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Abstract 

99mTc-PEI-MP and 188Re-PEI-MP for Imaging and Therapy of the Bladder 

Malignant Tumours – An Experimental Study 

Bladder cancer is the most common malignancy of the urinary tract, and is the 

fifth most common tumour world-wide, being responsible for about 2% of all 

cancer deaths. Current methods of diagnosis of the bladder cancer are mainly 

morphologic imaging techniques, while physiological imaging techniques, like 

nuclear medicine imaging that would enable to detect the disease in a very 

early stage, is not being fully availed for this type of cancer. The main methods 

to treat bladder cancer are aggressive and invasive to the patient, in a time 

where conservative management, with organ preservation, is now the standard 

of care in numerous malignancies. There is no reference to the use of 

radiopharmaceuticals for bladder cancer therapy, nevertheless, the existence of 

a specific radiopharmaceutical to bladder cancer could enable the delivery of 

high doses of radiation to the target tissue with minimal side effects, and some 

current therapy modalities could be substituted. Searching for a molecule for 

use in the palliative therapy of bone metastasis, the water soluble polymer 

polyethyleneiminomethyl phosphonic acid (PEI-MP), was synthesized. Pre-

clinical studies performed with PEI-MP labelled with several radionuclides, 

demonstrated the high value of accumulation and retention by the bladder wall, 

which could demonstrate some affinity of PEI-MP to bladder cells, and possibly 

by bladder cancer cells. Thus, the aim of this work was to explore in vitro and in 

vivo the potential of PEI-MP radiolabelled with 99mTc or 188Re, for imaging and 

radionuclide therapy of bladder cancer. In a first stage it was prepared the PEI-

MP kits for a quick and easy radiolabelling with 99mTc or 188Re, and to ensure 

high radiochemical purity. For in vitro studies, the cell lines of human bladder 

carcinoma (HT-1376) and human osteosarcoma (MNNG/HOS) were used. The 

osteosarcoma cells were used considering the original intent of using PEI-MP, 

and in order to make comparisons. Considering that PEI-MP should act only as 

a carrier for nuclear medicine imaging and therapy, cellular cytotoxicity of PEI-

MP was analysed by the evaluation of the cellular metabolic activity and viability 

through spectrophotometry and flow cytometry. Cellular uptake and retention 
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studies of 99mTc-PEI-MP and 188Re-PEI-MP were also performed. In vivo and ex 

vivo studies consisted on imaging and biodistribution studies performed in 

balb/c mice and balb/c n/nu mice with xenografts of bladder carcinoma and 

osteosarcoma, after the administration of 99mTc-PEI-MP and 188Re-PEI-MP. The 

PEI-MP kits demonstrated to be suitable for radiolabelling, allowing to achieve a 

high radiochemical purity over 5 hours, revealing the stability of the kit 

formulation. PEI-MP didn’t inhibit the metabolic activity or decreased the cell 

viability significantly and therefore would act as a carrier. Cellular uptake studies 

demonstrated that the uptake and retention of 99mTc-PEI-MP was, respectively, 

at least 5 and 4 times superior than the 99mTc-Pertechenetate for both cell lines. 

The same studies demonstrated that the uptake and retention of 188Re-PEI-MP 

was, respectively, at least 62 and 194 times superior than the 188Re-Perrhenate 

for both cell lines. These studies demonstrated the specificity of PEI-MP. In vivo 

and ex vivo studies demonstrated that 99mTc-PEI-MP and 188Re-PEI-MP were 

mainly excreted through the renal system and a small amount by enterohepatic 

circulation. Also it was confirmed the uptake of 99mTc-PEI-MP and 188Re-PEI-MP 

by lungs. The uptake of 99mTc-PEI-MP and 188Re-PEI-MP by the xenografts of 

bladder carcinoma or osteosarcoma, that demonstrated to be superior to 1 in 

relation to muscle, may be related not only with the blood perfusion to the 

tumour or the enhanced permeability and retention effect associated with PEI-

MP, but also with the presence of specific membrane receptors in the case of 

bladder carcinoma and high concentrations of Ca2+ in both tumour types. 

Tumour/bladder, tumour/liver, tumour/lung and tumour/bone were always 

inferior to one. These results demonstrated that for diagnostic nuclear medicine 

a bladder carcinoma and its metastases would present as cold lesions allowing 

identifying them in the images. One the other hand the therapy of bladder 

carcinoma and its metastasis seem not to be feasible if administered 

intravenously, considering the high dosimetry to other organs. 
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Resumo 

99mTc-PEI-MP e 188Re-PEI-MP para Imagiologia e Terapia de Tumores 

Malignos da Bexiga – Um Estudo Experimental  

O cancro da bexiga é a neoplasia maligna mais comum do trato urinário, e é o 

quinto tumor mais comum em todo o mundo, sendo responsável por cerca de 

2% de todas as mortes relacionadas com o cancro. Os métodos actuais de 

diagnóstico para o cancro da bexiga são principalmente técnicas de imagem 

morfológicas, sendo que as técnicas de imagem fisiológicas, como as da 

medicina nuclear que permitiriam detectar a doença numa fase inicial, não 

estão ser totalmente aproveitadas para este tipo de cancro. Os principais 

métodos de terapia para o cancro da bexiga são agressivos e invasivos para o 

doente, numa época em que o tratamento conservador, com preservação de 

órgãos, é agora o padrão para o tratamento de diversas neoplasias. Não há 

nenhuma referência à utilização de radiofármacos para a terapia do cancro da 

bexiga, no entanto, a existência de um radiofármaco específico pode permitir a 

entrega de elevadas doses de radiação ao tecido alvo e com mínimos efeitos 

secundários, e algumas modalidades de tratamento actuais poderão vir a ser 

substituídas. Na procura de uma molécula para o tratamento paliativo de 

metástases ósseas, o ácido fosfónico solúvel em água polietilenoiminometil 

(PEI-MP), foi sintetizado. Estudos pré-clínicos realizados com o PEI-MP 

marcado com vários radionuclídeos, demonstraram uma elevada captação e 

retenção pela parede da bexiga, evidenciando a possível afinidade do PEI-MP 

para as células da bexiga e possivelmente para células de cancro da bexiga. 

Assim, o objetivo deste trabalho foi explorar in vitro e in vivo o potencial do PEI-

MP radiomarcado com 99mTc ou 188Re, para a imagiologia e terapia com 

radionuclídeos do cancro da bexiga. Numa primeira fase, foram preparados os 

kits de PEI-MP para uma radiomarcação rápida e fácil com o 99mTc ou 188Re, e 

para assegurar a alta pureza radioquímica. Para os estudos in vitro, foram 

utilizadas as linhas celulares humanas de carcinoma da bexiga (HT-1376) e de 

osteossarcoma (MNNG/HOS). As células de osteossarcoma foram usadas 

tendo em conta a intenção inicial do PEI-MP, e de modo a fazer comparações. 

Considerando que o PEI-MP deve servir apenas como um veículo para a 
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imagiologia e terapia de medicina nuclear, a citotoxicidade celular do PEI-MP 

foi analisada avaliando a actividade metabólica e viabilidade celular através da 

espectrofotometria e citometria de fluxo. Também foram realizados estudos de 

captação e retenção celulares do 99mTc-PEI-MP e 188Re-PEI-MP. Os estudos in 

vivo consistiram na realização de imagens e na análise da biodistribuição em 

ratinhos balb/c e balb/c nu/nu com xenoenxertos de carcinoma da bexiga e 

osteossarcoma após a administração de 99mTc-PEI-MP e 188Re-PEI-MP. Os kits 

de PEI-MP mostraram-se adequados para a marcação radioactiva, permitindo 

obter um elevado grau de pureza radioquímica 5 horas após a marcação, 

revelando a estabilidade da formulação do kit. O PEI-MP não inibiu a actividade 

metabólica ou diminuiu de forma significativa a viabilidade celular, podendo 

assim ser usado como um veículo. Os estudos de captação celular 

demonstraram que a captação e retenção do 99mTc-PEI-MP foi, 

respecivamente, 5 e 4 vezes superior à do 99mTc-pertecnetato para ambas as 

linhas celulares. Os mesmos estudos demonstraram que a captação e retenção 

do 188Re-PEI-MP foi, respectivamente, 62 e 194 vezes superior à do 188Re-

perrenato para ambas a linhas celulares. Estes estudos demonstraram a 

especificidade de PEI-MP. Os estudos in vivo e ex vivo demonstraram que o 

99mTc-PEI-MP e 188Re-PEI-MP são excretados maioritariamente por via renal e 

uma pequena quantidade pela circulação entero-hepática. A captação do 

99mTc-PEI-MP e 188Re-PEI-MP pelos xenotransplantes de carcinoma da bexiga 

ou osteosarcoma, que demonstrou ser superior ao valor de um em relação ao 

músculo, pode estar relacionada não só com a perfusão sanguínea para o 

tumor ou o efeito do aumento da permeabilidade e retenção associado ao PEI-

MP, mas também com a presença de receptores de membrana específicos, no 

caso de carcinoma da bexiga e de concentrações elevadas de Ca2+ em ambos 

os tipos de tumores. As razões tumor/bexiga, tumor/fígado, tumor/pulmão e 

tumor/osso foram sempre inferiores ao valor de um. Estes resultados 

demonstraram que para o diagnóstico de carcinoma da bexiga e suas 

metástases em medicina nuclear, o tumor e as metástases surgiriam nas 

imagens como lesões frias, permitindo a sua identificação. Por outro lado, a 

terapia de carcinoma da bexiga e suas metástases parece não ser viável se 

administrado por via intravenosa, considerando a dosimetria elevada para 

outros órgãos. 
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A research article was submitted to an international journal and is waiting for 

revision, and is expected to compose and submit another research article until 

the beginning of next year.  

