).

These components can be used for an interpretation and a better understanding

of the different sources of variation. PCR is based on principal component analysis.

PCR preforms a least-squares regression of projections of data onto the basis vectors

of a factor space (Kramer (1998)). In PCR, instead of directly regressing the response
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variable on the predictor variables, the principal components are used as regressors.

One typically uses only a subset of all the principal components for regression. Often

the principal components with higher variances (those that are based on eigenvectors

corresponding to the higher eigenvalues of the sample variance-covariance matrix of

the predictors) are chosen as regressors. However, for predicting the response vari-

able, the principal components with low variances may also be important, and in

some cases even more important (Jolliffe (1982)). In the classical approach, the first

component corresponds to the direction in which the projected observations have the

largest variance. The second component is then orthogonal to the first and again

maximizes the variance of the data points projected onto it. Proceeding in this way

produces all the principal components, which correspond to the eigenvectors of the

empirical covariance matrix.

First, PCR centers the data using the column mean x̄ of the x-variables and the

mean ȳ of the y-variable. Denote the centered observations by

X̃ = X − 1x̄,

ỹ = y − 1ȳ.

Then, for dealing with the multicollinearity in the x-variables, the first k (k ≤

min(n, p)) principal components of X are calculated. These loading vectors P̂ =

(p̂1, . . . , p̂k) are the k eigenvectors that correspond to the k largest eigenvalues of

the empirical covariance matrix Sx =
1

n− 1
X̃

T
X̃ (Jolliffe (1982), Jolliffe (2005)).

Therefore, these loading vectors are uncorrelated, orthogonal and they construct a

new coordinate system in the k-dimensional subspace that they span. Denote the

eigenvalues of the Sx, by τ̂1, . . . , τ̂p. The sums-of-squares of the component scores

t̂1, . . . , t̂p are calculated as τ̂a = t̂
T

a t̂a, a = 1, . . . , p. The orthogonality properties of

the loadings and scores can be written in matrix languages as
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P̂
T
P̂ = I,

T̂
T
T̂ = diag(τ̂1, . . . , τ̂k),

where I is the identity matrix and diag() denotes a diagonal matrix with zero ele-

ments off the leading diagonal. Then, the k-dimensional scores of each data point

t̂i are calculated as the coordinates of the projections of X̃ onto this subspace, or

equivalently

T̂ = X̃P̂ (P̂
T
P̂ )−1 = X̃P̂ . (3.3)

It can be shown that for centered x-variables the p̂a, a = 1, . . . , k dimensional vectors

are eigenvectors of X̃
T
X̃ with the τ̂ ’s as eigenvalues. This means that all p̂’s satisfy

the equation

X̃
T
X̃p̂a = p̂aτ̂a.

Likewise, it is possible to show that the scores t̂a, a = 1, . . . , k represent the corre-

sponding eigenvalues of X̃
T
X̃, scaled to modulus

√
τ̂a. In the final step, t̂i are used

as regressors for the centered response variable ỹ. We thus fit the linear regression

model using ordinary least squares as

ỹ = T̂ q + ξ,

since the data are centered, the above equation does not contain intercept. The

estimated parameters are obtained as

q̂ = (T̂
T
T̂ )−1T̂

T
ỹ,

and the fitted values

ŷ = T̂ q̂ + 1ȳ

= (X − 1x̄)P̂ q̂ + 1ȳ.
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The unknown regression parameters in terms of the original variables are estimated

as

β̂PCR = P̂ q̂,

β̂0PCR = ȳ − x̄β̂PCR. (3.4)

Finally, an estimator for the variance of the errors ξ can be calculated as

Sξ =
1

n− 1

n∑
i=1

(yi − ŷi)(yi − ŷi)T

= Sy − q̂TStq̂, (3.5)

where Sy is variance of y and St is the empirical covariance matrix of the t-variables.

Note that equality (3.5) follows from the fact that the fitted values are orthogonal to

the residuals (Johnson and Wichern (2002)).

For non high-dimensional data, it is possible to calculate all the positive eigenvalues

and their eigenvectors simultaneously, either from the centered data X̃, or through

the X̃
T
X̃ cross product matrix using principal components decomposition. But

the above algorithm is not proper for high-dimensional data. In such situations,

PCR can be constructed with a singular value decomposition method or with the

NIPALS (Nonlinear Iterative Partial Least Squares) algorithm (Wold (1966), Wold

(1975a)) which is not respective to the number of observations to predictors ratio.

NIPALS algorithm uses the fact that the components are orthogonal both in scores

and loadings to extract one single factor at a time, a = 1, . . . , k, starting from the

factor with the largest eigenvalue. We use this algorithm since it can help us to

understand the PCR method. Basically, NIPALS is just an iterative algorithm based

on simple least squares regressions for computing principal components. For each

factor, NIPALS algorithm uses an iterative method to obtain the loading vector p̂a

and the score vector t̂a from the residual power-matrix (obtained after estimation

of the previous a − 1 factors). That initial residual matrix can be called ν̂, but for
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facilitating the description of the PCA algorithm we may name it X̃a−1. It is defined

by X̃a−1 = X̃ − t̂1p̂T1 − · · · − t̂a−1p̂
T
a−1, where X̃ is the matrix of mean centered

X-variables. A simple algorithm for computing the a = 1, . . . , k largest eigenvalues

with corresponding eigenvectors proceeds as follows

1. Choose starting values, for instance t̂a is the column in X̃a−1 which has the

largest remaining sum of squares (There are no restrictions on choosing the

initial value, but choosing an appropriate initial value will speed up the conver-

gence process);

2. Project the matrix X̃a−1 on t̂a to improve estimate of loading vector p̂a

p̂Ta = (t̂
T

a t̂a)
−1t̂

T

a X̃a−1;

3. Normalize loading vector p̂ to length 1 in order to avoid scaling ambiguity

p̂a =
p̂a√
p̂Ta p̂a

;

4. Project the matrix X̃a−1 on p̂a in order to improve estimate of score t̂a for this

factor

t̂a = X̃a−1p̂a(p̂
T
a p̂a)

−1;

5. Improve estimate of the eigenvalue τ̂a

τ̂a = t̂
T

a t̂a;

6. Check for convergence: if the difference between τ̂a, (i.e., τ̂a(new)) and the τ̂a,

in the previous iteration (i.e., τ̂a(old)) is smaller than threshold × τ̂a(new) (for

instance, threshold may be 0.0001), the method has converged for this factor;

if not, return to step 2.

Subtract the effect of this factor
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X̃a = X̃a−1 − t̂ap̂Ta

and go to step 1 for the next factor. Repeat steps 2-6 until convergence.

In the ideal situation, only a few eigenvalues will be large such that almost all the

variation inX will be described by those first few components. One of the advantages

of PCR is that it can yield good results where X-variables are highly correlated, as

long as the predictive information is in the first eigenvectors. However, PCR is not

effective in the following situations:

1. Since the principal components are linear combinations of the predictor vari-

ables, little is achieved if these are not interpretable. In general, the predictor

variables should have measurements of comparable quantities for interpretation

to be possible;

2. Principal component uses only the X matrix and not the response, therefore it

may happen that some low eigenvalue principal component highly contributes to

the overall predictive ability of the regression model. Thus, there is no definite

guarantee that PCR predicts well.

3.2.2 Partial Least Squares Regression Algorithm

Partial least squares is a family of regression based methods which combines

features from principal component analysis and multiple regression. Therefore, it

contains regression and classification tasks, as well as dimension reduction techniques

and modeling tools. The underlying assumption of all PLS methods is that the ob-

served data is generated by a system or process which is driven by a small number

of latent (not directly observed or measured) variables (Rosipal and Krämer (2006)).

Projections of the observed data onto its latent structure by means of PLS was de-

veloped by Herman Wold for econometrics ( Wold (1966)) and then applied to other

fields such as chemometrics, social science, food research, etc (Wold et al. (1984),
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Geladi and Kowalski (1986), Martens and Martens (2000), Hulland (1999)).

In its general form, PLS constructs orthogonal score vectors (also called latent vectors

or components) by maximizing the covariance between y and all possible linear func-

tions of X (Frank (1987), Næs et al. (2002)). PLSR can be useful when the purpose

is to predict the response and not necessarily trying to understand the underlying

relationship between the predictor variables.

According to (3.1) and (3.2), the bilinear structure proceeds in two steps in PLSR

algorithm. Similar to PCR, denote the mean-centered of the X and y with X̃ and ỹ,

respectively. The normalized PLSR weight vectors wa (‖wa‖ = 1) are then defined

as the vectors that maximize for each a = 1, . . . , k

cov(ỹ, X̃wa) =
ỹTX̃

n− 1
wa = Syxwa, (3.6)

where STyx = Sxy =
X̃

T
ỹ

n− 1
is the empirical cross-covariance matrix between the X-

and y-variables. The maximization problem of (3.6) is equivalent to finding the unit

weight vector ŵa that maximizes ỹTX̃wa. For each latent variable a = 1, . . . , k,

PLSR algorithm is proceeded as follows:

1. Use the variability remaining in ỹ to find the loading weight ŵa, using least

squares and the local model

X̃ = ỹwT
a + ν1

and scale the vector to modulus 1. The solution is of the form

ŵa = cX̃
T
ỹ, (3.7)

where c is the scaling factor that makes the modulus of the final ŵa equal to

1, i.e.
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c = (ỹTX̃X̃
T
ỹ)−1/2;

2. The elements of the scores t̂a are then defined as linear combinations of the

mean-centered data. It is estimated as the projection of X̃ on ŵa, i.e.,

X̃ = taŵ
T
a + ν2.

