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ABSTRACT 

Fundamental cellular processes appear to be highly conserved between Saccharomyces 

cerevisiae and other more complex Eukaryotic species, including humans. “Humanized yeast 

systems” emerged as a tool to study molecular aspects of human pathologies. The present work 

aimed at contributing to build and validate a large high throughput platform of yeast strains 

displaying phenotypes that can enable further testing galectin-related drugs and peptides. This 

platform was designed to consist of two types of strains, the ones expressing human galectins 

and the ones expressing these together with the human KRAS cDNA. The rationale behind this 

relates with the putative dialogue between Galectins and RAS signaling pathway in mammals. 

Considering that EGFR mediates KRAS signaling and that yeast also harbors a RAS signaling 

pathway, the “humanized yeasts” expressing KRAS were used to identify the yeast target of 

anti-EGFR. Furthermore, it was also used for phenotyping the most well-known biological 

processes known to be controlled by RAS pathway. On the other hand, considering that the 

deletion of GUP1 in S. cerevisiae increases the resistance to the oncological drug Imatinib, the 

similarities between the phenotypes associated to the deletion of RAS and GUP genes were also 

verified.  

Two Hsp70, Ssa2p and Ssb2p and one glyceraldehyde-3-phosphate dehydrogenase 

Tdh3p, were identified as EGFR-like proteins. The subsequent alignments analysis between 

EGFR and these proteins revealed that Ssb2p and its very close homologue Ssa2p present some 

homology with EGFR sequence, namely at the level of three EGFR conserved amino acids 

known to be responsible for the interaction with the anti-EGFR antibody Cetuximab used in 

cancer treatment. This and other lines of evidence support Ssb2p and/or Ssa2p as good 

candidates for EGFR homology. The phenotypic tests revealed that both the deletions of GUP 

and RAS genes promote a reduction in chronological life span and cell size, except in the case 

of ∆ras2 strain, whose cells were bigger than wild type control. Nutrient depletion (carbon) 

promoted replication stress in ∆ras2 cells that failed to enter into G1 arrest, and were blocked in 

S phase, concurring with the bigger size of ∆ras2 cells and their short lifespan. Moreover, the 

cells with GUP genes deleted, in opposition to RAS mutants, showed ability to adhere to solid 

nitrogen-deficient medium. Neither RAS nor GUP mutants were able to invade or filament 

under these conditions. 

With this work we were able to determine the possible homologue of EGFR, many 

times associated with cancer pathologies, and contributed to gain insights on RAS and GUP 

genes common phenotypes. In conclusion, the present work opens doors to future discovery of 

new pathways in yeast, in addition to showing that S. cerevisiae is a suitable model to create a 

platform to explore therapeutic drugs/antibodies.  
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RESUMO 

Vários processos celulares fundamentais encontram-se conservados entre a levedura 

Saccharomyces cerevisiae e outras espécies eucariotas mais complexas, incluindo humanos. A 

“Levedura humanizada” surgiu como uma ferramenta de estudo sobre aspectos moleculares de 

patologias humanas. Com este trabalho pretendeu-se contribuir para a construção e validação de 

uma plataforma de estirpes de levedura que exibam determinados fenótipos, permitindo o teste 

de drogas e péptidos relacionados com as galectinas. Esta foi planeada para incluir duas estirpes 

a expressar galectinas humanas, assim como o cDNA do KRAS humano. O propósito desta 

plataforma advém de uma possível interação entre as Galectinas e a via de sinalização dos RAS 

em mamíferos. Tendo em conta que o EGFR medeia a cascata de sinalização KRAS, e que 

também a levedura possui uma via de sinalização Ras, usou-se as leveduras humanizadas a 

expressar o KRAS para identificar o alvo do anti-EGFR. Para além disso, estas foram usadas 

para a fenotipagem de processos biológicos controlados pela cascata RAS. Por outro lado, tendo 

em conta que a deleção do GUP1 aumenta a resistência à droga oncológica Imatinib, verificou-

se também as semelhanças fenotípicas entre as deleções RAS e GUP.   

Foram identificadas duas proteínas Hsp70, Ssa2p e Ssb2p, e uma gliceraldeído-3-fosfato 

desidrogenase Tdh3p, como sendo os alvos do anti-EGFR. Subsequentemente, a análise dos 

alinhamentos entre o EGFR e estas proteínas revelaram que a Ssb2p e a sua homóloga Ssa2p 

apresentam similaridade com a sequência do EGFR, nomeadamente ao nível de três 

aminoácidos responsáveis pela interação com o anticorpo anti-EGFR, Cetuximab, usado no 

tratamento do cancro. Esta informação suporta a hipótese das proteínas Ssb2p e/ou Ssa2p serem 

boas candidatas a homólogas do EGFR. Os testes fenotípicos revelaram que as deleções dos 

genes GUP e RAS promovem uma redução da longevidade cronológica e da área celular, com 

excepção para a estirpe ∆ras2 cujas células se revelaram maiores do que a wt. A depleção de 

nutrientes (carbono) induziu stress replicativo nas células ∆ras2, que por sua vez falharam a 

entrada na fase G1, ficando bloqueadas na fase S, o que está de acordo com o aumento da área 

celular e a baixa longevidade cronológica das células ∆ras2. Além disso, as células com a 

deleção nos genes GUP, contrariamente aos mutantes RAS, mostraram habilidade para aderir a 

um meio deficiente em nitrogénio. Nenhum dos mutantes RAS ou GUP foram capazes de 

invadir ou filamentar nas condições anteriormente descritas.  

Com este trabalho fomos capazes de determinar o possível homólogo do EGFR, muitas 

vezes associado a patologias relacionadas com o cancro, assim como contribuir para melhor 

compreender os fenótipos comuns associados aos genes RAS e GUP. Em conclusão, o presente 

trabalho abre portas para futuras descobertas de novas vias de sinalização em levedura, além de 

reforçar a utilização da S. cerevisiae como um bom modelo para criar uma plataforma de 

exploração de drogas/anticorpos.  
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1. Introduction  

1.1 Yeast as Eukaryotic Model 

To date, the yeast model has allowed identifying new targets and novel 

therapeutic opportunities. Several features make Saccharomyces cerevisiae an ideal 

model system for the study of human diseases, one of which is the simplicity of yeast 

genome that comprises only 6,000 genes (1) compared to about 25,000 for the human 

genome (2). Studies of yeast have been essential for understanding fundamental cellular 

processes such as metabolism (3), DNA replication and recombination (4), the 

regulation of cell cycle (5), cell death (6) and for elucidating many mechanisms of 

several diseases (7). Yeast also presents many practical advantages over human cells. It 

is well suited to high throughput methods because its life cycle is quick (±90 minutes), 

it can grow in liquid or on solid media forming suspended cells or colonies respectively, 

and its culture requires neither elaborate sterile technique nor expensive media (8). 

Yeast reproduces and dies old or by apoptosis provoked by several stimulus. It lives as 

individual cells or in colonies, the cells can differentiate into pseudo or true hyphae in 

response to environmental events, this differentiation is related with the capacity to 

invade and adhere (9). Moreover, it is a genetically modifiable organism, amenable to 

changes such as gene deletion, gene marking, mutation or gene dosage effects (7, 10). It 

has been possible to vary the level of expression of essentially every individual yeast 

gene and to assemble collections of mutant strains with genome-wide coverage (8). 

The use of yeast as a model organism was extended to the analysis of the 

molecular mechanisms of human diseases, sometimes of rather unexpected nature (11, 

12). This was achieved by directly studying an endogenous protein orthologue of a 

human involved in the disease (11, 13) or through the heterologous expression of 

human disease associated proteins (14, 15). Although several aspects of the disease in 

high Eukaryotes are beyond the extend of a unicellular organism like yeast, many 

processes and pathways are greatly conserved in this organism, namely, cell cycle 

checkpoint controls, mitochondria biogenesis, protein quality control, vesicular 

trafficking, apoptosis and autophagic pathways (7, 14, 16). When establishing related 

protein models, different approaches are used according to the degree of conservation of 

the protein under study. If the gene codifying for the protein is conserved in yeast, it is 

possible to directly study its function. If the gene has no orthologue in yeast, the 
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heterologous expression of the human gene in this organism (then designated 

humanized yeast) can be highly advantageous because yeast conserve protein 

interactions that give information to its function (14). An example of this strategy is the 

expression of the tumor suppressor p53 in yeast (17), or of tyrosine kinase receptors, 

well known to interfere in numerous types of cancer (15). Furthermore the expression of 

the human gene in yeast often leads to disease relevant phenotypes because yeasts and 

mammalian cells can respond alike to the appearance of such mutant genes (18).  

The yeast genome was the first eukaryotic genome to be sequenced (1)  and it 

has allowed pioneer genome scale screening methods, including microarrays (19), two-

hybrid analysis (20) and the use of deletion and overexpression libraries (21). 

Moreover, advances in yeast technology have stimulated the use of this model organism 

for the creation of high throughput screening platforms for new biologically active 

compounds, namely through haplo-insufficiency and synthetic lethality screening, or 

fitness profiling (10). Generally speaking, yeast is considered an excellent model for 

understanding cellular and molecular processes underlying many diseases. Yeasts 

harbor well conserved pathways, like TOR, PKC, Calcineurin, stress responsive, 

secretory, protein sorting pathways and the RAS/cAMP/PKA (22). The MAPK 

cascades have as principal function regulate transcription factors by MAPK-mediated 

phosphorylation. Presently, the budding yeast S. cerevisiae has five recognized MAPK 

pathways, the mating-pheromone response (23), the filamentation-invasion pathway 

(24), the high osmolarity glycerol (HOG) stress response (25), and the cell integrity 

pathway (26) (Fig. 1). All of them are operate in vegetative cells during sporulation and 

regulates the correspondent developmental process (27). 
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Figure 1. MAPK pathways in yeast S. cerevisiae. Withdrawn from (28). 

 

The majority of the cancer-causing mutations were discovered in non-human 

species, such as yeast, before their role in human cancer was realized. Many of the 

genes that are frequently altered in tumors have structural or functional orthologues in 

model genetic systems, including the yeast S. cerevisiae (29). Actually, yeast presents a 

considerable degree of homology to the human proteome (30). For example, one 

homology particularly relevant for this work is the one between the oncogenes of the 

RAS family in human and the two RAS genes RAS1 and RAS2 in yeast (31). Hartwell 

won 2001 Nobel Prize in Physiology or Medicine for identified in yeast more than 100 

genes involved in cell cycle control checkpoints, generally known as the cdc genes 

(from cell division cycle). The same genes that control the cell cycle in baker's yeast, 

identically control cell cycle progression in human cells and malfunction in tumor cells 

(7, 32).  
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1.2 Yeast as a Cell Aging Model  

In the last years, the yeast S. cerevisiae has been used as a model to study a 

range of factors affecting cellular aging, as well as genes involved in pathways 

controlling life span (33). In view of the specificities of life cycle of yeasts, two types of 

ageing processes have been identified and can be studied separately: replicative life 

span (RLS) and chronological life span (CLS). The number of times that a single 

mother cell, before senescence, originates daughter cells was defined as RLS. On the 

other hand, the length of time that yeast in non-dividing phase remains viable defined 

the CLS (34). Several studies using yeast as a model reveled a relation between the 

longevity and availability of nutrients, thus is now know that the calorie restriction 

increase the RLS as well as the CLS (34, 35). In others eukaryotic  model organisms 

(worms, flies, zebra fish) the reduction of growth hormones factors promotes longevity 

as improves overall health by decreasing the probability of developing diseases of 

diverse types, like cancer, heart attack and diabetes, all related with aging (36).  

To date, three signaling pathways have been described as regulators of life span: 

RAS/cAMP/PKA, TOR and Sch9 (37-39) (Fig. 2). In yeast, these pathways are 

regulated by the availability of nutrients, being activated in presence of glucose and 

others nutrients inducing cells to proliferate. In opposition, in conditions of nutrient 

exhaustion, the reduction of signaling of these pathways arrests cell cycle and cells enter 

a quiescent state (40). Accordingly, the deletions of the genes RAS2, SCH9 and TOR1, 

as well as the inactivation of other proteins of TOR pathway, increase the yeast CLS 

and promotes stress resistance (41). The association between these two types of 

phenotype suggests that increasing cellular protection against damage, and 

concomitantly increasing the cell repair, can be a strategy to retard aging (40). On the 

other hand, Tor1p forms a complex with other proteins known as TORC1, which 

phosphorylates and consequently promotes the activation of the serine threonine kinase 

Sch9p (42). The deletion of SCH9 triples life span and increases resistance to oxidative 

and temperature stress (43). The role of Tor1p on longevity could therefore be due to 

activation of Sch9p (39). Additionally, also mutations decreasing the activity of the 

RAS/cAMP/PKA pathway extend longevity and increase oxidative stress resistance. 

This occurs because general stress responsive transcription factors Msn2/Msn4 are 

activated and induce the transcription of SOD2 the mitochondrial antioxidant enzyme 
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superoxide dismutase (43) and catalase levels, consequently promoting the decrease in 

oxidative stress and cellular damage (44). Accordingly, growth signaling promotes 

chronological aging by inducing superoxide anions that inhibit quiescence (45). 

 

 

Figure 2. RAS/PKA, TOR and Sch9 pathways regulators of life span in S. cerevisiae. Glucose and others 

nutrients activate the three pathways which promote the repression of Rim15p and consequently the down 

regulation of dependent stress resistance system Msn2p/Msn4p and Gis1p. In condition of nutrients 

restriction the down regulation of RAS/PKA, TOR and Sch9 pathways promotes de activation of Rim15p 

as well as the protection system Msn2p/Msn4p and Gisp. Withdrawn from (46). 

 

The extension of CLS promoted by the deletions of RAS2, TOR1 and SCH9 or 

by nutrient restriction is dependent on the activity of a serine/threonine kinase, Rim15. 

Its deletion causes the reversion of the CLS extension phenotype observed on any of the 

three mentioned mutants. This suggests that the aging pathways controlled by Sch9p, 

Tor1p, and Ras2p converge on the protein Rim15p (41), which major role is the 

activation of the above mentioned stress resistance transcription factors Msn2p, Msn4p 

and Gis1p (44). 
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1.3 RAS/cAMP/PKA Pathway  

The RAS/cAMP/PKA pathway regulates of other processes besides 

chronological life span. These include cell cycle (47), the polarity of actin cytoskeleton 

(48), spore morphogenesis (49), the activity of the general amino acid permease Gap1p 

(50) and DNA damage checkpoint (51). The genome of S. cerevisiae has two RAS 

genes, RAS1 and RAS2, this the latter more expressed than the former (31). Ras1p and 

Ras2p are small GTPases with respectively 309 and 322 amino acid residues, which N-

terminal portions have high homology to the mammalian Ras proteins, namely KRAS 

(see section 1.7 of Chapter 1). This region contains G1 to G5 boxes, short stretches of 

amino acids that are involved in the recognition of guanine nucleotide and phosphate 

(52). Conversely, it is in the C-terminal that yeast Ras proteins diverge from 

mammalian Ras. The sequence close to the C-terminus including the 4 terminal amino 

acids that constitute the CAAX motif (C is cysteine, A is aliphatic amino acid, and X is 

the C-terminal amino acid) is important for post-translational modifications that 

facilitate their association with the membrane (53).  

The RAS genes are essential for growth, so ∆ras1∆ras2 mutants are nonviable 

(54, 55). RAS1 is repressed when cells are grown on non-fermentable carbon sources 

like as glycerol and pyruvate. Therefore the ∆ras2 mutants should not grow on a non-

fermentable carbon source, because in those conditions the strain is defective for both 

Ras1p and Ras2p. Cells with a temperature sensitive RAS2 mutation or ∆ras1 deletion 

are blocked in the G1 phase of the cell cycle and accumulate as unbudded cells at 

nonpermissive temperatures (54). Mutations in RAS2 promote accumulation of 

carbohydrates and increase the sporulation. On the other hand, yeast cells expressing an 

activating mutant of Ras2p, Ras2val19 exhibit decreased sporulation ability as detected 

by a reduced glycogen storage level, and are sensitivity to heat shock and nutrient 

starvation. Also, it is known that the amount of cAMP inside the cell is decreased in the 

∆ras mutants, and increased in the activated mutant expressing Ras2val19 (54). Ras1p 

and Ras2p activate the adenylate cyclase Cyr1p (55) which is associated with a protein 

called CAP (cyclase-associated protein) promoting the production of cAMP. cAMP 

binds with the Bcy1 protein that induces its dissociation from the PKA catalytic 

subunits (encoded by TPK1, TPK2 and TPK3) and consequently activate PKA (Fig. 3). 

Subsequently, the phosphorylation of several substrates leads to the control of a large 
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variety of functions including cell cycle progression (47). The synthesis of cAMP is 

also regulated by the Gα protein called Gpa2p that is activated by glucose (56). The 

activation of PKA pathway enhances activities related with proliferation. The 

inactivation of cAMP is regulated by Pde1 and Pde2 phosphodiesterases, these enzymes 

act as antagonists in yeast signaling as well as represents the main control of feedback 

in PKA pathway. This regulation decreases rapidly the pathway activity. Accordingly, 

yeast strains harboring mutations in which this type of feedback is inactive, may 

accumulate high quantities of cAMP (57).    

Yeast Ras1p and Ras2p are inhibited by two Ira proteins (Ira1p and Ira2p) (58). 

They have two very similar genes, IRA1 and IRA2. A region of approximately 360 

amino acids called GAP domain is responsible for the intrinsic activation of GTPase 

activity from Ras (59). Ira1p and Ira2p have similar functions, consequently mutations 

in IRA1 and IRA2 result in similar phenotypes, and the double mutant has more 

pronounced phenotypes (60). Apparently, Ira proteins are regulated by Kelch proteins 

Gpb1p and Gpb2p that bind to a C-terminal domain of Ira1p or Ira2p (61). Gpb is a G  

mimic that does a protein complex with Gpa2p (62). Gpb1p also has been identified as a 

binding partner of Ira2p that regulates negatively Ira2p by promoting its ubiquitin-

dependent proteolysis (63). On the other hand, Gpb2p regulates positively Ira2p (64). 

Other important gene in RAS signaling is the CDC25 that encodes an activator of Ras1p 

and Ras2p, which acts as a GEF (Guanine nucleotide Exchange Factor) that facilitate 

the exchange of bound GDP with GTP (65, 66). CDC25 is also reported as a gene that is 

essential for cAMP production. The Sdc25p was been reported to also contain a GEF 

domain (67). Ras proteins are synthesized in the cytoplasm with a process very similar 

to the mammalian RAS. The removal of methionine at the N-terminus is the first step in 

the synthesis, which probably occurs co-translationally. The C-terminal modifications is 

the next step that include farnesylation, deletion of C-terminal 3 amino acids, carboxyl 

methylation and, finally, addition of palmitic acid (60). 
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Figure 3. RAS signaling pathway in S. cerevisiae. Ras and Gpa2p (GTP bound G proteins) bind to 

adenylate cyclase (Cyr1p) and promote its production of cAMP. Cdc25p and Sdc25p (Ras GEFs) and 

Ira1p and Ira2p (Ras GAPs) are represented in Ras-Cyr1 complex because they regulate adnylate cyclase 

by controlling the Ras switch. Gpr1p, a member of the G protein coupled receptor, acts upstream of 

Gpa2p. Gpa2p was very similar with the mammalian G subunits of heterotrimeric G proteins. 

Phosphodiesterases (Pde1p and Pde2p) antagonize the signaling via enzymatic inactivation of cAMP. The 

PKA tetramer is the regulatory target of cAMP. The regulatory Bcy1p subunits keep PKA in an inactive 

state. cAMP activates the catalytic subunits by binding to Bcy1p subunits and promoting dissociation of 

the complex. Withdrawn from (68). 