This work is organized in sections starting with the preamble, followed by the 

literature review, the experimental studies, the discussion and conclusions and 

finally the bibliography. The literature review, or section II, is organized in 

chapter 1 to 4, where general topics are reviewed such as what is cancer and 

what is implied and the current diagnostic and therapy techniques, following by 

more specific revisions in order to know the history of PEI-MP and be familiar 

with the particularities of bladder cancer and what are the current methods of 

diagnosis and therapy. The section III, dedicated to the experimental studies is 

organized in chapter 5 and 6, where are presented the material and methods, 

results, and discussion of the experimental studies carried out in vitro and in 

vivo/ex vivo. 

Considering that it was not possible to obtain a second generator of 188W/188Re, 

some studies were not concluded, especially with respect to the in vitro studies. 

Despite this situation the studies with 188Re allowed to draw final conclusions. 
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Section II. Literature Review 

Chapter 1.Cancer 

 

1.1. Introduction  

Development, differentiation, and the maintenance of vital functions involve 

exact regulation of the time and location of the cell divisions and self-elimination 

programmed cell death, or apoptosis. A tumour arises as a result of 

uncontrolled cell division and failure of programmed cell death [1, 2]. 

Most tumours can be classified clinically as benign or malignant [3, 4]. The cells 

of the malignant tumours are pleomorphic, varying in size and shape. 

Furthermore, these cells are less differentiated, or anaplastic, then their benign 

counterparts [4]. Malignant tumours occur as a result of mutations in three basic 

types of genes: DNA (Deoxyribonucleic acid) repair genes, tumour suppressor 

genes, and proto-oncogenes. Alterations in these genes are responsible for the 

deregulated control mechanisms, that are the hallmarks of cancer cells [1, 2, 5].  

 

1.2. Hallmarks of cancer   

Cells must acquire a series of traits in order to become malignant. These traits 

have been grouped in categories, as represented in fig. 1 [6, 7].  

 



 
 

5 
 

 

 

 

1.2.1. Sustaining proliferative signalling 

Normal tissues control the production and release of growth-promoting signals, 

giving instructions for the progression through the cell growth-and-division 

cycle, ensuring the maintenance of cell number and of normal tissue 

architecture and function [6]. These signals are transmitted into the cell by 

transmembrane receptors that bind to unique classes of signalling molecules, 

namely diffusible growth factors, extracellular matrix components and cell-to-cell 

adhesion/interaction molecules.  

Such behaviour contrasts strongly with that of tumour cells. Tumour cells 

generate many of their own growth signals, thus reducing their dependence on 

stimulation from their normal tissue microenvironment [7]. 

Cancer cells can acquire the capability to maintain proliferative signalling in a 

number of different ways, namely producing growth factor ligands (to which they 

can respond via the expression of cognate receptors, resulting in autocrine 

proliferative stimulation) and sending signals to stimulate normal cells within the 

supporting tumour-associated stroma, which respond by supplying the cancer 

cells with a variety of growth factors [6].  

Figure 1.The hallmarks of cancer, organized in six categories, namely the sustaining 

proliferative signals, evading growth suppressors, resisting cell death, replicative 

immortality, angiogenesis, invasion and metastasis (Hanahan D. et al., 2011). 
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Growth factor receptors, often carrying tyrosine kinase activity in their 

cytoplasmic domains, are over-expressed in many cancers. Receptor over-

expression may facilitate the cancer cell to become hyper-responsive to normal 

levels of growth factors that usually would not trigger proliferation [6, 7]. 

Cancer cells also control the expression of the types of extracellular matrix 

receptors (integrins), favouring ones that transmit pro-growth signals. The 

successful binding to specific moieties of the extracellular matrix, enable the 

transduction of signals into the cytoplasm by the integrin receptors, that 

influence cell behaviour, ranging from quiescence to motility in normal tissue, 

resistance to apoptosis, and entrance into the cell cycle. On the other hand, the 

failure of integrins to build these extracellular links can prejudice cell motility, 

induce apoptosis, or cause cell cycle arrest [6, 7].  

 

1.2.2. Evading growth suppressors 

Multiple anti-proliferative signals operate to maintain cellular quiescence and 

tissue homeostasis in normal tissue. Both soluble growth inhibitors and 

immobilized inhibitors embedded in the extracellular matrix and on the surfaces 

of nearby cells are anti-proliferative signals [7]. 

Antigrowth signals can block proliferation by two distinct mechanisms: 

– cells may be forced out of the proliferative cycle into the quiescence state 

(G0) from which they may remerge when extracellular signals allow; 

– cells may be induced to permanently give up their proliferative potential by 

being induced to enter into post-mitotic states, typically associated with 

acquisition of particular differentiated-associated traits [7]. 

To prosper, cancer cells must evade these anti-proliferative signals. Much of the 

circuitry that enables normal cells to respond to antigrowth signals is linked with 

the cell cycle clock, particularly the component governing the transit of the cell 

through the G1 phase. At the molecular level, many of the anti-proliferative 

signals are funnelled through the retinoblastoma protein and its two relatives, 

the retinoblastoma-like protein 1 and 2 [7]. When in a hypophosphorylated 
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state, retinoblastoma protein blocks proliferation by sequestering and changing 

the function of transcription factor family that control the expression of banks of 

genes, that are essential to the progression from G1 into S phase [8]. 

Disruption of the retinoblastoma protein pathway liberates transcription factors 

and consequently allows cell proliferation, turning cells insensible to antigrowth 

factors that operate along this pathway to block advance through the G1 phase 

of the cell cycle. The soluble signalling molecule TGFβ (Transforming growth 

factor beta) acts in a number of ways to stop the phosphorylation that 

inactivates retinoblastoma protein, blocking the advance through G1. In some 

cell types, TGFβ suppresses expression of the c-MYC  (Myelocytomatosis 

oncogene) gene, which regulates the G1 cell cycle apparatus [7]. Also, TGFβ 

causes synthesis of the CDKN2B (Cyclin-dependent kinase 4 inhibitor B 

Protein) and CIP1 (Cyclin-dependent kinase Inhibitor 1) proteins, which block 

the CDK (Cyclin-dependent kinase) complexes responsible for the 

retinoblastoma protein phosphorylation [9]. 

Some lose responsiveness to TFGβ, through down regulation of their receptors, 

while others display dysfunctional receptors. The cytoplasmic SMAD4 (Mothers 

against decapentaplegic homolog 4) protein, responsible for the transduction of 

signals from ligand-activated TFGβ receptors to downstream targets, may be 

eliminated through mutation of its encoding gene [10]. The locus encoding 

CDKN2B may be deleted. Alternatively, the immediate downstream targets of 

its actions may become unresponsive to the inhibitory actions of CDKN2B given 

to mutations that create amino acid substitutions. The resulting CDK complexes 

are then given a free hand to inactivate retinoblastoma protein by 

hyperphosphorilation. Finally, functional retinoblastoma protein, may be lost 

through mutations of this gene [7]. 

 

1.2.3. Resisting cell death 

The capability of tumour cell populations to increase in number is determined 

not only by the rate of cell proliferation but also by the rate of cell attrition. 

Apoptosis represents the major source of this attrition [7]. 
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The apoptotic machinery is composed of both upstream and downstream 

effectors components [11]. The regulators, in turn, are divided into two major 

circuits, one receiving and processing extracellular death-inducing signals (the 

extrinsic apoptotic program, involving the FAS (Type-II transmembrane protein) 

ligand/FAS receptor, and the other sensing and integrating a variety of signals 

of intracellular origin (the intrinsic program).  

Each of these programs culminates in the activation of caspases 8 and 9, which 

proceeds to initiate a cascade of proteolysis involving effectors caspases that 

are responsible for running apoptosis, in which the cell is progressively 

disassembled and then consumed, both by its neighbours and by phagocyte 

cells. Currently, the intrinsic apoptotic program is more widely implicated as a 

barrier to cancer pathogenesis [6, 7]. 

Many of the signals that elicit apoptosis converge on the mitochondria, which in 

turn respond to pro-apoptotic signals by releasing cytochrome C, that is a 

potent catalyst of apoptosis [7]. The “apoptotic trigger” that conveys signals 

between the regulators and effectors is controlled by counterbalancing pro- and 

anti-apoptotic members of the BCL-2 (B-cell lymphoma 2 protein) family of 

regulatory proteins [11]. Members of the BCL-2 family, whose members have 

either pro-apoptotic (BAX, BAK, BID, BIM) or anti-apoptotic (BCL-2, BCL-XL, 

BCL-W) function, act partly by governing mitochondrial death signalling through 

cytochrome C release. The release of cytochrome C, activates a cascade of 

caspases that act via their proteolytic activities, inducing the multiple cellular 

changes associated with the apoptotic program [6, 7]. Several abnormality 

sensors that play key roles in tumour development have been identified [11, 12]. 

Most prominent is a DNA-damage sensor that functions via the P53 tumour 

suppressor gene [13]. P53 induces apoptosis by up-regulating expression of the 

NOXA (Phorbol-12-myristate-13-acetate-induced protein 1) and PUMA (P53 

upregulated modulator of apoptosis) proteins, in response to substantial levels 

of DNA breaks and other chromosomal abnormalities [6]. 

The most frequently occurring loss of a pro-apoptotic regulator through mutation 

involves the P53 tumour suppressor gene. The resulting functional inactivation 

of its product, the P53 protein, is seen in more than 50% of human cancers and 
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results in the deletion of a key component of the DNA damage sensor that can 

induce the apoptotic effectors cascade [14]. Signal evoked by other 

abnormalities, including hypoxia and oncogene hyper-expression, result in part 

via TP53 to the apoptotic machinery. These two are impaired at eliciting 

apoptosis when P53 function is lost [15]. Additionally the PI3K-PKB 

(Phosphoinositide 3-kinase and protein kinase B) pathway, which transmits anti-

apoptotic survival signals, is probably involved with apoptosis in a substantial 

fraction of human tumours [7]. 

