
Distributed Exact Deduplication for Primary
Storage Infrastructures

João Paulo and José Pereira

High-Assurance Software Lab (HASLab)
INESC TEC and University of Minho
{jtpaulo, jop}@di.uminho.pt

Abstract. Deduplication of primary storage volumes in a cloud com-
puting environment is increasingly desirable, as the resulting space sav-
ings contribute to the cost effectiveness of a large scale multi-tenant
infrastructure. However, traditional archival and backup deduplication
systems impose prohibitive overhead for latency-sensitive applications
deployed at these infrastructures while, current primary deduplication
systems rely on special cluster filesystems, centralized components, or
restrictive workload assumptions.
We present DEDIS, a fully-distributed and dependable system that per-
forms exact and cluster-wide background deduplication of primary stor-
age. DEDIS does not depend on data locality and works on top of any
unsophisticated storage backend, centralized or distributed, that exports
a basic shared block device interface. The evaluation of an open-source
prototype shows that DEDIS scales out and adds negligible overhead
even when deduplication and intensive storage I/O run simultaneously.

Keywords: deduplication, storage systems, distributed systems, cloud
computing

1 Introduction

Deduplication is accepted as an efficient technique for reducing storage costs at
the expense of some processing overhead, being increasingly sought in primary
storage systems [18, 5, 14] and cloud computing infrastructures holding Virtual
Machine (VM) volumes [7, 4, 12]. As static VM images are highly redundant,
many systems avoid duplicates by storing unique Copy-on-Write (CoW) golden
images and using snapshot mechanisms for launching identical VM instances [6,
10]. Other systems also target the duplicates found in dynamic general purpose
data from VMs volumes thus, increasing the space savings that, may range
from 58% up to 80% for cluster-wide deduplication [4, 11, 18]. In fact, with the
unprecedented growth of data in cloud computing services and the introduction
of more expensive storage devices, as Solid State Drives (SSDs), these space
savings are key to reduce the costs of cloud infrastructures [2].

Deduplication in a distributed infrastructure and across VMs primary vol-
umes with dynamic and latency sensitive data raises, however, several challenges.

2

Primary volumes have strict latency requirements that are not met by traditional
in-line deduplication systems where data is shared before being stored thus, in-
cluding deduplication processing overhead in the storage writes [17]. As a matter
of fact, although some attempts were made to extend traditional deduplication
algorithms to support file system semantics, none of these systems were able to
handle efficiently random storage workloads [21, 9, 8].

As an alternative, off-line deduplication decouples aliasing from disk I/O
operations and performs both asynchronously thus, minimizing the impact in
storage writes [7, 4]. As data is only aliased after being stored, off-line dedupli-
cation requires additional storage space when compared to the in-line approach.
Also, since deduplication and storage requests are performed asynchronously, a
CoW mechanism must be used to prevent updates on aliased data and possi-
ble data corruption. This mechanism increases the overhead in storage writes
and the complexity of reference management and garbage collection, confining
off-line deduplication to off-peak periods to avoid performance degradation [4].
Unfortunately, off-peak periods are scarce or inexistent in cloud infrastructures
hosting VMs from several clients, giving deduplication a short time-window for
processing the storage backlog and eliminating duplicates. Ideally, deduplication
should run continuously and duplicates should be kept on disk for short periods
of time to ensure a smaller storage size.

Distributed infrastructures raise additional challenges as deduplication must
be performed across volumes belonging to VMs deployed on remote cluster
servers [7, 4]. Space savings are maximized when duplicates are found and elim-
inated globally across all volumes but this requires a more complex remote in-
dexing mechanism, accessible by all cluster servers, that tracks unique storage
content and is consulted for finding duplicates. Accessing this index in the stor-
age path has prohibitive overhead for latency-sensitive applications thus, forcing
distributed in-line deduplication systems to relax deduplication’s accuracy and
find only a subset of the duplicates across the cluster [19, 12, 18].

For clarity purposes, we use the term chunks as the units of deduplication,
that usually are files, variable-sized blocks, or fixed-size blocks [17, 1]. Also, most
deduplication systems compare compact signatures of the chunks’ content, re-
ferred to as chunk signatures or digests, instead of comparing the chunks’ full
content [17].

The combined challenges of primary storage and global deduplication are
addressed with DEDIS, a fully-decentralized and dependable system that per-
forms exact and cluster-wide off-line deduplication of VMs primary volumes.
Unlike previous systems, it works on top of any storage backend, centralized or
distributed, that exports an unsophisticated shared block device interface. This
way, DEDIS does not rely on storage backends with built-in locking, aliasing,
CoW, and garbage collection operations. Instead, deduplication is decoupled
from a specific storage backend, avoiding performance issues of previous sys-
tems [7, 4] and changing the system design thus favoring distinct optimizations,
as discussed in Section 2. Moreover, DEDIS overhead and performance are in-
dependent from the storage workloads’ spatial and temporal locality [18].