 

1.4 TOR Pathway 

In addition to the RAS/cAMP/PKA signaling pathway, the other major nutrient 

responsive, growth controlling pathway in yeast is the TOR (Fig. 4). Tor (Target of 

rapamycin) serine/threonine kinases belong to the phosphatidylinositol-3 kinase (PI3K) 

family, and exert their functions in two distinct multiprotein complexes: TOR Complex 

1 (TORC1), which controls many aspects of yeast growth and cell proliferation, and 

TORC2, which regulates cell polarity and actin cytoskeleton organization (69, 70). The 

main function of TORC1 is to respond to nutritional status, where its major function 

appears to be the regulation of translation capacity in response to environmental signals 

by promoting ribosome biogenesis, amino acid availability, and translation efficiency. 

Inhibition of TORC1 by rapamycin mimics nutrient starvation and causes G1 arrest, 

inhibition of protein synthesis, glycogen accumulation, induction of autophagy and 

entry into quiescence (69, 70). TOR also controls other aspects of ribosome biogenesis, 
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such as the Pol I- and Pol III-dependent transcription of the rDNA and tRNA genes via 

phosphorylation of dedicated transcription factors (71). Tor1p itself may activate rDNA 

transcription in rich nutrient conditions by entering the nucleus and binding directly to 

promoters (72), however, in other studies, Tor1p has been localized to internal 

membrane structures but not the nucleus (73, 74). TORC1 is also intimately implicated 

in vesicular trafficking (75). On the other hand, TORC2 signaling is rapamycin 

insensitive and it is required for the organization of the actin cytoskeleton. Upstream 

regulators of TORC2 are not known yet (76). 

Rapamycin and nitrogen starvation treatment shows very similar responses in S. 

cerevisiae, suggesting that TORC1 is regulated by the availability of nitrogen source 

(77). The control of nitrogen metabolism involves the regulation of PP2A and the 

PP2A-like phosphatase, Sit4p. Yeast cells can adapt the metabolism to the nitrogen 

sources through the nitrogen catabolite repression pathway (NCR) also known as the 

nitrogen discrimination pathway (NDP) (78). Two activators, Gln3 and Gat1, and two 

repressors Dal80 and Gzf3 are the transcription factors that are involved in the 

regulation of selective use of the nitrogen via NCR (79). Under rich nitrogen sources, 

Gln3 is phosphorylated and sequestered in the cytoplasm. On the other hand, rapamycin 

treatment or poor nitrogen sources rapidly triggers the dephosphorylation of Gln3 in a 

Tap42-phosphatase-dependent manner. The Gln3 enters into the nucleus activating 

NCR genes (70, 80). 

Many functional interactions between TOR and the RAS/cAMP/PKA pathway 

have been showed (69). It was demonstrated that the activation of PKA signaling 

pathway confers resistance to rapamycin. So, the activation of the PKA pathway 

prevents several rapamycin-induced responses. It is also known that TOR controls the 

subcellular localization of both PKA catalytic subunit Tpk1p and the Ras/cAMP 

signaling-related kinase Yak1p. However, the detailed relationship between the TOR 

and RAS/PKA networks is still not understood. Several possibilities have been 

suggested. On one hand, it was proposed that the TOR and PKA signaling cascades 

independently coordinated the expression of several genes. On the other hand, it has 

been proposed that TOR may work upstream of Rasp to regulate PKA activity, thus the 

RAS/PKA pathway can be a novel TOR effector branch (69, 70, 81). 
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Figure 4. The TOR pathway in S. cerevisiae. The activation of TORC1 by nutrients results in the 

stimulation of protein synthesis and the inhibition of stress response genes, autophagy and several 

pathways that allow growth on poor nitrogen sources. These processes are regulated by the rapamycin 

sensitive TORC1 complex via the Tap42-Sit4/PPA2c or the Sch9 branch. Withdrawn from (70). 

 

1.5 Sch9 Pathway  

Like PKA and TOR, the less well-known Sch9 pathway plays a role in nutrient-

mediated signaling in yeast (70). In parallel with the PKA pathway, Sch9p is 

phosphorylated by TORC1, regulating many of the TORC1 processes. However, Sch9p 

also acts independently of TORC1, promoting adaptation to stress (70). The main 

functions of Sch9p are regulation of cell size, activation of ribosomal biogenesis (82), 

action as a negative regulator of both CLS and RLS and regulation of mitochondrial 

respiration (37, 83). It was demonstrated that the deletion of SCH9 up-regulates electron 

transport chain which is associated with an increase in mitochondrial respiration (84). 

Additionally, it has also been shown that yeast Sch9 is an important component of a 

network that controls genes involved in a metabolic switch from the TCA cycle and 

respiration to glycolysis and glycerol biosynthesis. During chronological aging, the 
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Δsch9 exhausts extracellular ethanol and reduces stored lipids, but synthesizes and 

releases glycerol, suggesting in this way that glycerol production enhances life span 

(85).  

 

1.6 Gup protein in Saccharomyces cerevisiae  

Gup1p and its close homologue Gup2p are members of the membrane-bound O-

acetyltransferase (MBOAT) superfamily (86-88). Gup1p was firstly described in 

Saccharomyces cerevisiae as involved in glycerol metabolism and transport and 

accordingly included in the major facilitator superfamily (88). Nevertheless, Gup1p is 

now well known for other aspects of cell physiology that do not relate directly to 

glycerol active transport, which protein was identified as the Stl1p member of the HXT 

family of hexose transporters (89). The actual influence of Gup1p on Stl1p activity was 

found to be indirect through the influence of Pma1 H+ATPase miss localization and 

consequent defective active transport-driving proton motive force (90). Gup1p is 

localized in the plasma membrane, more precisely oriented across the membrane 

plasmatic where the N-terminus is located in periplasmic space, and the C-terminus 

located intracellularly (88, 91). However, it also co-localizes with cytochrome c oxidase 

from mitochondria and with NADPH-cytochrome c redutase from the endoplasmatic 

reticulum (88). These several sub-cellular localizations suggest complex regulation and 

roles. Gup1p was associated with the integrity and biogenesis of cell wall and plasma 

membrane (90, 92), and relatedly, the deletion of GUP1 impaired growth under 

anaerobic conditions and sterol uptake (93). Additionally, this deletion also induced 

phenotypes on cytoskeleton polarization (94) and bud site selection (95), secretory and 

endocytic pathway (96), as well as telomere length (97). At the level of cellular 

morphology, ∆gup1 presents aberrant vacuole morphology (96), while in C. albicans it 

induces the absence of hyphae formation and consequently defective invasive 

growth/biofilm formation (98). The extracellular matrix (ECM) of S. cerevisiae is also 

affected by GUP genes deletion, both at the level of protein and sugar fractions. Many 

proteins involved in cellular arrangement, carbon metabolism, cell defense and protein 

fate are not present in S. cerevisiae ECM from ∆gup1 mutant (99). Moreover, also the 

sugar fractions from S. cerevisiae and C. albicans differ (100). Finally, Tulha et al.,  

(101) reveled the sensitivity of ∆gup1 cells to acetic acid, leading to cell death. This 
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displayed non-apoptotic characteristics and seemed to undergo instead a necrotic death 

process, ∆gup1 cells presenting a reduced chronological life span. The deletion of 

GUP1 is further associated with the resistance to complex chemicals like ergosterol 

synthesis inhibitors, which indicated an interference of Gup1p on sphingolipid and 

ergosterol synthesis (90), and conversely with the increased sensitivity to sphingolipid 

synthesis inhibitors, which, together with other evidences, suggested the involvement of 

Gup1p on the glycosylphosphatidylinositol (GPI) remodeling system (90, 102). 

Additionally, it was also involved on the resistance to the anti-cancer drug Imatinib 

(103), together with proteins that regulate the vacuolar pH. Imatinib, marketed as 

Glivec/Gleevec® by Novartis is a tyrosine kinase inhibitor specific for cancerous cells, 

namely some types of leukemia (104). Yeasts do not have recognized tyrosine kinases 

or tyrosine kinase receptors, though the broad sensitivity of S. cerevisiae to this drug 

(103) suggests otherwise.  

Gup1p multiple localizations, and numerous associated processes and 

phenotypes implies a crucial role for this protein in cellular survival and successful 

progression through cell cycle. GUP1/2 genes have counterparts in higher Eukaryotes, 

including mammalians. Abe and co-workers (105) described the mousse homologue of 

GUP1 as a negative regulator for N-terminal palmitoylation of sonic hedgehog (SHH) 

protein (Fig. 5). This protein is responsible for the control of morphogenesis, patterning 

and differentiation during embryogenesis, as well as cellular morphology and 

proliferation during that process and wound healing. Accordingly, the mammalian Gup1 

protein was named Hedgehog acyltransferase-like protein (HHATL) while Gup2, based 

on amino acid sequence homology was named as Hedgehog acyltransferase protein 

(HHAT), and these two proteins supposedly exert opposite roles in hedgehog 

extracellular signal activation prior to export into the outer space. These roles are in 

accordance with the above-mentioned functions in yeast, suggesting the putative 

existence of SHH-like pathway in yeast (105).Some evidences suggest the role of SHH 

pathway in tumor development, because an existence of high expression levels of this 

protein in neuroblastoma cell lines. When SHH protein is inhibited it promotes 

apoptosis and stopped proliferation (106). The above-described resistance to an 

oncologic drug, such as Imatinib of the GUP1 deleted strains concurs. For the time 

being, no relation was found or searched for that matter between the Gup related 

processes and phenotypes and the RAS/cAMP/PKA’s above described. Yet, in view of 
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the data available, it is predictable that this relation exists. Importantly, as referred for 

the hyperactivation of the RAS pathway (107), ∆gup1 is also resistant to rapamycin 

(108). 

 

Figure 5. The vertebrate Sonic Hedgehog signaling pathway in the absence or presence of Hh ligands.  

In absence of Hh (a),PTCH1, a 12-transmembrane domain protein, is located on the plasma membrane, 

and the protein GPCR-like receptor Smoothened (SMOH) is located in the membrane of intracellular 

endosomes. It is proposed that an intracellular small molecule that acts as an agonist for SMOH is 

transported outside the cell by PTCH1 so that it is not able to bind to SMOH. Under these circumstances, 

different kinases phosphorylate GLI2/3, creating a repressor form of this transcription factor. Iguana and 

SUFU prevent the active form of GLI from transactivating Hh-responsive genes in a manner that is still 

not completely understood.  

In presence of Hh ligand (b), PTCH1 is internalized so that it can no longer transport the endogenous 

agonist molecules outwards. This allows them to accumulate intracellularly and activate SMOH, which 

itself translocates to the plasma membrane, apparently concentrating in cilia in at least some types of 

cells. Culminating in the appearance of activator forms of GLI that then regulate the expression of Hh 
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target genes. The known synthetic small-molecule SMOH agonists and antagonists bind to the same site 

as the putative endogenous ligand. Withdrawn from (109). 

 

1.7 The Ras family of small GTPases 

The Ras is a component of the broad family of small GTPases. The Ras genes 

are transforming oncogenes that have primarily been recognized as murine sarcoma 

viruses by Jennifer Harvey (Harvey-Ras or HRas) and Werner Kristen (Kristen-Ras or 

KRas) in 1960 (110, 111). Subsequent studies led to the identification of a third human 

Ras gene, designated as NRAS in human neuroblastoma cells. So, the three human Ras 

proteins are designated as HRas, KRas and NRas, which regulate intracellular signaling 

pathways involved in important cellular processes such as proliferation, cell polarity, 

differentiation, migration, adhesion, apoptosis and cytoskeletal dynamism (112, 113).  

Ras proteins have as principal function the conversion of extracellular stimuli 

into intracellular signaling cascades, which eventually evoke changes in cellular 

activities. Thus, in normal mammalian cells, Ras proteins demonstrated functions as 

molecular switches for critical changes in cellular activities, namely cell proliferation 

and survival, and their proper regulation is indispensable to maintain the homeostasis of 

cells. On the other hand, uncontrolled activity of the Ras proteins, or the molecular 

components of their downstream pathways, can result in cancer or other diseases (113). 

Approximately 30% of human tumors are estimated to harbor activating mutations in 

one of the three Ras isoforms. KRAS is most frequently mutated, its mutation rate in all 

tumors being estimated to lie between 25 and 30%. KRAS mutation is especially 

frequent in colorectal carcinoma (35–45%), non-small cell lung cancer (16–40%) and 

pancreatic ductal carcinoma (69–95%) (114). In contrast, activating mutations of NRAS 

and HRAS are less common (8% and 3%, respectively) (115). The activating oncogenic 

mutations commonly occur in the GTPase catalytic domains, in codons 12, 13 and 61 

(116). All these activating mutations render Ras proteins resistant to GTP hydrolysis, 

and consequent Ras inactivation stimulated by GTPase activating proteins (GAPs). 

These constitutively activated oncogenic Ras mutant proteins, therefore, initiate 

intracellular signaling cascades without the input of extracellular stimuli, resulting in 

uncontrolled cell proliferation and abnormal cell survival (113). 
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Ras activates several pathways, including the RAF-MEK-ERK/MAPK cascade, 

which transmits signals downstream and results in the transcription of genes involved in 

controlling several cellular mechanisms (117). Ras proteins are anchored in the 

cytoplasmic membrane by carboxylterminal farnesylation but, in some cases, the Ras 

proteins are bound by Ras-escort proteins which include galectin-1 and galectin-3 that 

have strong binding affinity to GTP-HRas and GTP-KRas, respectively (117, 118). Ras-

escort proteins stabilize the Ras proteins in the GTP-bound state. Disruption of the 

interaction between these escort proteins and Ras has been exploited as a strategy to 

modulate aberrant Ras signaling (119). Ras communicates external cellular signals to 

the nucleus, and its altered activation leads to inappropriate cellular activities including 

enhanced cell growth, differentiation and survival of the cells (120, 121). The RAS-

RAF-MEK-ERK pathway is activated by several known growth factors and cytokines 

that act through receptor tyrosine kinase signals and by activating mutations in the RAS 

and RAF genes (120). 

The Ras intrinsic GTPase activity, is to hydrolyze the GTP into GDP (122). Ras 

is therefore a single GTPase molecule that like the other G proteins act as molecular 

switches and timers that cycle from inactive GDP-bound to active GTP-bound states 

(123). In normal quiescent cells, Ras is bound to GDP and is inactive (off state), while 

upon extracellular stimuli, Ras bind to GTP (on state), which has an extra phosphate 

group than GDP. This extra phosphate holds the two switch regions in a “loaded-

spring” configuration. Upon the release of this phosphate, the switch regions relax 

leading to conformational modifications and return to the inactivate state (Fig. 6). 

Therefore, a cycling switching between the active/inactive GDP-bound forms controls 

the activation/inactivation of Ras and several other small G proteins. The cyclic process 

of GDP/GTP is facilitated by guanine GEFs and the GTPase activating proteins (GAPs) 

(122). 
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Figure 6. GTPase signaling. GTPase is off when bound to GDP, then a GEF removes GDP and allows 

GTP to bind to the GTPase, turning it on. All GTPases can hydrolyze GTP to GDP and turn themselves 

off, though GAPs accelerate this process. Withdrawn from (124). 

 

Normally, ligand binding to receptor tyrosine kinases (RTK) induces 

dimerization of the receptor and autophosphorylation of specific tyrosine residues in the 

C-terminal region. This generates binding sites for adaptor proteins like the growth 

factor receptor-bound protein 2 (GRB2), that recruit the GEF Sos at the plasma 

membrane, and in turn activates the membrane bound Ras by catalyzing the conversion 

of GDP into GTP. In its GTP bound conformation, Ras combines with Raf and 

mobilizes the inactive protein from the cytoplasm recruiting the Raf kinases to the 

plasma membrane (112, 125). Once the Ras-Raf complex is translocated to the cell 

membrane, Ras activates the serine/threonine kinase function of Raf isoforms. Upon 

activation of Ras, Raf acts as a MAP kinase kinase kinase (MAPKKK) to activate 

MEK1 and MEK2, which, in turn, catalyze the activation of the effector ERK1 and 

ERK2 kinases, and their translocation into the nucleus. Once activated ERK1/ERK2 

broadly phosphorylates several nuclear and cytoplasmic effector proteins involved in 

diverse cellular responses, such as proliferation, survival and differentiation (Fig. 7) 

(126, 127).  

Although RAF can also be activated by RAS-independent activators (128). 

Some data have clearly shown that Ras can activate other downstream signaling 

pathways including phosphatidylinositol 3-kinase (PI3K) and Rac and Rho proteins, 

associated with the regulation of the cytoskeleton and invasiveness of tumor cells (129). 
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Figure 7. MAPK cascade activation and potential cross talk signals. In the MAPK cascade the growth 

factors binding and consequently promotes activation of tyrosine kinase receptors, the activation of the 

RAS GTPase promotes the kinase activity of the RAF serine/threonine protein kinases. Activated RAF 

phosphorylates MEK in the cytoplasm, which in turn phosphorylates ERKs that translocates to the 

nucleus where they phosphorylate and regulate various nuclear and cytoplasmic substrates involved in 

diverse cellular responses, such as cell proliferation, survival, differentiation, motility, and angiogenesis. 

RAS may cross-talk with different pathways, such as PI3K. Withdrawn from (112). 

 

The embryonic lethality of KRas knockout mice illustrated the importance of 

KRas expression during development as a result of liver defects and anemia. In 

opposition, mice with HRAS or NRAS knockouts are completely viable (130). In 

another study the expression of oncogenic HRas or KRas under tissue-specific 

promoters induces various types of malignancies in multiple transgenic mouse models 

(131).  
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1.8 Metabolic Similarities between Cancer Cells and Yeast 

It was supposed that cancer cells suppress mitochondrial metabolism. The early 

discoveries from Otto Warburg pointed out that cancer cells display a decreased 

respiration along with an enhanced lactate production, suggesting that they depend 

mainly on fermentative metabolism for ATP generation (132). The spite of the decrease 

in energy yield as a consequence of the glycolytic phenotype seems to allow an increase 

in cell proliferation and be applicable to other fast growing cells (133). In this case, the 

repression of oxidative metabolism occurs even in the presence of oxygen, this 

metabolic phenomenon is known as “aerobic glycolysis” or the “Warburg effect”. 

Moreover, it has been showed that vary cancer cells can reversibly switch between 

fermentation and oxidative metabolism, depending on the absence or the presence of 

glucose and the environmental conditions (134, 135). More recently, it was proposed 

that the “glycolytic” cells could establish a metabolic symbiosis with the “oxidative” 

ones through lactate shuttling (136). A well defined feature of some cancer cells is the 

glucose-induced suppression of respiration and oxidative phosphorylation (137, 138). 

This is a reversible event that is called as “Crabtree effect”. This event might represent 

an advantage of cancer cells in vivo, as it would allow them to adapt their metabolism to 

the rather heterogeneous microenvironments in malignant solid growths (139). 

The yeast S. cerevisiae is a respiro-fermentative organism, moreover it is a 

Crabtree positive yeast because upon glucose addition, respiration is inhibited despite 

the presence of oxygen (140, 141). When glucose amount is high, the yeast uses as main 

metabolic pathway fermentation, and when this carbon source becomes scarce it can 

switch to oxidative metabolism (142). In relation to energy metabolism, there are 

similarities between the glucose-induced repression of oxidative metabolism of yeast 

and the “aerobic glycolysis” of tumor cells. In both cells, the downregulation of 

oxidative metabolism is observed with an enhanced fermentation despite the presence of 

oxygen. Additionally, S. cerevisiae shares with cancer cells the same metabolic features 

that are identified as the main causes of the above-mentioned Warburg effect. For 

example, like cancer cells, yeasts overexpress glycolysis enzymes in response to 

glucose (143, 144). Moreover, the activity and expression pattern of the glycolysis key 

enzymes, such as hexokinase, phosphofructokinase and pyruvate kinase, are also 

modified in yeast (144, 145). 
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Although, yeast lacks the genetic defects identified in cancer cells, S. cerevisiae 

has homologues with genes related with cancer such as p53, cyclin D and Ras (29). 

Therefore, an interesting approach would be to use “tumourized yeasts” through the 

introduction of muted genes related with cancer and apply this as a model for anti-

cancer drug screening and for metabolic studies. 