 

1.2.4. Enabling replicative immortality 

A decade ago, it was widely accepted that cancer cells require infinite 

replicative potential in order to produce tumours. This capability is a marked 

contrast comparatively with “normal cells”, which are able to pass through only 

a limited number of cell growth-and-division cycles. This limitation has been 

associated with two different barriers to proliferation: senescence and crises. 

Senescence is an irreversible entrance into a non proliferative but viable state, 

and crisis involves cell death. Accordingly, when cells are propagated in culture, 

repeated cycles of cell division lead to senescence and after, the cells that 

succeed in circumventing this barrier, progresses to crisis phase in which the 

great majority of cells die. On rare occasions, cells emerge from a population in 

crisis and exhibit unlimited replicative potential. This transition has been called 

immortalization, an attribute that most established cell lines possess since they 

can proliferate in culture without evidence of either senescence or crisis [6, 7]. 

Multiple evidences indicate that telomeres who protecting the ends of 

chromosomes, have a pivotal role on the capability for unlimited proliferation 

[16]. In fact, telomere length underlies the number of times a cell can have 

successive division. In each cell division, the telomeres decrease the length 

which means that they lose their function of protection causing cell death [6]. 

The telomerase is an enzyme that adds, to the end of the telomere, repetitive 

DNA sequences. Without telomerase, the cells can only divide 50 to 70 times, 

but after they become senescent and stop the cell division. This is what 
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happens in the normal cells, non-immortalized. If telomerase is present, any cell 

can divide without limit. This is what happens in immortalized cells that include 

cancer cells. In fact, cancer cells can spontaneously become immortalized. By 

extending telomeric DNA, telomerase is able to respond to the progressive 

telomere erosion that would otherwise occur in its absence. The presence of 

telomerase activity, both in spontaneously immortalized cells or in the context of 

cells engineered to express the enzyme, is correlated with a resistance to the 

induction of both senescence and crisis. Conversely, suppression of telomerase 

activity leads to telomere shortening and to the activation of one or more of 

these proliferative barriers [6, 7]. 

 

1.2.5. Inducing angiogenesis 

For the cell function and survival, the oxygen and nutrients supplied by the 

vasculature are crucial. Therefore, virtually all cells in a tissue should reside 

within 100 µm of a capillary blood vessel. This closeness is ensured during 

organogenesis, by coordinated growth of vessels and parenchyma. Once a 

tissue is formed, the angiogenesis (growth of new blood vessels) is transitory 

and carefully regulated [7]. However, if the cells are within aberrant proliferative 

lesions, initially they lack angiogenic ability, which reduces their capability for 

expansion [17]. 

The dominance of positive or negative signals determines the promotion or the 

blocking of angiogenesis. Some of these signals are transmitted by soluble 

factors who bind to receptors located on the surface of endothelial cells. In this 

context, also integrins and some adhesion molecules who mediate cell-matrix 

and cell-cell relations have a critical role. The initiation signals of angiogenesis 

are due to the vascular endothelial growth factor (VEGF) and acidic and basic 

fibroblast growth factors which bind to transmembrane tyrosine kinase receptors 

in the endothelial cells [18]. A typical example of an angiogenesis inhibitor is the 

thrombospondin-1, which binds to cluster of differentiation 36, a transmembrane 

receptor on endothelial cells coupled to intracellular sarcoma-like tyrosine 

kinases [7]. 
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Like any tissue, tumours need oxygen and nutrients as well as eliminate carbon 

dioxide and metabolic waste. These two functions are achieved by the 

neovasculature associated with the tumour. During embryogenesis, two 

processes are involved in the vasculature development, the vasculogenesis and 

the angiogenesis. The vasculogenesis is the appearing of new endothelial cells 

and their combinations to form the tubular system whereas the angiogenesis 

determines the appearance of new vessels from existing ones. After this stage, 

the normal vasculature becomes virtually quiescence, except in cases of a 

wound healing and female reproductive cycling, where angiogenesis is turned 

on transiently [6]. Oppositely during tumour progression, the process of 

angiogenesis remains switched on and new vessels are continually generated, 

helping to maintain the expanding growth [17]. 

Many tumours produce growth factors that stimulate angiogenesis whereas 

others are able to induce surrounding normal cells to synthesize and to secrete 

such factors [5]. The blood vessels produced inside the tumours as a result of 

the angiogenenic process are typically aberrant. In fact, the tumour 

neovasculature is marked by precocious capillary development, convoluted and 

excessive vessel branching, deformed and enlarged vessels, erratic blood flow, 

leakiness, and abnormal levels of endothelial cell proliferation and apoptosis 

[19]. The fundamental role of angiogenesis is also demonstrated by the effect of 

a large number of increasing catalogue of angiogenic substances to impair the 

growth of tumour cells inoculated subcutaneously in mice. Tumours arising in 

cancer-prone transgenic mice are similarly susceptible to angiogenic inhibitors 

[20]. 

 

1.2.6. Activating invasion and metastasis 

At least for a time some malignant tumours remain localized and encapsulated, 

but eventually they gain the ability to progress, and the cells may invade the 

surrounding tissues, or even get into the body’s circulatory system establishing 

secondary areas of proliferation (metastasis) [4, 5].   
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The metastases arise as amalgams of cancer cells and normal supporting cells 

from the host tissue. Successful invasion and metastasis depend upon all of the 

hallmarks capabilities [7].  

Invasion of new tissues is non-random, and depends on the nature of the 

metastasizing cell and the invaded tissue. If the cells produce growth factors 

and angiogenesis factors, metastasis is facilitated. Tissues under attack are 

most vulnerable if they also produce growth factors, and are more resistant if 

they produce anti-proliferative factors, inhibitors of proteolytic enzymes, and 

anti-angiogenesis factors [5]. 

To disseminate widely in the body, the cells of a typical solid tumour must lose 

the adhesion to their original neighbours, escape from the tissue of origin, 

burrow through other tissues until they reach a blood or a lymphatic vessel. 

Reaching the blood vessel the cells must cross the basal lamina and endothelial 

lining of the vessel to enter in the circulation, enabling the cells to reach 

anywhere in the body. Each of these steps requires different properties. For 

example, in a variety of carcinomas, loss of adhesion to neighbouring cells in an 

epithelium depends on loss of expression of the epithelial cell-cell adhesion 

molecule E-cadherin (Calcium-dependent adhesion). However the ability to 

burrow through tissues seems to depend on the production of proteolytic 

enzymes that are able to break down extracellular matrix. The frequently 

observed down-regulation and occasional mutational inactivation of E-cadherin 

in human carcinomas demonstrated its key role as a suppressor of this hallmark 

capability [21]. By E-cadherin bridges is possible the coupling between adjacent 

cells, that in turn results in the transmission of antigrowth and other signals via 

cytoplasmic contacts with β-catenin to intracellular signalling circuits, including 

the lymphoid enhancer-binding transcription factor [7]. 

Cancer cells have a complex relation to the extracellular and basal lamina. The 

cells must degrade the basal lamina to penetrate it and metastasize, however in 

some cases cells may migrate along the lamina. Many tumour cells secrete a 

protein plasminogen to the active protease plasmin. This increased plasmin 

activity promotes metastasis by digesting the basal lamina, consequently 

allowing its penetration by tumour cells [5, 22].  
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Matrix-degrading proteases are typically associated with the cell surface, by 

synthesis with a transmembrane domain, binding to specific protease receptors, 

or association with integrins [23, 24].  

Changes in integrin expression are also present in invasive and metastatic 

cells. Successful colonization of these new sites demand adaptation, which is 

achieved through shifts in the spectrum of integrin α or β subunits that are 

presented by the migrating cells [7]. 

The final steps in metastasis are probably the most difficult. Many tumours 

release large numbers of cells into the circulation, but fewer than 1 in 10000 

cells that escape the primary tumour survive to colonize another tissue and form 

metastatic tumour. More than escaping from the original tumour and enter the 

blood, tumour cells must adhere to an endothelial cell lining a capillary and then 

migrate across or through it into the underlying tissue [5, 22]. 

Additionally to important changes in cell-surface proteins, dramatic changes 

occur in the cytoskeleton during tumour cell formation and metastasis. These 

alterations can result from changes in the expression of genes encoding 

rhodopsin and other small hydrolyzed guanosine triphosphate enzymes that 

regulate the actin cytoskeleton. For instance, tumour cells have been found to 

over-express the rhodopsin gene, and this increased activity stimulates 

metastasis [5]. 

 

1.2.7. Emerging hallmarks of cancer 

New concepts for the formation and development of cancer have emerged. The 

chronic and often uncontrolled cell proliferation that represents the essence of 

neoplastic disease involves not only deregulated control of cell proliferation but 

also adjustments of energy metabolism in order to fuel cell growth and decision. 

Also, tumour formation involves the immune system that play a role in resisting 

or eradicating formation and progression of incipient neoplasias, late-stage 

tumours, and micrometastases [6]. 
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1.2.7.1. Reprogramming energy metabolism 

Normal cells, under aerobic conditions, process glucose, primary to pyruvate via 

glycolysis in the cytosol and subsequently to carbon dioxide in the mitochondria. 

Under anaerobic conditions, glycolysis is favoured and little pyruvate is 

dispatched to the oxygen-consuming mitochondria. Cancer cells, even in the 

presence of oxygen, can reprogram their glucose metabolism by limiting their 

energy metabolism to glycolysis, leading to a state that is called “aerobic 

glycolysis” [6]. 