The least squares solution is (since ŵT
awa = 1)

t̂a = X̃n×pŵa; (3.8)

3. The loading p̂a is obtained from simple linear regression of the columns of X̃

on t̂a, i.e.

X̃ = tap
T
a + ν3,

which gives the least squares solution

p̂a =
X̃

T
t̂a

t̂
T

a t̂a
; (3.9)

4. Regress ỹ on t̂a to find the loading q̂a, i.e.

ỹ = t̂aqa + ξ;

which gives the solution

q̂a =
ỹT t̂a

t̂
T

a t̂a
; (3.10)

5. Create new X̃ and ỹ matrix by subtracting the estimated effect of this factor

ν̂ = X̃ − t̂ap̂Ta , (3.11)

38



Chapter 3. Sparsity for Principal Component and Partial Least Squares Regression

ξ̂ = ỹ − t̂aq̂a. (3.12)

Note that ν1,ν2,ν3 represent different residual in steps 1-3, respectively, al-

though little distinction has been made notationally. Update the former X̃ and

ỹ by the new residuals ν̂ and ξ̂, i.e. set

X̃ = ν̂,

ỹ = ξ̂;

6. If a is less than k, then increase its value by one and return to step 1. If a is

equal to k, then the algorithm stops and the estimated vector ŷ is

ŷ = q̂1t̂1 + q̂2t̂2 + · · ·+ q̂kt̂k + 1ȳ.

In terms of the original predictor variables, the estimates for β̂PLSR and β̂0PLSR are

achieved through equations (3.7) to (3.10)

β̂PLSR = Ŵ (P̂
T
Ŵ )−1q̂,

β̂0PLSR = ȳ − x̄β̂PLSR. (3.13)

Here, the loading weights Ŵ = (ŵ1, . . . , ŵk) achieved are orthogonal, and so are

the scores T̂ = (t̂1, . . . , t̂k). The estimated loadings P̂ = (p̂1, . . . , p̂k) are however

generally nonorthogonal for PLSR, although they usually resemble Ŵ . It should also

be mentioned that substraction from ỹ in step 5 is unnecessary for the model estima-

tion (Manne (1987)), but it simplifies the computation of the validation statistics.

In order to perform the above algorithm it is necessary that k be known, but in

practice k is unknown and should be estimated. In a case when k = p, the PLSR

predictor is equal to the ordinary LS predictor, if it exists. In another special case,

when the x-variables are orthonormal, i.e. orthogonal and scaled to modulus one, so

that XTX = I, PLSR with one component and LS gives the same predictor. But
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this situation is rarely encountered in multivariate regression. Usually k is considered

equal to the maximum number of PLSR components to be calculated. This number

should be higher than the number of phenomena (informative components) expected

to be seen in X, in order to allow unexpected phenomena to be modeled.

3.3 Resampling Methods

In this section, we describe two resampling computer-based methods of statistical

inference that can answer many real statistical questions. These methods give a direct

appreciation of variance, bias, confidence intervals, and other probabilistic phenomena.

We use these computational techniques to analyze and understand high-dimensional

data sets. Here, these methods are used to estimate the standard error of PCR

and PLSR regression coefficients for significance tests of regression coefficients which

enable PCR and PLSR to perform variable selection. We will describe in detail the

jack-knife and bootstrap based methods for variable selection in Sections 3.4.2 and

3.4.3.

3.3.1 Jack-knife

Jack-knife (JK) was the original computer-based method for estimating biases

and standard errors (Efron and Tibshirani (1994)). Quenouille in mid-1950’s pro-

posed the idea of jack-knife for bias estimation (Quenouille (1949)). Tukey recognized

the potential of jack-knife for estimating the standard errors (Tukey (1958)). Fur-

ther development was presented by Miller (1964), Miller (1974), Gray and Schucany

(1972), Hinkley (1977), Reeds (1978)), Hinkley and WET (1984)), Sen (1988), and

Wu (1986) in the linear regression setting. Shao and Wu (1989), and Shao (1991)

presented general theoretical results on the deleted-d jack-knife.

Suppose we have a random sample X = (X1, . . . ,Xn) from an unknown probability
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distribution F and we wish to estimate a parameter of interest θ on the basis of X.

For this purpose, we calculate θ̂ from x. In order to see how accurate θ̂ is, we may

estimate the standard error of θ̂. By deleted-d jack-knife the data set is randomly

partitioned into L non-overlapping equal size subsets (d = n/L is the size of each

subset). Delete one subset from the training set, use the remaining L− 1 subsets to

obtain the estimates, and repeat this process in turn for each of the L subsets. The

f -th, f = 1, . . . , L jack-knife sample contains the data set with the d-th observation

of the original sample removed. When L is set to the number of observations n,

one observation is left out at a time instead of leaving out d observations each time.

Consider θ̂(f), be the f -th replication jack-knife of θ̂. In the other words, θ̂(f) is the

estimate of θ with the f -th subset removed.

The jack-knife estimate of the standard error is defined by

ŝeJK(θ̂) =

(
L− 1

L

L∑
f=1

(θ̂(f) − θ̄L)2

)1/2

, (3.14)

where

θ̄L =
1

L

L∑
f=1

θ̂(f). (3.15)

3.3.2 Bootstrap

The basic idea of bootstrap is to generate a large number of bootstrap samples by

sampling with replacement from the original data set. Drawing B times, we obtain

B independent bootstrap data sets, each of the same size as the original data set.

From each bootstrap sample, the statistical parameter of interest is estimated and we

obtain B bootstrap estimates of parameter that can be used to assess many aspects

of the distribution of the estimator of interest.

Like jack-knife, suppose we have a random sample X = (X1, . . . ,Xn) from an unknown

probability distribution function F , the bootstrap (Boot) was introduced in 1979 as a
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computer-based method for estimating the standard error of θ̂. It enjoys the advantage

of being completely automatic. The bootstrap estimate of standard error requires no

theoretical calculations, and is available no matter how mathematically complicated

the estimator θ̂ may be (Efron and Tibshirani (1994)).

Bootstrap methods depend on the notion of a bootstrap sample. Let F̂ be the

empirical distribution, putting probability 1/n on each of the observation values xi, i =

1, . . . , n, a bootstrap sample is defined to be a random sample of size n drawn from

F̂ , say X∗ = (X∗1, . . . ,X
∗
n),

F̂ → X∗ = (X∗1, . . . ,X
∗
n). (3.16)

The star notation shows that X∗ is not the actual data set X but rather a randomized,

or resampled version of X.

In the other words, (3.16) indicates that the bootstrap data points X∗1, . . . ,X
∗
n are a

random sample of size n drawn with replacement from the population of n objects

(X1, . . . ,Xn). The bootstrap data set (X∗1, . . . ,X
∗
n) consists of members of the orig-

inal data set (X1, . . . ,Xn), some appearing zero times, some appearing once, some

appearing twice, etc.

Corresponding to a bootstrap data set X∗ there is a bootstrap replication of θ̂, which

is denoted by θ̂∗. For instance, if θ̂ is the sample mean X̄, then θ̂∗ is the mean of the

bootstrap data set, X̄
∗

=
1

n

n∑
i=1

X∗i . The bootstrap estimate of seF (θ̂), the standard

error of a statistic θ̂, is an estimate which uses the empirical distribution F̂ in place of

the unknown distribution F . The bootstrap estimate of seF (θ̂) is the standard error

of θ̂ for data sets of size n randomly sampled from F̂ .

The bootstrap algorithm is a computational way of obtaining a good approximation

to the numerical value of seF̂ (θ̂∗). The bootstrap sampling can be easily implemented

on the computer. A random number device generates integers i1, i2, . . . , in, each of

which can get a value between 1 and n with probability 1/n. The bootstrap sample
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contains the corresponding members of X,

X∗1 = Xi1 ,X
∗
2 = Xi2 , . . . , X∗n = Xin . (3.17)

The bootstrap algorithm proceeds by sampling many independent bootstrap samples,

evaluating the corresponding bootstrap replications, and estimating the standard error

of θ̂ by the empirical standard deviation of the replications. The bootstrap estimate

of standard error is denoted by ŝeBoot.

Next, we describe the bootstrap algorithm for estimating the standard error of θ̂ from

the observed data X.

1. Select B independent bootstrap samples X∗1,X
∗
2, . . . ,X

∗
B, each consisting of n

data values drawing with replacement from X;

2. Evaluate the bootstrap replication corresponding to each bootstrap sample

θ̂∗(b), b = 1, 2, . . . , B; (3.18)

3. Estimate the standard error seF (θ̂) by the sample standard error of the B

replications

ŝeBoot(θ̂) =

{
1

B − 1

B∑
b=1

(
θ̂∗(b) − θ̄∗

)2}1/2

, (3.19)

where θ̄∗ =
1

B

B∑
b=1

θ̂∗(b).

3.4 Variable Selection for PCR and PLSR

Principal components regression (PCR) and partial least squares regression (PLSR)

are widely used in data processing and dimension reduction. However, these two meth-

ods suffer from the fact that each component inside them is a linear combination of
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all the original variables, and thus it is often difficult to interpret the results. Hence,

it is important to select the variables that are relevant in order to obtain the best

model in terms of prediction accuracy and with the lowest number of variables.