 

1.9 The Role of Cell Surface Receptors 

Cell signalling requires not only extracellular signal molecules, but also a set of 

receptor proteins in each cell that enable it to bind and respond to the signal molecules 

in a characteristic way. These cell surface receptor proteins act as signal transducers. 

They convert an extracellular ligand-binding event into intracellular signals that alter 

the behaviour of the target cell (146, 147). The extracellular signal molecules often act 

at very low concentrations and the receptors that recognize them usually bind them with 

high affinity. In most cases, the receptors are transmembrane proteins on the target cell 

surface. When these proteins bind an extracellular signal molecule, they become 

activated and generate various intracellular signals. In other cases, the receptor proteins 

are inside the target cell, and the signal molecule needs to enter the cell to bind to them, 

this process requires that the signal molecule be sufficiently small and hydrophobic to 

diffuse across the target cell’s plasma membrane (148). This knowledge is common to 

high and low Eukaryotes. Nevertheless, the presently recognized players at the level of 

signal reception/sensing are quite different in both types of organisms.  

In higher Eukaryotes, the RTKs are a large superfamily of receptors with 

function as the receptors for a wide array of growth factors, including epidermal growth 

factor (EGF), nerve growth factor (NGF), platelet derived growth factor (PDGF), 

vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), insulin and 

the insulin-like growth factors (IGF), and the ephrins and angiopoietins (149). RTKs are 

essential components of cellular signalling pathways that are activated during 

embryonic development and adult homeostasis. Because of their roles as growth factor 

receptors, many RTKs have been implicated in the onset or progression of various 

cancers, either through receptor gain-of-function mutations or through receptor/ligand 

overexpression (150). Consequently, cell surface receptors are essentials to the 

mechanism of many chemical toxicants and serve as targets for the development of 
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drugs (149, 150). Growth factors modulate signaling pathways, which control cell 

proliferation and death in both normal and malignant cells. The EGF was one of the first 

growth factors to be discovered and is the prototype of a large family of closely related 

growth factors, which includes TGF, amphiregulin, heparin binding EGF, and 

betacellulin. Among these growth factors, TGF has been identified as a key modulator 

in the process of cell proliferation in both normal and malignant epithelial cells. TGF 

binds to the receptor, the epidermal growth factor receptor (EGFR), which promotes the 

activation of the EGFR tyrosine kinase enzymatic activity that triggers the intracellular 

signaling pathway (151). The EGFR is part of a subfamily of four closely related 

receptors: EGFR (or ErbB-1), HER-2/neu (ErbB-2), HER-3 (ErbB-3), and HER-4 

(ErbB-4). The receptors exist as inactive monomers, which dimerize after ligand 

activation. This causes homodimerization or heterodimerization between EGFR and 

another member of the Erb receptor family. After ligand binding, the tyrosine kinase 

intracellular domain of the receptor is activated, with autophosphorylation of the 

intracellular domain, which initiates a cascade of intracellular events (152, 153). The 

signaling pathway involves activation of Ras and mitogen activated protein kinase, 

which activates several nuclear proteins, including cyclin D1, a protein required for cell 

cycle progression from G1 to S phase (154). EGFR signaling is not only essential for 

cell proliferation. Several studies have demonstrated that EGFR signaling also mediates 

other processes that are crucial to cancer progression, including angiogenesis, metastatic 

spread and the inhibition of apoptosis (153-156). Activation of the TGF-EGFR 

autocrine growth pathway in cancer cells can be attributed to several mechanisms, such 

as overexpression of the EGFR, increased concentration of ligand, decreased 

phosphatase activity, decreased receptor turnover, and the presence of aberrant 

receptors, including EGFR gene alterations. In this context, the most common EGFR 

mutant found in human cancer is EGFRvIII (157). 

TGF and/or EGFR are overexpressed in many different solid human cancers, 

including breast, head and neck, gastric, prostate, ovarian, colorectal carcinomas, and 

glioblastomas, in which it is generally associated with advanced disease and poor 

prognosis (156, 158, 159). Human EGFR gene locates at chromosome 7p11-13 and the 

mature protein is synthesized from a 1,210 residues polypeptide precursor. This 

originates a 170 kDa protein containing approximately 20% of carbohydrate of its 

molecular mass and is heavily N-glycosylated (160-163). Glycosylation is important in 
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case of protein-protein interactions that occur between protein ligand and their 

receptors, because it plays a role in determining protein structure and known to affect 

the three-dimensional configuration of proteins (164). 

 

Figure 8. Basic structure of EGFR displaying the relevant domains. (1) The extracellular domains: 

domain I/L1; domain II/CR1; domain III/L2; domain IV/CR2. (2) Transmembrane domains. (3) The 

intracellular domains: juxtamembrane domain; tyrosine kinase domain; regulatory region domain. The 

phosphorylation of several substrates by the tyrosine kinase domain of the EGFR receptor is responsible 

for activating of various signaling cascades. Withdrawn from (163).  

 

Like all RTKs EGFR is characterized by three main domains. The extracellular 

domain of the mature receptor contains 621 amino acids, followed by a single 

transmembrane domain and a juxtamembrane domain (Fig. 8) (160, 162). 

Crystallographic studies of the EGFR extracellular domain complexed to its ligands 

have shown that the domains I, II and III form a ligand-binding pocket (165, 166). In 

the absence of ligand, EGFR exist as monomers on the cell surface. Binding of ligand to 

EGFR leads to the formation of receptor homo and heterodimers, depending on whether 

EGFR dimerizes with another EGFR or with other ErbB family members, respectively 

(167). EGFR dimerization is entirely receptor-mediated, with no contacts between the 

two growth factor molecules in the dimeric complex (165). By binding simultaneously 
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to two sites (within domains I and III) in the extracellular region of the receptor, the 

growth factor alters the special arrangement of the domains (as shown schematically in 

Fig. 9) (166). Phosphorylation of the EGFR activation loop in contrast to other kinases 

is not necessary for its activation (168). The EGFR kinase is activated by an asymmetric 

dimer in which the C-terminal lobes of two-kinase domain bind with each other in a 

manner analogous to cyclin in activated CDK/cyclin complexes. Thus, ligand binding 

brings two receptor monomers together and allows for the dimerization and subsequent 

activation of the kinase domain (169). Ligand induced EGFR dimerization leads to 

autophosphorylation of several key tyrosine residues in the cytoplasmic domain of each 

receptor monomer (170). These phosphorylated tyrosine residues then serve as binding 

sites for a number of adapter and signaling molecules leading to the activation of several 

intracellular signaling pathways downstream of the receptor. Some of the best 

characterized EGFR effector pathways are the RAS-RAF-MEK-ERK, PI3K/Akt, 

JAK/STAT and the PLC -PKC pathways, which upon activation lead to cell 

proliferation, motility and survival (Fig. 10) (170, 171). 

 

Figure 9. Mechanism of ligand-induced EGFR dimerization. About 95% of the unliganded EGFR exists 

in a compact auto-inhibited or tethered conformation,  in which domains II and IV form an intra-

molecular interaction or tether (A). In 5% of the unliganded molecules, this tether is broken, and the 

soluble extracellular region of EGFR (sEGFR) can adopt a range of untethered conformations (B). Ligand 

binds preferentially to untethered molecules, and interacts simultaneously with domains I and III, 

stabilizing the particular extended form in which domain II is exposed and the receptor can dimerize (C). 

Dimerizations entirely receptor mediated and dominated by domain II interactions (D). Withdrawn from 

(166). 

 

The Ras/extracellular signal regulated kinase (ERK) pathway is a critically 

important route that regulates cell proliferation and survival in yeasts (see above) as in 
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mammalian cells (see above) (172). In these last, GRB2 is an SH2/SH3 domain 

containing protein that binds EGFR either directly or through the association with the 

adaptor molecule Shc, and acts as a common adapter protein in a majority of growth 

factor related signaling events (173, 174). 

 

 

Figure 10. EGFR signaling. Binding of ligand to EGFR leads to receptor dimerization, 

autophosphorylation and activation of several downstream signaling pathways. Only selected pathways 

and transcription factors are presented. Withdrawn from (161).  

 

The PI3K/Akt signaling pathway also affects many cellular processes including 

cell proliferation, apoptosis and invasion (175, 176). PI3K is recruited to the membrane 

by directly binding to phosphotyrosine consensus residues of growth factor receptors or 
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adaptors through one or both SH2 domains in the adaptor subunit (177). This leads to 

allosteric activation of the catalytic subunit. Activation results in the production of the 

second messenger phosphatidylinositol-3,4,5-trisphosphate (PIP3). The lipid product of 

PI3K, PIP3, recruits a subset of signaling proteins with pleckstrin homology (PH) 

domains to the membrane, including PDK1 and Akt. Once activated, Akt mediates the 

activation and inhibition of several targets, resulting in cellular survival, growth and 

proliferation (178). The interlinked Ras/MAPK and PI3K/Akt signaling pathways play 

an important role in tumourigenesis via phosphorylation of various proteins and 

transcription factors. Furthermore, mutation in KRAS, BRAF, or PIK3CA results in 

continuous activation of the downstream Ras/MAPK or PI3K pathways, regardless of 

whether the EGFR is activated or pharmacologically blocked (179-181). EGFR ligands 

are not only responsible for stimulation of pathways that positively regulate EGFR, but 

also stimulate pathways that negatively regulate the EGFR coupling to malignant 

phenotypes and this balance between these positive and negative regulators of EGFR 

coupling to malignant phenotypes may be altered in tumor cells (169). Generally, 1x105 

EGFR per cell are expressed by normal cells, but tumor cells can express more than 

2x106 receptors per cell (182). It was reported that the hypoxic microenvironment of 

tumors can also induce overexpression of EGFR by increasing EGFR mRNA 

translation, since it was considered that receptor overexpression commonly develops 

due to gene amplification (183). Further the EGFR overexpression can result in high 

levels of autocrine signaling (184), autocrine production of TGF-α or EGF reduces the 

chances of cancer survival (185). 

Inactivation of the EGFR can be mediated either by receptor dephosphorylation 

by phosphotyrosine phosphatases or receptor downregulation. Receptor downregulation 

is the most prominent regulator of EGFR signal attenuation and involves the 

internalization and subsequent degradation of the activated receptor in the lysosomes 

(161, 186).  
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1.9.1 EGFR as a Therapeutic Target 

A large body of experimental and clinical work supports the view that the EGFR 

is a relevant target for cancer therapy. Two therapeutic approaches have been shown 

most promising and are currently being used to inhibit the EGFR in clinical studies: (a) 

monoclonal antibodies (MAbs) like Cetuximab (Erbitux®) used in colorectal cancer 

(CRC) therapy (187, 188), and (b) small molecule inhibitors of the EGFR tyrosine 

kinase enzymatic activity (TKIs) like Imatinib (Gleevec®) used in leukemia therapy 

(104, 169). Small-molecule TKIs compete reversibly with adenosine 5’triphosphate to 

bind to the intracellular catalytic domain of EGFR tyrosine kinase and inhibit the EGFR 

autophosphorylation and downstream signaling (169). MAbs are generally directed at 

the external domain of the EGFR to block ligand binding and receptor activation (165, 

169). Cetuximab (Ctx) was approved by the FDA in 2004 for squamous cell carcinoma 

of the head and neck and advanced stage of CRC overexpressing EGFR (189). Ctx is a 

152 KDa chimeric monoclonal antibody of the immunoglobulin G1 subclass produced 

in mammalian cell culture by mouse myeloma cells. It was constructed by attaching the 

variable regions of the murine monoclonal antibody M225 against EGFR to constant 

regions of the human IgG1. It has two identical heavy chains consisting of 449 amino 

acids each and two light chains of 214 amino acids each (Fig. 11) (190, 191). 

Cetuximab has a 5-10 fold higher affinity for EGFR than the native ligand, 

resulting in inhibition of the receptor function (192, 193). It is also able to mediate 

antibody dependent cell mediated cytotoxicity (194), and receptor downregulation 

leading to a mitigation of EGFR activity that does not affect other HER family receptors 

(195). Ctx induces inhibition of EGFR signaling, prevents heterodimerization and leads 

to downregulation of downstream targets (Fig. 12) (166). It avoids several cell signaling 

pathways, including the Ras–Raf–MAPK, PI3K/Akt, PKC, STAT and SRC, all of 

which play important roles in tumor cell proliferation, invasion and inhibition of 

apoptosis (196). Further, Ctx blocks cell cycle progression by inducing G1 arrest (197-

200) as well as the transport of EGFR into the nucleus (201), and also has the potential 

to kill targets cells by mediating antibody-dependent cell-mediated cytotoxicity (194).  
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Figure 11. Structure of Cetuximab. Cetuximab is a chimeric IgG1 monoclonal antibody composed by the 

Fv regions of a murine anti-EGFR antibody with human IgG1 heavy and kappa light chain constant 

regions. The sugars on the Fab portion include galactose-α-1,3-galactose and the sialic acid N-

glycolylneuraminic acid, the glycosylation site of the Fc portion includes only oligosaccharides that are 

commonly present on human proteins. Withdrawn from (202). 

 

Antibody-dependent cell-mediated cytotoxicity and complement-dependent 

cytotoxicity belong to the most important processes allowing IgG1 antibodies to destroy 

microorganisms and cancer cells. Antibodies can bind specifically to epitopes of cancer 

antigens. If the antigen is a receptor, as in anti-EGFR therapy, the intracellular 

transduction pathway is blocked but also cytotoxic cells become activated. After coating 

the cancer cell, antibodies bind to NK cells and other immune cells, which have 

receptors for the antibody Fc fragment on their surface. NK cells bound to the target cell 

become degranulated releasing perforins, granulysins and granzymes, which induce 

apoptosis of cancer cells. Similarly, the membrane of the target cell can become lysed as 

a result of activation of components of the complement system (203, 204). The net 

effects of Ctx are inhibition of tumor growth (197, 205), invasion and angiogenesis 

(206-208), metastasis, and DNA damage repair (200, 205, 206, 209). The Ctx-mediated 

potentiation of apoptosis is correlated with the induction of Bax and the increase in 

expression of caspases (205, 210). The inhibition of tumor induced angiogenesis is 

probably due to reduced tumor production of angiogenic factors, including TGF-α, 

VEGF, interleukin-8 and basic fibroblast growth factor, leading to reduced tumor 
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microvessel density, and inhibition of invasion and metastases by inhibiting 

extracellular matrix metalloproteinases (206, 207, 211, 212). 

 

Figure 12. The mechanism of anti-EGFR antibodies action. The antibody binding to EGFR prevents 

receptor dimerization, leading to inhibition of receptor function. Anti-EGFR binding also fosters receptor 

internalization and promotes antibody-dependent cell cytotoxicity. The resulting outcomes include 

disruption of angiogenesis, invasion, proliferation, metastasis and the promotion of apoptosis. Adapted 

from (213). 

 

In the abrogation of the EGFR function, it became evident that in addition to 

EGFR, other key downstream molecules were equally important. Several reports have 

shown that constitutive activation of key downstream components renders the EGFR 

blockade by antibodies and/or TKI ineffective (214-216). One of these essential 

downstream factors is the small G protein proto-oncogene KRAS. Thereby, besides the 

detection of EGFR expression, mutation of the KRAS gene is an important predictive 

marker of resistance to treatment with Ctx. Studies have demonstrated that Ctx efficacy 

is confined only to tumors without the KRAS gene mutation, i.e. KRAS wild-type 

tumors (217). Although, patients may acquire resistance-mediating mutations within the 

extracellular EGFR domain, consequently the exact binding sites of EGFR targeting 

antibodies may help to predict treatment responses (218). 
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Mutations in codon 12 (82%), 13 (17%) and 61 (4%) of KRAS protein have 

been implicated in resistance to treatment for CRC (219). Although the KRAS without 

mutations (wild type) seems to be a condition for response, however most patients with 

KRAS codon 12 and 13 wild-type tumors do not respond to anti-EGFR monoclonal 

antibodies (217). Mutations in other downstream effectors of the EGFR signaling 

pathway, such as BRAF, NRAS, and PI3K, might also have a negative effect on 

response to anti-EGFR antibodies (220). These mutations result in continuous activation 

of the downstream Ras/MAPK or PI3K pathways, regardless of whether the EGFR is 

activated or pharmacologically blocked. Such activation in turn enhances transcription 

of various oncogenes, including MYC, CREB, and NF- B (179-181). KRAS mutation is 

thought to be an early event in tumourigenesis, being accordingly the most commonly 

mutated gene (35%-45% of CRC patients), while mutations in PIK3CA (≤ β0%) and 

BRAF (<15%) are less common (220, 221). Patients with a colorectal tumor bearing 

mutated KRAS cannot benefit from Ctx. However, the prognostic role of KRAS 

mutation in CRC remains uncertain (217). Therefore, the identification of each patient 

KRAS mutation status is crucial for disease and life expectancy prognosis, as well as 

avoiding a costly and potentially toxic administration of this treatment in non-responder 

patients. The importance of these facts becomes more prominent when it is 

acknowledged CRC is the third most frequent cancer in men, after prostate and lung, 

and the second most common in women, after breast (222). The incidence of cancer is 

augmenting in developed countries as a result of an increase in population life span/age, 

and principally caused by adoption of cancer associated lifestyle choices including 

smoking, not balanced diets and sedentary lifestyle. Genetic factors such as familial 

traits and genetic predispositions also promote this augment (222).  

Successful accomplishments have been made in cancer therapy strategy by 

inhibiting some oncogenes achieving tumor cell death, differentiation or senescence. 

Drugs targeting protein kinase oncogenes such as the above-mentioned anti-BCR-ABL 

Imatinib, and anti-EGFR Cetuximab, as well as others like the anti-HER2 

Transtuzumab, have been used in a variety of cancers, including CRC (223, 224). 

Despite the advances in medical practices and the progresses obtained with the 

introduction of new cytotoxic agents, there are still a high number of cancer patients for 

whom treatment is not effective due to the development of resistance to anticancer 

drugs as a result of host factors or a result of genetic and epigenetic changes in cancer 
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cells (225). Importantly and finaly, there are suggestions that therapy resistance can also 

be a consequence of survival pathways activation during carcinogenesis by oncogenic 

transformation, being some examples of oncogenes that can activate survival pathways 

Ras, Raf, HER2 and EGFR (226).  

 

1.10 Rationale and Aims of the thesis  

Glycopharm is a Marie Curie Initial Training Network that has as scientific 

objectives the development and testing of selective galectin-blocking compounds and 

the development and testing of galetin-mimetic peptides with respective target 

selectivity. This impacts enormously on a wide variety of diseases in need for novel 

therapeutic solutions and rapid and easy to use tools for primary pharmacological 

testing. This thesis is enclosed in the wide objectives of the network and aims at 

building and validating a large high throughput platform of yeast strains displaying 

phenotypes that enable testing galectin-related drugs and peptides. This platform was 

designed to be made of two types of strains, the ones expressing tout court human 

galectins (in particular Galectin 3 and Galectin 1) and the ones expressing these human 

proteins together with the human KRAS cDNA. The rationale behind this relates to the 

putative dialogue between Galectins and RAS signaling pathway in mammals. For this 

purpose, two genetic backgrounds were chosen according to the genetic marks available 

to ease constructions: BY4741 and W303, both haploids and from the same mating type 

a. Therefore, BY4741 wt and RAS mutants were used for express KRAS from within a 

plasmid construction (this thesis), and from within a chromosomal insertion (Cazzanelli, 

unpublished work), while W303 RAS derived mutants were used in a first phase as 

phenotyping controls (this thesis). Phenotyping using W303 is to be confronted with the 

one simultaneously obtained with BY4741 background (Carneiro, unpublished work). If 

considered necessary, a subsequent step of KRAS cloning in W0303 will follow.  

This way, the present thesis covers a group of tasks complementary to the work 

of two other students for the development of a yeast-based high throughput platform for 

human KRAS and galectin 3 or galectin 1 phenotyping:  

1. To build a set of yeast strains expressing human KRAS cDNA in S. 

cerevisiae BY4741 RAS deficient background, 
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2. To identify protein(s) from S. cerevisiae putatively interacting with KRAS 

in an identical fashion as EGFR in mammalian cells, 

3. To test the phenotypes associated with adhesion, invasiveness and 

filamentation in the S. cerevisiae W303 RAS deficient background chosen 

as control of the constructions in point 1, 

4. To get insights about the S. cerevisiae pathways putatively correlating RAS 

and GUP genes. 

