Model-Driven Spreadsheets
in a Multi-User Environment

Jorge Mendes
HASLab / INESC TEC & Universidade do Minho, Portugal
jorgemendes @di.uminho.pt

I. INTRODUCTION

Spreadsheets are widely used by non-professional program-
mers, the so-called end-users, to perform simple calculations,
but also by professional programmers in large software orga-
nizations, where spreadsheets are used to collect information
from different systems, to transform data coming from one
system to the format required by another, or to present data
in human-friendly form.

The tremendous success of spreadsheets has been driven by
the simplicity in their usage, the high degree of flexibility they
provide, and ultimately by the power of the visual interactive
environment provided by spreadsheet systems.

Being artifacts that usually experience long lives, spread-
sheets and their evolution pose an interesting challenge similar
to the one of evolving other software languages. Usually,
spreadsheets are created by single end-users, without planning
ahead of time for maintainability or scalability. Over time,
however, spreadsheets become increasingly complex software
systems: they are used to process increasing amounts of data
and supporting increasing numbers of end-users. In fact, it
is common to find spreadsheets with a (too) large number
of cells/columns/rows, with intricate dependencies between
worksheets that make the comprehension of the underlying
business logic extremely difficult!

One of the promising research directions that attempts
to tackle this problem proposes the use of a model-driven
approach to spreadsheet engineering. This approach finds its
inspiration in other engineering disciplines, such as the civil
engineering, that is using models for centuries.

In the context of spreadsheet engineering, we realize models
as elements within the ClassSheets language [1], and these
are used to realize the business model of a spreadsheet. This
language has later been integrated in a general framework
for model-driven spreadsheet evolution [2]-[5]: models and
instances are created and evolved under the same environment,
and changes in either artifact are not only possible but also
automatically reflected on the other.

This approach, however, considers an environment where
only one instance is possible for each model. This means that
the realistic scenario where several users and instances of the
same model co-exist has still not yet been considered. And
this is indeed a scenario that one often finds, e.g., within the
context of most companies.

The main goal of our work is to develop a framework
for model-driven and distributed collaboration in complex

spreadsheet ecosystems. Indeed, in a computing world that is
growingly distributed, the process of elaborating spreadsheets
is often performed in a collaborative way, by many actors. In
a model-driven environment, this means that one model must
have many instances, one for each of the actors involved. Later,
instances may be evolved independently and synchronization
techniques are needed to evolve the original model so that
conformity is restored.

II. MODEL-DRIVEN SPREADSHEET ENGINEERING

In the past, model-driven approaches have been proposed to
address problems that are often encountered in spreadsheets.
This approach, for example, prevents faulty formulas from
occurring since these are automatically inserted according to
the information on the model. We have also pursued one such
approach, that we describe in the remaining of this section.

We have started by embedding ClassSheet models in a
spreadsheet system [3], providing a coherent environment
for model-driven spreadsheet development. This allows us
to develop both the model and its conforming data in the
same environment. Also, this is precisely the environment that
spreadsheet users are accustomed to, and further allows the
evolution of a model while the co-related data instance is
automatically co-evolved.

Later, and in order to provide a more powerful environment,
we have improved our system to allow structural evolution
steps in the data while it is the model that is automatically
co-evolved [4].

By then, we had developed a bidirectional model-driven
technique for spreadsheet engineering which was integrated
in a fully-functional system, by means of an addon [5] built
in a widely used spreadsheet system.

Furthermore, we have extended ClassSheet models to inte-
grate in them several type information for attributes [6], [7],
so that we can restrict even further the occurrence of incorrect
values in spreadsheet data.

Unfortunately, all our previous works suffer from a severe
limitation: they were conceived to allow a single data instance
per model. This is a setup that is not realistic for most
organizations, where several, possibly distributed, instances
are accessed and modified by several users at the same time.

To address this concern, we propose to develop a multi-user
environment that is able to support several instances of the
same model. We want to allow those instances to be evolved

¢ Cob Gok Rows Row) - s[4 yee i 2ot ot | Rows . + B = » Cols Cok Rows Row B-a® s

ol r‘“ oL == & conformsto e i | BR-E-_RHHES | conforms to e e
0 A [& T I D Tel F = [20

oA . > .«

[lcaegory onty Cost Tl omy Cost e | [row I - e =, any oottt Jiota_]

2 5 10 700 8 185 1480 2180 3 anty=0 cost=0 total=qnty*cost 5 1o 20 2300 200

5 | L 6

] 540 T s HOIBIESUM(EBIaINN ... total=SUM(year.total) | = 000 o |

7 FEEDats G | e | =\ L v \Model, | KoD | R v Y o —— G |

. instance 1 model . instance n

evolution evolution

calculation

evolution propagation

new model

evolution propagation

4

conforms to__ .-~~~

Figure 1.