3

 Network

Storage
Manager
(Dom0)

VMM (Xen)

Client VM
(DomU)

Client VM
(DomU)

...

Physical Hosts

Physical Disks

Distributed
Coord./
Config.

(Extent Server)

Fig. 1. Distributed storage architecture assumed by DEDIS.

As the main contribution, we present a fully-distributed off-line deduplication
mechanism. VMs I/O requests are intercepted and redirected to the correct
storage locations, at the fixed block granularity, by a layer that also eliminates
duplicate chunks asynchronously. This design excludes costly accesses to remote
metadata, hash calculations and reference management from the storage path.
Deduplication is performed globally and exactly across the cluster by using a
sharded and replicated fault tolerant distributed service that maintains both the
index of unique chunks signatures and the metadata for reference management.
This service is key for achieving a fully-decentralized and scalable design. A
persistent logging mechanism stores the necessary metadata, in a shared storage
pool, for recovering and reassigning volumes of failed cluster to other nodes.

As other contributions, DEDIS leverages off-line deduplication to detect and
avoid I/O hotspots thus, reducing the amount of CoW operations and their cost.
Latency overhead is then further reduced with batch processing and caching that,
also increase deduplication throughput. Moreover, DEDIS can withstand hash
collisions in specific VM volumes by performing byte comparison of chunks before
aliasing them, while keeping a small impact in both deduplication and storage
performance. Finally, DEDIS prototype, implemented within the middleware
Xen blktap driver, is evaluated in a distributed setting where it is shown that
our design scales and introduces negligible overhead in storage requests while
maintaining acceptable deduplication throughput and resource consumption.

The paper is structured as follows: Section 2 discusses DEDIS components,
fault-tolerance considerations, design optimizations and implementation details.
Section 3 evaluates DEDIS open-source prototype and, Section 4 distinguishes
DEDIS from state of the art systems. Section 5 concludes the paper.

2 The DEDIS System

Figure 1 outlines the baseline distributed primary storage architecture assumed
by DEDIS. A number of physical disks are available over a network to physical
hosts running multiple VMs. Together with the hypervisor, storage manage-
ment services provide logical volumes to VMs by translating logical addresses

4

within each volume to physical addresses in arbitrary disks upon each block I/O
operation. Since networked disks provide only simple block I/O primitives, a
distributed coordination and configuration service is assumed to locate meta-
information for logical volumes, free block extents and to ensure that a logical
volume is mounted at any time by at most one VM. The main functionality is
as follows:
Interceptor. A local module in each storage manager maps logical addresses of
VMs to physical addresses, storing the physical location of each logical block in
a persistent map structure (logical-to-physical map). In some LVM systems, VM
snapshots are created by pointing multiple logical volumes to the same physical
locations [10]. Shared blocks are then marked as CoW in the persistent map
while, updates to these blocks require a free block to write the new content and
updating the map to break aliasing.
Extent server. A distributed coordination mechanism allocates free blocks from
a common pool when a logical volume is created, or lazily when a block is written
for the first time, or when an aliased block is updated (i.e., copied on write). The
overhead of remote calls is reduced by allocating storage extents with a large
granularity that are then, within each physical host, used for local requests [10].

The architecture presented in Figure 1 is a logical architecture, as physical
disks and even the Extent service itself can be contained within the same phys-
ical hosts. For simplicity, we assume that the Xen hypervisor is being used and
we label payload VMs as DomU and the storage management VM as Dom0.
However, the architecture is generic and can be implemented within other hy-
pervisors, while using networked storage protocols distinct from ISCSI, which is
the one used in DEDIS evaluation. Since we focus on the added functionality
needed for deduplication, we do not target a specific map structure of logical to
physical addresses. Also, DEDIS does not require built-in CoW functionalities,
as we introduce our own operation. Finally, DEDIS uses fixed-size blocks be-
cause the interceptor module already processes fixed-size blocks and, generating
variable-sized chunks would impose unwanted computation overhead [7, 4].

2.1 Architecture

DEDIS architecture is depicted in Figure 2 and requires, in addition to the
baseline architecture, a distributed module and two local modules, highlighted
in the figure by the dashed rectangle.
Distributed Duplicates Index (DDI). Indexes unique content signatures
of blocks belonging to the primary storage. Each entry maps a signature to
the physical address of the corresponding storage block and to the number of
logical addresses pointing to (sharing) that block, which allows aliasing duplicate
blocks and performing garbage collection of unreferenced blocks. Index entries
are persistent and are not assumed to be fully-loaded on RAM. Also, entries
are sharded and replicated across several DDI nodes for scalability and fault
tolerance purposes. The size of each entry is small (few bytes) so, each node can
index many blocks, thus allowing a small number of DDI nodes even in large
infrastructures.