This data is expected to contribute to gain insight into KRAS mechanism of 

action using yeast as a model organism, as well as to determine the possible homologue 

of EGFR in S. cerevisiae. On the other hand, it will also contribute to gain insight into 

RAS and GUP genes and their functions in signaling considering, their phenotype 

overlapping. This knowledge is also expected to be subsequently validated in human 

derived cell lines and applied to define clinical correlation, paving the way to the 

development of new diagnostic/prognostic tests and new bio-active ligands/inhibitors.  
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2. Material and Methods 

2.1 Strains and Growth Conditions 

The strains of Saccharomyces cerevisiae and Escherichia coli used in this study 

are listed in Table 1. E. coli XL1-Blue was used for DNA propagation and plasmid 

cloning. 

 

Table 1.Yeast and bacteria strains used in the present work. 

Strain Genotype Origin 
 

S.cerevisiae BY4741wt 
 
 

 

MATa his3∆0 leu2∆0 met15∆0 ura3∆0 

 
Euroscarf 
collection 

S.cerevisiae BY4741 ∆ras1 MATa his3∆1 leu2∆0 met15∆0 ura3∆0 
YOR101w::KanMX4 

 

Euroscarf 
collection 

S.cerevisiae BY4741 ∆ras2 

 

 

S.cerevisiae BY4741 KRASwt   

 

 

S.cerevisiae BY4741 ∆ras1 
KRASwt 

 

S.cerevisiae BY4741 ∆ras2 
KRASwt 

MATa his3∆1 leu2∆0 met15∆0 ura3∆0 
YNL098c::KanMX4 

 

Isogenic to BY4741 but transformed with 
p426GPD+hsKRAS 
 

Isogenic to BY4741 ∆ras1 but transformed with 
p426GPD+hsKRAS 
 

Isogenic to BY4741 ∆ras2 but transformed with 
p426GPD+hsKRAS 
 

Euroscarf 
collection 
 
This study 
 
 
This study 
 
 
This study 

S.cerevisiae W303-1A MATa leu2∆3 leu2∆112 ura3∆1 trp1∆1 his3∆11 
his3∆15 ade2∆1 can1∆100 

 

(227) 

S. cerevisiae W303-1A ∆gup1 Isogenic to W303-1A but gup1::HIS5+ 

 
(88) 

S. cerevisiae W303-1A ∆gup2 Isogenic to W303-1A but gup2::KanMX 

 
(88) 

S. cerevisiae W303-1A ∆gup1/2 Isogenic to W303-1A but gup1::HIS5+ and 
gup2::KanMX 
 

(88) 

S. cerevisiae W303-1A ∆ras2  Isogenic to W303-1A but ras2::KanMX4 

 

(228) 

S. cerevisiae W303-1A ∆ras1 Isogenic to W303-1A but ras1::HIS3 (228) 

 

E. coli XL1-Blue 
 

endA1 gyrA96 (nalR) thi-1 recA1 relA1 lac glnV44 

F'[::Tn10 proAB+  lacIq Δ(lacZ)M15] hsdR17(rK- 

mK+) 

 

 
- 

 

The p426 plasmid (Fig. 13) is a yeast multicopy expression vector, harboring the 

T3 and T7 promoters and the AmpR marker for bacterial expression, the GPD promoter, 

the selectable marker URA3 and the 2μ origin of replication for expression in yeast. The 

p416 yeast centromeric plasmid (Fig. 13) was also used in this study. This plasmid is 



Chapter II – Material and Methods 
 

36 

 

identical to p426 except for the CEN6/ARS4 element that replaces the 2μ origin of 

replication (229). 

E. coli strains were cultured in Luria-Bertani medium (LB) - 1% (w/v) of NaCl, 

1% (w/v) of tryptone and 0.5% (w/v) of yeast extract with agar 2% (w/v) for solid 

growth. Selection of transformants was done on LB with 100µg/ml of ampicillin. 

Cultures were incubated at 37 °C and 200 rpm orbital shaking in the case of liquid 

growth. S. cerevisiae strains were batch-grown on rich medium - YPD (1% (w/v) yeast 

extract, 1% (w/v) peptone, 2% (w/v) glucose), or minimal medium - YNB (0.67% (w/v) 

YNB without amino acids and nitrogen source (Difco)), supplemented with 2% (wt/v) 

glucose, 0.5% (w/v) ammonium sulfate, and adequate quantities of auxotrophic 

requirements, adding 2% agar for solid growth. Auxotrophic requirements were: 

leucine, methionine and histidine 10g/L, uracil and adenine 2g/L, tryptophan 5g/L. In 

the case of liquid growth, yeasts were cultured at 30 ºC and 200 rpm orbital shaking 

with an air/liquid ratio of 5:1. All yeast and bacteria strains were conserved at 4 ºC on 

week lasting solid media for the full time of the thesis. Yeast growth was monitored 

spectrophotometrically (OD600nm) in a Spectrophotometer Genesys 20. 

 

 

 

Figure 13. Plasmids p426GPD and p416GPD.  
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2.2 Competent E. coli cells   

The competent cells of E.coli XL1-Blue were prepared using CaCl2 and MgCl2 

(230). The cells were pre-inoculated in LB medium and grown overnight at 37 ºC and 

200 rpm, and then inoculated in 100ml fresh medium until reaching an OD600 of 0.6. 

The cells were cooled in ice during 10min and centrifuged at 4,000 rpm (Sigma 4-16K 

centrifuge) for 10min at 4 ºC. The supernatant was discarded and the pellet resuspended 

in 20ml of MgCl2 0.1M (sterilized and refrigerated at 4 ºC). This step was followed by a 

centrifugation identical to the previous one. The pellet was resuspended in 2ml of 0.1M 

CaCl2 (sterile and kept at 4 ºC) and cooled on ice during 2h. Finally, DMSO to a final 

concentration of 7% was added to the cells. They were portioned in 200µl cells aliquots, 

frozen in liquid nitrogen and stored at -80 ºC.  

 

2.3 Construction of E. coli p426KRAS
wt 

2.3.1 DNA amplification by Polymerase Chain Reaction (PCR) 

The cDNA from human KRAS was obtained from IPO-Porto in a pLenti-KRAS
wt 

plasmid. This gene was amplified by PCR directly from the plasmid using the specific 

primers listed in Table 2.  

 

Table 2. Primers used to amplify the human KRAS fragment. 

Primer Sequence (5’     3’) Comments 

1 
GCG AAG CTT ATG ACT GAA TAT AAA CTT GTG GTA GTT 

GGA 
Foward_11044KRAS 

2 
GCG CTC GAG CAT AAT TAC ACA CTT 

TGT CTT TGA CTT CTT 
Reverse_11044KRAS 

 

The primers were designed adding the recognition sequences of the restriction 

enzymes HindIII and XhoI at the border of the sequence complementary to the KRAS 

gene, in order to enable the cloning in the plasmid p426 and p416 above mentioned. The 

PCR reaction mix of 20µl was prepared with: 

 2mM MgCl2 (Fermentas), 

 1X Taq reaction buffer (Fermentas), 
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 1.25U Taq DNA polymerase/50µl PCR reaction, 

 200µM dNTPs, 

 0.2µM of each primer (Eurofins Genomic), 

 200ng of DNA, 

 upH2O to complete the final volume of 20µl. 

The amplification was performed in the thermocycler T100 Thermal Cycler 

(Bio-Rad) programmed for: 

 1 cycle - initial denaturation 5min at 94 ºC, 

 35 cycles - denaturation 30sec at 94 ºC + annealing 30sec at 55 ºC + extension 

1.5 min at 68 ºC, 

 1 cycle - final extension 10min at 72 ºC. 

To confirm the DNA amplification, the PCR products were visualized in 1% 

(w/v) agarose gel, pre-stained with Gel-Red (Biotium). The products of PCR reaction 

were stored at 4 ºC. 

 

2.3.2 DNA electrophoresis  

DNA agarose gels were prepared with 50ml 1X TAE buffer (50X; 242g Tris 

base, 57.1ml glacial acid acetic, 100ml 0.5M EDTA pH8) to a final concentration of 1% 

agarose. Gel Red (Biotium) dye (2µl) was used for gel pre-staining. DNA ladder (  

DNA/Eco47I from Fermentas) (3µl mixed with 7µl of loading buffer) was used as 

reference. The gels were run in a Mini-SubCell GT system (BioRad) at 75V. The gels 

were visualized in the UV-transilluminatorGenoSmart (VWR). The extraction of the 

DNA fragment of interest from a gel was done using GenElute Gel Extraction Kit 

(Sigma-Aldrich) strictly following the manufacturer recommendations. 

 

2.3.3 DNA digestion and ligation 

KRAS cDNA (amplified by PCR) and plasmids were both digested with HindIII 

and XhoI restriction enzymes (Fermentas). The restriction mix of final volume of 20µl 

was composed of: 
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 1x buffer R (Fermentas),  

 1x HindIII (Fermentas),  

 1x XhoI (Fermentas),  

 300ng of human KRAS cDNA, 

 300ng of p416 or p426 vectors (these digestions were performed separately), 

 upH2O up to the final volume of 20 µl. 

The ratio between the two enzymes and the buffer were verified using the 

Fermentas double digestion tool (http://www.fermentas.com/en/tools/doubledigest). The 

restriction mix was incubated 3h at 37 ºC. The enzymes were inactivated by heating 

20min at 75 ºC. The final product of the digestions was run in a 1% (w/v) agarose gel, 

and visualized as mentioned above. 

Ligation was performed using T4 DNA ligase (Roche) as follows: 

 20ng of vector,  

 100ng of fragment,  

 2x T4 DNA ligase buffer (Roche), 

 5U of T4 DNA ligase (Roche) 

 upH2O to perform the final volume of 20µl.  

The reaction was incubated overnight at room temperature.  

 

2.3.4 Plasmid amplification in E. coli 

E. coli transformation was done with the heat shock method (231). A mix was 

prepared with 200µl of competent cells XL1-Blue and 0.2mg of plasmid DNA, and 

incubated on ice 40min. The mixture was subsequently incubated for 2min at 42 ºC and 

cooled again on ice for 2min. LB medium (500µl) was added and incubated 1h with 

shaking (200 rpm) at 37 ºC. At last, different amounts of the transformation solution 

(100µl and 300µl) were plated on LB-Amp and incubated overnight at 37 ºC. For the 

extraction of plasmidic DNA, a single colony grown on LB plate with selective marker 

was cultured overnight in 5ml of LB-Amp. The DNA was extracted using the 

GenElutePlasmidMiniprep kit (Sigma-Aldrich) according to the manufacturer 

instructions. The presence of the KRAS insert in the plasmidic DNA was checked by 
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digestion with the restriction enzymes HindIII and XhoI and run in a 1% (w/v) agarose 

gel.  

 

2.3.5 Transformation of S. cerevisiae and colony PCR 

S. cerevisiae BY4741 was transformed using the method of litium acetate (231). 

Cells were cultured at 30 °C, 200 rpm to an OD600 of 1.0 in 5ml of YPD. The cells were 

harvested by centrifuging 5min at 3,000 rpm (Sigma 4-16K centrifuge), and washed 

twice with sterile dH2O and then with LiAc(0.1M)/TE(1X). Finally, the cells were 

resuspended in 200µl of LiAc(0,1M)/TE(1x). For each transformation were used 100µl 

of competent cells. 

The competent cells were placed at 4 ºC overnight. Each transformation mix 

contained: 

 20µl of ssDNA carrier (2.5mg/ml) (Sigma-Aldrich),  

 100µl of competent cells, 

 0.2µg of plasmidc DNA (except for the negative control) and 

 600µl of LiAc(0.1 M)/TE(1X)-PEG 50%.  

The tubes were incubated 1h at 30 ºC with shaking, and then subjected to a heat-

shock for 15min at 42 ºC, followed by cooling for 10min at 4 ºC. The cells were 

harvested centrifuging 2min at 8,000 rpm (miniSpin centrifuge, Eppendorf), 

resuspended in 200µl sterile dH2O, plated on selective medium YNB URA- and 

incubated at 30 ºC until the colonies appeared (around 3 days).  

The verification of yeast transformants was done by colony PCR. Individual 

colonies grown on selective medium were picked and re-strain onto a new plate of YNB 

URA- and incubated 2 days at 30 ºC. For DNA extraction and precipitation, yeast 

biomass was picked from the plate, suspended in 100µl of 200mMLiAc/1%SDS 

solution and incubated for 5min at 70 ºC. After adding 300µl of 100% ethanol and 

vortexing, the mixture of DNA and cell debris was spun down at 15,000 rpm (Sigma 4-

16K centrifuge) for 3min. The pellet was washed with 70% ethanol, dissolved in 100µl 

upH2O, and cell debris was again spun down at 15,000 rpm (Sigma 4-16K centrifuge) 

for 15sec. PCR was done using 1µl of the obtained supernatant, and it was performed as 

described above. 
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2.4 Western Blot Analysis 

2.4.1 Yeast protein extraction and precipitation  

Total protein content from S. cerevisiae was extracted using the trichloroacetic 

acid (TCA) method. Cells were grown in YNB until exponential phase (OD600=1) and 

harvested by centrifuging 5min at 4,000 rpm (miniSpin centrifuge, Eppendorf). The 

pellet was resuspended in 200µl of 0.βM NaOH/β% -mercaptoethanol and incubated 

10min at 4 ºC, then 400µl of TCA 20% was added, the mixture was left in ice during at 

least 10min, and then centrifuged 5min at 13,000 rpm (miniSpin centrifuge, Eppendorf). 

The pellet was washed with 500µl of cold acetone and centrifuged 5min at 13,000 rpm 

(miniSpin centrifuge, Eppendorf). The acetone was allowed to evaporate, and the 

precipitate was resuspended in 100µl of Laemmli sample buffer 2X (SDS 4%, 120Mm 

Tris-HCl, 20% glycerol, 0.1% Bromophenol Blue) and 3µl DTT 0.01M. The samples 

were stored at -20 ºC. 

 

2.4.2 SDS-PAGE (Sodium Dodecyl Sulphate – PolyAcrylamide Gel 

Electrophoresis) 

The protein extracts were heated for 10min at 95 ºC before application onto 10% 

polyacrylamide gel. A two-part polyacrylamide gel, containing one 10% running gel 

and one 5% stacking gel was loaded with 10µl total protein extract per well. Nzycolour 

protein marker II (Nzytech) (2µl) was used as reference. The gels were submerged with 

Running Buffer (19.2mM glycin, 2.5mM Tris base, 0.01% SDS). The electrophoresis 

run 1h at 20mA/gel. The apparatus used was a Mini Protean Tetra Cell I system (Bio-

Rad). When needed, staining was performed with Coomassie Brilliant Blue (50% 

ethanol, 10% acetic acid, 0.25% Coomassie R258).  

 

2.4.3 Western blot assay 

The SDS-PAGE gel was electro blotted in a Trans-Blot Electrophoretic Transfer 

Cell System (Bio-Rad), onto PVDF membrane (Roche). The transfer was performed in 

a transfer buffer (19.2mM glycin, 2.5mM Tris, 20% ethanol, 0.05% SDS, pH8.3) for 2h 
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at 154mA/cm2 membrane. The membrane was then incubated in agitation in blocking 

solution (5% of blocking agent (GE Healthcare) in phosphate buffer saline Tween 20 

(PBST)) for 2h at room temperature to block the nonspecific sites, and then incubated 

with the primary antibody, overnight at 4 ºC with gently rotation (roller mixer SRT1, 

Stuart®). To remove the excess of this antibody, the membrane was washed 3 times with 

PBST, 5 min/wash, and then incubated with the secondary antibody 2h at room 

temperature with gentle rotation (roller mixer SRT1, Stuart®). To remove residual 

antibodies, the membrane was washed 6 times with PBST, 10min/wash, and developed 

with 500µl of ECL Plus Western Blotting Detection System (Amersham Biosciences) in 

an Image Analysis System ChemiDoc XRS (Bio-Rad, Laboratories Inc.). Antibodies 

were stored at -20 ºC. The following antibodies were used: 

 Monoclonal anti-KRas antibody (Sigma-Aldrich) – dilution 1:1000 (in PBST), 

 Monoclonal anti-EGFR antibody (Santa Cruz Biotechnology) – dilution 1:500 

(in PBST), 

 Monoclonal anti-EGFR antibody Cetuximab, kindly provided by Merck, USA in 

its clinical formulation Erbitux® 5mg/mL – dilutions from 1:1000 to 1:1 (in 

PBST), 

 Secondary antibody for anti-KRas and also anti-EGFR Cetuximab detection, 

polyclonal rabbit anti-mouse antibody coupled with horseradish peroxidase 

(Sigma-Aldrich) – dilution 1:10,000 (in PBST); 

 Secondary antibody for anti-EGFR detection, polyclonal goat anti-Rabbit IgG – 

Peroxidase (Sigma-Aldrich) – dilution 1:10,000 (in PBST). 

Erbitux is a sterile, clear, colorless liquid of pH7.0, containing a small quantity 

of white visible Cetuximab particulates. Erbitux is composed of a preservative free 

solution of NaCl, Na2HPO47H2O, NaH2PO4H2O and water. Concentrations of these 

basic components, as well as of the antibody within Erbitux® are commercial secret and 

were not supplied. 

 

2.5 Native-PAGE  

Native protein electrophoresis in opposition to SDS-PAGE relies on separation 

according to the charge, size and conformation of each protein, which depends on the 
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amino acid sequence of the protein (isoelectric point) and the pH during electrophoresis. 

One major advantage of the native-PAGE is that the biological activity of the proteins 

remains intact (232). Proteins are prepared in a non-reducing, non-denaturing sample 

buffer 2x (62.5Mm Tris-HCl, pH6.8; 25% glycerol; 1% Bromophenol Blue), which 

maintains the proteins’ secondary structure and native charge. A 10% polyacrylamide 

gel without SDS was loaded with 5µl sample mixed with 10µl sample buffer (2x). As 

for SDS-PAGE, 2µl of Nzycolour protein marker II (Nzytech) was used as reference. 

The running buffer, running conditions and staining procedures were identical as for 

SDS-PAGE (above) except for the absence of SDS in the Running Buffer formula.  

 

2.6 Yeast Physiology Assays 

2.6.1 Chronological life span (CLS) 

To follow the chronological aging of yeast on batch cultures, pre-inoculum 

cultures were allowed to grow overnight until exponential phase (OD600nm 0.4-0.8), and 

then diluted to an OD of ±0.1 in YNB liquid medium supplemented appropriately. 

Cellular viability was assessed by Colony Forming Units (C.F.U.) assay, as previously 

described (233). After 72 hour of growth (time 0 for the aging experiment), culture 

aliquots were diluted to an OD of 1.0 (OD600nm), corresponding to a cell density of about 

1x107cells/ml, and sequentially diluted 1:10 four times in sterile water, to a final 

dilution of 1:10,000. The last dilution was used to plate 6 drops of 40µl each on YPD 

agar plates, incubated for 2 days at 30 °C. Colonies formed were counted. 

The 3 days cultures were considered to be totally alive and therefore the number 

of colonies therein obtained was established as 100% of viability. Subsequent older 

samples were quantified in relation to day 3. Aging was followed until colonies were no 

longer produced. Statistical analysis was performed as described below.  

 

2.6.2 Cell size analysis  

Cells grown on YNB liquid medium were collected in exponential growth phase 

and observed with a Leica Microsystems DM-5000B epifluorescence microscope, with 
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appropriate filter settings and a 100x/1.3 oil-immersion objective, as previously 

described (41). Images were acquired by a Leica DCF350FX digital camera and 

processed with LAS AF Leica Microsystems software. Area of 80 to 100 cells was 

measured using ImageJ freeware (http://imagej.nih.gov/ij/). Statistical analysis was 

performed as described below.  