This reprogramming of energy metabolism is apparently counterintuitive, given 

the fact that cancer cells must compensate the approximately 18-fold lower 

efficiency of adenosine triphosphate (ATP) production obtained by glycolysis in 

compared to mitochondrial oxidative phosphorylation. This is possible in part by 

up-regulating glucose transporters, particularly GLUT1 (Glucose transporter 1), 

which increases substantially glucose import into the cytoplasm [25, 26]. This 

markedly increased uptake and utilization of glucose, was documented in many 

human tumour types by noninvasively visualization glucose uptake using 

positron emission tomography (PET) with a radiolabelled analogue of glucose 

(18F-fluorodeoxyglucose, FDG) [6].  

The glycolytic fuelling has been shown to be connected with activated 

oncogenes such as RAS, or MYC, and mutant tumour suppressors such as 

TP53 [25, 26]. This dependence on glycolysis can be further accentuated under 

the hypoxic conditions that operate within many tumours. The hypoxia response 

system acts pleiotropically to up-regulate glucose transporters and multiple 

enzymes of the glycolytic pathway [25-27]. Therefore, both the RAS oncoprotein 

and hypoxia can independently increase the levels of the HIF1α/2α (Hypoxia-

Inducible factors 1-alpha/2-alpha) transcription factors, which in turn up-regulate 

glycolysis [28]. 

Curiously, some tumours have shown to contain two subpopulations of cancer 

cells that differ in their energy-generating pathways, but that function 

symbiotically. One subpopulation consists of glucose-dependent cells that 

secrete lactate, whereas cells of the second subpopulation preferentially import 

and utilize the lactate produced by their neighbours as their main energy 
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source, employing part of the citric acid cycle to do so [29]. Additionally, 

oxygenation ranging from normoxia to hypoxia, is not necessarily static in 

tumours but instead fluctuates temporally and regionally [30]. This situation may 

be a result of the instability and chaotic organization of the tumour 

neovasculature. 

 

1.2.7.2. Evading immune destruction 

The immune system plays a role in resisting or eradicating formation and 

progression of early neoplasias, late-stage tumours, and micrometastases. 

Therefore, according to this logic, solid tumours that appear have somehow 

managed to avoid detection by the immune system or have been able to limit 

the attack of the immunological defences, thereby evading eradication [6]. 

The role of defective immunological monitoring of tumours is validated by the 

striking increase of certain cancers in immunocompromised individuals [31]. 

However the great majority of these are virus-induced cancers, suggesting that 

much of the control of this class of cancers depends on the reduction of viral 

burden in infected individuals, partly through eliminating virus infected cells. 

These observations shed a little light on the possible role of the immune system 

in limiting formation of at least 80% of tumours of nonviral aetiology.  

In recent years, studies using genetically engineered mice and the clinical 

epidemiology, suggested that the immune system operates as a significant 

barrier to tumour formation and progression, at least in some forms of non-

virus-induced cancer. As an example, when mice genetically engineered to be 

immunocompromised were assessed for the development of carcinogen-

induced tumours, it was observed that tumours arose more frequently and/or 

grew more rapidly in the immunodeficient mice relative to immunocompetent 

controls. In particular, deficiencies in the development or function of the cluster 

of differentiation 8 positive cytotoxic T lymphocytes, cluster of differentiation 4 

positive T helper 1 cells, or natural killer cells each led to demonstrable 

increases in tumour incidence. Moreover, mice with combined 

immunodeficiencies in both T cells and natural killer cells were even more 

susceptible to cancer development. The result indicate that, at least in certain 
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experimental models, both the innate and adaptative cellular arms of the 

immune system are able to contribute significantly to immune surveillance and 

thus tumour eradication [32, 33]. 

 

1.3. Tumour grading and staging  

The most widely used staging system is called the TNM system. It is based on 

the size and/or extent of the primary tumour (T), the extent of spread to lymph 

nodes (N), and presence of metastases (M) [3, 4]. The TNM system is currently 

used worldwide, enabling clinical scientists from various institutions to 

standardize the staging of tumours and compare the therapeutic results. The 

TNM system is resumed in the table 1 [4, 34]. 

 

Table 1.The TNM system (McKinnell R.G. et al., 2006; AJCC, 2010). 

Primary tumour (T) 

TX Primary tumour cannot be evaluated. 

T0 No evidence of primary tumour. 

Tis Carcinoma in situ. 

T1-T4 Size and/or extent of the primary tumour. 

Regional lymph nodes (N) 

NX Regional lymph nodes cannot be evaluated. 

N0 No regional lymph node involvement. 

N1-N3 Degree of regional lymph node involvement. 

Distant metastasis (M) 

MX Distant metastasis cannot be evaluated. 

M0 No distant metastasis. 

M1 Distant metastasis present. 

Legend: The TNM system is organized in three categories, namely the size and/or extent of the 

primary tumour (T), the extent of spread to lymph nodes (N), and presence of metastases (M). 

For each of these categories, subdivisions can be made according with the extent, for example, 

the size of the tumour, the grade of invasion to lymph nodes and metastases. Therefore, for Tx, 

Nx or Mx, the primary tumour, regional lymph nodes or metastasis cannot be evaluated. For T0, 

N0 or M0, there is no evidence of tumour, regional lymph node involvement or metastasis. From 

the moment in which is assigned a number, in a growing sequence (1, 2, 3...), to T, N or M, the 

size of the tumour, the involvement of lymph nodes and the presence of metastasis increases 

to, and the prognosis deteriorates. 

 



 
 

17 
 

The patient’s prognosis deteriorates progressively if the tumour has invaded the 

stroma of an organ but has not penetrated it. It is worse if the wall is penetrated 

and even worse if its spreads to lymph nodes. It is dismal if there are distant 

metastases [4]. For many cancers, TNM combinations correspond to one of five 

stages resumed in table 2 [34].  

 

Table 2.Stages of cancer (AJCC, 2010). 

Stage Definition 

Stage 0 Carcinoma in situ (early cancer that is present only in the layer of 

cells in which it began). 

Stage I, II and III Higher numbers indicate more extensive disease: greater tumour 

size, and/or spread of the cancer to nearby lymph nodes and/or 

organs adjacent to the primary tumour. 

Stage IV The cancer has spread to distant tissues or organs. 

Legend: The combinations from the TNM system can result in five stages of cancer, starting 

from stage 0, representing the most benign stage, where the tumour is still in situ, and then 

progressing to stages I, II and III. In these last stages the tumour starts to invade the lymph 

nodes and adjacent organs. The last stage, and the worst, is the stage IV, where the cancer has 

spread to distant organs and tissues. 

 

Tumour grading is based on histological examination of tumours and is a semi-

quantitative assessment of the malignancy of each tumour. In this process, the 

pathologist will assess the individual cells and the architectural organization of 

the tumour tissue. In most instances, the tumours can be graded on scale from 

1 to 4, and are designated as well differentiated (grade 1), moderately well 

differentiated (grade 2), poorly differentiated (grade 3), or undifferentiated 

(grade 4) [3, 4]. 

In clinical practice, the tumour grading and tumour staging data are combined 

before additional therapy is recommended. The stage of the tumour at the time 

of diagnosis is also the most important prognostic parameter for most human 

tumours, and it can generally predict whether a tumour can be cured or not [3, 

4]. 
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1.4. Classification and nomenclature 

The cells of the benign tumours and many malignant ones retain some 

microscopic features of the tissue of their origin. Therefore, the tumours are 

classified according to the tissue and cell type from which they arise, and then a 

suffix is add to denote whether the tumour is benign or malignant. Some 

examples of benign and malignant tumours and its nomenclature is represented 

in table 3 [3, 22].  

 

Table 3.Classification and nomenclature of some benign and malignant tumours 

(Damjanov I., 2000; McKinnell R.G. et al., 2006; Alberts D. et al., 2008). 

Tumour Suffix Examples Tissue and/or Origin 

Benign Oma Fibroma  

Lipomas  

Chondromas  

Neuromas  

Osteoma   

Adenomas  

Fibrous connective 

Fat 

Cartilage 

Nervous 

Bone 

Epithelial 

Malignant Carcinoma 

 

Sarcoma 

 

Blastoma 

Carcinoma of the lung 

Adenocarcinoma of breast 

Osteosarcoma 

Chondrosarcoma 

Neuroblastoma 

Nephroblastomas  

Epithelial 

 

Mesenchymal tissues 

 

Embryonic cells 

Legend: The tumours can be classified as benign or malignant. In order to distinguish them is 

attributed a suffix, the “oma” for benign tumours, and the suffix “carcinoma”, “sarcoma” or 

“blastoma” for malignant tumours, depending on the tissue of origin. If the malignant tumour has 

its origin in epithelial cells is attributed the suffix “carcinoma”, if had its origin in mesenchymal 

cells is attributed the suffix “sarcoma”, and finally if has its origin from embryonic cells is 

attributed the suffix “blastoma”. 

 

Some malignant tumours cannot be classified as carcinomas, sarcomas, or 

blastomas. Most important among these are brain tumours which originate from 

glia cells and are thus called gliomas. Due to their location inside the brain 

these tumours cannot be completely removed and thus all gliomas are 

considered clinically malignant [4, 22]. 

Some tumours of the same name can be either benign or malignant. For 

example, islet cell tumours of the pancreas can be either benign or malignant. 
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Because the distinction cannot made clearly on histological examination, the 

noncommittal term islet cell tumour is used for most of these tumours. However, 

if such a tumour is accompanied by metastases, it is clearly malignant and so is 

designated a malignant islet cell tumour. Malignant tumours originating from 

lymphocytes are called lymphomas. Although their name sounds deceptively 

benign, it is worth notice that there are no benign lymphomas, and all tumours 

in this category should be considered malignant. Likewise, germ cell tumours 

composed of cell resembling the seminal cells of the testis have a benign-

sounding name-seminoma, but all of them are malignant. Malignant melanoma, 

a common malignant tumour of pigmented cells of the skin (melanocytes) is 

colloquially known as “melanoma” [3, 4, 22]. 