Here, we describe several existing methods for variable selection in PCR and PLSR

such as sparse formulation, jack-knife based approaches, and also we introduce boot-

strap-based approach for performing variable selection in PCR and PLSR.

3.4.1 Sparse Formulation Based Methods

Sparse formulation based methods for PCR and PLSR (i.e., sparse principal com-

ponents (SPC) and sparse partial least squares (SPLS) regression) use this fact that

PC can be written as a regression type optimization problem; therefore, LASSO

(elastic net) (Tibshirani (1996), Zou and Hastie (2005)) can be integrated into the

regression criterion to produce sparse linear combinations of the original predictors.

Sparse Principal Components Regression

Sparse principal component (SPC) constructs modified principal components (PCs)

with sparse loadings by considering PC as a regression-type optimization problem and

imposing the LASSO (elastic net) constraint into the regression criterion to produce

sparse loadings. Suppose we have matrix of predictors, X = [x1, . . . ,xp], and, with-

out loss of generality, assume the column means of X are all zero. Consider the

singular value decomposition (SVD) of X as

X = ZV T , (3.20)

where Z = UD, are the PCs, and the columns of V are the corresponding loadings

of the PCs. The sample variance of the i-th PC is
D2

ii

n
(Zou et al. (2006)).

Considering the fact that PC can be written as a regression-type optimization problem,
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the following optimization problem which is called the SPCA criterion

(α̂, β̂) = arg min
α,β

n∑
i=1

|xi −αβTxi|2 + λ

k∑
j=1

|βj|2 +
k∑
j=1

λ1,j|βj|1 (3.21)

subject to αTα = Ik,

should be solved to obtain the sparse loadings, with k, the number of PCs.

Then, β̂j ∝ vj for j = 1, . . . , k . Whereas the same λ (L2-penalty) is used for all

components, different λ1,j, j = 1, . . . , k, (L1-penalty) are allowed for penalizing the

loadings of different principal components (in high dimensional data, λ→∞ and λ1,j

were used such that the number of nonzero loadings varied in a rather wide range,

Zou et al. (2006)).

The obtained sparse principal components will become the regressors for the response

variable to perform SPC regression.

Sparse Partial Least Squares Regression

SPLS regression was formulated by relating it to SPCA. To specify the n×k latent

component matrix T = (t1, . . . , tk), such that T = XW , the following minimization

problem should be solved to find the columns of W = (w1, . . . ,wk).

min
w,c
{−κwTMw + (1− κ)(c−w)TM(c−w) + λ1||c||1 + λ2||c||22}, (3.22)

subject to wTw = 1,

where M = XTyyTX. This formulation promotes exact zero property by imposing

L1- penalty (λ1) onto a surrogate of direction vector (c) instead of the original

direction vector (w), while keeping w and c close to each other (Chun and Keleş

(2010)).

In this formulation, the L1-penalty (λ1) encourages sparsity on c, whereas the L2-
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penalty (λ2) addresses the potential singularity in M when solving for c. Although

there are four tuning parameters (κ, λ1, λ2, k) in the SPLS regression formulation

(3.22), only two of these are main tuning parameters, namely the sparsity parameter

λ1 and the number of hidden components k. These two parameters are chosen by

L-fold cross-validation (Chun and Keleş (2010), Chung et al. (2013)).

The obtained sparse latent components will become the regressors for the response

variable to perform SPLS regression.

3.4.2 Jack-knife PLSR/PCR Algorithm

Jack-knife partial least squares (JKPLS) algorithm for variable selection, proposed

by Westad and Martens (2000), is based on the significance tests of the regression co-

efficients in the PLSR model. This technique automatically generates a standard error

estimate of the coefficients parameters and then, by dividing the estimated regres-

sion coefficients by their estimated standard errors, the t-test values (or equivalently

F-test, (Weisberg (2014))) will be obtained, giving the significance level for each

parameter. Therefore, useless variables may be eliminated automatically, in order to

simplify the model and make it more reliable. By JK method, the data set is divided

into L non-overlapping subsets of equal size. In order to obtain the structure model’s

regression coefficients, one subset from the training set is deleted and the remaining

subsets are used. This process repeats in turn for each of the subsets. The jack-knife

estimated standard error for the estimated regression coefficients (similar to (3.14))

is given by

ŝeJK(β̂j) =

{
L− 1

L

L∑
f=1

(
β̂
(f)
j − β̄j

)2}1/2

, (3.23)

where L is the number of JK subsets, β̂
(f)
j is the estimated coefficient with the f -th

subset removed, β̄j is the mean value of β̂
(f)
j , f = 1, . . . , L, for the j-th variable,

j = 1, . . . , p.
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Since the collinearity between predictors in high-dimensional data is high, it is not to

be expected that the significance test for a data set with large number of variables will

converge to a stable set of variables in the first iteration. This algorithm eliminates

the irrelevant variables iteratively whilst improving the model’s predictive ability. We

also use the jack-knife approach for principal components (JKPC) regression model.

3.4.3 Bootstrap PLSR/PCR Algorithm

As mentioned in Section 3.3.2, the basic idea of bootstrap is to generate a large

number of bootstrap samples by sampling with replacement from the original data set.

Drawing B times, we obtain B independent bootstrap data sets, each of the same

size as the original data set. From each bootstrap sample, the statistical parameter

of interest is estimated and we obtain bootstrap estimates of parameter that can be

used to assess many aspects of the distribution of the estimator of interest. The merit

of using bootstrap here is that it can automatically generate a standard error estimate

which is difficult to compute analytically. Then a t-test statistic (or equivalently F-

test, (Weisberg (2014))) is obtained by dividing the regression coefficients themselves

to their bootstrap estimated standard error. Using this t-test statistic, useless variables

may be eliminated automatically in order to perform variable selection. The bootstrap

algorithm on partial least squares (BootPLS) regression is based on significance tests

of the estimated regression coefficients in the PLSR model. In this approach, the

standard errors of the estimated regression coefficients are estimated by resampling.

We consider the following bootstrap method to construct bootstrap samples (Wehrens

and Van der Linden (1997)): resample with replacement from the set of pairs (y1,x1),

. . . , (yn,xn), yi ∈ R,xi ∈ Rp, i = 1, . . . , n, and generate the bootstrapped pairs

(y∗1,x
∗
1), . . . , (y∗n,x

∗
n), y∗i ∈ R,x∗i ∈ Rp, i = 1, . . . , n. Because sampling is performed

with replacement, in almost all bootstrap samples, the data occur more than once.

Usually, there is collinearity in high-dimensional data, and therefore it is not to be
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expected that the significance test for such a data set will converge to a stable set

of predictor variables in the first iteration. We use an optional procedure in order to

eliminate the irrelevant predictors iteratively whilst improving the model’s predictive

ability. For PCR and PLSR, one of the important aspects is to find the optimal number

of components. The optimal number of components is obtained by considering its

learning curves. For this purpose, we plot the number of components versus RMSE

values as measured by cross-validation. The optimal number of components can be

chosen as the point where the learning curve does not show a considerable slope

anymore. We fixed the optimum number of components based on the lowest RMSE

value of cross-validation,

RMSE =

√√√√ n∑
i=1

(yi − ŷi)2

n
, i = 1, . . . , n, (3.24)

where ŷi is the fitted value of the response variable.

The steps of the algorithm are as follows:

1. The data set is standardized using its mean and variance. B bootstrap samples

are generated from the data and PLSR is performed on each of bootstrap

samples to calculate the RMSE value as the model’s predictive ability using

cross-validation. The minimum RMSE value across these bootstrap samples

is used as the starting value;

2. The PLSR method for each b = 1, . . . , B bootstrap samples is performed and

the estimated regression coefficient for the b-th bootstrap replication parameter

is stored;

3. The bootstrap estimated standard error (similar to (3.19)) for the estimated re-

gression coefficient, β̂j, j = 1, . . . , p, across the bootstrap samples is computed
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ŝeBoot(β̂j) =

{
1

B − 1

B∑
b=1

(
β̂
∗(b)
j − β̄∗j

)2}1/2

, (3.25)

where β̄∗j =
1

B

B∑
b=1

β̂
∗(b)
j ;

4. A two-sided t-test (n− 1 degrees of freedom) is performed for each regression

coefficient in the model, giving the significance level for each parameter

tj =
β̄∗j

ŝeBoot(β̂j)
; (3.26)

5. The regression coefficients with p-values smaller than α = 0.05 (we fix a signif-

icance level of 0.05 for statistical testing) are selected and PLSR is performed

with the new variable set. While the increase in the new RMSE value is lower

than a punishment factor (1% is chosen as the punishment factor), the predic-

tor variables for which H0 : βj = 0 are accepted at the fixed significance level

(i.e., these predictors are removed to form the new model) and the algorithm

repeats from step 2 for the next iteration. If the increase in RMSE value

in comparison with the previous RMSE value is greater than the punishment

factor, the previous set of predictors is kept and the algorithm is terminated.

In this thesis, we also extend the bootstrap approach for principal components (Boot

PC) regression model. The steps of BootPLS algorithm are summarized in Figure

3.2.

