
ClassSheet-driven Spreadsheet Environments
Jorge Mendes

Departamento de Informática, Universidade do Minho, Braga, Portugal
jorgecunhamendes@gmail.com

I. INTRODUCTION

Spreadsheet systems are well known and widely used in
all kinds of business applications. They are used by tens
of millions of people who create hundreds of millions of
spreadsheets every day [1]. Spreadsheet systems are easy to
use and very intuitive, allowing the aggregation of all types of
data.

As software systems, however, spreadsheets are usually
created by single end-users, without planning ahead of time
for maintainability or scalability. Indeed, after their initial
creation, many spreadsheets turn out to be used for storing
and processing increasing amounts of data and for supporting
increasing numbers of users over long periods of time.

Also, like any other software artifact, spreadsheets tend
to evolve into large software systems where requirements,
development and deployment platforms change. Spreadsheet
systems, however, lack the support for evolution that one finds
in other software systems!

With our work, we specifically target the problem of spread-
sheet evolution.

In a recent paper [2], we have proposed to embed ClassSheet
spreadsheet models [3] in spreadsheet systems themselves. In
this approach a spreadsheet business model is defined from
which a customized spreadsheet application is generated guar-
antying the consistency of the spreadsheet with the underlying
model. Our approach closes the gap between creating and
using a domain specific language for spreadsheet models and
a totally different framework for actually editing spreadsheet
data. Instead, we unify these operations within spreadsheets:
in one sheet we define the underlying model while another
sheet holds the actual data, such that the model and the data
are kept synchronized by our framework.

An important feature of our approach is that model evolution
is available as a set of pre-defined operations. Also, any
evolution in a spreadsheet model is automatically propagated
to its spreadsheet instance (that contains the underlying data).
Our framework is such that editing spreadsheet data is also
safe and controlled.

II. EMBEDDED ClassSheets

ClassSheets are a high-level, object-oriented formalism to
specify the business logic of spreadsheets. They allow users to
express business object structures within a spreadsheet using
concepts from the Unified Modeling Language (UML). Using
the ClassSheets model, it is possible to define spreadsheet
tables and to give them names, to define labels for the table’s
columns, to specify the types of the values such columns may

contain and also the way the table expands (e.g., horizontally
or vertically).

Besides a textual (and formal) definition, ClassSheets also
have a visual representation which very much resembles
spreadsheets themselves [4]. Thus, such visual model rep-
resentation makes developing the spreadsheet model very
similar to creating a concrete spreadsheet. In order to support
this visual representation, a specific interactive tool has been
developed [5]. This tool provides a powerful interactive envi-
ronment to create ClassSheets and to automatically generate
spreadsheets that follow the specified business model. The
generated spreadsheets guide end users in introducing data that
follows the underlying model, thus avoiding several common
spreadsheet errors.

We have embedded ClassSheet models in spreadsheet sys-
tems. In this embedding we mimic the well-known embedding
of a domain specific language in a general purpose one. Like
in such embeddings, we inherit all the powerful features of the
host language: in our case, the powerful interactive interface
offered by the (host) spreadsheet system. This approach has
two key advantages: first, we do not have to build and maintain
a complex interactive tool. Second, we provide ClassSheet
model developers the programming environment they are
used to: a spreadsheet environment. Furthermore, because the
ClassSheet model and the spreadsheet data are defined in the
same environment, we now have the power to ensure that they
are synchronized.

An example of a model specifying a system to mark
student’s grades, along with an instance for it is shown in
Figure 1.

The top-left part of Figure 1 illustrates a sheet with the
model, containing two tables: the first between rows 1 and
5 represents students’ marks in exams and another between
rows 7 and 10 representing students. Buttons on the top part
of the spreadsheet allow the user to evolve the model (e.g.
Col+ introduces a new column).

The instance sheet is shown in the bottom-right part of the
figure. In the instance it is possible to add exams and students
only in the right places using the corresponding buttons.

III. SPREADSHEET EVOLUTION

As widely recognized by the Model-driven Engineering
(MDE) community, the manual co-evolution of models and
instances is an error-prone task leading to inconsistencies
between models and related artifacts. We created a spreadsheet
environment where it is guaranteed that spreadsheet data
always conforms to the evolved ClassSheet model.

1



Fig. 1: Spreadsheet model and instance for a marking system.

In our setting, the ClassSheet evolution steps automatically
produce (backward and forward transformation) functions to
map the spreadsheet instance so that it conforms to the evolved
model. The end user does not have to concern himself to adapt
the data after a model evolution step: the generated forward
and backward functions do this work for him! Our approach
is illustrated in Figure 2.