5

 DDI

Distributed
Coord./Config
(Extent Server)

Interceptor

free

unreferenced DDI

digest → physical /
 references

Local
VMs

InterceptorInterceptorInterceptor Physical Disks

 (m)

 (l)

 (i)

(e)

Share
/

GC

D.Finder
/

GC

 (f)
 (g)

 (b)

 (k)

 (j)

Network

(c)

Storage Manager
(Dom0)

(d)

(h)

Physical Hosts

logical → physical

dirty

Client VM
(DomU)

Client VM
(DomU)

VMM (Xen)

 (a)

Fig. 2. Overview of the DEDIS storage manager.

Duplicate Finder (D. Finder). Asynchronously collects addresses written
by local interceptors, which are stored at the dirty queue, and matches the
correspondent blocks with others registered at the DDI. Blocks processed by this
module are preemptively marked as CoW in order to avoid concurrent updates
and possible data corruption. This module is thus the main difference from a
storage manager that does not support deduplication.
Garbage Collector (GC). Processes aliased blocks that were updated (copied
on write) and are no longer being referenced by a specific logical address. Physical
addresses of copied blocks are kept at the unreferenced queue, and the number
of references to a specific block can be consulted and decremented at the DDI.
Blocks are unused when the number of references reaches zero. Both D. Finder
and GC modules free unused blocks by inserting their physical addresses in a
local free blocks pool that provides blocks addresses for CoW operations.

2.2 I/O and DEDIS Operations

The operations executed by each DEDIS module are depicted in Figure 2. Bidi-
rectional arrows mean that information is both retrieved and updated at the
target resource. GC and D. Finder modules are included in the same process
box because both run in distinct threads of the same process, within the Xen
Dom0, and perform concurrent operations for each VM. The latency of I/O re-
quests is reduced by finding and managing duplicates in a background thread.
Each VM volume has an independent process running its own interceptor.

6

An I/O operation in the Interceptor. The interceptor (a) gets read and
write requests from local VMs, (c) queries the logical-to-physical map for the
corresponding physical addresses and, (b) redirects them to a physical disk over
the network. As potentially aliased blocks are marked in the map as CoW by D.
Finder, writes to such blocks must first (l) collect a free address from the free
pool, (b) redirect the write to the free block and update the map accordingly (c).
Then, the physical address of the copied block is added to the unreferenced queue
(d) and, processed later by GC. For both regular and CoW write operations, (h)
the logical address of the written block is inserted in a dirty queue. I/O requests
are acknowledged as completed to the VMs (a) after completing all these steps.

Sharing an updated block in D. Finder. This background module aliases
duplicate blocks. Therefore, each logical address that was updated and inserted
in the dirty queue is eventually picked up by the D. Finder module (i), that
preemptively marks the address as CoW (e), reads its content from the storage
(f), computes a signature and queries the DDI in search of an existing duplicate
(j). This is done using a test-and-increment remote operation, that stores the
block’s information as a new entry at the DDI if a match is not found. If a match
is found, the counter of logical addresses (references) pointing to the DDI entry
is incremented while, locally (e), the logical-to-physical map is updated with the
new physical address found at the DDI entry and (k) the physical address of
the duplicate block is added to the free pool. Blocks are marked as CoW before
reading their content because deduplication runs in parallel with I/O requests
and updates to these blocks could originate data corruption.

Freeing an unused block in GC. This background module examines if a
copied block, at the unreferenced queue (g), has become unreferenced. The
block’s content is read from the storage (f), its signature is calculated and then
the DDI is queried (j) using a remote test-and-decrement operation that decre-
ments the number of logical addresses pointing to the corresponding DDI entry.
If the block is unused (zero references), its entry is removed from the DDI and,
locally, the block address is added to the free pool (k). This pool keeps only
the necessary addresses for local CoW operations, while the remainder is re-
turned to the extent server (m). If the queue is empty, unused block addresses
are requested from the extent server pool (m).

The latency-critical interceptor does not invoke any remote service and, only
blocks if the local free pool becomes empty, which can be avoided by tuning the
frequency of the GC execution. The test-and-increment and test-and-decrement
operations and metadata stored in each DDI entry allow performing the lookup
of unique block signatures and incrementing or decrementing the entry’s logi-
cal references in a single round-trip to the DDI. Unlike in DDe and DeDe, this
design combines aliasing and reference management in a single remote invoca-
tion, avoiding a higher throughput penalty and reducing metadata size [7, 4]. VM
volumes have an independent D. Finder and GC thread, as well as, a distinct
logical-to-physical map, dirty queue and unreferenced queue. Only the free pool
is shared across VMs in the same server thus, requiring mutual exclusion for
concurrent acesses. Multiple updates to the same block between two D. Finder

7

iterations count as a single one because only the latest written content is shared.
Finally, the interceptor is able to collect writes from applications and from the
operating system so, deduplication can be applied to both types of dynamic
data.