3

“=~-.___conforms to

In the environment to develop, we want to allow several instances of the same model. Each instance may then be evolved independently, and the

conformity relationship of the model with all its instances needs to be restored. This involves calculating a new model and eventually propagation changes

back to all the instances.

independently and at any time, while their synchronization
with the underlying model is always guaranteed.

III. MULTI-USER SPREADSHEET ENVIRONMENT

In a distributed evolution setting, model-driven spreadsheet

engineering raises a number of interesting research questions:

« Will all the evolved spreadsheets conform to the original
ClassSheet model?

o If not, how can we update the model in such a way that

conformity is restored?

o When several models are possible, what strategies lead

to the best model being obtained?

An approach to solve this problem is to find a new model
consistent with the new data sheets, but this poses other
problems since there can be no model consistent with all
the instances. Refining this idea, we can find a model that
can store all the data and computations of the instances, and
then perform some evolution steps on the data to make them
conform to the new model. We foresee that this can be broken
down in the following steps:

a. Define an algebra of ClassSheets: Synchronizing the same
model with multiple instances requires being able to ab-
stractly reason about ClassSheet models. We must be able
to: test whether two models define equivalent spreadsheets;
merge two models into a single one; realize the minimal
set of changes to perform in a model to restore conformity.
Given that the repetition structure of ClassSheet resembles
the one found in regular expressions and also that the Class-
Sheet language is regular, we plan to explore techniques
from automata theory.

b. Study the evolution of distributed spreadsheets: Once
ClassSheets are elements of an algebra, we will study
techniques for the evolution of both models and instances
in the presence of several instances, possibly distributed by
different computers or in a cloud-based environment. For
this, we will combine model comparison and bidirectional
transformation techniques.

c. Empirical validation: The effective maintenance of soft-
ware over time is critical. In addition to the problem of
evolving software (i.e., spreadsheets), we need to guarantee
that models are still manageable after several model and
instance evolution steps. This can be assessed with a set
of empirical studies with real users that can highlight
opportunities to improve the employed techniques.

IV. CONCLUSION

We have created a bidirectional model-driven spreadsheet
environment. In our environment, however, only one instance
can be defined per model. Now, we propose to improve this
environment so that several instances of one model can be
edited and evolved at the same time, whilst never losing the
synchronization of the entire system.

REFERENCES

[1] G. Engels and M. Erwig, “ClassSheets: automatic generation of spread-
sheet applications from object-oriented specifications,” in ASE’05: Proc.
of the 20th IEEE/ACM Int. Conf. on Automated Software Engineering.
ACM, 2005, pp. 124-133.

J. Cunha, J. Visser, T. Alves, and J. Saraiva, “Type-safe evolution of
spreadsheets,” in FASE’11/ETAPS’11: Proc. of the 14th Int. Conf. on
Fundamental Approaches to Software Engineering. Springer-Verlag,
2011, pp. 186-201.

J. Cunha, J. Mendes, J. P. Fernandes, and J. Saraiva, “Embedding
and Evolution of Spreadsheet Models in Spreadsheet Systems,” in
VL/HCC’11: IEEE Symp. on Visual Languages and Human-Centric
Computing. 1EEE Computer Society, 2011, pp. 186-201.

J. Cunha, J. P. Fernandes, J. Mendes, H. Pacheco, and J. Saraiva, “Bidi-
rectional Transformation of Model-Driven Spreadsheets,” in ICMT’12:
5th Int. Conf. on Model Transformation, 2012, pp. 105-120.

J. Cunha, J. P. Fernandes, J. Mendes, and J. Saraiva, “MDSheet: A
Framework for Model-driven Spreadsheet Engineering,” in ICSE’12:
Proc. of the 34rd Int. Conf. Software Engineering. ~ACM, 2012, pp.
1395-1398.

J. Cunha, J. P. Fernandes, and J. Saraiva, “From Relational ClassSheets
to UML+OCL,” in SAC’12: the Software Engineering Track at the ACM
Symposium On Applied Computing. ACM, 2012, pp. 1151-1158.

J. Cunha, J. P. Fernandes, J. Mendes, and J. Saraiva, “Extension and
Implementation of ClassSheet Models,” in VL/HCC’12: IEEE Symp. on
Visual Languages and Human-Centric Computing. IEEE Computer
Society, 2012, to appear.

(2]

(3]

(4]

(5]

(6]

(71