Sometimes, some tumours have eponym names, that is, are known under the 

name of the physician who has described first. Ewing’s sarcoma is a poorly 

differentiated sarcoma of bones and soft tissue. Since the cell of origin of 

Ewing’s sarcoma has not been identified, there are no alternative names for this 

neoplasm. On the other hand, Wilm’s tumour is a widely used name for 

nephroblastoma, a childhood renal tumour. In some cases, these medical 

eponyms are a godsend. As an example, Kaposi’s sarcoma is easier to 

remembered and pronounced than the original proposed name, attributed by 

the famous nineteenth-century Viennese dermatologist who described and 

named it in Latin as “idiopathic pigmented hemorrhagic sarcoma” [3, 4]. 
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Section II. Literature Review 

Chapter 2.Diagnosis and Therapy of Cancer 

 

2.1. Introduction  

The main goals of cancer diagnosis and treatment is to cure or prolong 

considerably the life of patients and to ensure the best possible quality of life to 

cancer survivors [35]. 

Cancer is easier to treat and cure, and as a result mortality can be reduced, if it 

is diagnosed early. Therefore, a huge amount of effort was done to the 

development of ways to detect early signs of the disease. The most effective 

treatment programmes are those that are provided in a sustained and equitable 

way, linked to early detection and that adhere to evidence-based standards of 

care and a multidisciplinary approach [35, 36]. 

Cancer diagnosis methods include imaging, endoscopy, biopsy, blood tests and 

other samples, etc.  

Driven by the diversity of genomic alterations involved in malignancy, a variety 

of assays had been developed with the purpose of complete tumour profiling. 

New molecular diagnostics, integrated into existing histomorphological 

classifications in surgical pathology, provides added stratification for a more 

accurate cancer prognosis [37]. Personalized treatment approaches are being 

developed based on the cancer diagnostic biomarkers [38]. These molecular 

markers can be products of altered genes/DNA or abnormal pathways. Some of 

the techniques involved in this group are: Fluorescence in situ hybridization 

technique, that uses probes to confirm the presence or absence of specific DNA 

sequences on chromosomes; Polymerase Chain Reaction, that permits 

amplification and analysis of target DNA regions in tumour samples; DNA 

microarray analysis is equipped to measure the expression levels of large 

number of genes concurrently; Immunocytochemistry used to detect antigens or 

protein expression on a fixed tissue section by means of an antibody that is 

specific for the antigen/protein; Flow cytometry to examine and differentiate 

http://en.wikipedia.org/wiki/Fluorescence_in_situ_hybridization
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cells based on certain physical and chemical properties; Electron microscopy, 

used when specific cellular or intracellular structures need to be examined [37].  

Histological diagnosis is still essential to establish the diagnosis of cancer. 

However, a well designed imaging strategy is important in the management of a 

patient with cancer. Imaging in oncology is used for screening, detection, 

diagnosis, treatment and to follow the response to treatment. Imaging 

techniques enable doctors to create detailed pictures of what is going on in our 

bodies non-invasively. Some of the imaging techniques that can be used for the 

diagnosis of cancer are the morphological imaging techniques X-rays, CT 

(Computed tomography) scans, MRI (Magnetic resonance imaging) scans and 

ultrasound, and the physiological imaging techniques SPECT (Single photon 

emission tomography) and PET scans [37, 39]. 

Once the diagnosis and degree of spread of the tumour have been established, 

a decision have to be made regarding the most effective cancer treatment in the 

given socioeconomic setting [35]. 

This requires a careful selection of one or more of the major treatment 

modalities, such as surgery, radiotherapy and systemic therapy. This selection 

should be based on evidence of the best existing treatment given the resources 

available. Given that each patient and each cancer is different, treatment must 

be individualized. Therefore, the choice of the exact treatment or combination of 

treatments will depend on the patient, the disease and the stage of the disease 

as well as other considerations such as performance status, and comorbid 

conditions [37].  

When tumour is localized and small in size, sometimes, surgery or radiotherapy 

alone is only likely to be highly successful. Surgery plays a vital role in the 

prevention, diagnosis, staging, cure and palliation. Many premalignant lesions 

are frequently surgically removed, preventing the progression to cancer. 

Surgery forms the basis of therapy for early cancer, being applied for local 

treatment of small tumours, to reduce the bulk of the disease, and for removal 

of metastatic tumours. Although late stage cancers are generally treated by 

chemotherapy, surgery could offer palliation in advanced cancers [37]. 
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Chemotherapy alone can be effective for a small number of cancers, such as 

haematological neoplasm’s (leukaemia and lymphomas) [35-37]. As mentioned 

before, chemotherapeutic agents are used as primary treatment for advanced 

disease, but also as neoadjuvant to surgery/radiation for localized disease or as 

adjuvant therapy (with surgery and/or radiation) [37]. 

Recent advances in genetics and molecular cellular biology has led to an 

increase in the understanding of the molecular events that either initiate or 

sustain cancer growth. Traditional chemotherapeutic agents do not distinguish 

normal and cancer cells. However these new biological agents target specific 

molecular pathology (pathways and aberrant genes) in cancer cells. Target 

therapeutics can be monoclonal antibodies or small molecules, that can be 

used alone or in combination with other chemotherapeutics, surgery or radiation 

therapy [37]. 

Radiation therapy is the administration of ionizing radiation to a cancer patient 

with the purpose of cure, to provide palliation or as an adjunct to surgical 

treatment. Radiation therapy uses high-energy radiation to reduce the size of 

tumours and kill cancer cells. X-rays, gamma rays, and charged particles are 

types of radiation used for cancer treatment. In radiotherapy, radiation may be 

delivered by a machine outside the body (external-beam radiation therapy), it 

may come from radioactive material placed in the body near cancer cells 

(brachytherapy), or it may come by systemic administration of radioactive 

substances, that travel in the blood to kill cancer cells (therapy with 

radionuclides) [37, 40]. 

Radiation therapy is often used in conjunction with surgery for eradication of 

small and limited cancers. Preoperatively, radiation therapy may be given to 

reduce the size of inoperable tumours or to destroy unrecognized peripheral 

projections of the tumour. In addition, radiation therapy may be given to reduce 

the size of a tumour so it can be removed by surgery and be less likely to 

return. Radiation therapy given during surgery is called intraoperative radiation 

therapy. Alternatively, radiation therapy can be given post operatively to 

eradicate residual. Radiation therapy is also used for palliation (to relieve 

symptoms and reduce suffering) in cases where there is no cure possible, for 

example in cancers of the central nervous system and pathological metastasis 

to the bones [37, 40].  



 
 

23 
 

Despite conventional or external beam radiotherapy play a vital role in treatment 

of cancers, it is not effective for treatment of metastasis outside the treatment 

area. In contrast, systemic administration of radiopharmaceuticals that are 

designed for site specific localization, or radionuclides that have a natural 

affinity for some tissues, provides the opportunity for treatment of widely 

disseminated disease. Ideally, therapeutic radiopharmaceuticals should locate 

with high specificity at cancerous foci, even when the location of the tumour in 

the body is unknown, while producing minimal or tolerable radiation damage to 

normal and healthy tissues [41]. 

Even though radionuclide therapy has been available for many years, few are 

the methods routinely used on a large scale. The exceptions are for example 

131I iodide for the therapy of thyroid cancer [42, 43], 32P-orthophosphate for 

therapy of polycythemia and thrombocythemia [44, 45], Bexxar (Iodine-131) and 

Zevalin (Yttrium-90) for therapy of lymphomas with anti-B-lymphocyte antigen 

antibodies [46, 47], 131I labelled MIBG (meta-iodobenzylguanidine) for the 

treatment of pheochromocytoma and neuroblastoma [48-50] and Lutelium-177 

labelled somatostatin analogues for treatment of neuroendocrine tumours [51-

53].  

Gene therapy is one of the new methods for cancer therapy, and is anchored on 

the premise that many cancers are due to genetic alterations that eventually 

lead to malignant changes in tissues. Gene therapy involves the transfer of 

genetic material into a cell that in turn alters the cellular phenotype transiently or 

permanently. Different vectors exist for gene delivery into cancerous cells. 

Viruses (such as retroviruses) serve as a perfect tool for gene transfer [37]. 

 

2.2. Nuclear Medicine Imaging and Therapy  

A unique capability of the nuclear medicine is the imaging of organ function and 

disease states, using specific radiotracers called radiopharmaceuticals. Unlike 

other imaging modalities such as CT, MRI and Ultrasonography (US), nuclear 

medicine procedures are capable of mapping physiological function and 

metabolic activity, giving more precise information about the organ function and 

dysfunction. These images of functional morphology of organs, obtained after 
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the distribution in vivo of a radiopharmaceutical plays an important role in the 

diagnosis of many common diseases (malfunction organs or certain type of 

cancers) in a non-invasive manner [54]. 

Nuclear medical imaging is based on the detection of emissions from a 

radionuclide, associated or not with a molecule, which has been infiltrated in the 

metabolism of the body. Imaging in nuclear medicine is done by scintigraphy 

(two-dimensional images), SPECT or by PET (three-dimensional images). Both 

in scintigraphy and SPECT are detected gamma ray with energies ranging 100 

to 200 keV, which are emitted by radionuclides during its radioactive decay. The 

sensitivity and resolution of currently used gamma-cameras has been optimized 

for these gamma-ray energies, that is a consequence of the properties of 99mTc 

as the dominating radiolabel for non-PET diagnostics [55]. 