2.3 Concurrent Optimistic Deduplication and Fault Tolerance

DEDIS removes deduplication processing overhead, including chunk signatures
calculation, from the storage write path. However, contention still exists when
the D. Finder and interceptor modules access shared metadata. To reduce con-
tention and its penalty in storage latency, DEDIS uses an optimistic deduplica-
tion approach that only performs fine grained locking when D. Finder and inter-
ceptor operations access common metadata (e.g. logical-to-physical map), while
avoiding remote invocations to the DDI and other time consuming operations
in the mutual exclusion space. This decision leads to race conditions that are
detected and processed accordingly, as explained in previous work that validates
our algorithm with a model checker [15]. Also, since signatures are calculated
asynchronously by Share and GC modules, an additional read to the storage
backend is required for each processed block, whose overhead is accounted in
our evaluation.

DEDIS is resilient to cluster nodes crashes and to lost and repeated requests
by writing meta-information persistently. Transactional logs track changes to
metadata structures and allow logical volumes of a crashed physical node to be
recovered by another freshly booted node. To reduce the impact on storage la-
tency, logging operations are performed outside the storage path with only two
exceptions, namely, when a block is copied at the interceptor and when a block
is preemptively marked as CoW by D. Finder. Logs and persistent metadata
structures may be stored in a shared storage pool and the recovery of failed
nodes is then ensured by the distributed coordination and configuration service
that provides the extent server functionalities. DDI nodes have on-disk persis-
tent entries and are fully replicated using the primary-backup approach with a
virtually-synchronous group communication protocol. This way, DDI entries can
be stored in the shared storage pool or in cluster nodes local disks. The overhead
of all logging operations is contemplated in our evaluation.

2.4 Optimizations

The D. Finder module uses a hotspot detection mechanism for identifying stor-
age blocks that are write hotspots. By not sharing blocks that are frequently
rewritten, the amount of costly CoW operations is reduced. Namely, logical ad-
dresses in the dirty queue are only processed in the next D. Finder iteration
if they were not updated during a certain period of time. For instance, in our
evaluation, only the logical addresses at the dirty queue that were not updated
between two consecutive D. Finder iterations (approximately 5 minutes) are
shared. The time period can be tuned independently for each VM. This mecha-
nism is essential for keeping low storage overhead because DEDIS preemptively

8

marks written blocks as CoW so, without this mechanism, every re-write would
generate a copy operation. In previous work, CoW is reduced by only marking a
block when a duplicate is actually found at the storage, however, DEDIS does
not assume a storage backend with locking capabilities so, implementing such
strategy would require costly cross-host communication [4].

As other optimizations, a resilient in-memory cache of unused storage blocks
addresses, from the persistent free pool, allows serving free blocks to CoW op-
erations more efficiently. The throughputs of D. Finder and GC operations are
improved by performing batch accesses to persistent logs, the DDI, the extent
server and to the free pool, which allows using efficiently both disk and network
resources. Moreover, the DDI nodes can serve batch requests efficiently without
requiring the full index on RAM. Finally, although DEDIS implementation uses
the SHA-1 hash function which has a negligible probability of collisions [17], the
comparison of chunks bytes before aliasing them can be enabled independently
for VM volumes persisting data from critical applications. This comparison re-
quires reading the content of an extra block (referenced in the DDI entry) from
the storage but it is performed outside the storage write path.

2.5 Implementation

DEDIS prototype is implemented within Xen and uses the Blktap mechanism
for building the interceptor module. Blktap exports an user-level disk I/O inter-
face that replaces the commonly used loopback drivers while providing better
scalability, fault-tolerance and performance [3]. Each VM volume has an inde-
pendent process intercepting VM disk requests with a fixed block size of 4KB,
which is also the block size used in DEDIS.

The goal of the current implementation is to highlight the impact of dedu-
plication, and not to re-invent a LVM system or the DDI. Simplistic imple-
mentations have thus been used for metadata and log structures. Namely, both
the logical-to-physical map, dirty queue and free blocks queue cache are imple-
mented as arrays fully loaded in memory, accessible by both interceptor and D.
Finder modules. The unreferenced and free queues are implemented as persis-
tent queues. The DDI is a slightly modified version of the Accord replicated,
transactional and fully-distributed key-value store that supports atomic test-
and-increment and test-and-decrement operations [20]. The extent server is im-
plemented as a remote service with a persistent queue of unused storage blocks.

Despite being simplistic, all these structures are usable in a real implemen-
tation, so the resource utilization (i.e., CPU, RAM, disk and network) in our
evaluation is realistic. In fact, this implementation presents a worst-case sce-
nario for the storage and RAM space occupied by metadata and persistent logs
as more space-efficient structures could have been used instead.