 

2.6.3 Cell cycle analysis 

Cell cycle analysis was performed as described in the literature (234), with 

modifications. Initially, 500µl of cells (±106cells/ml) were harvest by centrifugation and 

resuspended in 500µl of 70% ethanol and fixed, overnight at 4 ºC. The cells were then 

collected by centrifugation 2min at 13,000 rpm (miniSpin centrifuge, Eppendorf), 

followed by washing 1x in 1mL of 50mM sodium citrate buffer pH7.5. The pellet was 

resuspended in 400µl of RNase A (2mg/ml in Tris-EDTA, pH8.0) and incubated at 37 

ºC overnight. After an identical centrifugation, the pellet was resuspended in 200µl of 

proteinase K diluted in H2O (pH7.5 with HCl) to 5mg/ml and incubated 45min at 37 ºC 

and again centrifuged. The pellet was resuspended in 500µl of 50mM sodium citrate 

buffer pH7.5 and to 100µl cell suspension were added 20µl of SYTOX®-Green (Life 

Technologies) (5mM 100x diluted in Tris-EDTA, pH8.0), and incubated overnight at 4 

ºC in the dark. Finally, 600µl of Triton X-100 (0.25% v/v in 50mM sodium citrate 

buffer, pH7.5) was added and vortexed. The final suspension was briefly sonicated three 

times at 30W, each time for 1-2 seconds, incubated in ice between sonication, to reduce 

cellular aggregates. The samples were analyzed in an Epics® XL™ (Beckman Coulter) 

flow cytometer, with an excitation of 497nm and an emission of 520nm according to 

SYTOX®-Green manufacturer instructions. Flow cytometry data were processed using 

Flowing Software 2. 

 

2.6.4 Adherence to and invasion of agar 

Equal volumes of young yeast cultures were diluted to 1×107cells/ml 

(OD600nm=1), and 200µl of cells suspension was spotted onto SLAD medium agar (2% 

glucose, 1.67% YNB without amino acids and ammonium sulfate, 0.05mM (NH4)2SO4, 

2% agar) (235). Cultures were allowed to grow at 30 °C for 7 days. The cells on the 

http://imagej.nih.gov/ij/
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surface of the culture were then removed by washing under running water during 60sec 

and the remaining culture visualized in a magnifying glass (236). The images were 

captured in an Image Analysis System ChemiDoc XRS (Bio-Rad, Laboratories Inc.).  

Inspection of agar invasion was performed by visualization of longitudinal cuts 

displaying the aerial and internal agar/growth boundaries by light microscopy (98). 

 

2.7 Statistical Analysis 

Data are reported as mean values of at least three independent assays and 

presented as mean ± SD. The arithmetic means are given with SD with 95% confidence 

value. Statistical analyses were carried out using Two-way ANOVA. *P <0.05 was 

considered statistically significant. 
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3. Results and Discussion  

3.1  Heterologous expression of KRAS
wt in Saccharomyces cerevisiae 

The molecular mechanism and basic machinery of fundamental cellular 

processes appear to be highly conserved between the yeast S. cerevisiae and other 

eukaryotic species, including humans. Into this context, “humanized yeast systems” 

emerged as a tool to study molecular aspects of different biological processes (14). 

Here, we describe the construction of one such humanized yeast model expressing the 

human oncogene KRAS. S. cerevisiae has two orthologues of the human RAS proteins, 

Ras1p and Ras2p (31). Therefore, we individually expressed the human KRaswt protein 

in yeast wild type haploid strain BY4741 (Euroscarf), as well as the strains deleted in 

RAS1 or RAS2 from the same genetic background (Table 1). The double deletion of 

RAS1 and RAS2 renders yeast unviable (54). Previous attempts to sequentially delete the 

two RAS genes using KRAS gene to complement of one of the deletions by to ensure 

survival failed (228). For this reason the double mutant was not considered. 

In order to express KRAS
wt, the gene was amplified (Fig. 14) from pLenti-

KRAS
wt plasmid, kindly offered from IPO-Porto, and afterwards extracted from agarose 

gel electrophoresis and cloned into the yeast plasmids p426GPD and p416GPD. These 

plasmids have different origins of replication, a centromeric (p416) and a 2µ (p426) and 

respectively differ in the number of copies produced (1 and 10-30 copies per cell). They 

both, share a strong GPD promoter and a CYC1 terminator (229). HindIII and XhoI 

enzymes were chosen to be included into the primers that amplify the KRAS gene, since 

their restriction sequences are present in the multi cloning site (MCS) of both plasmids 

and do not cut the KRAS cDNA. The cDNA were inserted in the p426GPD plasmid 

through the action of a T4 ligase (Roche). Plasmid amplification in E. coli XL1-Blue 

was performed as described in Material and Methods. Plasmidic DNA extracted from E. 

coli XL1-Blue p426GPD-KRAS clones was double digested with HindIII and XhoI and 

the resulting product analyzed by electrophoresis (Fig. 15). The positive clones were 

confirmed by the presence of two expected bands: a band of approximately 6,637bp 

corresponding to the empty plasmid and a band of approximately 567pb corresponding 

to the KRAS
wt

 fragment.  
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Figure 14. Electrophoretic analysis in 1% agarose gel of KRAS
wt amplified by PCR from pLenti-KRAS

wt 

plasmid (lane 1). Molecular weight marker  DNA/Eco47I by Fermentas was used as ladder. In red: the 

fragment corresponding to KRAS. 

 

 

Figure 15. Electrophoretic analysis of p426GPD-KRAS DNA from E. coli XL1-Blue double digested 

with HindIII and XhoI (lane 1). Molecular weight marker  DNA/Eco47I by Fermentas was used as 

ladder. In red: the fragment corresponding to KRAS. 

 

Cloning procedures in E.coli XL1-Blue were repeated using the low copy 

plasmid p416. The DNA bacteria clones, transformed with the p416GPD-KRAS, were 

double digested with HindIII and XhoI enzymes and the resulting product analyzed by 

electrophoresis (Fig. 16). The positive clones should yield two bands: a band of 
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approximately 5,804bp corresponding to the empty plasmid and a band of 

approximately 567pb corresponding to the KRAS fragment, but the result of 

electrophoresis only showed one band of approximately 5,804 bp, revealing problems in 

DNA ligation into the p416GPD plasmid. 

 

 

Figure 16. Electrophoretic analysis of p416GPD-KRAS DNA from E.coli XL1-Blue double digested with 

HindIII and XhoI (lane 2 to 8). Double digestion of p416GPD with the enzimes HindIII and XhoI (lane 

1). Molecular weight marker  DNA/Eco47I by Fermentas was used as ladder.  

 

Thereby, we proceeded to the yeast transformation with p426GPD-KRAS
wt. The 

presence of p426GPD-KRAS
wt in yeast strains BY4741wt, BY4741 ∆ras1 and BY4741 

∆ras2 transformants was tested by colony PCR (Fig. 17). Clones testing positive 

presented a band of approximately 567pb corresponding to the KRAS
wt

 fragment. 
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Figure 17. Colony PCR of S. cerevisiae BY4741wt (lane 2 to 4), BY4741 ∆ras1 (lane 5) and BY4741 

∆ras2 (lane 6 to 7) transformed with the plasmid p426GPD-KRAS. The KRAS insert corresponds to a 

band with a molecular weight of approximately 560pb. As positive control the DNA plasmid harboring 

KRAS
wt was identically amplified by PCR (lane 1). Molecular weight marker  DNA/Eco47I by 

Fermentas was used as ladder. In red: the fragment corresponding to KRAS. 

 

Moreover, the expression of KRAS in yeast was tested by Western blot (WB) 

using a monoclonal antibody. For that purpose, the protein extracts of all the strains 

transformed with p426GPD-KRAS (Table 1) were isolated from exponential cultures in 

YNB without uracil (selectable marker) and subjected to WB using the anti-KRas 

antibody as described in the Materials and Methods. Representative results shown in 

figure 18, confirm the expression of KRas protein in yeast. 

 

 

Figure 18. WB of protein extracts from the strains BY4741wt (A) BY4741 ∆ras1 (B) and BY4741 ∆ras2 

(C) transformed with the plasmid p426GPD-KRAS
wt blotted with KRas antibody. Negative controls with 

transformants harbouring empty plasmids are shown. 
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These strains are part of a large platform consisting of yeast strains deleted in the 

yeast RAS genes in two genetic backgrounds, and complemented with the human KRAS 

cDNA. The platform has been built with the purpose of creating a tool for 

pharmacological testing programmed within the Glycopharm ITN Marie Curie 

Network. The two yeast backgrounds are the BY4741 (Euroscarf) above mentioned and 

the W303, both from the same mating type BY4741 Mata and W303-1A. Both strains 

deleted in RAS1 and RAS2 were already available. The BY4741 was used to 

complement with the KRAS cDNA. Depending on the results coming from the 

compared phenotypic responses, the W303 will also be used to express KRAS. For now 

it provides a phenotype control. Importantly, the chromosomal insertion of KRAS cDNA 

was also achieved in BY4741 within the scope of a complementary work, as was the 

phenotypic screening of the BY4741 set of strains.  
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3.2  Identification of the yeast target of anti-EGFR (Cetuximab) by 

Western Blot 

Erbitux® is an oncological therapeutic cocktail commercially exploited by 

Merck (Darmstadt, Germany) that has Cetuximab (Ctx) as active ingredient and is used 

in the treatment of colorectal cancer (CRC) (187). Ctx is a monoclonal antibody (mAb) 

that blocks the Epidermal Growth Factor Receptor (EGFR), a protein highly present on 

the surface of mammalian cells and responsible for recognition and signaling of the 

EGF growth hormone. Ctx is highly specific for EGFR (165, 169). Still, its therapeutic 

efficacy is confined to the so-called KRAS wild-type tumors (217). Mutations at the 

level of KRAS, one of the proteins downstream the EGFR signaling cascade, preclude 

its appropriate effect (219). Unfortunately, these mutations are present in a large 

fraction of the population, reducing these patients’ therapeutic alternatives. 

Additionally, CRC patients may also acquire resistance-mediating mutations within the 

extracellular EGFR domain, which alter the affinity for Ctx (218). Therefore, 

modulating the exact binding sites of anti-EGFR antibodies may help to predict the 

response to EGFR-targeting treatment.  

Taking into account the high specificity of Ctx against EGFR, and considering 

that it mediates a KRAS-including signaling cascade controlling proliferation and that 

yeast also harbors a RAS/cAMP/PKA signaling cascade, the yeast constructions 

generated in the first part of this work were used to test the ability of Ctx to bind to 

yeast proteins. If yeast possesses an EGFR-like protein, it should complex with Ctx. 

This was attempted before with success (237). One single band was obtained identified 

as pyruvate decarboxylase 1 (Pdc1). The present work sought to confirm this 

identification. For this purpose, Ctx was used as primary antibody in WB against the 

whole yeast proteome of S. cerevisiae BY4741, BY4741 ∆ras1, BY4741 ∆ras2 strains. 

This was repeated using also the transformants BY4741 p426GPD-KRAS, BY4741 

∆ras1 p26GPD-KRAS and BY4741 ∆ras2 p426GPD-KRAS.  

As mentioned in the Introduction, Ctx is a recombinant protein, which contains 

the Fv regions of a murine anti-EGFR antibody with human IgG1 heavy and kappa light 

chain constant regions. The anti-human secondary antibody recognized the human and 

free constant regions (Fc) of the heavy and light chains of Ctx that match to 2/3 of the 

antibody. The region that is recognized by the anti-mouse antibody is the variable 
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region (Fv) of the heavy and light chains, both from a mouse anti-EGFR monoclonal 

antibody. This variable region of Ctx is responsible for binding the antigen and only 

corresponds to 1/3 of the antibody. A complex of the anti-mouse antibody, with HRP 

was used for primary antibody binding recognition. Standard protocols for WB were 

used without success (not shown). Therefore an optimization of the protocol took place: 

1) the primary antibody dilution was decreased up to 1:1, 

2) the secondary antibody dilution was decreased up to 1:5000, 

3) the amount of protein extract was increased up to 20µl, 

4) several blocking agents for different incubation times, between 30 minutes and 4 

hours were used, 

5) increased times of exposition up to 480sec were tried, and 

6) virgin Ctx ampoules were used to freeze-dry and resuspended the lyophilized 

antibody in 5ml of ultra-pure water or phosphate buffer saline (PBS), causing an 

increase in its concentration.  

None of these optimization steps yielded a positive result (not shown). A final 

approach was attempted. The aggregation of monoclonal antibodies is a crucial problem 

that results not only in the fast loss of activity but also affects product safety for 

therapeutic utilization (238, 239). Aggregation of monoclonal antibodies can be induced 

by chemical alterations, namely the modification of covalent bonds through 

deamidation, oxidation or disulfide bridge shuffling (240). Aggregation may also be 

caused by freeze–thawing or elevated temperature, typical stress factors during 

production, transport and storage. Physical instability includes protein unfolding, 

adsorption or non-covalent interaction of native protein with itself or other proteins 

(241, 242). Mechanically induced aggregation of the monoclonal antibody Ctx can be 

removed either by filtration (243) (e.g. 0.22 mm filter) or by centrifugation (244). 

Several Ctx samples were therefore centrifuged at 12,000 rpm (miniSpin centrifuge, 

Eppendorf) during 10min and subsequently observed by PAGE. 

SDS-PAGE is commonly used to test recombinant monoclonal antibody purity 

or stability and detect antibody fragments and aggregates (243). In theory, when 

analyzing an antibody by PAGE under non-denaturing conditions (Native-PAGE), there 

should be only one band of the intact molecule (243), while in SDS-PAGE there should 

be two bands corresponding to the light and heavy chains of the antibody. Ctx is a 148 
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kDa glycoprotein composed of two light and two heavy chains of, respectively, 23 kDa 

and 50 kDa each (243, 245). A centrifuged Ctx sample was subjected to SDS-PAGE 

(Fig. 19) and Native-PAGE (not shown). In SDS-PAGE, Ctx presented more than the 

two expected bands of 23 and 50 kDa. The bands with higher molecular mass probably 

correspond to aggregates non-separated by centrifugation, while the bands with lower 

molecular mass could correspond to fragmented peptides. On the other hand, the 

Native-PAGE did not yield any band (not shown). Based on these two results, and the 

absence of hybridization detected by WB above described, the samples of Ctx were not 

considered for further use. 

 

Figure 19. SDS-PAGE of mAb Cetuximab, after centrifugation at 12,000 rpm, during 10min (Lane 1 to 

4). As molecular weight marker (MWM) were used 2µl of NZYCOLOUR protein marker II.  

 

In alternative, an anti-EGFR commercial antibody from Santa Cruz 

Biotechnologies was used for WB the full proteomes of the yeast strains above 

mentioned (Fig. 20). Up to three immunoreactive bands appeared (red boxes) of 

molecular weights around 70kDa, 40kDa and ≤19kDa. All the strains showed bands at 

the same molecular weights. A negative control was made using the same samples and 

only the secondary antibody produced in goat anti-Rabbit IgG–Peroxidase to verify 

whether any of the bands in figure 20 was a result of the secondary antibody 

hybridization and not directly due to anti-EGFR recognition. The control showed no 
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bands as due (data no shown). Therefore, the bands obtained in WB using the anti-

EGFR primary antibody should be specific to EGFR-like protein(s). 

 

 

Figure 20. Identification of the yeast target of anti-EGFR. SDS-PAGE followed by immunoblotting of S. 

cerevisiae BY4741wt , BY4741 ∆ras1 and BY4741 ∆ras2 (A) and the same strains transformed with 

p426-KRAS
wt (B ) with the anti-EGFR as primary antibody and anti-Rabbit IgG – Peroxidase as secondary 

antibody. The 3 immunoreactive bands were named, from top to bottom, as “P1”, “Pβ” and “Pγ” 

 

The 3 immunoreactive bands (red boxes in Fig. 20) were named, from top to 

bottom, as “P1”, “Pβ” and “Pγ”. The proteins corresponding to “P1”, “Pβ” and “Pγ” 

bands were excised from the SDS-PAGE gel and sent for identification at the Unidad de 

Proteómica-Moncloa, Parque Tecnológico de Madrid/Univ. Complutense, Madrid, 

Spain. There, the protein bands were reduced and alkylated with carbamidomethylated, 

and subsequently digested with trypsin that cleaves specific sites located after lysine 

and arginine residues. The resulting peptides were concentrated on a ZipTip 

micropurification column and eluted onto an anchorchip target for analysis on a Bruker 

Autoflex Speed MALDI TOF/TOF instrument. The peptide mixture was analyzed in 

positive reflector mode for accurate peptide mass determination. MALDI MS/MS was 

performed on 15 peptides for peptide fragmentation analysis. The MS and MS/MS 

spectra were combined and used for database searching using the Mascot software. The 
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data were finally BLASTED against protein databases downloaded from NCBI, 

including the NRDB database containing more than 17 million known non-redundant 

protein sequences. The results from protein identification are shown in Table 3. The 

higher molecular mass proteins identified are discussed below while the lower one was 

ignored due to the very low score that suggests an unreliable identification. 

 

Table 3. Protein identification by MS peptide mapping and sequencing analysis. 

Sample 
name 

Protein found in database MW Score 
Sequence 
coverage 

P1 
Heat shock protein SSA2 (S.cerevisiae 
S288c) 

69599 99 19% 

P1 
Heat shock protein SSB2 (S.cerevisiae 
S288c) 

66668 94 13% 

P2 
Glyceraldehyde-3-phosphate 
dehydrogenase 3 TDH3 (S.cerevisiae 
S288c) 

35838 263 30% 

P3 
Peroxiredoxin type-2 AHP1 (S.cerevisiae 
S288c)1 

192741 581 22%1 

Note: 1. The identification of this protein is uncertain because the score is outside the 95% confidential level. 

 

P1 - Heat shock proteins Ssa2p and Ssb2p 

SSA genes encode chaperone proteins that are comprised in the S. cerevisiae 

SSA subfamily of the large and evolutionarily conserved family of cytosolic Hsp70 

proteins (246). Hsp70 proteins were classified based on their induction by heat shock, 

and their approximate size of 70kDa (247). The Hsp70 proteins show a highly 

conserved structure which is composed by different domains (Fig. 21): a domain highly 

conserved that exhibits ATPase activity of aproximately 44 kDa called N-terminal 

nucleotide-binding domain (NBD), a middle flexible linker region, a substrate binding 

domain (SBD) of aproximately 15 kDa, which interacts with stretches of hydrophobic 
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aminoacids in peptides and, finally, a 10 kDa α-helical C-terminal domain. The C 

terminus of this protein is the least conserved (248, 249).  

 

 

Figure 21. The structure of Hsp70 protein, with ATP binding domain, polypeptide binding domain and 

C-terminal helical. Withdraw from (250).  

 

 The main function of these proteins is to serve as molecular chaperones, binding 

newly translated proteins, to assist in proper folding (247, 251). S. cerevisiae has at least 

9 cytosolic forms of Hsp70: Ssa1-4, Ssb1 and 2, Sse1 and 2, and Ssz1 (247, 251). These 

proteins are involved in the disassembling of misfolded proteins aggregates, in the 

translocation of proteins into the mitochondria and endoplasmatic reticulum, and in the 

regulation of the expression of other heat shock proteins. Moreover, they are involved in 

protein refolding after stress, and in the control of the activity of regulatory proteins 

from signal transduction pathways (252, 253). All these important activities of Hsp70 

are regulated by its capacity to interact with hydrophobic stretches of proteins in an 

ATP dependent mode, avoiding non-productive interactions that would cause 

aggregation and encourage protein refolding (254). The 4 S. cerevisiae SSA genes are 

closely related, with Ssa2p sharing 99%, 84%, and 85% amino acid identity with Ssa1p, 

3 and 4, respectively (255). Ssa2p is the only member of the SSA subfamily whose 

transcription is not inducible by heat or stress (256). Ssa2p fused with GFP was 

observed to relocate from the cytosol to the outer surface of mitochondria upon 
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oxidative stress (257). Additionally, Ssa2p has been implicated in DNA damage as it 

has been identified as members of Rad9 DNA checkpoint complexes (258). Although 

the majority of Ssa proteins are found in the cytosol, Ssa1p and Ssa2p can also be 

detected in the cell wall (256). In recent times, it was demonstrated that Ssa1 play a role 

as signal transducer controlling growth through G1 cyclin quantity and activity, a 

procedure mainly dependent on Ssa phosphorylation at a very conserved threonine 

residue in the NBD (259). Given the importance of the Hsp70 family in essential 

cellular functions Hsp70 can be a potential therapeutic target for a variety of human 

diseases. 