PET is a nuclear imaging technique that uses radionuclides that decay by 

positron emission. The principal behind PET imaging is the simultaneous 

detection of two gamma ray photons of 511 keV that are emitted in opposite 

directions, that results of the annihilation of the positron with an electron. To 

minimize the distance between the emission and the annihilation sites of the 

positron, the energy of the emitted positrons should be as small as possible 

[56].  

In diagnostic applications, tiny concentrations of molecules are added to the 

biological system as a tracer, which are detectable due to the emissions from 

their radioactive labels. The concentration of the radiolabelled tracer added to 

the biological system is so small that in principle it will not alter the properties of 

the process under investigation. This presumes that the radiolabelling of a 

molecule does not alter its physiological and biochemical properties, and the 

radiotracer have to behave in the system exactly as the native non-labelled 

molecule. The difference between the labelled and non-labelled molecule is that  

the first will allow a mapping of the physiological function and metabolism of a 

tissue, allowing to draw conclusions on tissue function or dysfunction [41, 54, 

55]. 

The development and availability of a rapidly increasing number of specific 

radiopharmaceuticals (currently more than 100) [54] and the availability of 
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suitable radionuclides produced in research reactors [57] or with accelerators 

[58], lead to the widespread utilization and growing demand for these 

techniques. 

In spite of all recent and future developments, the challenge in 

radiopharmaceutical development and production will remain finding the proper 

combination of a carrier molecule with a radionuclide that meets all 

requirements [41, 59]. 

Targeted radionuclide therapy involves the use of radiopharmaceuticals to 

selectively deliver therapeutic doses of ionizing radiation to specific diseases 

sites. In therapeutic applications is administered high radiation activity with the 

intention of destroying the target tissue. It is known that for a specific tissue of 

an individual, the biological radiotherapeutic effect is greater the higher the 

absorbed dose. Also is known that the same dose absorbed by different tissues 

from the same individual or different individuals of corresponding tissues, can 

cause uneven effects, reflecting a difference in radiosensitivity. For an effective 

therapy, there must be a high relationship between radiation dose to target 

organ and surrounding healthy tissues, thus allowing to reduce the side effects 

that can come from therapy [1, 41, 59].  

Ionizing radiation is energy transmitted via x-rays, gamma rays, beta particles, 

alpha particles, neutrons, protons, and other heavy ions. The physical factors 

affecting cell response to a specific radiation include the linear energy transfer 

(LET), the relative biologic effect (RBE) and the oxygen enhancement radio 

(OER). LET describes a measure of the rate at which energy is deposited as a 

charged particle travel through matter, and it is also a function of the physical 

characteristics of radiation, that is, mass and charge, therefore particles with 

charge and mass have a higher LET. Radiations that cause dense ionization 

along their track are called high-linear-energy-transfer (high-LET) radiation (ex. 

α particles, neutrons). Low-LET radiations produce ionizations only sparsely 

along their track (ex. gamma and x-rays, electrons). The higher LET of a 

radiation, the greater the chance for a biologic interaction. Thus, high-LET 

radiations are more destructive to biological material than low-LET radiations, 

because at the same dose, considering that high-LET radiations transfer most 
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  eOHOH 22 

of their energy to a small region of the cell. The localized DNA damage caused 

by high-LET radiations is more difficult to repair than the diffuse DNA damage 

caused by the sparse ionizations from low-LET radiations [1, 60].  

The relative effect of LET is quantitatively described by RBE. The OER is a 

numerically description of the biological response to radiation in the presence of 

oxygen. There is a strong evidence that DNA is the principal target for the 

biologic effects of radiation, including cell killing, carcinogenesis, and mutation. 

Radiation-induced ionizations may act directly on the cellular component 

molecules or indirectly on water molecules, causing water-derived radicals. The 

atoms of the target itself may be ionized or excited, thus initiating the chain of 

events that leads to a biologic change. This is called direct action of radiation, 

which is the dominant process if radiations with high LET are considered. On 

the other hand, the radiation may interact with other atoms or molecules in the 

cell, particularly water that may become ionized, to produce free radicals that 

are able to diffuse far enough to reach and damage the critical targets, namely 

DNA. This is called indirect action of radiation, which is the dominant process if 

radiations with low LET are considered [1, 60]. A free radical is an atom or 

molecule carrying an unpaired orbital electron in the outer shell, which is a state 

of high degree of chemical reactivity. This may be expressed as: 

 

H2O
+ is an ion radical with an extremely short life-time (10-10 second). They 

decay or react with other molecules of water to form free radicals, which are not 

charged but still have an unpaired electron, namely hydroxyl radical (OH·) [1, 

60].  

The hydroxyl radical is a highly reactive free radical which can spread quickly 

over a short distance allowing to reach a critical target in the cell. The hydroxyl 

radicals can recombine with each other, and form hydrogen peroxide (H2O2), 

which together with OH• radical are responsible for about two-thirds of all 

radiation injuries following the water radiolysis [1, 60]. 

Considering the indirect effects of radiation in the cell which are related with the 

free radicals produced, they are able to increase the cell damage if molecular 
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oxygen is present, allowing its reaction with the DNA. The DNA damaged by 

this route, can be chemically restored by reacting with an SH group. However if 

HO2 (hydroperoxyl) is formed instead of hydroxyl radical, that is an organic 

peroxide, the lesions occurred in the target material are non-restorable. Thus, a 

change in the chemical composition of the material occurs, resulting in cell 

death [1, 60].  

The major effect in cells is DNA breaks, and since DNA is formed by two 

complementary double strands, breaks of either a single strand or both strands 

can occur. Most single-strand breaks can be repaired by the normally 

mechanisms of cell repair, due to the complementary nature of the two strands, 

being the intact strand a template for repair the damaged opposite strand. If 

double-strand breaks occur, the repair is not only more difficult but also an 

erroneous re-arranje of the broken ends may occur. These misrepairs result in 

induction of mutations, chromosomal aberrations, or cell death [1, 60].  

The development of molecular carriers and the availability of radionuclides with 

high purity and adequate specific activity can contribute to the successful 

application of radionuclide therapy [54]. 

 

2.2.1. Radionuclides for Imaging and Therapy 

Radioisotopes (or radionuclides) are contributing significantly to improving 

health care in most countries. Globally there is a growth in the number of 

medical procedures involving the use of radionuclides, and with this the growth 

in the number of procedures requiring different radionuclides, for example in 

diagnostic nuclear medicine and radionuclide therapy [54]. 

A radionuclide is an element with an unstable combination of protons and 

neutrons (nucleons). When trying to reach stability is emitted radiation 

(radioactive decay or radioactivity). It entails a change from an unstable 

combination of neutrons and protons in the nucleus to a stable or more stable 

combination. The type of decay determines whether the ratio of neutrons to 

protons will increase or decrease to reach a more stable configuration, and also 

determines the type of radiation emitted [61]. 



 
 

28 
 

Radionuclides used in nuclear medicine are primarily produced in a cyclotron or 

a reactor. The type of radionuclide produced in a cyclotron or a reactor depends 

on the irradiating particle, its energy, and the target nuclei. The use of 

radionuclides with short half-life has grown considerably, and this has led to the 

development of radionuclide generators [61].  

In radionuclide generators a relatively long-lived parent radionuclide decays into 

a daughter radionuclide with a shorter half-life. Due to the different chemical 

properties of parent and daughter nuclide, the daughter can be chemically 

separated [55, 59].  

A radionuclide generator consists of a glass column filled with an absorbent 

material such as aluminium oxide or an ion-exchange resin to which the parent 

nuclide is bound. The column is filled with a filter at the outlet to retain 

particulate matter. On top is the elution platform, where an evacuated sterile vial 

is connected with the outlet of the column though which saline or another 

suitable eluent is drawn from the eluent reservoir [55].  

Radionuclide generators serve as a convenient source of radionuclides with 

short half-life for medical application. The lifetime of a generator system 

depends on the half-life of the parent nuclide, therefore, the longer the half-life 

of the parent, the longer can the daughter radionuclide be eluted in adequate 

amounts. This condition is favourable for both transport and the use of 

radionuclides with short half-life in diagnostic nuclear medicine [62]. 

There are various radionuclides that emit gamma-rays and are used for 

scintigraphy and SPECT. Some of these radionuclides, and its characteristics 

are organized in table 4.  
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Table 4.Most frequently used radionuclides for scintigraphy and SPECT imaging and 

their most relevant physical properties (Cantone M. et al., 2011). 

Nuclide Half-life Preferentially imaged 

y-energy (keV) 

Yield 

(%) 

Decay 

mode 

Source 

67Ca 78.28 hours 93.3 

184.6 

300.2 

38.81 

21.41 

16.64 

EC Cyclotron 

81mKr 13.10 hours 190.5 64.9 IT Generator 
99mTc 6.015 hours 140.5 89.06 IT Generator 
111In 67.31 hours 171.3 

245.4 

90.7 

94.1 

EC Cyclotron 

123I 13.22 hours 159.0 83.3 EC Cyclotron 
131I 8.025 days 364.5 81.5 β- Reactor 

133Xe 5.243 days 81.0 38.0 β- Reactor 
201Tl 73.01 hours 167.4 10.0 EC Cyclotron 

Legend: Most frequent radionuclides for scintigraphy and SPECT imaging, and its physical 

characteristics, namely the physical half-life, the mode of radioactive decay (EC - Electron 

Capture; IT – Isomeric Transition; β
- 
- Beta negative), how it is produced, and the energy of the 

gamma rays used for imaging. 