3 Evaluation

This section validates the following properties of DEDIS. First, that an accept-
able deduplication throughput is achievable and, the size needed for VM volumes

9

Table 1. Deduplication gain and throughput (Thr).

DEDIS hash DEDIS byte

Space shared (MB) 696 684

% VM data volume size reduced 17% 17%

Average Thr (MB/s) 4.78 4.55

Required continuous Thr (MB/s) 0,76 0,75

is reduced. Then, that deduplication does not overly impact write I/O latency
even with deduplication and I/O intensive workloads running simultaneously.
Finally, that DEDIS scales out for several cluster machines.

Tests ran in cluster nodes equipped with a 3.1 GHz Dual-Core Intel i3 Core
Processor, 4GB of RAM and a 7200 RPMs SATA disk. The VMs were configured
with 2GB of RAM and two disk volumes: a 16GB volume holding the Operating
System (OS) and a 4GB data volume. Two fully-replicated DDI instances ran,
for all tests, in isolated cluster nodes thus, including the overhead of remote calls
and replication. The extent server ran together with one of the DDI instances.
DEDIS, DDI and extent server persistent metadata and logs were stored in
the local disks of cluster nodes to have a distinct storage pool for the logs and
exclude their overhead from the VM data volumes. Similarly, OS volumes were
stored in local disks and left out of this evaluation to avoid an unknown number
of duplicates originating from OS images, and ensure that duplicate chunks are
introduced in a controllable way by the benchmark.

As DEDIS targets dynamic data, static traces of VM images are not suitable
for its evaluation, so the open-source DEDISbench disk micro-benchmark was
used, in each VM, to assess the storage performance [16]. DEDISbench simulates
realistic content for written blocks by following a content distribution extracted
from real data sets that mimics the percentage and distribution of duplicates
per block. Our tests used an workload that simulates the content of a primary
storage, with ≈1.5 TB and 25% of duplicates, which fits our storage environment.
DEDISbench also supports an access pattern based on the TPC-C NURand
function that simulates a random I/O workload where few blocks are hotspots
and most blocks are accessed sporadically. Moreover, to clearly understand the
latency introduced by deduplication in storage requests, the fsync primitive was
enabled in the benchmark to ensure synchronous storage writes.

I/O operations were measured at the VM (DomU) while, deduplication,
CPU, metadata, RAM and network utilization were measured at the host (Dom0).
Measurements were taken for stable and identical periods of the workloads, ex-
cluding ramp up and cool down periods, and, include the overhead of all DEDIS
modules, both local and remote, as well as, the overhead of persistent logging.

3.1 Deduplication Results

Deduplication’s overhead and performance were measured in a single node setting
with one VM deployed on a single cluster node. VM data volumes, with 4GB,

10

Table 2. DEDIS overhead (o/h) in VMs storage latency (Lat) and throughput (Thr)
with concurrent storage writes and deduplication.

AIO DEDIS
w/o hspot

o/h DEDIS
hash

o/h DEDIS
byte

o/h

Thr (IOps) 720.528
±13.730

636.031
±14.403

11.73% 688.844
±15.383

4,40% 662.863
±22.316

8.00%

Lat (ms) 5.575
±0, 106

6.470
±0, 130

16.05% 5.850
±0, 155

4.93% 6.094
±0, 289

9.31%

% CoWs avoided - 0 - 73.33% - 72.89% -

were stored in a HP StorageWorks 4400 Enterprise Virtual Array (EVA4400).
As our cluster nodes could not directly access the EVA storage, volumes were
exported via iSCSI and over a gigabit link by a server equipped with an AMD
Opteron(tm) Processor 6172, 24 cores and 128 GB of RAM.

Table 1 shows deduplication space savings and throughput for a 90 minutes
run of DEDISbench performing hotspot random writes (with a block size of
4K) and for the subsequent 30 minutes, where deduplication ran isolated from
the I/O workload. 5 minutes were chosen as the interval between D. Finder
iterations to obtain several iterations of the module during the test (≈16).

Tests ran for DEDIS prototype with hash (DEDIS hash) and byte (DEDIS
byte) comparison enabled. As expected, DEDIS byte has a slightly lower dedu-
plication throughput and, consequently, smaller space savings due to the extra
computation for comparing the content of the blocks. DEDIS hash processes
in average 4.78 MB/s and, this value is identical when D. Finder is processing
requests simultaneously or isolated from the I/O workload.

We also calculated the minimum continuous deduplication throughput needed
to keep up with this workload, for an unbounded amount of time, without accu-
mulating unprocessed duplicate storage backlog. The value is ≈0,76 MB/s and
DEDIS is able to accomplish it.