The recent data indicate that cancer cells become ‘addicted’ to Hsp70 through 

their chaperone activity on multiple cell signaling and survival pathways. Three of these 

cancer-relevant activities of Hsp70 are: apoptosis, senescence and autophagy (Fig. 22) 

(250). Overall, the Hsp70 family of proteins can be thought as a potent buffering system 

for cellular stress, on which cancer cells rely heavily for survival (250). Accordingly, 

the vast majority of human tumors over-express Hsp70 family members, and expression 

of these proteins is typically a marker for poor prognosis (260). Recently, inhibitors of 

the Hsp90 chaperone have emerged as important anticancer agents, and probably also 

Hsp70 can be a potential target as inhibitor of carcinogenesis (261). Jäättelä was the 

first to prove that silencing of Hsp70 with antisense RNA resulted in massive cell death 

in breast cancer cell lines, but it was demonstrated to be non-toxic for normal cells (262, 

263). If the present results in yeast are confirmed, the Hsp70 could be a target that 

inhibited, identically induces cell death upon a stimulus by an EGFR-like antibody. It 

would be interesting to verify the expression of the Hsp70p in these strains 

transformants after treatment with Ctx and, afterwards, assess the apoptosis, senescence 

and autophagy activities. Other interesting experiment would be the identification of the 

yeast target of the anti-EGFR (Ctx) in the strains transformed with the mutated KRAS. 
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Figure 22. Cancer pathways associated with Hsp70. A) Hsp70 inhibits the intrinsic and extrinsic 

apoptosis pathways, by inhibiting BAX translocation to mitochondria, the recruitment of APAF-1 to the 

apoptosome, the activity of stress-induced kinases and the function of AIF-1. B) Hsp70 inhibits oncogene 

induced senescence. C) Hsp70 localizes to lysosome membranes in cancer cells, stabilizes lysosome 

function and allows autophagy, a key cancer survival pathway. Adapted from (250). 

 

P2 - Glyceraldehyde-3-phosphate dehydrogenase 3 (Tdh3p) 

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has been documented as 

an important enzyme for energy metabolism, the production of ATP and pyruvate, in 

the cytoplasm, through anaerobic glycolysis (264). In addition, GAPDH has recently 

been implicated in several non-metabolic processes, including DNA repair (265), tRNA 

export (266), regulation of mRNA stability (267), membrane fusion and transport (268), 

cytoskeletal dynamics (269) and initiation of apoptosis (270). The multifunctional 

properties of GAPDH are likely to be controlled by its oligomerization, 

posttranslational modifications and subcellular localization (271). GAPDH is a tetramer 

that catalyzes the reaction of glyceraldehyde-3-phosphate to 1,3 bi-phosphoglycerate 

and consumes inorganic phosphate to harness the energy into the reduced form of 

nicotinamide adenine dinucleotide (NADH) (272). Three genes, TDH1-3, encode 
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related but not identical polypeptides that form catalytically active homo-tetramers with 

different specific activities (273). Fascinatingly, these catalytically active enzymes are 

found in the cytoplasm and cell wall. Tdh2p and Tdh3p are detected in cells growing 

exponentially while Tdh1p is principally detected during stationary phase (274). 

GAPDH activity is necessary during gluconeogenesis, the process in which glucose is 

produced from non-carbohydrate precursors. This process enables yeast cells to grow on 

ethanol, glycerol or peptone. The reactions of gluconeogenesis mediate conversion of 

pyruvate to glucose (275). 

GAPDH is a ubiquitous enzyme of approximately 37kDa that is found 

ubiquitously located in the cytoplasm, vesicles, mitochondria and nuclei of cells. In 

yeast it has also been found in the outer part of the cell wall, i.e., the external surface of 

the cell (276, 277). Its detection by an externally added antibody is therefore not 

impossible. The results suggest that GAPDH, more precisely Tdh3 can be a yeast target 

of anti-EGFR. 

 

Similarity between human EGFR and the yeast targets of anti-EGFR 

Amino acid sequence alignments between EGFR, Tdh3p, Ssa2p and Ssb2p were 

generated using ClustalW2 (www.ebi.ac.uk/Tools/msa/clustalw2/) (Fig. 23). This 

program produces biologically significant multiple sequence alignments of divergent 

sequences and it calculates the greatest match for the selected sequences. The alignment 

between the human EGFR and the yeast Ssa2p, Ssb2p and Tdh3p proteins was studied. 

The three yeast proteins were compared. As expected, Ssa2p and Ssb2p are highly 

similar to each other, while Tdh3p is very different. 

 

TDH3                            -------------------------------------------------- 

SSA2                            -------------------------MSKAVGIDLGTTYSCVAHFSNDRVD 25 

SSB2                            --------------------MAEGVFQGAIGIDLGTTYSCVATYESS-VE 29 

EGFR                            MRPSGTAGAALLALLAALCPASRALEEKKVCQGTSNKLTQLGTFEDHFLS 50 

                                                                                 

 

TDH3                            --------MVRVAINGFGRIGR----------------------LVMRIA 20 

SSA2                            IIANDQGNRTTPSFVGFTDTER----------------------LIGDAA 53 

SSB2                            IIANEQGNRVTPSFVAFTPQER----------------------LIGDAA 57 

EGFR                            LQRMFNNCEVVLGNLEITYVQRNYDLSFLKTIQEVAGYVLIALNTVERIP 100 

                                         .  .   :    *                       :   . 
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TDH3                            LSRPNVEVV------------ALNDPFITNDYAAYMFKYDSTH------- 51 

SSA2                            KNQAAMNPANTVFDAKRLIGRNFNDPEVQGDMKHFPFKLIDVD------- 96 

SSB2                            KNQAALNPRNTVFDAKRLIGRRFDDESVQKDMKTWPFKVIDVD------- 100 

EGFR                            LENLQIIRGNMYYENSYALAVLSNYDANKTGLKELPMRNLQGQKCDPSCP 150 

                                 ..  :                 :      .     ::  . .        

 

TDH3                            -----------------------------GRYAGEVSHDDKHIIVD-GKK 71 

SSA2                            -----------------------------GKPQIQVEFKGETKNFT-PEQ 116 

SSB2                            -----------------------------GNPVIEVQYLEETKTFS-PQE 120 

EGFR                            NGSCWGAGEENCQKLTKIICAQQCSGRCRGKSPSDCCHNQCAAGCTGPRE 200 

                                                             *.   :  .          .: 

 

TDH3                            IATYQE---RDPANLPWGSSNVDIAIDSTGVFKELDTAQKHIDAGAKK-- 116 

SSA2                            ISSMVLGKMKETAESYLG-AKVNDAVVTVPAYFNDSQRQATKDAGTIAGL 165 

SSB2                            ISAMVLTKMKEIAEAKIG-KKVEKAVITVPAYFNDAQRQATKDAGAISGL 169 

EGFR                            SDCLVCRKFRDEATCKDTCPPLMLYNPTTYQMDVNPEGKYSFGATCVKKC 250 

                                         :: *        :     :.         :   .*       

 

TDH3                            ---VVITAPSSTAPMFVMG-------------------------VNEEKY 138 

SSA2                            NVLRIINEPTAAAIAYGL-------------DKKGKEEHVLIFDLGGGTF 202 

SSB2                            NVLRIINEPTAAAIAYGLGA-----------GKSEKERHVLIFDLGGGTF 208 

EGFR                            PRNYVVTDHGSCVRACGADSYEMEEDGVRKCKKCEGPCRKVCNGIGIGEF 300 

                                    ::.   : .                               :.   : 

 

TDH3                            TSDLKIVSNASCTTN---CLAPLAKVINDAFG------------------ 167 

SSA2                            DVSLLSIEDGIFEVK---ATAGDTHLGGEDFDNR---------------- 233 

SSB2                            DVSLLHIAGGVYTVK---STSGNTHLGGQDFDTN---------------- 239 

EGFR                            KDSLSINATNIKHFKNCTSISGDLHILPVAFRGDSFTHTPPLDPQELDIL 350 

                                  .*          :   . :   ::    *                    

 

TDH3                            ----------IEEGLMTTVHSLTATQ------------------------ 183 

SSA2                            ----------LVNHFIQEFKRKNKKD------------------------ 249 

SSB2                            ----------LLEHFKAEFKKKTGLD------------------------ 255 

EGFR                            KTVKEITGFLLIQAWPENRTDLHAFENLEIIRGRTKQHGQFSLAVVSLNI 400 

                                          : :            :                         

 

TDH3                            KTVDGPSHKDWRGGRTASGNIIPSSTGAAKAVGKVLP------------- 220 

SSA2                            LSTNQRALRRLRTACERAKRTLSSSAQTSVEIDSLFEGIDFYTSITRARF 299 

SSB2                            ISDDARALRRLRTAAERAKRTLSSVTQTTVEVDSLFDGEDFESSLTRARF 305 

EGFR                            TSLGLRSLKEISDGDVIISGNKNLCYANTINWKKLFGTSGQKTKIISNRG 450 

                                 : .  : :    .              :    .::               

 

TDH3                            -ELQGKLTG-------------------MAFRVPTVDVSVVDLTVKLNKE 250 

SSA2                            EELCADLFRSTLDPVE------------KVLRDAKLDKSQVDEIVLVGGS 337 

SSB2                            EDLNAALFKSTLEPVE------------QVLKDAKISKSQIDEVVLVGGS 343 

EGFR                            ENSCKATGQVCHALCSPEGCWGPEPRDCVSCRNVSRGRECVDKCNLLEGE 500 

                                 :                             :  . . . :*    :  . 

 

TDH3                            TT------------------------------------------------ 252 

SSA2                            TR------------------------------------------------ 339 

SSB2                            TR------------------------------------------------ 345 

EGFR                            PREFVENSECIQCHPECLPQAMNITCTGRGPDNCIQCAHYIDGPHCVKTC 550 

                                .                                                  

 

TDH3                            ----YDEIKKVVKAAAEGKLKGVLGYTEDAVVS------SDFLGDSHS-- 290 

SSA2                            ----IPKVQKLVTDYFNGKEPNRSINPDEAVAYGAAVQAAILTGDESS-- 383 

SSB2                            ----IPKVQKLLSDFFDGKQLEKSINPDEAVAYGAAVQGAILTGQSTSD- 390 

EGFR                            PAGVMGENNTLVWKYADAGHVCHLCHPNCTYGCTGPGLEGCPTNGPKIPS 600 

                                      : :.::    :.        .: :         .   .       

 

TDH3                            ------------SIFDASAGIQLS-----------------PKFVKLVSW 311 

SSA2                            ----KTQDLLLLDVAPLSLGIETAG-GVMTKLIPRNSTIPTKKSEVFSTY 428 

SSB2                            ----ETKDLLLLDVAPLSLGVGMQG-DIFGIVVPRNTTVPTIKRRTFTTV 435 

EGFR                            IATGMVGALLLLLVVALGIGLFMRRRHIVRKRTLRRLLQERELVEPLTPS 650 

                                             :   . *:                         : .  

 

TDH3                            YDNEYGYSTRVVDLVEHVAKA----------------------------- 332 

SSA2                            ADNQPGVLIQVFEGERAKTKDNNLLGKF---------------------- 456 

SSB2                            SDNQTTVQFPVYQGERVNCKENTLLGEF---------------------- 463 

EGFR                            GEAPNQALLRILKETEFKKIKVLGSGAFGTVYKGLWIPEGEKVKIPVAIK 700 

                                 :        : .  .                                   

 

TDH3                            -------------------------------------------------- 

SSA2                            ELSGIPPAPRGVPQIEVTFDVDSNGILNVS-------------------- 486 

SSB2                            DLKNIPMMPAGEPVLEAIFEVDANGILKVT-------------------- 493 

EGFR                            ELREATSPKANKEILDEAYVMASVDNPHVCRLLGICLTSTVQLITQLMPF 750 
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TDH3                            -------------------------------------------------- 

SSA2                            -------------------------------------AVEKGTGKSNKIT 499 

SSB2                            -------------------------------------AVEKSTGKSSNIT 506 

EGFR                            GCLLDYVREHKDNIGSQYLLNWCVQIAKGMNYLEDRRLVHRDLAARNVLV 800 

                                                                                   

 

TDH3                            -------------------------------------------------- 

SSA2                            ITNDKGRLSKEDIEKMV-AEAEKFKEEDEKESQRIASKN----------- 537 

SSB2                            ISNAVGRLSSEEIEKMV-NQAEEFKAADEAFAKKHEARQ----------- 544 

EGFR                            KTPQHVKITDFGLAKLLGAEEKEYHAEGGKVPIKWMALESILHRIYTHQS 850 

                                                                                   

 

TDH3                            -------------------------------------------------- 

SSA2                            ----------QLESIAYSLKNTISE--AGDKLEQADKDA----VTKKAEE 571 

SSB2                            ----------RLESYVASIEQTVTDPVLSSKLKRGSKSK----IEAALSD 580 

EGFR                            DVWSYGVTVWELMTFGSKPYDGIPASEISSILEKGERLPQPPICTIDVYM 900 

                                                                                   

 

TDH3                            -------------------------------------------------- 

SSA2                            TIAWLDSNTTATKEEFDDQLKELQEVANPIMSKLYQAG------------ 609 

SSB2                            ALAALQIED-PSADELRKAEVGLKRVVTKAMSSR---------------- 613 

EGFR                            IMVKCWMIDADSRPKFRELIIEFSKMARDPQRYLVIQGDERMHLPSPTDS 950 

                                                                                   

 

TDH3                            -------------------------------------------------- 

SSA2                            --------------------------GAPEGAAPGGFPGGAPPAPEAEGP 633 

SSB2                            -------------------------------------------------- 

EGFR                            NFYRALMDEEDMDDVVDADEYLIPQQGFFSSPSTSRTPLLSSLSATSNNS 1000 

                                                                                   

 

TDH3                            -------------------------------------------------- 

SSA2                            TVEEVD-------------------------------------------- 639 

SSB2                            -------------------------------------------------- 

EGFR                            TVACIDRNGLQSCPIKEDSFLQRYSSDPTGALTEDSIDDTFLPVPGEWLV 1050 

                                                                                   

 

TDH3                            ----------------------------------------- 

SSA2                            ----------------------------------------- 

SSB2                            ----------------------------------------- 

EGFR                            WKQSCSSTSSTHSAAASLQCPSQVLPPASPEGETVADLQTQ 1091 

 

 

Figure 23. Alignment between human EGFR and S. cerevisiae protein Ssa2p and its close homologue 

Ssb2p, and Tdh3p. EGFR protein sequence of 1091 amino acids was obtained from NCBI (accession: 

AAH94761.1 GI: 63101670). Ssa2p with 639 amino acids, Ssb2p with 613 amino acids and Tdh3p with 

332 amino acids were obtained from SGD. 

 

Ssb2p is predicted to interact physically with yeast Ras1p 

(http://www.yeastgenome.org/ (278)). Ras proteins are also very conserved, KRAS 

sharing with Ras1p and Ras2p 63% and 64% identity respectively (Fig. 24). Therefore, 

the probability that Ssb2p and the very similar Ssa2p might be able to interact with 

KRAS, makes them better candidates for EGFR homology than Tdh3p.  

 

RAS1                           MQGNKSTIREYKIVVVGGGGVGKSALTIQFIQSYFVDEYDPTIEDSYRKQ 50 

RAS2                           MPLNKSNIREYKLVVVGGGGVGKSALTIQLTQSHFVDEYDPTIEDSYRKQ 50 

KRAS                           -------MTEYKLVVVGAGGVGKSALTIQLIQNHFVDEYDPTIEDSYRKQ 43 

                                      : ***:****.***********: *.:**************** 

 

 

 

http://www.yeastgenome.org/
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RAS1                           VVIDDKVSILDILDTAGQEEYSAMREQYMRTGEGFLLVYSVTSRNSFDEL 100 

RAS2                           VVIDDEVSILDILDTAGQEEYSAMREQYMRNGEGFLLVYSITSKSSLDEL 100 

KRAS                           VVIDGETCLLDILDTAGQEEYSAMRDQYMRTGEGFLCVFAINNTKSFEDI 93 

                               ****.:..:****************:****.***** *:::.. .*:::: 

 

RAS1                           LSYYQQIQRVKDSDYIPVVVVGNKLDLENERQVSYEDGLRLAKQLNAPFL 150 

RAS2                           MTYYQQILRVKDTDYVPIVVVGNKSDLENEKQVSYQDGLNMAKQMNAPFL 150 

KRAS                           HHYREQIKRVKDSEDVPMVLVGNKCDLPS-RTVDTKQAQDLARSYGIPFI 142 

                                 * :** ****:: :*:*:**** ** . : *. ::.  :*:. . **: 

 

RAS1                           ETSAKQAINVDEAFYSLIRLVRDDGGKYNSMNRQLDNTNEIRDSELTSSA 200 

RAS2                           ETSAKQAINVEEAFYTLARLVRDEGGKYN--KTLTENDNSKQTSQDTKGS 198 

KRAS                           ETSAKTRQRVEDAFYTLVREIR----QYR----------LKKISKEEKTP 178 

                               *****   .*::***:* * :*    :*.            : *:  . . 

 

RAS1                           TADREKKNNGSYVLDNSLTNAGTGSSSKSAVNHN------------GETT 238 

RAS2                           GANSVPRNSGGHRKMSNAANGKNVNSSTTVVNARNASIESKTGLAGNQAT 248 

KRAS                           GCVKIKK------------------------------------------- 185 

                                .    :                                            

 

RAS1                           KRTDEKNYVNQNNNN----EGNTKYSSNGNGNRSDISRGNQNNALNSRSK 284 

RAS2                           NGKTQTDRTNIDNSTGQAGQANAQSANTVNNRVNNNSKAGQVSNAKQARK 298 

KRAS                           -------------------------------------------------- 

                                                                                    

 

RAS1                           QSAEPQKNSSANARKESSGGCCIIC 309 

RAS2                           QQAAPGGN-TSEASKSGSGGCCIIS 322 

KRAS                           ---------------------CIIM 189 

                                                      ***  

 

 

Figure 24. Alignment between human oncogene KRAS and S. cerevisiae protein Ras1p and its close 

homologue Ras2p. KRAS protein sequence of 189 amino acids was obtained from NCBI (accession: 

AGC09594.1 GI: 440503003). Ras1p with 309 amino acids and Ras2p with 322 amino acids were 

obtained from SGD. 

 

The alignment with EGFR (Fig. 25) showed that Ssa2p and Ssb2p proteins 

aligned in the region of EGFR domain I (L1) (green), followed by domain II (CR1), 

domain III (L2) (yellow), domain IV (CR2), the transmembrane (red) and 

juxtamembrane (blue) domains and the tyrosine kinase domain. Ssa2p residues 1-379 

and Ssb2p residues 9-385, that corresponds to ATP binding domain, align with EGFR 

domains I, II, III and IV as well as with critical residues involved in Ctx binding (grey). 

The EGFR transmembrane and juxtamembrane domains align with some residues of the 

peptide binding domain of Ssa2p (384-540) and Ssb2p (301-547). The grey residues 

correspond to critical residues involved in Ctx binding according to the literature, since 

their mutation resulted in a decrease of antibody binding capacity (166, 279). 