3.5 Simulation Study

We perform a simulation study (Luo (2008)) in order to investigate the perfor-

mance of variable selection algorithms in PCR and PLRS. The simulation is designed

to evaluate the algorithms’ performance in reducing the number of predictors and the
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Figure 3.2: Flowchart summarizes BootPLS algorithm.
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predictive ability in terms of the RMSE value. We use the freeware R to develop

the simulation study (R Core Team (2014)). We use the R-package pls (Mevik et al.

(2013)) for computing the PCR and PLSR estimates, and the R packages spls (Chung

et al. (2013)), and elasticnet (Zou and Hastie (2012)) to compute SPLS and SPC

estimates, respectively.

In our simulations we generate three models considering the following scenarios with

the common model

yi = β0 + xTi β + ei, i = 1, . . . , n. (3.27)

Model 1 - We generate a high-dimensional data set with p = 80 predictors and the

sample size n = 20, with β0 = 5 with the following regression coefficients

βj =



3, if j = 1, 2, 3

−2, if j = 10, 11

6, if j = 21, 22 .

5, if j = 30, 31

4, if j = 80

0, otherwise

Therefore, there are 10 active and 70 inactive predictors in simulation model 1.

Model 2 - We generate a high-dimensional data set with p = 100 predictors and the
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sample size n = 20, β0 = 5 with the following regression coefficients

βj =



3, if j = 1, 2, 3

−2, if j = 11, 12

6, if j = 21, 22 .

5, if j = 32, 33

4, if j = 100

0, otherwise

Therefore, there are 10 active and 90 inactive predictors in simulation model 2.

Model 3 - We generate a high-dimensional data set with p = 100 predictors and the

sample size n = 20, β0 = 18 with the following regression coefficients

βj =



6, if j = 10, 11

−8, if j = 20, 21

13, if j = 30, 31

15, if j = 40, 41

13, if j = 50 .

52, if j = 51

−11, if j = 71

6, if j = 90

0, otherwise

Therefore, there are 12 active and 88 inactive predictors in simulation model 3.

We generate samples xi by drawing from a multivariate normal distribution with

mean µ and the covariance matrix Σ. The vector µ and the diagonal entries of
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the covariance matrix Σ are selected by sampling randomly with replacement from

-200, . . . , 200 and 1, . . . , 200, respectively. The block diagonal matrix Σ has 10

equally-sized blocks, and the correlation within all pairs of the first, second,..., and

tenth p/10 variables is set to 0.9,0.8, . . . , 0.1, 0, respectively.

To compute yi we sample the error term from a normal distribution with mean 0 and

standard deviation σ. The value of σ is chosen such that the signal to noise ratio is

equal to 10, i.e.,

√
var(yi)/var(ei) =

√
var(yi)/σ = 10, i = 1, . . . , n.

We investigate several highly correlated variables and one uncorrelated variable in the

first two models, while the third model includes variables with partly large coefficients

from each correlation block. We use the partly large coefficients for the third model

in comparison with the first two models in order to make the active predictors more

correlated to the response variable.

The global minimum RMSE value for the JK based on the L = 10 fold cross-

validation and for the Boot based on B = 200 bootstrap samples from the data was

used as a starting value.

3.5.1 Performance Measurements

We generate G = 100 data sets of each type of simulation model independently,

and each time we perform all the aforementioned variable selection (VS) methods on

the same data set.

In order to examine the performance of the variable selection methods in terms of the

predictive ability, dimension reduction and accuracy of variable selection, we report:

� The RMSE value;
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� The average value of reduced predictors (RP )

RP =
#reduced predictors

G
; (3.28)

� The average value of true positive rate (TPR)

TPR =
1

G

G∑
g=1

TPR(g), (3.29)

where TPR(g) is the true positive rate of the g-th replication

TPR(g) =
#truly selected predictors

#active predictors
, (3.30)

where the active predictors are those predictors that are in the true model;

� The average value of false negative rate (FNR)

FNR =
1

G

G∑
g=1

FNR(g), (3.31)

where FNR(g) is the false negative rate of the g-th replication

FNR(g) =
#falsely selected predictors

#inactive predictors
, (3.32)

where inactive predictors are those predictors that are not in the true model.

3.6 Simulation Study Results

Figures 3.3, 3.4, and 3.5 show the box plots of the RMSE values across the G =

100 replications for PCR, PLSR, and the variable selection methods (JKPLS, JKPC,

BootPLS, BootPC, SPLS, and SPC). The RMSE values were obtained by performing
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Figure 3.3: Comparison between the predictive ability of PLSR, PCR, JKPLS,
JKPC, BootPLS, BootPC, SPLS, and SPC for Model 1.

all methods each time on the same data set through the G = 100 independent

generated data sets for the first, second and third simulation model, respectively.

The optimal number of components for PCR on models 1, 2, and 3 was considered

equal to 6, 6, and 8, respectively and the optimal number of components for PLSR

on models 1, 2, and 3 was considered equal to 3, 3, and 5, respectively.

Using variable selection methods on PCR and PLSR considerably reduces the

RMSE value. PLSR performs better than PCR in prediction, and the prediction

performance ability by VS methods on PLSR is higher than the prediction performance

ability while applying VS methods on PCR for all three models. BootPLS and SPLS

show a similar prediction performance in all three models and both perform better

than JKPLS. BootPC and SPC, in all three models, show the similar prediction error.

In all three models, the prediction performance ability by JKPC is worse than other
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Figure 3.4: Comparison between the predictive ability of PLSR, PCR, JKPLS,
JKPC, BootPLS, BootPC, SPLS, and SPC for Model 2.

Figure 3.5: Comparison between the predictive ability of PLSR, PCR, JKPLS,
JKPC, BootPLS, BootPC, SPLS, and SPC for Model 3.
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considered VS methods for PCR.

The average value of true positive rate (TPR), the average value of false negative

rate (FNR) and the average value of the reduced predictors (RP ) value obtained

by each VS method across the G = 100 independent generated data sets of the

models 1, 2 and 3 are summarized in Table 3.1. Higher TPR and smaller FNR are

desired, which shows that the VS methods perform well concerning the job of variable

selection.

For dimension reduction, the VS methods on PLSR perform a considerable reduction

in the number of predictor variables in all models. JKPLS, BootPLS, and SPLS, for

all the models, have the highest average reduction in the number of predictors.

Since models 1 and 2 contain highly correlated variables, the average value of reduced

predictors (RP ) by the VS methods on PCR is higher for these models, compared

with the RP obtained by using the VS methods on PCR for model 3. For model

3, which contains variables from each correlation block with partly large coefficients

compared with models 1 and 2, the RP by the VS methods on PLSR is higher than

the RP obtained by applying the VS methods on PCR.

For the accuracy of variable selection, for models 1 and 2, JKPC, SPLS, and SPC

show the highest TPR but their FNR is too large compared with other methods.

BootPC with a similar TPR as JKPC shows smaller FNR. For model 3, JKPC,

BootPC, and SPC show the highest TPR while their FNR is too large compared

with JKPLS, BootPLS, and SPLS (applying JK, sparse formulation based methods

and Boot approaches on PLSR). This can be caused by the fact that, using the

mentioned approaches on PCR cannot perform well in dimension reduction of variables

compared with applying these approaches on PLSR, and therefore give higher TPR.

For all the models, Boot approach on both PCR and PLSR by performing a proper

average reduction in the number of predictors can show a moderate average rate of

truly selected variables while having the smallest (best) average rate of falsely selected

variables compared with other VS methods.
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Table 3.2: RMSE, RPred values and the number of selected predictors
(Pred) for each method on yarn data.

Method JKPLS JKPC BootPLS BootPC SPLS SPC

RMSE 0.0069 0.0081 0.0054 0.006 0.0178 0.0207

RPred(Pred) 183(85) 224(44) 195(73) 235(33) 84(184) 4(264)

3.7 Application to Real Data Set

In this section, we use the yarn real data set to further investigation the perfor-

mance of all the aforementioned VS methods in terms of the RMSE value and their

ability of dimension reduction. The yarn data set which is available in R-package

pls (Mevik and Wehrens (2007)) consists of 28 near-infrared spectra (NIR) of PET

yarns, measured at 268 wavelengths, as predictors, and density as the response vari-

able (density) (Swierenga et al. (1999)).

We standardize the data and fix the optimum number of components based on the

lowest RMSE value of cross-validation, and use the global minimum RMSE value

for the JK based on the L = 7 fold cross-validation and for the Boot-based on

B = 100 bootstrap samples from the data as an initial value. For SPC, λ1 was used

such that the number of nonzero loadings varied in a rather wide range and, for SPLS,

the tuning parameter was chosen by cross-validation (Zou et al. (2006), Chun and

Keleş (2010), Chung et al. (2013)).

The optimal number of components obtained by applying PCR and PLSR on yarn

data is equal to 7 and 6, respectively. We show the RMSE values, the number of

selected predictors (Pred), and the number of reduced predictors (RPred) obtained

by each method in Table 3.2. The RMSE value obtained by PCR and PLSR on

yarn data set is 0.0351 and 0.0271, respectively. Table 3.2 shows that all of the VS
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methods on PCR and PLSR give a reduction in the RMSE value. The JK and Boot

approaches have a similar performance in reducing the RMSE value, while Boot

approach performs better in reducing the number of predictors. Both JK and Boot

approaches on PCR and PLSR give a considerable reduction in both the RMSE value

and the number of predictors compared with SPC and SPLS. SPLS performs better

than SPC by producing more reduction in the number of predictors. SPC does not

show much reduction in the number of predictors. SPC for constructing the sparse

loadings of at least one of the PCs (the first PC) uses 264 predictors, and therefore

it can shrink only a few number of loadings to zero for yarn data.