Some writes are not processed by the D. Finder. First, multiple updates
to the same block, between two iterations, originate a single share operation
for the latest content written. Also, the hotspot avoidance mechanism avoids
sharing frequently updated blocks. In this run, the D. Finder only processed 1
million blocks while the benchmark wrote ≈13G. Both DEDIS versions dedu-
plicated approximately 17% of the original data volume size (4GB), which is
smaller than the 25% of duplicates simulated by DEDISbench workload. How-
ever, as explained in the benchmark’s paper, the algorithm only converges to
the expected percentage of duplicates for higher volumes of written data.

3.2 Performance and Resources Consumption Results

To assess DEDIS’s performance we compared it with the default Blktap driver
for asynchronous I/O, Tap:aio, that was the base to implement DEDIS inter-
ceptor and does not perform deduplication [3]. This comparison ensures that the

11

overhead is a direct consequence of DEDIS deduplication. Unfortunately, a di-
rect comparison with DDE or DeDe systems was not possible as they are not
publicly available. The tests’ setup was identical to the previous one and the
Tap:aio VM data volumes were also stored on the EVA storage. DEDIS and the
I/O benchmark ran simultaneously to evaluate the impact of deduplication and
garbage collection in peak hours. A 5 minute interval between D. Finder and GC
iterations was chosen to assess the benefits of the hotspot avoidance mechanism,
which was configured to share blocks that were not written or re-written in the
interval comprehending the current and previous D. Finder iterations.

Table 2 shows the results of performing hotspot random writes, during 30
minutes, for Tap:aio and three DEDIS versions. The first, (DEDIS w/o hspot)
is the only that does not use hotspot avoidance. The second, (DEDIS hash) uses
hash comparison while, the other (DEDIS byte) performs byte comparison. As
expected, DEDIS introduces overhead in both storage throughput and latency,
however, this value is small when compared to previous systems [4] and, accounts
the impact of D. Finder, GC, DDI, extent server and corresponding persistent
logging mechanisms while running in parallel with the I/O workload.

A significant amount of this overhead is due to CoW operations. In DEDIS
each operations requires ≈7ms to be executed. This is already an improvement
over previous systems where CoW requires 10ms in servers with more computa-
tional resources than ours [4]. This is possible because DEDIS uses a memory
cache that provides free blocks for CoW and, performs batch insertions in the
unreferenced pool, which is a time consuming operation in the critical I/O path.
However, as shown in Table 2, the overhead without the hotspot avoidance mech-
anism is still significant while, with this mechanism, DEDIS performs 70% less
CoW operations (≈210,000 less), which enables a clear reduction in I/O latency.

We compared the resource consumptions of DEDIS and Tap:aio for the run
described in Section 3.1. DEDIS local modules have a CPU usage of ≈ 14%,
only 5% more than Tap:aio, which is a consequence of performing background
deduplication. Moreover, DEDIS modules use less than 1% of the node’s total
RAM and require ≈75 MB to store persistent logs and metadata.

The DDI service uses less than 5% of CPU, 0,35% of the nodes’ RAM while,
requiring 80MB of disk space and ≈2.2 KB/s of average network usage. These
values include the costs of indexing and persisting signatures of 4KB blocks
in a replicated fashion. As shown in Section 3.1, the disk usage is nevertheless
compensated by the deduplicated space, ≈700 MB.

Finally, the extent server uses less than 1Mb of RAM and has a negligible
CPU usage since, in these tests, it is only called for the initial allocation of
blocks to the local free pool. The extent queue requires ≈5 MB of storage space
for indexing ≈11 GB of unused addresses.

3.3 Scalability Results

Scalability was assessed in a distributed setting with up to 20 cluster nodes.
After performing some tests, we observed that the EVA storage was having a
significant latency degradation when handling I/O requests from all the nodes,

12

 0

 0.5

 1

 1.5

 2

 2 4 6 8 10 12 14 16 18 20

La
te

nc
y

(m
s)

hosts

Write
Read

(a) Storage latency.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 2 4 6 8 10 12 14 16 18 20

T
hr

ou
gh

pu
t (

IO
P

S
)

hosts

Write
Read

(b) Storage throughput.

 0

 2

 4

 6

 8

 10

 2 4 6 8 10 12 14 16 18 20

T
hr

ou
gh

pu
t (

M
B

/s
)

hosts

(c) Deduplication throughput.

Fig. 3. DEDIS results for up to 20 cluster nodes with mixed storage writes and reads.

even with the Tap:aio baseline. Therefore, data volumes were exported by a
110GB RAMdisk ISCSI device, in our AMD server, which increased significantly
the load supported by the storage backend.