Sheet 1

Evolution Data
Manipulation

Spreadsheet

SynchronizedSpreadsheet
Model

Sheet 2

Spreadsheet
Instance

Fig. 2: Spreadsheet model/instance evolution scenario.

In fact, we have developed a prototype extension to a widely
used spreadsheet system that allows the user to generate a
spreadsheet skeleton from the sheet containing the model.
This template is generated in a different sheet which is built
with the necessary mechanisms to avoid that user commits
errors: it contains several restrictions that always ensure the
data conveys the model that abstracts it. Moreover, in the sheet
where the model is defined we have created several buttons that
allow the user to evolve the model (e.g. add a new column).
These modifications are done both in the model’s and in the
data’s sheets at the same time, so that both are always kept
synchronized.

IV. FUTURE WORK

In the past, we have shown that, under certain conditions,
spreadsheet models other that ClassSheets can help spread-
sheet end users being more productive [6]. Later, in [2], we

have proposed that a ClassSheet spreadsheet model and the
concrete spreadsheet it models should be defined in the same
environment.

Although evidences suggest that our embedded approach is
both practical and effective, we intend in the future to assess
this hypothesis with an empirical study with end users. In these
lines, we will organize and run an empirical study to evaluate:
a) how spreadsheet users (end users or/and professional users)
adapt to our embedded discipline of spreadsheet development
and b) what is the improvement of the embedded system on
spreadsheet users productivity, both in terms of efficiency and
effectiveness.

Moreover, we will study new bidirectional/co-evolution
techniques that can automatically synchronize models and
instances after an evolution step in an instance. So far, our
data-refinement approach can only synchronize the instances
after a model change and not the other way around. We
guarantee model/instance synchronization by restricting the
editing possibilities on the instance side: while general edition
steps are allowed on the model side, the user can not, for
example, add a new column to an instance. This means that if
a spreadsheet user would be allowed to update an instance by
one such addition the available techniques would not able of
generating the new ClassSheet model for it (although, we may
still obtain it in an indirect way [7]). We will study techniques
that support such bidirectional synchronization, namely the
lenses approach proposed by Pierce et al. [8]. This will allow
for less restrictive, while still guaranteeing safety, editions on
the spreadsheet instances.

REFERENCES

[1] R. R. Panko, “Spreadsheet errors: What we know. What we think we
can do.” Proceedings of the Spreadsheet Risk Symposium, European
Spreadsheet Risks Interest Group (EuSpRIG), July 2000.

[2] J. Cunha, J. Mendes, J. P. Fernandes, and J. Saraiva, “Embedding and
evolution of spreadsheet models in spreadsheet systems,” in VLHCC ’11:
Proceedings of the 2011 IEEE Symposium on Visual Languages and
Human-Centric Computing. Washington, DC, USA: IEEE Computer
Society, 2011, to appear.

[3] G. Engels and M. Erwig, “ClassSheets: Automatic generation of spread-
sheet applications from object-oriented specifications,” in ASE ’05: Pro-
ceedings of the 20th IEEE/ACM International Conference on Automated
Software Engineering. New York, NY, USA: ACM, 2005, pp. 124–133.

[4] M. Erwig, R. Abraham, I. Cooperstein, and S. Kollmansberger, “Au-
tomatic generation and maintenance of correct spreadsheets,” in ICSE
’05: Proceedings of the 27th International Conference on Software
Engineering. New York, NY, USA: ACM, 2005, pp. 136–145.

[5] R. Abraham, M. Erwig, S. Kollmansberger, and E. Seifert, “Visual
specifications of correct spreadsheets,” in VLHCC ’05: Procs. of the 2005
IEEE Symposium on Visual Languages and Human-Centric Computing.
Washington, DC, USA: IEEE Computer Society, 2005, pp. 189–196.

[6] L. Beckwith, J. Cunha, J. P. Fernandes, and J. Saraiva, “End-users
productivity in model-based spreadsheets: An empirical study,” in IS-
EUD ’11: Proceedings of the Third International Symposium on End-User
Development, 2011, pp. 282–288.

[7] J. Cunha, M. Erwig, and J. Saraiva, “Automatically inferring ClassSheet
models from spreadsheets,” in VLHCC ’10: Proceedings of the 2010
IEEE Symposium on Visual Languages and Human-Centric Computing.
Washington, DC, USA: IEEE Computer Society, 2010, pp. 93–100.

[8] A. Bohannon, J. N. Foster, B. C. Pierce, A. Pilkiewicz, and A. Schmitt,
“Boomerang: resourceful lenses for string data,” in POPL ’08: Proceed-
ings of the 35th annual ACM SIGPLAN-SIGACT symposium on Principles
of programming languages. New York, NY, USA: ACM, 2008, pp. 407–
419.

2