 

SSA2                            -------------------------MSKAVGIDLGTTYSCVAHFSNDRVD 25 

SSB2                            --------------------MAEGVFQGAIGIDLGTTYSCVATYESS-VE 29 

EGFR                            MRPSGTAGAALLALLAALCPASRALEEKKVCQGTSNKLTQLGTFEDHFLS 50 

                                                          .  :  . ... : :. :..  :. 
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SSA2                            IIANDQGNRTTPSFVGFTDTER-----------------LIGDAAKNQAA 58 

SSB2                            IIANEQGNRVTPSFVAFTPQER-----------------LIGDAAKNQAA 62 

EGFR                            LQRMFNNCEVVLGNLEITYVQRNYDLSFLKTIQEVAGYVLIALNTVERIP 100 

                                :    :. ... . : :*  :*                 **.  : :: . 

 

SSA2                            MN-----PANTVFDAKRLIGRNFNDPEVQGDMKHFPFKLIDVDGKP---- 99 

SSB2                            LN-----PRNTVFDAKRLIGRRFDDESVQKDMKTWPFKVIDVDGNP---- 103 

EGFR                            LENLQIIRGNMYYENSYALAVLSNYDANKTGLKELPMRNLQGQKCDPSCP 150 

                                ::       *  :: .  :.   :    : .:*  *:: :: :        

 

SSA2                            ------QIQVEFKGETKNFTPEQISSMVLGK------MKETAESYLGAKV 137 

SSB2                            ------VIEVQYLEETKTFSPQEISAMVLTK------MKEIAEAKIGKKV 141 

EGFR                            NGSCWGAGEENCQKLTKIICAQQCSGRCRGKSPSDCCHNQCAAGCTGPRE 200 

                                        : :    ** : .:: *.    *       :: * .  * :  

 

SSA2                            NDAVVT--------------------VPAYFNDSQRQATKDAGTIAGLNV 167 

SSB2                            EKAVIT--------------------VPAYFNDAQRQATKDAGAISGLNV 171 

EGFR                            SDCLVCRKFRDEATCKDTCPPLMLYNPTTYQMDVNPEGKYSFGATCVKKC 250 

                                ...::                      .:*  * : :.. . *: .  :  

 

SSA2                            LR--IINEPTAAAIAYGL--DKKGKE-----------EHVLIFDLGGGTF 202 

SSB2                            LR--IINEPTAAAIAYGLGAGKSEKE-----------RHVLIFDLGGGTF 208 

EGFR                            PRNYVVTDHGSCVRACGADSYEMEEDGVRKCKKCEGPCRKVCNGIGIGEF 300 

                                 *  ::.:  :.. * *    :  ::            : :  .:* * * 

 

SSA2                            DVSLLSIEDGIFEVK---ATAGDTHLGGEDFDNRLVNHFIQEFKR----- 244 

SSB2                            DVSLLHIAGGVYTVK---STSGNTHLGGQDFDTNLLEHFKAEFKK----- 250 

EGFR                            KDSLSINATNIKHFKNCTSISGDLHILPVAFRGDSFTHTPPLDPQELDIL 350 

                                . **     .:  .*   : :*: *:    *    . *      :      

 

SSA2                            KNKKDLS------------TNQRALRRLRTACERAKRT------LSSSAQ 276 

SSB2                            KTGLDIS------------DDARALRRLRTAAERAKRT------LSSVTQ 282 

EGFR                            KTVKEITGFLLIQAWPENRTDLHAFENLEIIRGRTKQHGQFSLAVVSLNI 400 

                                *.  :::             : :*:..*.    *:*:       : *    

 

SSA2                            TSVEIDSLFEGID------------FYTSITRARFEELCADLFRSTLDPV 314 

SSB2                            TTVEVDSLFDGED------------FESSLTRARFEDLNAALFKSTLEPV 320 

EGFR                            TSLGLRSLKEISDGDVIISGNKNLCYANTINWKKLFGTSGQKTKIISNRG 450 

                                *:: : ** :  *            : .::.  ::    .   :   :   

 

SSA2                            EK---------------------------VLRDAKLDKSQVDEIVLVGGS 337 

SSB2                            EQ---------------------------VLKDAKISKSQIDEVVLVGGS 343 

EGFR                            ENSCKATGQVCHALCSPEGCWGPEPRDCVSCRNVSRGRECVDKCNLLEGE 500 

                                *:                             ::.. .:. :*:  *: *. 

 

SSA2                            TR------------------------------------------------ 339 

SSB2                            TR------------------------------------------------ 345 

EGFR                            PREFVENSECIQCHPECLPQAMNITCTGRGPDNCIQCAHYIDGPHCVKTC 550 

                                .*                                                 

 

SSA2                            ----IPKVQKLVTDYFNGKEPNRSINPDEAVAYG-AAVQAAILTG----D 380 

SSB2                            ----IPKVQKLLSDFFDGKQLEKSINPDEAVAYG-AAVQGAILTG----Q 386 

EGFR                            PAGVMGENNTLVWKYADAGHVCHLCHPNCTYGCTGPGLEGCPTNGPKIPS 600 

                                    : : :.*: .: :. .  :  :*: : .   ..::..  .*    . 

SSA2                            ESS-KTQDLLLLDVAPLSLGIETAG----------------GVMTKLIP- 412 

SSB2                            STSDETKDLLLLDVAPLSLGVGMQG----------------DIFGIVVP- 419 

EGFR                            IATGMVGALLLLLVVALGIGLFMRRRHIVRKRTLRRLLQERELVEPLTPS 650 

                                 ::  .  **** *..*.:*:                     :.  : *  

 

SSA2                            ----RNSTIPTKKSEVFSTYADNQPGVLIQVFEGERAKTKD--NNLLGKF 456 

SSB2                            ----RNTTVPTIKRRTFTTVSDNQTTVQFPVYQGERVNCKE--NTLLGEF 463 

EGFR                            GEAPNQALLRILKETEFKKIKVLGSGAFGTVYKGLWIPEGEKVKIPVAIK 700 

                                    .:: :   *   *..     . .   *::*      :  :  :.   

 

SSA2                            ELSGIPPAPRGVPQIEVTFDVDSNG------------------------- 481 

SSB2                            DLKNIPMMPAGEPVLEAIFEVDANG------------------------- 488 

EGFR                            ELREATSPKANKEILDEAYVMASVDNPHVCRLLGICLTSTVQLITQLMPF 750 

                                :*   .    .   ::  : : : .                          

 

SSA2                            --------------------------------ILNVSAVEKGTGKSNKIT 499 

SSB2                            --------------------------------ILKVTAVEKSTGKSSNIT 506 

EGFR                            GCLLDYVREHKDNIGSQYLLNWCVQIAKGMNYLEDRRLVHRDLAARNVLV 800 

                                                                : .   *.:. .  . :. 

 

SSA2                            ITNDKGRLSKEDIEKMVAEAEKFKEED-----------EKESQRIASKN- 537 

SSB2                            ISNAVGRLSSEEIEKMVNQAEEFKAAD-----------EAFAKKHEARQ- 544 

EGFR                            KTPQHVKITDFGLAKLLGAEEKEYHAEGGKVPIKWMALESILHRIYTHQS 850 

                                 :    :::.  : *::   *:    :           *   ::  :::  
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SSA2                            ----------QLESIAYSLKNTISE--AGDKLEQADKD------------ 563 

SSB2                            ----------RLESYVASIEQTVTDPVLSSKLKRGSKS------------ 572 

EGFR                            DVWSYGVTVWELMTFGSKPYDGIPASEISSILEKGERLPQPPICTIDVYM 900 

                                          .* :   .  : :.    .. *::..:              

 

SSA2                            ---------------------AVTKKAEETIAWLDSNTT-------ATKE 585 

SSB2                            ---------------------KIEAALSDALAALQIED--------PSAD 593 

EGFR                            IMVKCWMIDADSRPKFRELIIEFSKMARDPQRYLVIQGDERMHLPSPTDS 950 

                                                      .     :.   *  :         .: . 

 

SSA2                            EFDDQLKELQEVANPIMSKLYQAG--GAPEGAAPGGFPGGAPPAPEAEGP 633 

SSB2                            ELRKAEVGLKRVVTKAMSSR------------------------------ 613 

EGFR                            NFYRALMDEEDMDDVVDADEYLIPQQGFFSSPSTSRTPLLSSLSATSNNS 1000 

                                ::       : :     :.                                

 

SSA2                            TVEEVD-------------------------------------------- 639 

SSB2                            -------------------------------------------------- 

EGFR                            TVACIDRNGLQSCPIKEDSFLQRYSSDPTGALTEDSIDDTFLPVPGEWLV 1050 

                                                                                   

 

SSA2                            ----------------------------------------- 

SSB2                            ----------------------------------------- 

EGFR                            WKQSCSSTSSTHSAAASLQCPSQVLPPASPEGETVADLQTQ 1091 

 

Figure 25. Alignment between human EGFR and S. cerevisiae protein Ssa2p and its close homologue 

Ssb2p. EGFR protein sequence of 1091 amino acids was obtained from NCBI (accession: AAH94761.1 

GI: 63101670). Ssa2p with 639 amino acids, Ssb2p with 613 amino acids were obtained from SGD. 

Green – EGFR L1/I domain; Yellow – EGFR L2/III domain; Red – EGFR transmembrane domain; Blue 

– EGFR juxtamembrane domain; Grey – critical residues involved in Cetuximab binding. The sequences 

were aligned using ClustalW2 coupled with the default parameters. An alignment will display by default 

the following symbols denoting the degree of conservation observed in each column: * - the residues in 

that column are identical in all sequences in the aligment; : - conserved substitutions have been observed; 

.- semi-conserved substitutions are observed. 

 

Interestingly, three (F331, Q387, K444) of eight amino acid residues critical for the 

binding of Ctx to EGFR are present in Ssa2p and Ssb2p, or a conserved substitution has 

been observed. This is also true for Tdh3p in which F331 is conserved. Therefore, it is 

possible to explain the reason why the anti-EGFR antibody recognized all the three 

proteins, even if Ssb2p and Ssa2p appear better candidates for an EGFR-like role. 

Neither Ssb2p, Ssa2p nor Tdh3p have transmembrane domains allowing to predict their 

localization in the plasma membrane while EGFR has two (not shown). This is though 

not to prove wrong the protein recognition and identification since yeast, in opposition 

to animal cells, has wall around the cell and the receptor of an antibody may reside at 

the wall or its surface. Proteins well known for their function in the cytosol have already 

been found on the cell surface as is the case of glycolytic enzymes in C. albicans (276) 

or in S. cerevisiae extracellular matrix (99, 277). 
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These results reinforce the parallelism between the RAS signaling pathway in 

humans and yeasts and make conceivable suggesting Ssb2p, Ssa2p or Tdh3p, as 

possible EGFR-like proteins signaling to the Ras proteins (Fig. 26). The further use of 

the ∆ssa2, ∆ssb2, ∆tdh3 and the construction of a triple mutant ∆ssa2∆ssb2∆tdh3 would 

be ideal to clarify by WB which protein, or if all, are recognized by anti-EGFR. 

 

 

Figure 26. Schematic representation of the results obtained in BY4741 yeast cells with anti-EGFR as a 

protein targeting and a possible signaling downstream, showing a parallelism between RAS signaling 

pathways in human and yeasts. (___) stimulated signaling; (---) inhibited signaling.  
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3.3  Insights on RAS and GUP genes in the W303-1A strain 

The RAS/cAMP/PKA pathway regulates a variety of processes such as life span 

(280), cell cycle (47), polarity of actin cytoskeleton (48), spore morphogenesis (49), 

regulation of the activity of amino acid transporter Gap1 permease (50) and DNA 

damage checkpoint (51). The genome of S. cerevisiae contains two RAS genes, RAS1 

and RAS2, the last exhibiting higher levels of expression compared to its homologue 

RAS1 (31). GUP1 is another gene involved in important cellular processes, such as 

secretory and endocytic pathway (96), bud site selection (95), telomere length (97), 

cytoskeleton polarization (94), vacuole morphology (96), and anaerobic growth (93). 

Additionally, resistance to the oncological drug Imatinib (Glivec®), a tyrosine kinase 

inhibitor blocking signaling, was also found associated with the deletion of GUP1 in S. 

cerevisiae (103). Gup1p has a paralogous gene in S. cerevisiae, Gup2p, considerable 

less studied. Additionally, GUP1 has orthologous in higher eukaryotes known with to a 

different nomenclature derived from their recognized role as negative regulators of the 

Hedgehog family of extracellular signaling molecules: HHATL (Hedgehog acyl 

transferase-like protein) (105). The two regulatory pathways driven by RAS and 

Hedgehog are known to interact in mammalian and other higher eukaryotic models to 

control morphogenesis in relation to cell cycle regulation and proliferation (105, 106). 

In yeast though, a morphogenic pathway like the one of human Hedgehog has not been 

recognized so far. Taking into consideration the overlapping between the phenotypes 

associated to the deletion of either RAS or GUP genes, we decided to check some 

further phenotypes for these genes. The S. cerevisiae W303-1A strain deleted in ∆ras1, 

∆ras2, ∆gup1, ∆gup2 and ∆gup1/2 were subjected to common physiology tests, such as 

chronological life span (CLS), cell size analysis, cell cycle regulation, adherence and 

invasion to agar. The results are meant to be compared with identical testing using the 

BY4741 KRAS complemented set of strains built in the first part of this work. 
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3.3.1 Growth and CLS assessments  

3.3.1.1 RAS and GUP deletions affect growth on minimal media 

To follow yeast growth on batch cultures including aging experiments, pre-

inoculum cultures were allowed to grow overnight until exponential phase (OD600nm0.4-

0.8), and then diluted to an OD of ±0.1 and used to inoculate YNB liquid medium 

supplemented appropriately. Growth was monitored spectrophotometrically at 

stipulated points at 600nm, in a Spectrophotometer Genesys 20. Each culture growth 

was followed throughout exponential and post-diauxic phases. As control, the W303-1A 

wt was used. Results showed that W303-1A ∆ras2 presented a small delay at the 

beginning of the growing phase compared to W303-1A wt and the ∆ras1 mutant (Fig. 

27A). On the other hand, the growth curves of GUP mutants was indistinguishable from 

the control and between themselves, however when the growth rates were measure they 

showed significant differences (Fig. 27B, Table 4).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 27. Effect of RAS and GUP genes on yeast growth. Growth curves of parental strain W303-1A, 

and mutants ∆ras1 (A) and ∆ras2 (A), and ∆gup1 (B), ∆gup2 (B) and ∆gup1/2 (B). Growth in YNB 
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medium at 30 ºC was followed by measuring Abs600nm. The results are representative of at least three 

independent experiments.  

 

The values corresponding to the specific growth rate of these curves (medium 

values were used) are presented in Table 4. All the mutations produced a considerable 

effect on µg, which in ∆ras1 and ∆ras2 and in GUP mutants were respectively 35%, 

37% and 50% slower than in wt strain. The results agree with what is described in the 

literature for both the RAS (34) and GUP (88) mutants.  

 

3.3.1.2 The RAS and GUP mutants exhibit a reduced chronological life span 

Loss of Ras2/cAMP/PKA signaling activity leads to stationary phase-like 

growth arrest (31), decreased metabolic activity, increased resistance to a variety of 

environmental stress conditions and an altered pattern of gene expression, essential for 

the long term survival of these cells (281). Moreover, the deletion of RAS2 gene 

decreases the growth rate but extends the chronological life span (CLS) (34). Yeast CLS 

is described as the period of time a population remains viable in the post-diauxic and 

stationary growth phases in batch cultures (34). The survival of RAS and GUP mutants 

on glucose-based medium was monitored continuously for 25 days throughout 

stationary phase until complete death of the culture. The 3 days cultures were 

considered to be totally alive and therefore the number of colonies therein obtained was 

established 100% of viability.  Both RAS and GUP mutants die sooner than wt, and the 

former sooner than the later. The deletion of either RAS1 or RAS2 yielded identical 

results, while in the case of GUP mutants, the ∆gup1 was the most sensitive, although 

all the three mutants ultimately reached full death at the same time point (Fig. 28, Table 

4). 

Analyzing the CLS results for the ∆ras1 and ∆ras2 mutant cells, a high decrease 

on CLS is visible in the mutants as compared to wt strain, µd being higher (Fig. 28A, 

Table 4). After 3 days the survival rate of RAS mutants started to decrease reaching 

25% at day 6 (Fig. 28A). Accordingly, the µd of the mutants was more than double of 

the wt one (Table 4). 
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Fabrizio and Longo (34) describe in DBY746 background the doubling of yeast 

life span in association with the deletion of RAS2. Ras2p acts as an upstream regulator 

of Cyr1, the adenylate cyclase responsible for the production of cAMP, which is 

involved in cell cycle arrest in G1 phase (68). However, an opposite phenotype was 

observed. The same was observed in BY4741 ∆ras2 (unpublished results from 

Carneiro). To the best of our knowledge, no results have been published so far using 

either W303 or BY4741 backgrounds. The three strains differ in methionine, adenine 

and tryptophan auxotrophy as well as in mating type: 

 BY4741: MATa his3∆0 leu2∆0 met15∆0 ura3∆0 

 W303-1A: MATa leu2∆3 leu2∆112 ura3∆1 trp1∆1 his3∆11 his3∆15 ade2∆1 can1∆100 

 DBY746: MATα leu 2-3, 112 his3Δ1 trp1-289 ura 3-52 GAL
+
 

Considering the large interplay recognized between the RAS and TOR 

pathways, an interference of the amino acids / nitrogen biosynthesis pathways could be 

predicted. Whether this might be the explanation for the contradictory results remains to 

be verified. Thus, RAS may play similar roles in the regulation of chronological 

longevity since the deletion of RAS1 and RAS2 shorten the chronological life span. 

Concerning the GUP mutants, the viability started to decrease at day 3, reaching 

50% around day 6 for ∆gup1, and day 9 for ∆gup2 and ∆gup1/2 (Fig. 28B). The wt 

reached 50% survival at day 12 and on day 20 the percentage of viable cells was almost 

zero (Fig. 28). Accordingly, ∆gup1, ∆gup2 and ∆gup1/2 µd was respectively 54%, 25% 

and 46% higher than wt (Table 4). Therefore, it can be concluded that the GUP mutants, 

in particular ∆gup1, die sooner than the wt which is in accordance with the literature 

(101). The fact that the GUP2 and the double deletion identically increased the death 

rate could imply that both genes have a redundant role in that matter, which is important 

since so far, and in contrast with the ∆gup1, very few phenotypes have been associated 

with this gene deletion. Importantly, both the RAS and the GUP genes identically 

affected the chronological life span, Ras more strongly than Gup suggesting a common 

path in signaling which was expected, but has yet to be understood.  
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Figure 28. Deletion of RAS (A) and GUP (B) genes decreases chronological life span. The wt and the 

mutants were inoculated in YNB medium and survival monitored by C.F.U. for 25 days, after exponential 

phase (100% represents the number of C.F.U obtained in time 0).  The growth curve in YNB, after the 

exponential phase, is presented in the insert. Data represent mean ± SD of at least three independent 

experiments.  
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Table 4. Growth and death rates for W303-1A wt, RAS and GUP mutants in YNB medium.  

 Strains 
 W303-1A ∆ras1 ∆ras2 ∆gup1 ∆gup2 ∆gup1/2 

µg (h
-1) 

0.49 

R2=0.999 

0.32 

R2=0.992 

0.31 

R2=0.998 

0.26 

R2=0.994 

0.30 

R2=0.997 

0.27 

R2=0.999 

OD600 (stationary phase) 2.3±0.1 2.0±0.2 1.5±0.01 2.2±0.3 2.0±0.2 2.1±0.5 

µd (h
-1) 

-0.24 

R2=0.999 

-0.69 

R2=0.999  

-0.73 

R2=0.995 

-0.37 

R2=0.999 

-0.30 

R2=0.976 

-0.35 

R2=0.895 

100% death obtained at (days) 22 8 10 13 13 15 

 

Some studies previously demonstrated that wild type cells nutrient depleted in 

synthetic complete medium (SC) showed a decreased CLS rather than in rich (YPD) 

medium (282, 283). Although the reason for the decreased CLS in SC medium is not 

clear, nutrient depleted cells cultured in this medium reveal a higher metabolic rate, 

which has been correlated with the shorter CLS (284). These effects were detected in 

different genetic backgrounds as demonstrated by Weinberger (285). The same 

mechanism could occur in the minimal medium YNB used in this study since these 

media like SC shares a media based upon YNB only differing from SC in amino acid 

composition. Either or both strain background and medium composition might underlie 

these results. 