A mixed load of write and read requests was used to test the performance of
both I/O operations in parallel with DEDIS performing hash comparison. To
ensure that the the network link supporting the iSCSI protocol would not be
overloaded by the aggregated throughput of the 20 cluster nodes, the throughput
of DEDISbench was limited to 300 reads/s and 150 writes/s, per VM. Tap:aio
baseline was not evaluated in this test since the goal was to prove that DEDIS
scales for several nodes. DEDISbench ran for 30 minutes in each VM and the
subsequent 20 minutes were used to observe DEDIS behavior without I/O load.
Tests ran for 1,2,5,10,15 and 20 cluster nodes hosting a single VM. Finally,
deduplication throughput, in each node, was limited to 100 ops/s to have an
uniform throughput over the entire cluster, i.e., up to 20× more.

As depicted in Figures 3(a) and 3(b), the throughput for both read and write
requests scales linearly up to 20 nodes. There is a slight increase in the latency of
writes and reads when nodes are added, which is a consequence of having more
load in the centralized storage. Figure 3(c) shows the aggregated deduplication
throughput increasing up to 20 nodes which, in our setup, is near the maximum
capacity of the DDI to process parallel requests with a fixed throughput of 100
requests/s. As in the single server tests, each DDI instance consumes a small

13

amount of RAM, CPU and network so, infrastructure costs can be reduced by
running these instances in servers with other services or where VMs are deployed.

4 Related Work

Recently, live volume deduplication in cluster and enterprise scale systems is
becoming popular. Opendedup [13] and ZFS [14] support primary multi-host in-
line deduplication but are designed for enterprise storage appliances, and require
large RAM capacities for indexing chunks and to enable efficient deduplication.

Primary distributed off-line deduplication for a SAN file system was intro-
duced in the Duplicate Data Elimination (DDE) system, implemented over the
distributed IBM Storage Tank [7]. DDE has, however, a centralized single-point
of failure metadata server for sharing duplicate chunks asynchronously, which
was removed in DeDe, an off-line distributed deduplication system for VM vol-
umes on top of VMWares’s VMFS cluster file system [4]. The index of chunks
is stored on VMFS and is accessible to all nodes while, index lookups are made
in batch to increase deduplication throughput. VMFS simplifies deduplication
as it already has explicit locking, block aliasing, CoW, and reference manage-
ment, which are not present in most cluster file systems. These primitives are
combined to implement the atomic share function that replaces two duplicate
fixed-size blocks with a CoW block. However, this dependency leads to align-
ment issues between the block size used in VMFS and DeDe, implying additional
translation metadata and, consequently, an impact in storage requests latency.
Also, the overhead of CoW operations in storage I/O is significant, forcing DeDe
deduplication to run only in periods of low I/O load. CoW overhead may, how-
ever, be reduced by deduplicating selectively files that meet a specific policy such
as, file age superior to a certain threshold, as suggested in Microsoft Windows
Server 2012 centralized off-line deduplication system [5].

DDE and DeDe are the systems that most resemble DEDIS, however, DEDIS
is fully-decentralized and does not dependent on a specific cluster file system.
This way, there are no single point of failures and an unsophisticated storage
implementation, centralized or distributed, can be used as backend as long as a
shared block device interface is provided for the storage pool. Decoupling dedu-
plication from the storage backend changes significantly DEDIS’s design, allows
exploring novel optimizations and avoids DeDe alignment issues. In fact, and as
explained in this paper, these design changes and optimizations are key for hav-
ing a scalable design and for running deduplication and I/O intensive workloads
simultaneously with low overhead, which is not possible in previous systems.

5 Conclusions

We presented DEDIS, a dependable and distributed system that performs cluster-
wide off-line deduplication across primary storage volumes. The design is fully-
decentralized avoiding any single point of failure or contention thus, safely scaling-

14

out. Also, it is compatible with any storage backend, distributed or centralized,
that exports a shared block device interface.

The evaluation of a Xen-based prototype in up to 20 nodes shows that by
relying on an optimistic deduplication algorithm and on several optimizations,
deduplication and primary I/O workloads can run simultaneously in a scalable
system. In fact, DEDIS introduces less than 10% of latency overhead while
maintaining a baseline single-server deduplication throughput of 4.78 MB/s with
low-end hardware. This is key for performing efficient deduplication and reducing
the storage backlog of duplicates in infrastructures with scarce off-peak periods.
Also, even with a trivial implementation of a LVM system, deduplication space
savings compensate metadata overhead, while maintaining an acceptable con-
sumption of CPU, RAM and network resources.

As future work, we would like to evaluate DEDIS in a scalable distributed
storage environment, where both DEDIS metadata and VMs volumes would be
stored, and with other primary storage workloads with higher duplication ratios.