 

Technetium-99m (99mTc) is the most widely used radioisotope in diagnostic 

nuclear medicine. It has been estimated that over 80% of the nearly 25 million 

diagnostic nuclear medicine studies carried out annually are done with this 

single isotope [54]. It can be easily eluted at the hospital from a 99Mo/99mTc 

generator, making it widely available [55].  

The convenience of having a radionuclide generator that can be used for one 

week promoted the development of 99mTc radiochemistry and cold kits (so 

called because they do not contain radioactivity). Cold kits are an efficient way 

to formulate 99mTc-labelled radiopharmaceuticals from sodium pertechnetate 

(Na99mTcO4) solution eluted from a 99mTc-generator [54]. 

The evolution of Positron Emission Tomography (PET) as a clinically useful 

imaging modality has its origin in the synthesis of the positron emitting 

radioisotope fluorine-18 radiolabelling fluorodeoxyglucose (18F-FDG) in 1976 at 

the Brookhaven National Laboratory, with the intention of applying 18F-FDG for 

mapping glucose metabolism in the brain, to understand and monitor 

neurological diseases. While it is also useful for studying myocardial viability, 

due to the greater utilization of glucose by the proliferating cells, the major use 
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of 18F-FDG subsequently emerged in the detection, staging and treatment follow 

up of various types of cancers [54, 55].  

Currently PET studies using 18F-FDG account for 10% of all nuclear medicine 

imaging. A number of other fluorine-18 labelled radiopharmaceuticals are being 

developed and a few of them are under clinical investigation [54].  

Also fluorine-18 is the radionuclide most used in PET, other radionuclides are 

being used. Some of these radionuclides and its characteristics are organized in 

table 5.   

 

Table 5.Most important PET radionuclides (Cantone M. et al., 2011). 

Nuclide Half-life Average β+-

energy (MeV) 

Mean range in tissue 

(mm) 

β+-yield (%) 

11C 20.385 min 0.386 0.3 99.75 
13N 9.965 min 0.492 1.4 99.80 
15O 2.037 min 0.735 1.5 99.90 
18F 109.77 min 0.250 0.2 96.73 

62Cu 9.673 min 1.314 2.3 97.43 
64Cu 12.701 h 0.278 0.2 17.60 
68Ga 67.71 min 0.830 1.9 89.14 
82Rb 76.38 s 1.479 2.6 95.43 
86Y 14.74 h 0.660 0.7 31.90 
89Zr 78.41 h 0.396 0.3 22.74 
124I 4.176 days 0.820 0.8 22.70 

Legend: Most important PET radionuclides, and its physical characteristics, namely the 

physical half-life, and the energy and range (mm) in tissues of β
+
 particles. 

 

The primary role of radiopharmaceuticals in cancer treatment will be towards 

the follow-up of patients with a known disease. Radiopharmaceuticals can 

provide useful information about the function and molecular biology of the 

tumour by measuring several of the causal factors of the tumour [54]. 

When planning radionuclide therapy, key factors should be considered for the 

selection of an effective radionuclide are: (i) the half-life; (ii) the radiation 

characteristics; (iii) the ability to produce the radionuclide with high specific 

activity (e.g. high amount of radioactivity per unit mass) and (iv) the radionuclide 

purity [63, 64]. 
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The physical half-life of the chosen radionuclide for therapeutic applications, 

should be ideally about two or three times longer than the time required for 

achieving maximum uptake of the radiopharmaceutical in the target tissue [55].  

An excessively long physical half-life increases the amount of radiation that is 

delivered to tumour cells to achieve therapeutic level before excretion, but also 

can create problems related with environmental safety in case of spill or early 

death of the patient [59, 65].  

On the other hand, an extremely short physical half-life may not allow enough 

time for the tumour-targeting process to take place, resulting that the majority of 

the radioactive decays occurs in the vicinity of or even in the health tissues [59, 

65]. 

Incorporated radionuclides are also characterized by their biological half-life, 

which is given by the time required to excrete half of the substance from the 

organism. The biological half-life depends also from the chemical form in which 

the radionuclide is present and that affects the metabolic pathways of excretion. 

The combined effect is described by the effective half-life, defined as in the 

equation 1 [55]: 

      
            
           

 

Equation 1.Equation for calculating the effective half-life, being T½e the effective half-

life, T½b the biological half-life and T½f the physical half-life (Cantone M. et al., 2011). 

 

If the travelling time of the carrier molecules in the body is too long, and the 

physical half-life of the radionuclide is short, the molecules will reach their 

targets after the radionuclide has already decayed. As a consequence, this will 

cause an unspecific, unacceptable radiation dose to healthy tissues. If the same 

carrier molecule is labelled with a radionuclide with a longer half-life, practically 

all carriers would deliver their radioactive charge to the target cells, but the dose 

rate might be too low for achieving a therapeutic effect [55, 61]. Therefore, the 

physical half-life of the radionuclides should preferably be of the same order of 
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magnitude as the biological half-life of the radionuclide or the radionuclide 

conjugate [59]. 

The characteristics of the radiation emitted during radionuclide decay are also 

an important point to be considered. If the radionuclide during its decay emits 

gamma photons with an appropriate energy to perform images, it could be 

useful to monitor the distribution of the radiopharmaceutical in the patient for 

assessing dosimetry [41].  

Radionuclides must be available with high purity, high activity concentration, 

and high specific activity (i.e. Ci/µg or GBq/µg). Radiolabelled compounds 

should be prepared as high specific activity drugs since they target low-capacity 

systems [41, 66]. For example, the therapeutic efficacy of a radiolabelled ligand 

may be compromised by molecules with improper labels that will competitively 

bind to the receptor site and may obscure the binding of the radiolabelled 

ligand, since the capacity to targeted receptors on malignant cells may be as 

low as a few nanomoles. Thus, specific activities ≥ 70-200 GBq/µg are required 

[41]. 

To meet the requirements, a radionuclide to use for therapy, should have some 

physical properties: 

– The radionuclide should emit alpha (α) or beta negative (β-) particles, Auger 

and/or conversion electrons in sufficient abundance to induce tumour cell 

death; 

– High abundance of high-energy gamma rays is undesirable since it gives 

whole-body irradiation; however, low abundance photons of 100 to 200 keV 

might be of advantage for imaging and therapy monitoring using a gamma-

camera; 

– A physical half-life of 1 to 14 days, depending on in vivo pharmacokinetics of 

the targeting agent, seems to be optimal to ensure the therapeutic effect; 

– To produce the radionuclide with a high specific radioactivity; 

– To produce the radionuclide in a cost-effective way, allowing it to be more 

available; 
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– High-yield labelling of proteins and peptides and provide a conjugate which 

is stable in the blood circulation, enabled by the chemical properties of the 

radionuclide; 

– To avoid the accumulation of radiocatabolites in normal organs or tissues 

they should be quickly excreted from the body [59, 67]. 

 

Radionuclides that decay by β--particle emission, α-particle emission, and 

Auger-electron are effective for delivering localized cytotoxic doses of ionizing 

radiation [41, 66]. Each type of these particles has different effective range, LET 

and RBE. The type of particle emission that is applicable will depend on the size 

of the tumour, intra-tumour distribution (i.e., degree of heterogeneity of 

radiotracer deposition), pharmacokinetics of the tracer, etc. Gamma-ray 

emission may be or may be not accompany the particle emission process and 

little will contribute to the therapeutic effectiveness, however will augment 

irradiation to non-target tissues. On the other hand, in cases where the gamma-

ray energy is in diagnostically useful range, is feasible to perform radionuclide 

imaging of tracer biodistribution.  

As referred before, the biological effect of radiation is directly related to the LET, 

which is the average energy deposited by a particle per unit track length 

(keV/µm). High-LET radiation like α-particle radiation (25-230 keV/µm) [59] can 

destroy cells even by single hits, whereas low β-radiation (LET ~1 keV/µm) is 

much less efficient. Auger emitters may reach the LET values of α-particles but 

confined in a range of about 10 nm, which explains why they should be targeted 

directly to DNA [59, 68]. 

The beta negative particles are high energy electrons emitted from the nucleus 

as a spectrum or continuum of energies (and ranges) up to a maximum value. 

The range of these high-energy electrons is much greater than α particles, and 

the low ionization density along their tracks accounts for their low LET [41, 66]. 

Radionuclides that decay by β--particle emission are used most extensively for 

radiotherapeutic applications in current clinical practice. Utilization of β--particle 

emitters provides a mechanism to produce a highly homogeneous radiation 
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dose even though their deposition is heterogeneously distributed in target 

tissues, considering their range. Therefore, these radionuclides are useful for 

treatment of bulky tumours and therefore, the long range can compensate the 

poor penetration of the targeting molecule into a tumour mass and overcome a 

possible heterogeneity of target expression. On the other hand, high energy 

beta negative particles are inefficient for destroying single cancer cells or small 

micrometastases, because most of the energy associated with the radionuclide 

decay is deposited outside the malignant cell [41, 59]. This means that 

considerable cross-fire will occur with possible sterilization of untargeted 

neoplastic cells from radioisotopes deposited on neighbouring tumour cells. 

Table 6 provides a list of β--particle emitting radionuclides with therapeutic 

potential [67, 69].  

 

                                            
1
 The Table 6 is a modified version of the Table 3 of the following publication: Ferreira S, Dormehl I, Botelho MF: 

Radiopharmaceuticals for bone metastasis therapy and beyond: a voyage from the past to the present and a look to the 
future. Cancer biotherapy & radiopharmaceuticals 2012, 27(9):535-551. 

Table 6.Physical properties of some β--emitting radionuclides considered for 

radionuclide therapy (Ferreira S. et al., 2012; Palmedo H., 2007). 