 

3.3.2 The GUP mutants and ∆ras1 are smaller, while ∆ras2 is bigger 

than wt 

There is a close and frequently intricate relationship between shape and function 

in living organisms. Moreover, another basic and essential characteristic of an organism 

is size, which represents a significant determinant of cellular physiology (286). In 

yeasts, cell size is described to affect the duration of G1 cell cycle phase, because cells 

that are born small stay more time in this phase to gain the appropriate size to start the 

DNA replication and budding. This narrow interval is called currently START (287). 

Moreover, cell size is often described as a complex relationship between division and 

growth, involving several cellular pathways. Furthermore, it is supposed that the G1 

cyclin named Cln3 allows the cell size communication (288). The connection between 
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RAS signaling and cell size has been noted, so mutant cells with reduced cAMP 

signaling usually exhibit a decrease in cell size, as well as a mutant deleted in cdc25 

temperature sensitive. In contrast, the over-activation of the PKA pathway results in 

large cells, and accordingly, RAS2
V19, an activated allele of RAS2, increases the cell size 

(289). RAS/cAMP/PKA therefore regulates a transcriptional network that ensures the 

equilibrium between division and cell growth (289, 290). 

 

Figure 29. Cell size analyses. Top: Images of cells from W303-1A wt, ∆ras1, ∆ras2, ∆gup1, ∆gup2 and 

∆gup1/2 were captured in a Leica DCF350FX digital camera in a Leica Microsystems DM-5000B 

epifluorescence microscope (Bar, 7.5µm). Bottom: Scatter plot of cell areas with bar indicating median 

and standard deviation. Eighty to 100 cells were measured per genotype. *,p≤0.05; **,p≤0.01; ***, 

p≤0.001, two-tailed t-test. 
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The size of the RAS and GUP mutant cells was estimated using a microscopic 

assessment methodology (41). Cells growing on YNB liquid medium were collected in 

exponential growth phase and observed with a Leica Microsystems DM-5000B 

epifluorescence microscope. The area of 80 to 100 cells was measured using ImageJ 

freeware. Results showed that all the mutations of RAS and GUP produced a 

considerable effect on cell size (Fig. 29). Cells lacking GUP1, GUP2 or both are 

respectively 27%, 11% and 59% smaller than wt. Also, the ∆ras1 cells exhibited a 

decreased in size of 25% compared to wt. In opposition, cells lacking RAS2 

demonstrated a 34% increase. Wei et al., (2003), using the same technique, also showed 

an increase in cell size for RAS2-null cells compared with DBY746 wild type strain 

though smaller (10% decreased compared to ∆ras2) (41). On the other hand, other 

authors using cytometry-based methodologies observed a small decrease in cell volume 

in ∆ras2 mutants. This is conceivable considering that RAS2 deletion associated with a 

decrease in cAMP production and therefore there should be a decrease in size (289). 

 

3.3.3 Cell Cycle analysis  

Microorganisms like the budding yeast S. cerevisiae demonstrate some 

mechanisms that regulate the capacity to growth and to progress in cell cycle according 

to nutrient availability. Thus when large amounts of nutrients are available the 

proliferation is rapid, on other hand the exhaustion of the resources stop the capacity to 

grow. Into this context, glucose is an important nutrient that produces signals that 

govern growth and cell cycle progression. In S. cerevisiae cell cycle progression onto 

G1 and S phase is regulated by a narrow interval known as START (291). At this 

checkpoint, the cells evaluate some environmental and internal signals including critical 

cell size (above), nutrient availability and metabolism. These commands whether they 

can progress onto a new cell cycle, enter stationary phase, or assume an alternative 

differentiation such as sporulation or pseudo-hyphal growth. Progression through 

START commits to a new mitotic cell cycle and requires the activation of the cyclin-

dependent kinases (292), and an efficiently coordination (293). This contributes to 

ensure that DNA replication, and consequently the starting of cell division, only 

happens when cells have acquired an optimal cell size (69). cAMP pathway is 

implicated in the control of cell cycle progression as well as in cell size regulation for 
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the cells entry into the S phase (294). Concomitantly, the addition of cAMP to an 

exponentially growing culture largely increases cell size. Furthermore, cAMP delayes 

the G1/S transition in small cells, but is ineffective in large cells (290). On the other 

hand, inactivation of the cAMP signaling arrests cell cycle at START, followed by entry 

into stationary phase (G0) (68). Thereby, cells with impaired PKA activity show 

numerous features representative of G0 phase cells, including improved stress 

resistance, impaired filamentous differentiation and sporulation efficient capacity (69). 

Moreover, as mentioned above, Gup1 is described to interfere in telomere length (97). 

Short telomeres decrease life expectancy of the cells interfering in cell cycle progression 

(295). 

Considering the results described above, the cell cycle for the RAS and GUP 

mutants was analyzed by flow cytometry. The division into different cell cycle phases is 

based on the amount of DNA, detected with a probe specific for it, in this case was 

SYTOX® Green. Therefore, there is one peak corresponding to G1, when the DNA is 

single copy, one to G2/M, when the DNA has already been duplicated, but the cell is 

still not divided. Also an intermediate phase in which the DNA is being duplicated, but 

the duplication is not complete, the S phase, and finally a phase in which the amount of 

DNA detected is less than the normal condition, the sub-G0 phase, corresponding to 

fragmented and/or condensated DNA. Yeast strains were analyzed throughout 

exponentially growth into late stationary phase, when the chronological life span assay 

was assessed (above). Cells were thus collected at defined times points:  

 Exponential growth (8h),  

 Late stationary phase (3days), 

 Dying cells (5 days for ∆ras1 and ∆ras2; 6 days for ∆gup1; 8 days for ∆gup2 and 

∆gup1/2). 

The time points for death phase were determined through the survival curve for 

each mutant (Fig. 28). The wt strain after 8h of exponential growth still presented more 

than 50% of cells in G0/G1 phase and approximately 35% in G2/M phase. After 3 days 

(stationary growth phase) the amount of cells in G2/M decreased and a considerable 

percentage of cells appeared in Sub-G0 (Fig. 30A). The sub-G0 peak reveals the 

fragmentation and condensation of DNA that can be an indication of an apoptotic cell 

death process. Thus, it is not surprising that this percentage was more pronounced when 
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the cells were collected in the death phase (Fig. 30A). The cells of ∆ras1 and ∆ras2 

after 8h of growth showed a high percentage (˃50%) of G2/M and a low amount in 

G0/G1 (Fig. 30B/C). After 3 days, the amount of the cells in G2/M decreased and a high 

percentage of cells in sub-G0 appear (Fig. 30B). In opposition to ∆ras1, the ∆ras2 cells 

showed a high amount of cells in S phase (Fig. 30C). ∆ras1 and ∆ras2 did not allow the 

assessment of the cell cycle in the death phase, probably because the staining was 

insufficient or because of the quick loss of viability in this cells, in spite of the fact that 

the time points for collecting the cells were based on previous results (Fig. 28). 

Exponentially growing ∆gup1 mutants have more cells in G2/M than wt. At day 3 this 

amount diminished and the percentage of cells in G0/G1 increased, as well as the one of 

cells in sub-G0 (Fig. 30D). The ∆gup2 presented a cell cycle similar to wt throughout 

the whole period (Fig. 30E). Finally, the double deleted strain behaved similarly to 

∆gup1 (Fig. 30F).  

We verified that during the exponential growth, ∆ras1, ∆ras2 and both ∆gup1 

and ∆gup1/2 cells in a less extended manner, were more abundant in G2/M phase, that 

may cause a delay in growth, as we observed in the grown rate (Table 4). In our results, 

the ∆ras2 cells in stationary phase, in opposition to what has been described in the 

literature (69), did not arrest in the G1 phase of cell cycle. Accordingly, we didn’t 

observe an extension of life span. The results showed that nutrient depletion causes 

replication stress in ∆ras2 cells that fails to enter into G1 arrest and instead arrests after 

DNA replicates in S phase. These results might explain the increased cell size of ∆ras2 

cells together with their short lifespan. Growth arrest of cells in S phase could be caused 

by a reduction in the levels of nucleotides and other factors required for efficient DNA 

synthesis, which would lead to replication stress (285). As in other eukaryotes, 

replication stress promotes genome instability and apoptosis in budding yeast (296). 

Anyway, to have a better understanding of these results, it would be indicated to follow 

the cells through the cell cycle and not only to observe them only at one point. This 

would be possible synchronizing the cells and taking samples along an extended period 

of time. Smaller cells spend more time in G1 which allow them to grow more than 

larger cells (297). This is the case of all the GUP mutants. In the stationary growth 

phase ∆gup2 cells demonstrated a sub-G0 peak, that reveal the fragmentation of DNA, 

this same peak did not appear in ∆gup1 and ∆gup1/2, which lead us to think that, ∆gup2 

cells can die by apoptosis, but ∆gup1 (101) and ∆gup1/2 cannot. 
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Figure 30. Cell cycle histograms (left) and corresponding percentages of the different phases (right), of 

wild type W303-1A and ∆ras1, ∆ras2, ∆gup1, ∆gup2 and ∆gup1/2 mutants. In each histogram, the left-

most peak represents the G0/G1 population and the right-most peak represents the G2/M, the space 

between both correspond the S population. When some peak appears before G0/G1, this area represents 

the sub-G0 population. The samples to analyze were collected in three different points of growth curve, 

respectively exponential, stationary and death phases. Results represent one preliminary experience.  

 

3.3.4 Adherence to and Invasion of agar  

As mentioned above, START checkpoint in S. cerevisiae commands whether the 

cells progress into the full mitotic cell cycle or alternatively enter stationary phase, or 

undergo differentiation namely into pseudo-hyphae (69, 291). Hyphal growth is a 

morphological behavior many times associated with yeast pathogens, namely C. 

albicans. Yet, budding yeasts like S. cerevisiae can also filament growing into pseudo-

hyphae. This is described as a process by which the cells divide by cytokinesis but keep 

connected to each other through the cell wall (298). Nutrient limitation is a promoter of 

filamentous growth in yeast. Pseudo-hyphae formation is frequently described as 

associated with diploidy. However, filamentation and associated invasive growth has 

been showed in haploid cells invading agar (298, 299). Filamentous growth is related to 

nitrogen levels (235), as well as to the absence of fermentable carbon source (299). 

RAS2 was found to be required for filamentous growth regulation (235). Previous work 

showed that ∆gup1 mutant from C. albicans was unable to adhere to and invade agar 

(98). Therefore, the GUP and RAS mutants were studied on capacity to adhere and to 

invade agar on nitrogen-deficient medium SLAD agar plates as described in the 

Materials and Methods. According to the literature (235, 298), the RAS mutants did not 

adhere to SLAD plates (Fig. 31). The same was true for the wt strain, which was also 

expected when considering the W303 genetic background (unpublished results/personal 

communications from several groups). In opposition, the GUP mutants adhered to 

SLAD plates, more evident in the case of the ∆gup1/2 mutant and less evident in the 

case of ∆gup2 (Fig. 31).  
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Figure 31. Adherence to agar of wild-type W303-1A and ∆ras1, ∆ras2, ∆gup1, ∆gup2 and ∆gup1/2 

mutants, after 7 days of growth on a nitrogen depleted medium (SLAD). Cells were pre-cultured 

overnight in YNB media and diluted to 1×107cells/ml prior to plating. Adherence to agar was assayed by 

washing the cells off the surface of the agar.  

 

The agar invasion of these strains was assessed as described in Material and 

Methods. None of the strains was able to invade agar in the conditions tested (data not 

shown). Moreover, none underwent filamentation (not shown). 

Adhesion phenomenon is not only dependent on filamentation, but also on cell 

wall hydrophobicity, cell wall charge, and cell wall composition (300). GUP mutants 

unlike RAS mutants are well documented to have an altered cell membrane and wall 

composition (90, 92), which could account for this phenotype of adherence without 

invasion or filamentation. This could also derive from the absence of nitrogen in the 

medium. Although this condition is recommended to assay filamentation in wt strains, it 

could affect mutants phenotypes.   

TOR pathway controls cell growth in response to nutrient signals such as 

nitrogen, amino acids and carbon starvation. Rapamycin has been described to cause 

effects similar to those promoted by nutrient starvation (75, 301). Nitrogen-limiting 

conditions promote cell cycle arrest in G1 caused by nuclear accumulation of Gln3 (80). 

This protein regulates the activation of genes involved in nitrogen metabolism in 

response to nitrogen deprivation. On the other hand, RAS pathway controls 

filamentation morphological switch and invasive growth in concert with TORC1 
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complex, although the mechanism of interdependence between the two is not well 

understood (302). The TOR pathway might control indirectly the cell cycle by 

controlling the subcellular localization of the polo-like kinase Cdc5, which indirectly 

acts upon Swe1, a kinase that inactivates the mitotic cyclin-dependent kinase (Cdc28) 

(302). These proteins are well-known players of RAS pathway involved in the 

suppression of many rapamycin-induced phenotypes by the hyper-activation of 

RAS/PKA (81). The deletion of GUP1 alone or together with the deletion of GUP2 

increased the resistance to rapamycin while the single deletion of GUP2 did not (108). 

Both adherence under nitrogen starvation and resistance to rapamycin associate with 

TOR function, which relates with the RAS signaling. In either mutants strain the 

absence of filamentation indicates the RAS pathway might be inactive and the fact that 

the GUP mutants share this and all the other above-mentioned phenotypes indicates a 

close relationship between Gup and the two upstream TOR and RAS pathways, which 

has to be confirmed in the future. Finally, as mentioned, previous results showed that 

the deletion of GUP1 alone or together with the deletion of GUP2 increased resistance 

to rapamycin while the single deletion of GUP2 did not. This was considered an 

epistatic relation between deletions, which was also found in other conditions (89, 92) 

including the above results with µg, µd (Table 4), cell size (Fig. 29) and cell cycle (Fig. 

30). In the adherence to nitrogen-deficient medium agar this was again observed. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER IV 

Final Remarks and Future Perspectives 



 

 

 

 



Chapter IV – Final Remarks and Future Perspectives 
 

85 

 

4. Final Remarks and Future Perspectives  

S. cerevisiae is a powerful eukaryotic model organism due to its simplicity and 

to the availability of numerous genetic manipulation tools (14). The present thesis 

covers a group of tasks complementary to the work of two other students for the 

development of a yeast-based high throughput platform for human KRAS and galectin 3 

or galectin 1 phenotyping. Therefore, responding to the main aims of this project we can 

conclude that all the 4 points were achieved with success. The major comments and 

remarks to the obtained results are described below.  

Task one: 

 As expected, this study described a new “KRAS
wt humanized yeast”, 

heterologously expressing human wild-type KRAS. With this cell system, it was 

possible to express KRAS without the genetic and molecular complexity of of 

human cells and their RAS-related pathways, namely the interference of the 

other human RAS isoforms HRAS and NRAS. Briefly, the p426GPD-KRAS
wt 

construction was used to transform the yeast strain BY4741wt. However, since 

the yeast Ras proteins (Ras1p and Ras2p) are globally speaking structurally and 

functionally complementary to the human RAS proteins, the study was also 

performed in the BY4741 deleted in RAS1 and RAS2 genes to avoid possible 

interferences.  These single deletions additionally allow different levels of 

expression of the RAS/cAMP/PKA pathway since the yeast genes are not 

physiologically redundant. Yeast transformation with KRAS cDNA was 

confirmed by colony PCR, and the expression of KRas protein in yeast was 

confirmed by Western blot with anti-KRas against total yeast proteome. 

Task two: 

 Probing total proteins extracts from S. cerevisiae, BY4741wt, BY4741 ∆ras1, 

BY4741 ∆ras2 and the KRAS
wt humanized yeasts, with the monoclonal antibody 

anti-EGFR lead to the identification of the Hsp70 proteins Ssa2p and Ssb2p, and 

of the glyceraldehyde-3-phosphate dehydrogenase 3 Tdh3p, as putative EGFR-like 

proteins.  

 The amino acid sequence alignments between EGFR and the above mentioned 

proteins revealed that Ssb2p, and its close homologue Ssa2p, present two 
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regions with considerable homology with EGFR amino acid sequence. 

Therefore, Ssa2p and Ssb2p seem to be the most probable EGFR-like protein. 

 The alignment revealed that three out of the eight amino acid residues of EGFR 

known to be critical for the binding of Cetuximab are present in both Ssa2p and 

Ssb2p : F331, Q387, K444. 

 Ssb2p is predicted to interact physically with yeast Ras1p (278), which presents 

63% similarity with the KRAS human protein. 

These results reinforce the parallelism between the RAS signaling pathway in 

humans and yeasts. Similarly to what happens in mammalian cells with EGFR and the 

downstream regulation of Ras/Raf/MAPK pathway, other molecules may work in yeast 

as upstream regulators of the this pathway, controlling growth, differentiation, stress 

resistance, cell cycle and transcription. It is known that cancer cells become ‘addicted’ 

to Hsp70 through its activity on cell signaling and survival pathways. Three of these 

cancer relevant activities of Hsp70 are: apoptosis, senescence and autophagy (250). If 

the present results in yeast are confirmed, the inhibition of Hsp70 could identically 

induce cell death upon the action of an EGFR-like antibody. Additionally, the 

recognition of a heat shock protein opens doors to a whole new range of possible 

functions for these and other yeast heat shock proteins whose function remains poorly 

understand.  

Tasks three and four: 

The RAS/cAMP/PKA pathway and the Gup1p protein regulate a variety of 

important processes in yeast, some of which are common. This apparent sharing 

underlies the choice of compared physiologic assays performed using the Ras and Gup 

mutants: 

 The deletion of RAS and GUP genes produced a considerable decrease on 

specific growth rate. 

 The GUP and RAS mutant cells exhibited a reduction in chronological life span, 

Ras more strongly than Gup.  

 The GUP and ∆ras1 mutant cells showed a reduction in the cell size, while RAS2 

deletion resulted in bigger cells.  

 During exponential growth, RAS mutants presented a higher G2/M phase, 

accordingly with the observed delay in growth.  



Chapter IV – Final Remarks and Future Perspectives 
 

87 

 

 The nutrient depletion (carbon) caused replicative stress in ∆ras2 cells that 

failed to enter into G1 arrest, instead arrested growth in S phase. These results 

may explain the increased cell size of ∆ras2 cells and also the short lifespan.  

 RAS mutants did not adhere to SLAD agar plates while GUP mutants did. RAS 

are therefore essential genes to promote this ability, which could relate to low 

nitrogen, and consequently associate with TOR pathway.  

 None of the GUP and RAS deleted strains was able to invade agar, and none 

showed filamentation capacity. 

In either mutant strain the absence of invasion indicates that the RAS pathway 

might be inactive. The fact that the GUP mutants share this and all the other above-

mentioned phenotypes indicates a close relationship between Gup1/2 and TOR and 

RAS pathways, which has to be confirmed in the future. In a future work, to confirm an 

involvement of Gup proteins with RAS/cAMP/PKA and/or TOR, it will be important to 

further delete RAS genes on the GUP set of mutants (or vice versa), and/or use KRAS to 

complement yeast cells deleted in GUP genes. These strains will then be used for 

phenotyping, using as controls the already existent set of humanized yeasts built on 

GUP mutants expressing higher eukaryotes HHATL and/or HHAT. 

One more time, yeast provided a helpful contribution to reveal the molecular 

mechanisms underlying the KRAS function, as well as to determine the possible 

homologue of EGFR, many times associated with cancer, particularly in colorectal 

carcinoma. On the other hand, it also contributed to gain insights about RAS and GUP 

genes and their functions in a possible shared pathway. This knowledge is expected to 

pave the way to the identification of new targets/inhibitors as well as the development 

of new diagnostic/prognostic tests.  
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