6 Acknowledgments

This work is funded by ERDF - European Regional Development Fund through
the COMPETE Programme (operational programme for competitiveness) and
by National Funds through the FCT - Fundação para a Ciência e a Tecnologia
(Portuguese Foundation for Science and Technology) within project FCOMP
01-0124-FEDER-022701 and FCT by Ph.D scholarship SFRH-BD-71372-2010.

7 Availability

DEDIS system is open-source and is publicly available at http://www.holeycow.
org for anyone to deploy and benchmark.

References

1. William J. Bolosky, Scott Corbin, David Goebel, and John R. Douceur. Single
Instance Storage in Windows 2000. In Proceedings of USENIX Windows System
Symposium (WSS), 2000.

2. Christopher Chute, Alex Manfrediz, Stephen Minton, David Reinsel, Wolfgang
Schlichting, and Anna Toncheva. The Diverse and Exploding Digital Universe: An
updated forecast of worldwide information growth through 2011. IDC White Pa-
per - sponsored by EMC. http://www.emc.com/collateral/analyst-reports/diverse-
exploding-digital-universe.pdf, 2008.

3. Citrix. Blktap page. http://wiki.xen.org/wiki/Blktap2. January, 2014.
4. Austin T. Clements, Irfan Ahmad, Murali Vilayannur, and Jinyuan Li. Decen-

tralized Deduplication in SAN Cluster File Systems. In Proceedings of USENIX
Annual Technical Conference (ATC), 2009.

5. Ahmed El-Shimi, Ran Kalach, Ankit Kumar, Adi Oltean, Jin Li, and Sudipta
Sengupta. Primary Data Deduplication Large Scale Study and System Design. In
Proceedings of USENIX Annual Technical Conference (ATC), 2012.

15

6. Hewlett-Packard Development Company , L.P. Complete storage and data pro-
tection architecture for vmware vsphere. White Paper, 2011.

7. Bo Hong and Darrell D. E. Long. Duplicate Data Elimination in a San File System.
In Proceedings of Conference on Mass Storage Systems (MSST), 2004.

8. Lessfs. Lessfs page. http://www.lessfs.com/wordpress/. January, 2014.
9. Anthony Liguori and Eric Van Hensbergen. Experiences with Content Address-

able Storage and Virtual Disks. In Proceedings of USENIX Workshop on I/O
Virtualization (WIOV), 2008.

10. Dutch T. Meyer, Gitika Aggarwal, Brendan Cully, Geoffrey Lefebvre, Michael J.
Feeley, Norman C. Hutchinson, and Andrew Warfield. Parallax: Virtual Disks for
Virtual Machines. In Proceedings of European Conference on Computer Systems
(EuroSys), 2008.

11. Dutch T. Meyer and William J. Bolosky. A Study of Practical Deduplication.
In Proceedings of USENIX Conference on File and Storage Technologies (FAST),
2011.

12. Chun-Ho Ng, Mingcao Ma, Tsz-Yeung Wong, Patrick P. C. Lee, and John C. S. Lui.
Live Deduplication Storage of Virtual Machine Images in an Open-Source Cloud. In
Proceedings of ACM/IFIP/USENIX International Middleware Conference, 2011.

13. Opendedup. Opendedup page. http://opendedup.org. January, 2014.
14. OpenSolaris. Zfs documentation. http://www.freebsd.org/doc/en/books/

handbook/filesystems-zfs.html. January, 2014.
15. J. Paulo and J. Pereira. Model checking a decentralized storage deduplication

protocol. Fast Abstract in Latin-American Symposium on Dependable Computing,
2011.

16. J. Paulo, P. Reis, J. Pereira, and A. Sousa. Towards an Accurate Evaluation of
Deduplicated Storage Systems. International Journal of Computer Systems Science
and Engineering, 29, 2013.

17. Sean Quinlan and Sean Dorward. Venti: A New Approach to Archival Storage.
In Proceedings of USENIX Conference on File and Storage Technologies (FAST),
2002.

18. Kiran Srinivasan, Tim Bisson, Garth Goodson, and Kaladhar Voruganti. iDedup:
Latency-aware, Inline Data Deduplication for Primary Storage. In Proceedings of
USENIX Conference on File and Storage Technologies (FAST), 2012.

19. Y. Tsuchiya and T. Watanabe. DBLK: Deduplication for Primary Block Storage.
In Proceedings of Conference on Mass Storage Systems (MSST), 2011.

20. Tsuyoshi, Ozawa and Kazutaka, Morita. Accord page. http://www.osrg.net/

accord/. January, 2014.
21. Cristian Ungureanu, Benjamin Atkin, Akshat Aranya, Salil Gokhale, Stephen

Rago, Grzegorz Calkowski, Cezary Dubnicki, and Aniruddha Bohra. HydraFS: A
High-Throughput File System for the HYDRAstor Content-Addressable Storage
System. In Proceedings of USENIX Conference on File and Storage Technologies
(FAST), 2010.