3.8 Discussion and Conclusions

PCR and PLSR are two well-known multivariate regression methods in dealing with

high-dimensional data. Although these methods can handle multicollinearity among

predictors in data and reduce the data dimension, it is still necessary to eliminate the

irrelevant predictors. In this thesis, we introduced a bootstrap based approach for

performing variable selection for PCR and PLSR (i.e., BootPC and BootPLS).

We conducted a simulation study to compare the performance of BootPC and Boot-

PLS with other variable selection methods for PCR and PLSR (JKPC, JKPLS, and

sparse formulation based approaches for PCR and PLSR) in terms of predictive ability,

dimension reduction and accuracy of variable selection. The analysis of the methods

on the simulation data sets for all the presented models showed that using the vari-

able selection methods on PCR and PLSR considerably reduced the RMSE value.

The VS methods on PLSR gave more reduction in the RMSE value in all models.

For the dimension reduction, the VS methods on PLSR in all models performed a

considerable reduction in the number of variables.

VS methods on PCR in models with highly correlated variables reduced more predic-

tors. In all models, Boot approach on both PCR and PLSR could perform favorably
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as well as other considered approached in terms of predictive ability (the RMSE

value).

For all the models, Boot approach on both PCR and PLSR by performing a proper

average reduction in the number of variables showed a moderate average rate of truly

selected variables while having the smallest (best) average rate of falsely selected

variables among other considered VS methods.

By analyzing the methods on the real data set, we observed that the VS methods on

PCR and PLSR reduced the RMSE value. Boot and JK approaches showed more

reduction in the RMSE value and the number of predictors compared with sparse

formulation based methods. Boot approach on PCR and PLSR performed favorably

in reducing both the RMSE value and the number of predictors compared with other

considered approaches.
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Chapter 4

Outlier Detection and Robust

Variable Selection

4.1 Introduction

Many multivariate data sets contain atypical observations such as outliers, that

is, data points that deviate from the usual assumptions and/or from the pattern

suggested by the majority of the data. Outliers are more likely to appear in data sets

with large number of observations and/or variables, and often they do not show up

by simple visual investigation.

Classical regression methods are based on least squares fitting which can be strongly

affected by outliers. When the data contains nasty outliers, typically two things

happen

� the regression estimates differ substantially from the ”right” answer, defined

here as the estimates we would have obtained without the outliers (Hubert

et al. (2008));

� the resulting fitted model does not allow to identify the outliers by means of

different diagnostics methods.
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The effect of the first consequence is fairly well-known although the size of the effect

is often underestimated. But the second consequence is less well-known. Common

intuition says that outliers must stick out from the classical fitted model, and indeed

some of them may do so. But the most harmful types of outliers, especially if there

are several of them, may affect the estimated model so much ”in their direction”that

they are now well-fitted by it (Hubert et al. (2008)).

Thus, by understanding the aforementioned effects the following two problems are

equivalent

� robust regression: find a robust regression fit similar to the fit that we would

have obtained without outliers;

� outlier detection: identify all the outliers that matter.

Another approach to dealing with outliers is robust regression, which tries to find the

estimators that are resistant or at least not strongly influenced by the outliers. Thus,

we can hope to find true outliers by studying the residuals of a robust regression. In

this field many different ideas have been proposed, including least trimmed squares

(LTS) (Rousseeuw (1984)), least median of squares (LMS) (Rousseeuw (1984)), M-

estimators (Huber and Ronchetti (2009), Huber (1973)), GM-estimators or bounded-

influence estimators (Krasker and Welsch (1982)), and S-estimators (Rousseeuw and

Yohai (1984)).

Robust regression and outlier diagnostic methods end up being very similar. Both

involve trying to find outliers and trying to estimate coefficients in a manner that is

not overly influenced by outliers. The difference is in the order in which these two

steps are performed. When using diagnostics we look for the outliers first and then,

once they have been removed, we use LS on this ”clean”data set for better estimates.

Robust regression instead looks to find better robust estimates first and, given these

estimates, we can discover the outliers by analyzing the residuals.

We aim to perform (robust) variable selection in linear regression methods, and the
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aforementioned ideas (Robust regression and outlier detection) have been incorporated

in some of the current robust variable selection methods. Robust variable selection

is variable selection as described in the previous chapters, except these methods are

designed to work in the situation where the observations (in both X and y) may

contain outliers and/or the error distribution could exhibit non-Gaussian behavior.

A small proportion of outliers in the data may largely influence likelihood-type model

selection methods such as AIC (Akaike (1970)), Mallows’ Cp (Mallows (1973)).

Under slight data contamination, variance inflation factor (VIF) criterion (Lin et al.

(2011)) may lead to a completely different and improper selected model. One solution

considered to this robust variable selection problem was to robustify the previously

proposed variable selection criteria. One part of robustifying the previously suggested

criteria is to use robust regression estimates. Hence, when there are contaminations

in data, we need a robust variable selection method that is resistant to outliers in

order to select variables reliably.

Recently, robust variable selection methods have received more attention in the litera-

ture. There are various robust variable selection approaches that are based on robus-

tifying classical selection criteria, namely robust AIC (Ronchetti (1985)), robust Cp

(Ronchetti and Staudte (1994)), robust selection criteria based on stratified bootstrap

(Müller and Welsh (2005)), and robust final prediction error (Maronna et al. (2006)).

Another robust approach, that is an added variable t-test in the context of regression

based on the forward search procedure for variable selection, has been proposed by

Atkinson and Riani (2002). McCann and Welsch (2007) proposed to add a dummy

variable identity matrix to the design matrix for performing robust variable selection

using elemental set sampling. Also, for generalized linear models, a robust selection

criterion has been proposed (Cantoni and Ronchetti (2001)). Salibian-Barrera and

Van Aelst (2008) used the fast and robust bootstrap to achieve a faster model selec-

tion method based on bootstrap, which makes it feasible to consider larger numbers

of predictors. Yao and Wang (2013) imposed L1 penalty in robust minimum average

65



Chapter 4. Outlier Detection and Robust Variable Selection

variance estimation (MAVE) (Č́ıžek and Härdle (2006)) to achieve a robust variable

selection method. They investigated their method only in the presence of outliers in

the data.

Most of the robust model selection methods need to fit a large number of submodels

robustly. When the number of predictors is large, then it is computationally more

efficient to use variable selection methods that sequence the predictors according to

their importance, such as forward selection (Weisberg (2014)).

The least angle regression (LARS) algorithm proposed by Efron et al. (2004) is a

modified version of forward stagewise procedure. It is a powerful and computationally

efficient procedure to sequence the predictor variables for least squares regression.

LARS is based on the pairwise correlation between the predictors and the response

variable, and therefore is not robust to the presence of a small amount of contami-

nation in data.

Variance inflation factor (VIF) regression proposed by Lin et al. (2011) also inher-

its the spirit of a variation of forward stagewise regression. VIF regression selects

those predictor variables among other available predictor variables that can reduce

a statistically sufficient part of the variance in the predictive model. VIF regression

approximates the partial correlation of each candidate variable with response variable

by correcting the marginal correlations.

Khan et al. (2007) proposed robust LARS (RLARS) which replaces the means, vari-

ances and correlations of the variables inside LARS by (their robust counterparts)

medians, median absolute deviations (MAD) and robust pairwise correlation esti-

mates.

Dupuis and Victoria-Feser (2013) proposed robust version of VIF (RobVIF) regres-

sion, which robustly sequence the predictor variables. They used a robust weighted

slope parameter to calculate the robust VIF selection criterion.

Our contribution in this thesis is to propose an algorithm which combines RLARS

with least trimmed squares (LTS) regression (Rousseeuw (1984)), that is a highly
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robust regression method (Rousseeuw and Van Driessen (2006)), and then perform

it on jack-knife (JK) subsets (Efron (1982)) to detect outliers. The merit of using

JK subsets is to find the regression model with optimal predictive ability as measured

by the MAD of the prediction errors obtained by cross-validation. This optimal re-

gression model is devoted to do outlier detection in data. Then, the detected outliers

are removed and standard LARS is performed on the clean data to obtain robust

sequenced predictor variables in order of importance. Therefore, we obtain an outlier

detection and robust variable selection method simultaneously.

The rest of this chapter is organized as follows. First, in Section 4.2 we will provide

the methodology of two robust variable selection methods, robust LARS (RLARS),

and robust variance inflation factor (RobVIF), as the two important counterparts of

the proposed method. In Section 4.3, we will explain our strategy for outlier detec-

tion and robust variable selection as well as the proposed algorithm, i.e., jack-knife

robust least angle regression (JKRLARS). In Section 4.4, we will conduct different

simulation studies to evaluate and compare the performance of JKRLARS with LARS,

RLARS and RobVIF. In Section 4.5, we will conduct a real data comparison. Finally,

in Section 4.6, we will present the conclusions.

4.2 Robust Variable Selection Methods

In this chapter, we aim to select the most relevant variables as predictors to enter

the linear regression model in data sets with large number of predictors containing

contaminations such as outliers and/or leverage points. Thus, in this section we

briefly review two robust variable selection methods as the two counterparts to the

proposed method.
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4.2.1 Robust Least Angle Regression

As mentioned in Section 2.4.1 of Chapter 2, the FS procedure enters variables

in small steps into the regression model to prevent correlated predictors from being

excluded from the top of the sequence. However, this method often becomes time-

consuming due to the fact that often a large number of small steps are taken in the

direction of the same variable. LARS solves this problem by analytically determining

the optimal step size for each variable.

Khan et al. (2007) showed that the LARS resulting sequence of the predictors can be

derived from the correlation matrix of the data (without the observations themselves)

and proposed robust least angle regression (RLARS) by replacing the means, vari-

ances and correlations of the data with their robust counterparts. As robust measures

for mean and variance they proposed to use computationally fast measures such as

median and median absolute deviation (MAD), respectively. They introduced a fast

robust pairwise correlation estimator based on bivariate winsorization (a generaliza-

tion of univariate winsorization as introduced in Huber and Ronchetti (2009)).

Huber introduced the idea of one-dimensional winsorization of the data, and suggested

that classical correlation coefficients be calculated from the transformed data (Huber

(2011)). Alqallaf et al. (2002) examined this approach for the estimation of individ-

ual elements of a large-dimension correlation matrix. For n univariate observations

x1, x2, . . . , xn, the transformation is given by ui = ψc((xi−med(xi))/MAD(xi)), i =

1, 2, . . . , n, where the Huber score function ψc(x) is defined as ψc(x) = min{max{−c,

x}, c}, with c a tuning constant chosen by the user. This one-dimensional winsoriza-

tion approach is very fast to compute but unfortunately it does not take into account

the orientation of the bivariate data. It only brings the outlying observations to the

boundary of a 2c × 2c square, as shown in Figure 4.1. It can be clearly seen in this

plot that the univariate approach does not resolve the effect of the obvious outliers at

the bottom right which are shrunken to the corner (2,−2), and thus are left almost
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Figure 4.1: Limitation of separate univariate winsorizations (c = 2). The
correlation outliers (red points) are only shrunken to the boundary of the
square(Khan et al. (2007)).

unchanged. Bivariate winsorization, which is based on an initial tolerance ellipse for

the majority of the data, can remedy this problem. After robustly standardizing the

data, bivariate winsorization is obtained on the basis of an initial robust bivariate

correlation matrix R0 and a corresponding tolerance ellipse. For instance, consider

the Mahalonobis distance D(x), with x = (x1, x2)
T ∈ R2 based on initial bivariate

correlation matrix R0 and set the tuning constant equal to the 95% quantile of the

χ2
2 distribution which is c = 5.99. The outliers by using the bivariate transformation

u = min(
√
c/D(x), 1)x with x = (x1, x2)

T are shrunken to the boundary of the

95% tolerance ellipse and therefore the resulting correlation estimate will be less af-

fected by the outliers. Thus, a more robust correlation estimate is given.

An essential part of the bivariate winsorization procedure is choosing a proper initial

correlation matrix R0. Khan et al. (2007) proposed adjusted winsorization as initial

estimator.
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Figure 4.2: Adjusted winsorization (for initial estimate R0) with c1 = 2, c2 =√
hc1 (Khan et al. (2007)).

Adjusted winsorization uses univariate winsorization with different tuning constants

for different quadrants: a tuning constant c1 for the two quadrants that contain the

majority of the standardized data, and a smaller tuning constant c2 for the other two

quadrants. For instance, c1 = 2, or c1 = 2.5, and c2 =
√
hc1 where h = n2/n1, with

n1 the number of observations in the major quadrants and n2 = n− n1 (Khan et al.

(2007) used c1 = 2). The initial correlation matrix R0 is obtained by computing

the classical correlation matrix of the adjusted winsorized data. It can be seen from

Figure 4.2 that the adjusted winsorization shrinks bivariate outliers to the boundary

of the smaller square.

Khan et al. (2007) also introduced bootstrap robust least angle regression (BRLARS)

by sequencing the predictor variables on bootstrap samples to obtain more stable

sequences which have also been used in random forests (Breiman (2001)) (see for

example Hastie et al. (2009)). They generate B bootstrap samples from the original
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data and apply RLARS on each of these samples to sequence the predictors. Then,

they ranked the predictor variables according to their average rank over the bootstrap

samples. The relevant predictors with the smallest average rank construct the reduced

set.

4.2.2 Robust Variance Inflation Factor (RobVIF) Regression

Dupuis and Victoria-Feser (2013) proposed the robust VIF (RobVIF) regression

which is a robust version of VIF regression proposed by Lin et al. (2011). They used

a robust weighted slope parameter to calculate the robust VIF selection criterion.

Let XS be the design matrix that contains the selected variables at stage S, and

X̃S = [XS zj] with zj the new potential candidate predictor to be evaluated for

inclusion. Consider the following models

y = XSβS + zjβj + estep, estep ∼ N (0, σ2
stepI), (4.1)

rS = zjγj + estage, estage ∼ N (0, σ2
stageI), (4.2)

where rS are the residuals of the projection of y on XS, βS and βj are slope param-

eters, γj is the slope parameter of the fit of zj on the residuals rS, estep and estage

are the errors. Lin et al. (2011) showed that when least squares are used to estimate,

γ̂ = ρ2β̂j where ρ2 = zTj (I−XS(XT
SXS)−1XT

S )zj (see Section 2.4.2 in Chapter 2).

Dupuis and Victoria-Feser (2013) calculated the robust weighted slope estimators β̂wj

using Tukey’s redescending biweight weights (Huber and Ronchetti (2009)), and then

they computed an approximate robust test statistic in order to compare it with an

adapted quantile to decide whether or not to add zj to the current set of predictors.

Let Xw
S = diag(

√
w0
iS)XS be the weighted design matrix with v columns (v − 1

predictors) at stage S, yw = diag(
√
w0
iS)y the weighted response variable at stage
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S, and zwj = diag(
√
wij)zj the new candidate predictor to be considered to enter

the current set at stage S + 1 (see details in Dupuis and Victoria-Feser (2013) for

calculation of weights w0
iS and wij). Then β̂wj , the robust weighted estimator of βj,

in (4.1) is obtained. Let

ρw = (zwj
Tzwj )−1(zwj

Tzwj − zwj
THw

Szwj ),

with Hw
S = Xw

S (Xw
S
TXw

S )−1Xw
S
T , then

β̂wj = (ρw)−1γ̂wj

with γ̂wj = (zwj
Tzwj )−1zwj

T rwS the weighted estimator of the fit of zwj on the weighted

residuals rwS (4.2). Since computing ρ using all the data is computationally expen-

sive, Dupuis and Victoria-Feser (2013) used a subsampling approach followed by Lin

et al. (2011) to estimate ρw on a randomly chosen subsample of size g. Then the

approximate robust test statistic Tw based on γ̂wj by comparing the expected value of

the estimated variance of β̂wj and γ̂wj is given by

Tw = (ρw)−1/2
γ̂wj√

σ̂2/n(1/n
∑
i

zwij
2)−1e−1c

, (4.3)

with σ̂2 a robust mean squared error for the model with rwS as response and zwj as

predictor variable (that is (4.2)), where zwij denotes the element of zwj . Then Tw is

compared with an adapted quantile as a decision rule to decide whether or not to

add the new predictor variable (to calculate ec and for more details see Dupuis and

Victoria-Feser (2013)).

4.3 Jack-knife Robust LARS (JKRLARS) Algorithm

As mentioned before, since LARS is based on the pairwise correlation between

the predictors and the response variable, therefore it is not robust to the presence of
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a small amount of contamination in data. We propose a method for obtaining the

robust sequenced predictor variables for LARS. In this section we explain our strategy

of outlier detection and robust variable selection. We seek to detect outliers in the data

and at the same time specify a robust sequence of the predictor variables in order of

their importance. Hence, we propose an approach that can perform outlier detection

and robust variable selection simultaneously. To generate jack-knife subsets, first

the data is randomly partitioned into L non-overlapping equally-sized subsets. Then,

each subset is retained once and RLARS is applied to the remaining subsets to find

L sequence predictor variables in their importance. The most appropriate predictor

variables relevant to these L RLARS sequences are used to fit a robust regression

model. We use the least trimmed squares (LTS) regression which is a highly robust

and computationally efficient robust regression method (Rousseeuw and Van Driessen

(2006)). Denote the vector of squared residuals by r2(β) = (r21, . . . , r
2
n)T with r2i =

(yi − xTi β)2, i = 1, . . . , n. Then the LTS estimator is defined as

β̂LTS = arg min
β

h∑
i=1

(r2(β))i:n, (4.4)

where (r2(β))1:n ≤ · · · ≤ (r2(β))n:n are the order statistics of the squared residuals

and h ≤ n. For h = [(n+p+1)/2], where p is the number of predictors (here, [a] de-

notes the integer part of a) the LTS breakdown point equals 50% whereas for greater

h its breakdown point is (n − h)/n. The usual choice h ≈ 0.75n yields the LTS

breakdown point of 25% (Hubert et al. (2008)). Hence, LTS regression seeks to find

the subset of h observations whose least squares fit gives the smallest sum of squared

residuals. Based on the LTS regression model, predicted values of the observations

are calculated by cross-validation. The median absolute deviation (MAD) values of

the prediction errors for each LTS regression model are calculated. Then, the optimal

LTS regression model which yields to minimum MAD value is selected. To identify

outliers, the standardized prediction errors of this optimal model are computed. The
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detected outliers are left out, and LARS is applied to the clean data to find an im-

proved sequence of predictor variables. The goals of identifying outliers in data and

robustly sequencing predictor variables simultaneously reflect the specifications of the

proposed approach.

Consider a data set (yi,xi), i = 1, . . . , n, where yi ∈ R, and xi = (xi1, xi2, . . . , xip)
T ∈

Rp, are the response and predictor values respectively. Let J = {1, . . . , p} and

I = {1, . . . , n} be the set of indices for the candidate predictors and observations,

respectively, and q � p the length of the most relevant predictor variables returned

by RLARS. Then the JKRLARS algorithm proceeds as follows:

Step 1. The observations (yi,xi), i = 1, . . . , n are partitioned into L randomized

non-overlapping equally-sized JK subsets If ⊂ I = {1, . . . , n}, with f = 1, . . . , L.

Clearly, If contains the indices of the observations in f -th subset, with |If | ≈ n
L

;

Step 2. With the f -th subset left out, RLARS is applied to the set (yi,xi), i /∈ If ,

of L− 1 subsets to find a sequence of predictor variables (xj
(f))j∈Jf with Jf ⊂ J =

{1, . . . , p} such that |Jf | � p, where p is the number of predictor variables. Clearly,

Jf contains the indices of the |Jf | = q most relevant predictor variables returned by

RLARS;

Step 3. The predictors x
(f)
j , j ∈ Jf , are used as predictor variables for LTS regression.

We thus consider the regression model

yi = x
(f)T

i β(f) + ei, (4.5)

where x
(f)
i denotes the i-th observation of the predictors x

(f)
j , j ∈ Jf for the i-th

observation and β(f) is estimated by using LTS;

Step 4. To evaluate the prediction performance of each LTS regression fit, we

perform L-fold cross-validation. In order to detect outliers, we compute the predicted
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values ŷi which are defined as

ŷi = x
(f)T

i β̂
(f)
, i ∈ If , (4.6)

where β̂
(f)

denotes the LTS estimates of the regression coefficients with the f -th

subset left out as obtained in the previous step. Thus, predicted values for all the

observations are obtained. For each LTS regression the prediction errors PEi = yi−ŷi,

and the corresponding MAD value of the prediction errors as a measure of the

model’s predictive ability are calculated. The minimum MAD value over all LTS

models is obtained to find the LTS model with optimal predictive ability. Then, the

corresponding standardized prediction errors of this optimal model are used to detect

outliers. The standardized prediction errors are defined by PEi

σ̂
, i = 1, . . . , n where

σ̂ = ch,n

√
1
h

h∑
i=1

(r2(β))i:n, and ch,n makes σ̂ consistent and unbiased at Gaussian

error distribution (Pison et al. (2002)). It should be mentioned that the LTS scale

estimate σ̂ is itself highly robust and can therefore be used to identify outliers by PEi

σ̂
.

As in Hubert et al. (2008) we define the set of the indices of outlying observations as

IOut =
{
i ∈ I : |PEi

σ̂
| >

√
χ2
1,0.975

}
;

Step 5. The detected outliers (yi,xi), i ∈ IOut, are removed (or given weight zero)

and LARS is applied to the clean data (yi,xi), i ∈ IcOut, with IcOut the complement of

IOut. The predictors xj, j ∈ Jfinal with Jfinal ⊂ J from the candidate predictors are

obtained as the robust version of LARS sequenced predictor variables.

4.4 Simulation Study

We conduct a simulation study to investigate and compare the performance of

JKRLARS with its counterparts. We perform all the methods in R Core Team (2014).

We use package lars (Hastie and Efron (2013)) to perform LARS and we perform

RLARS (Khan et al. (2007)) and RobVIF (Dupuis and Victoria-Feser (2013)) using the
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codes available on the authors’ website. We consider h ≈ 0.75n in order to guarantee

a breakdown point of 25% for LTS inside JKRLARS. The number of L = 10 subsets is

considered for the JKRLARS algorithm. For RobVIF, we consider the same subsample

size of 200 with the same initial values for wealth and pay-out equal to 0.5 and 0.05,

respectively similar to Dupuis and Victoria-Feser (2013).

We consider a simulation setting similar to Khan et al. (2007), which is based on the

design of Frank and Friedman (1993).

The linear model is created as

y = l1 + ...+ lk + σe, (4.7)

with k = 6 latent independent standard normal variables l1, l2, . . . , lk and an inde-

pendent standard normal variable e. The value of σ is chosen such that the signal to

noise ratio is equal to 3, that is, σ =
√
k/3. Let e1, ..., ep be independent standard

normal variables, then the set of p predictors is created as

xj = lj + τej, j = 1, ..., k

xk+1 = l1 + δek+1,

xk+2 = l1 + δek+2,

xk+3 = l2 + δek+3,

xk+4 = l2 + δek+4,

.

.

.

x3k−1 = lk + δe3k−1,

x3k = lk + δe3k,

and xj = ej, j = 3k + 1, ..., p,
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with δ = 5 and τ = 0.4 so that target predictor variables x1, . . . ,xk are formed by low

noise perturbations of the latent variables. Variables xk+1, . . . ,x3k are noise predictor

variables that are correlated with the latent variables, and variables x3k+1, . . . ,xp are

independent noise predictor variables.

We consider five different sampling distributions,

(a) e ∼ (1− a)N(0, 1) + aN(0, 1)/U(0, 1), symmetric, slash contamination;

(b) e ∼ Cauchy(0, 1), heavy-tailed cauchy contamination;

(c) e ∼ (1− a)N(0, 1) + aN(20, 1), asymmetric, shifted normal contamination;

(d) same as (a), with high leverage X values, X ∼ N(50, 1);

(e) same as (b), with high leverage X values, X ∼ N(50, 1);

where a = 0.1 denotes the fraction of contamination in the data.

We generate 200 independent data sets of size n = 150 with p = 50 predictors from

the above five simulation scenarios and each time we perform all the aforementioned

methods on the same data set.

4.4.1 Performance measurements

We evaluate the performance of the JKRLARS concerning outlier detection by the

true positive rate (TPR) and false negative rate (FNR). A true positive is an obser-

vation that is contaminated in the data and is also detected as outlier. Analogously,

a false negative is an observation that is contaminated in the data, but is labeled

as a regular observation. Denote the set of the indices of the regular observations

in the data by IR ⊂ I = {1, . . . , n} and the set of the indices of the contaminated

observations in the data by IcR ⊂ I = {1, . . . , n} . The TPR and FNR can then be

defined as
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TPR =
|{i : i ∈ IOut ∧ i ∈ IcR}|

|IcR|
; (4.8)

FNR =
|{i : i ∈ IcOut ∧ i ∈ IcR}|

|IR|
. (4.9)

Higher TPR and smaller FNR are desired, thus showing that JKRLARS performs

well concerning outlier detection.

In order to compare the performance of JKRLARS with its counterparts, we plot the

recall curves, that is, to plot the average number of target variables tm (target vari-

ables refer to x1, . . . ,xk in Section 4.4) included in the first m sequenced predictor

variables entering the model over the 200 independent data sets as a function of vary-

ing m. With k number of target variables, good performance is achieved when the

method can find the k target variables in the first tk sequenced predictor variables,

with tk equal or close to k.

4.4.2 Simulation Study Results

In this section we present and discuss the results of the five presented simulation

scenarios. We perform LARS, RLARS, RobVIF and JKRLARS on each of the 200

independent data sets.

First, we investigate how JKRLARS performs to detect outliers in the data. Table 4.1

shows the results for TPR and FNR averaged over the 200 data sets for the 5

types of considered contamination. From Table 4.1 we can see that the TPR and

FNR of the outlier detection procedure is almost perfect in scenarios (c), (d), and

(e). High leverage points and clear outliers can thus be detected with high accuracy.

At a first look TPR and FNR for scenarios (a) and (b) seem much worse, but we

should bear in mind that in these cases the observations are contaminated by produc-
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ing errors from the long-tailed slash and Cauchy distributions, respectively. Not all

errors produced from these distributions will lie in the tails of the distribution. Thus,

in these scenarios not all of the 10% fraction of contaminated observations will be

actual outliers. Considering the cut-off value
√
χ2
1,0.975 for identifying outliers, it can

easily be checked that only 35.2% of the generated slash errors and 26.7% of the gen-

erated Cauchy errors are expected to produce outlying observations. Comparing the

TPR with these fractions, we see that the outlier detection procedure still performs

reasonably well in these difficult scenarios. Therefore, JKRLARS does a good job of

outlier detection considering both TPR and FNR in all scenarios.

We performed LARS, RLARS, RobVIF and JKRLARS on all 200 data sets in each

scenario to select the predictor variables in order of their importance. Figure 1 dis-

plays the recall curves for comparing LARS, RLARS, RobVIF and JKRLARS in terms

of sequencing the predictor variables in each simulation scenario. For each sequence

of predictor variables we determine the number tm of target variables included in the

first m sequenced variables entering the model with m ranging from 1 to 25.

In scenarios a, b and c, JKRLARS shows the same excellent performance as RLARS

and RobVIF in sequencing the k = 6 target variables at the top of the sequence

(Figures 4.3 (a)-(c)). In the high leverage scenarios (d) and (e), RobVIF fails in se-

lecting the target variables. In the slash with high leverage scenario RobVIF can select

none of the target variables (Figure 4.3 (d)), and in the Cauchy with high leverage

scenario it can select only one of the target variables (Figure 4.3 (e)). Figures 4.3

(d) and (e) show that in the high leverage scenarios RLARS has much more problems

in picking up the target variables in the beginning, while JKRLARS succeeds much

better in picking up most of the relevant variables in the beginning of the sequence.

In particular, in models with (less than) 10 predictors JKRLARS captures 5 of the 6

relevant variables, while RLARS needs models with up to 15 predictors to include at

least 5 of the 6 relevant variables.
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Figure 4.3: Average number of target variables tm versus m for LARS, RLARS,
RobVIF, and JKRLARS for scenarios (a)-(e). The lines shown in all plots
follow the legend of figure (a).
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Table 4.1: The true positive rate (TPR) and the false negative rate (FNR)
averaged over 200 simulation runs, are reported for JKRLARS.

Case a b c d e

TPR 0.25 0.20 1 0.96 0.97

FNR 0.08 0.08 0 0.004 0.003

4.5 Application to Real Data

We evaluate and compare the performance of LARS, RLARS, BRLARS, RobVIF

and JKRLARS on the 1990 US Census data. In order to investigate the selected

variables obtained by each method, we measure their median absolute prediction

error (MAPE) of the optimal number of selected variables as measured by 10 test

subsets, i.e., the data is partitioned into 10 roughly equally-sized subsets and the

MAPE of the methods is calculated on each test subset. We repeat this process 10

times and each time we use the same test subset for all the methods. The optimal

number of variables for each method is obtained by considering its learning curve.

For this purpose, we plot the number of variables in the model versus the MAPE as

measured by 10 test subsets. The optimal number of variables can be chosen as the

point where the learning curve does not show a considerable slope anymore.

The original Census data contains 22784 observations and 139 variables and can

be downloaded at http://www.cs.toronto.edu/~delve/data/census-house/desc.html.

More details on how the data was obtained can be found in Dupuis and Victoria-

Feser (2011). After removing the collinear predictors, and those are all zeros or

almost zeros, the data contains 51 predictors and the response variable, that is the

average price asked for the housing unit. As mentioned in the Section 4.4, in order to

guarantee a breakdown point of 25% for LTS inside JKRLARS we consider h ≈ 0.75n.
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The number of L = 10 subsets and 10 bootstrapped samples is considered for the

JKRLARS and BRLARS methods, respectively. For RobVIF, we consider the same

subsample size of 200 with the same initial value for wealth and pay-out equal to 0.5

and 0.05, respectively similar to Dupuis and Victoria-Feser (2013). As it can be seen

from the learning curves in Figure 4.4, the optimal number of selected variables for

LARS, RLARS, BRLARS, RobVIF, and JKRLARS is 8, 8, 8, 9, and 8, respectively.

Figure 4.5 shows the box plots of the MAPE values of the optimal number of selected

variables over 10 test subsets with 10 times replication for each method. Box plots in

Figure 4.5 suggest that JKRLARS outperforms its robust counterparts while giving a

better performance of LARS in the presence of outliers in data.

4.6 Discussion and Conclusions

Since outlier detection and variable selection in the presence of contaminations

such as outliers and/or leverage points in the data are inseparable problems, therefore

we need a robust method with the ability of outlier detection and variable selection, si-

multaneously. We proposed an outlier detection and robust variable selection method

by combining RLARS with LTS regression as a highly robust regression method on

jack-knife subsets. The merit of using these subsets is to find the regression model

with optimal predictive ability as measured by the MAD of the prediction errors ob-

tained by cross-validation. This optimal regression model is devoted to the job of

outlier detection. Then, removing the detected outliers standard LARS is performed

on the clean data to obtain robust sequenced predictor variables in order of their

importance.

The results of performing this method on contaminated simulation data sets showed

that JKRLARS does a good job of outlier detection. Also, concerning robust vari-

able selection, it performs well in sequencing the predictor variables robustly for the

different data configurations containing outliers and leverage points. Thus, a robust

82



Chapter 4. Outlier Detection and Robust Variable Selection

Figure 4.4: Learning curves for LARS, RLARS, BRLARS, RobVIF, and JKR-
LARS on Census data. Each learning curve suggests the optimal number of
predictors for each method.
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Figure 4.5: Box plots of MAPE values of the optimal number of selected
variables over 10 test subsets with 10 times replication for each method.

version of LARS sequenced predictor variables is yielded by JKRLARS. JKRLARS not

only performs as good as its counterparts, which are RLARS and RobVIF, in robustly

sequencing the predictor variables in the presented simulation scenarios containing

outliers, but also outperforms RLARS in situations with high leverage points (RobVIF

fails in robustly sequencing the predictor variables in these situations).

Finally, through real data set, we confirm that JKRLARS outperforms LARS and the

other considered robust variable selection methods (RLARS, BRLARS, RobVIF).
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Chapter 5

Conclusions and Future Work

In this chapter, the main ideas of this thesis and the main results obtained are

summarized. Further developments are also addressed.

5.1 Conclusions

The main subject of this thesis focuses on the development of regression meth-

ods for performing variable selection and their application to data sets with a large

number of predictors. Data sets with a large number of predictors usually contain

outliers, and linear regression methods are highly sensitive to the existence of outliers

in the data. Outlier detection and variable selection when the data is contaminated

with outliers are not two separable problems. Therefore, according to the main theme

of this thesis the focus is also on the development of regression methods to robustly

select variables in the presence of outliers in data.

In Chapter 3, we have addressed that PLSR builds the components by modeling the

relations between predictors and response variable in contrast to PCR, which creates

the components by modeling the linear combinations of the predictors that explain

most of their variation. Therefore, PLSR is more useful for prediction rather than

explanation with less number of components in comparison with PCR. We introduced
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a procedure (i.e., BootPLSR and BootPCR) for selecting the significant predictors in

the PLSR and PCR models. This procedure is a bootstrap-based technique for signif-

icance tests of regression coefficients to select the significant predictors. We applied

the proposed method to simulated data and compared its performance with jack-knife

based technique and sparse formulation based methods for PLSR and PCR. Although

none of the methods could perform better than each other throughout simulation

studies, the proposed method could perform favorably as well as other considered

methods in terms of predictive ability. For all the simulation models, the proposed

method showed a moderate average rate of truly selected variables, while having the

smallest (best) average rate of falsely selected variables compared with other consid-

ered variable selection methods (i.e., JKPC, JKPLS, SPC, and SPLS). We also applied

the aforementioned methods to real data and compared their performance concerning

predictive ability (RMSE value) and dimension reduction of the variables. The pro-

posed method performed favorably in reducing the RMSE value (in the other words,

showed a better predictive ability) , as well as the number of predictors compared

with other considered methods.

In Chapter 4 we mentioned that LARS is a time-efficient procedure to sequence pre-

dictors in order of their importance and that it is not resistant to the presence of

outliers in data. Therefore, LARS sequenced predictors can be easily affected by a

small fraction of outliers in data. A robust version of LARS has already been intro-

duced by replacing the means, variances and correlations of variables inside LARS

with their robust counterparts.

We introduced a procedure for performing outlier detection and robust variable selec-

tion by combining RLARS with LTS regression as a highly robust regression method

on jack-knife subsets. By using these subsets, the regression model with optimal

predictive ability, as measured by the MAD of the prediction errors obtained by

cross-validation, is found. This optimal regression model is devoted to detect out-

liers. Then, after removing the detected outliers LARS is performed on the clean data
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to obtain robust sequenced predictor variables in order of their importance.

The results of applying the proposed method to simulated data showed that it per-

formed favorably in outlier detection and robust variable selection. In simulation

studies with outliers, JKRLARS could perform the job of robust variable selection as

well as its counterparts (i.e., RLARS and RobVIF). Also, it could outperform RLARS

in other simulation studies containing both outliers and leverage points, while RobVIF

failed to robustly sequence the predictor variables in these situations.

We also evaluated and compared the performance of the proposed method with LARS

and the aforementioned robust variable selection methods on real data. Concerning

robust variable selection, the proposed method showed a better performance, as mea-

sured by the MAPE of the optimal number of selected variables achieved by each

method on test subsets, compared to LARS and other considered robust variable

selection methods.

5.2 Future Developments

There are some possibilities that could be extended from this thesis.

In this work we mainly focused on variable selection and outlier detection in data

sets with a large number of predictors. We are also thinking about the possibility of

developing the discussed algorithm to enable principal components regression (PCR)

and partial least squares regression (PLSR) to perform variable selection in generalized

linear models in order to consider data from different distributions with a large number

of predictors.

Given that least absolute shrinkage and selection operator (LASSO) estimator can be

computed using the least angle regression (LARS) algorithm, the discussed algorithm

may be extended to obtain a robust version of LASSO in order to detect outliers and

robustly select variables in data sets with a large number of predictors.

In some circumstances, the data is measured in space and time, and therefore it
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is important to develop spatial/temporal methods to select variables in both spatial

and temporal dimensions for high-dimensional data by combining statistical regression

techniques.
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