Nuclide Half-life 

(days) 

Average β 

energy (MeV) 

Average 

range (mm) 

Photon radiation (keV) 

High-energy beta-particles 
188Re 0.7 0.744 3.5 155 (15%) 
166Ho 1.1 0.666 3.2 80.5 (6.7%) 
90Y 2.7 0.935 3.9 _ 
76As 1.1 1.0 5.0 559 (45%); 657 (6.2%) 
89Sr 52 1.4 6.6 _ 
32P 

1.4 1.7 8.1 _ 

Medium-energy beta-particles 
77As 1.6 0.228 1.2 _ 
153Sm 1.9 0.229 1.2 103 (30%) 
186Re 3.7 0.362 1.8 137 (9.4%) 

Low-energy beta-particles 
67Cu 2.6 0.141 0.71 91 (7%); 93 (16%); 185 (49%) 
131I 8.0 0.181 0.91 364 (82%) 
161Tb 6.9 0.154 0.77 75 (10%) 
177Lu 6.7 0.133 0.67 113 (6%); 208 (11%) 

Legend: Some radionuclides considered for β
-
 therapy, arranged according to the energy of β

- 

particles as high-energy (0.666 to 1.7 MeV), medium-energy (0.228 to 0.362 MeV) and low-

energy (0.133 to 0.181 MeV).
1
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Alpha particles are high-energy helium nuclei that produce high densities of 

ionization along their linear tracks and therefore are classified as high LET 

radiation. The alpha particles deposit their energy over short ranges (i.e. usually 

between 40 µm to 100 µm) [41, 66].  

Because of their relatively short range and high LET, alpha particles have the 

capability for producing a high degree of tumoricidal activity while normal 

surrounding tissues are spared [41, 66].  

The high LET of alpha particles limits the ability of cells to repair damage to 

DNA and is effective in killing cells in hypoxic conditions. The high RBE of this 

type of radiation results in inactivation of cells with few alpha particles in 

contrast to gamma radiation or beta particles. On the other hand, a 

disadvantage of alpha emitters is that they require binding of the carrier to most 

cancer cells in a tumour or to their near neighbours for irradiation of all cells [41, 

66]. In contrast to β--particle emitters, α-particle emitters are more compatible 

for use in treatment of tumours with small diameters (like metastasis) and where 

their localization within the tumour is more spatially homogeneous. Although 

more than 100 radionuclides exist which decay by the emission of alpha 

particles, the vast majority have half-lives that are too long to be compatible with 

in vivo applications, and are difficult to produce in large quantities with 

acceptable radionuclidic purity [41]. Table 7 provides a list of α-particle emitting 

radionuclides with therapeutic potential.  

 

Table 7.Some α-particle emitting radionuclides for radionuclide therapy (Cantone M. et 

al., 2011; Stigbrand T., 2008). 

 Nuclide Half-life Average α 

energy (MeV) 

Average range 

(µm) 

Photon radiation (keV) 

213Bi 45.6 min 8.320 85 440.5 (25.9%) 
212Bi 60.6 min 7.738 82 None 
211At 7.2 hours 6.746 65 None 
149Tb 4.1 hours 3.967 28 165 (26.4%) 
226Th 30.6 min 6.917 70 None 
225Ac 10.0 days 6.867 69 218.1 (11.4%); 440 (25.9%) 
224Ra 87.8 hours 6.566 64 241 (4.1%); 238.6 (43.6%) 
223Ra 11.4 days 5.668 53 269.5 (13.9%); 351 (12.9%) 

Legend: Some radionuclides considered for α therapy, and its physical characteristics, namely the 

physical half-life, the energy and range of α particles. Also is indicated if the radionuclides 

represented in the table are as well emitters of gamma radiation or not.  
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Low-energy Auger electrons, which are emitted during electron capture or 

isomeric transition decay, are also considered suitable particles for inactivation 

of single spread malignant cells. These particles, due to their high yield per 

decay, are extremely radiotoxic if they hit DNA, considering the high probability 

to induce a severe double-strand break, and, hence, inactivate the cell [70]. 

This is the result of the deposition of a concentrated amount of energy, emitted 

in the form of a shower of Auger electrons with energies ranging from a few to 

several hundred electron volts, into an extremely small volume within the 

nuclear DNA [41, 66].  

This type of radiation exposure produces decreasing survival curves with no 

shoulder at low doses and is relatively independent of oxygen effects. Since 

these auger electron emitter’s radionuclides are less cytotoxic if they are 

present in the cytoplasm or on the surface of target cells, they must be 

incorporated into the nucleus of cells [41, 66].  

In vivo and in vitro studies demonstrated that the toxicity of Auger electron 

emitters approximates that for low LET radiation when the emitter is localized in 

the cytoplasm and, on the other hand when Auger-electron emitter is covalently 

bound to DNA in the cellular nucleus, they approximates that for high LET 

radiation. Therefore, in order to complete eradication of cancer cells in a 

tumour, the Auger-emitting radiopharmaceuticals must be capable of localizing 

in all of the targeted cells [41]. 

While efforts are being made in designing therapeutic radiopharmaceuticals 

with several promising Auger-electron emitters, the design of effective Auger-

emitting targeting agents for in vivo targeting and treatment of cancers remains 

a challenge [41]. 

Table 8 provides a list of Auger and conversion electron emitters with 

therapeutic potential. 
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2.2.2. Physical and chemical characteristics of Technetium-99m 

Technetium-99m (99mTc) is the most commonly used isotope for nuclear 

imaging due to favourable physical properties for scintigraphy and its versatile 

chemistry that allows the incorporation of the label into a manifold of ligands. 

Technetium-99m decays with a half-life of 6.02 hours by isomeric transition and 

emission of gamma-rays of 140 keV, which is ideal for gamma-camera 

detection. The short half-life and the energy of the gamma-rays allow the use of 

significantly higher doses compared to other radioisotopes, resulting in higher 

count rates, contributing for the increase in the temporal resolution for dynamic 

studies. On the other hand, the lifetime is long enough to allow for target-

specific applications. Large amounts of radioactivity may be used with the 

SPECT technology, producing high-contrast images with the gamma-camera 

[71]. Technetium-99m is generator-produced from molybdenum-99 (99Mo), 

Table 8.Compilation of Auger and conversion electron emitters in use or in 

discussion for radionuclide therapy (Cantone M. et al., 2011; Stigbrand T., 2008). 

Nuclide Half-life Average e- properties Decay Mode 

Energy (keV) e-/decay 
51Cr 20.70 days 3.97 4.68 EC 
67Ga 78.28 hours 7.07 7.03 EC 
77Br 57.04 hours 4.13 4.96 EC, β+ 
94Tc 

4.88 hours 5.17 6.42 EC 
99mTc 6.01 hours 0.96 4.67 IT 
111In 2.82 days 6.51 6.05 EC 
114In 49.51 days 4.15 7.74 EC 
115mIn 4.49 hours 2.85 5.04 IT, β- 
123I 13.20 hours 7.33 12.60 EC 
124I 4.18 days 4.87 8.60 EC, β+ 
125I 59.40 days 11.90 21.00 EC 
167Tm 9.25 days 13.60 11.40 EC 
193mPt 4.33 days 10.90 20.30 IT 
195mPt 4.01 days 21.80 31.5 IT 
201Tl 73.01 hours 15.27 36.9 EC 
203Pb 51.92 hours 11.63 23.3 EC 

Legend: Some radionuclides considered for auger and conversion electron therapy, and its 

physical characteristics, namely the physical half-life, the energy of auger and conversion 

electrons, and the type of radioactive decay (EC - Electron Capture; IT - Isomeric 

Transition). 
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which allows the general availability of the tracer. Molybdenum-99, with a half-

life of 66.02 hours, decays by several β-particle transitions producing 

metastable 99mTc with 87.5% intensity, while 12.5% decay directly to long-lived 

technetium-99 (99Tc). Subsequently, metastable 99mTc decays by isomeric 

transition to 99Tc. 99Tc decays with a half-life of 212000 years to stable 

ruthenium-99 (99Ru). The process of radioactive decay of 99Mo is represented in 

fig. 2 [72].  

 

 

 

The parent radionuclide 99Mo can be prepared in abundant quantities by the 

fission of uranium-235 in a nuclear reactor with a fission yield of about 6%. 

There are only a limited number of industrial companies producing 99Mo from 

fission products, but collectively they have adequate capacity to meet the 

world’s demand for 99Mo [54]. 

99Mo/99mTc generators produced for worldwide application have a sophisticated 

system for safe elution of the daughter radionuclide. The generator column is 

well shielded with lead, and the whole system must be adequately shielded to 

reduce radiation exposure of the operator to a permissible level [55]. 

Parent 99Mo and the daughter with shorter half-life, 99mTc, reach the transient 

equilibrium, characterized by the decay of both parent and daughter 

radionuclides with one apparent half-life, namely that of the 99Mo. Transient 

equilibrium is established when the half-life of parent is long with respect to 

daughter radionuclide, but parent activity changes perceptibly during the period 

Figure 2.Decay scheme of parent 99Mo to stable 99Ru (Cantone M. et al., 2011). 
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under consideration. Build-up of daughter 99mTc activity occurs until a maximum 

is reached, and then the “effective” half-life of the daughter activity will be 

essentially equal to the parent half-life, as long as parent activity continues to 

produce the daughter radionuclide. The ratio of daughter activity to parent 

activity is unchanging with respect to time, but the activity of each is declining 

with respect to time [55, 72]. 

Several methods have been used to separate the daughter nuclide 99mTc from 

parent 99Mo, the three most common methods are column chromatography, 

solvent extraction, and sublimation [72, 73]. The 99Mo/99mTc generator used in 

nuclear medicine is based on the chromatographic separation of 99mTc-

pertechnetate, where 99Mo is bound strongly to a bed of chromatographic-grade 

alumina. The daughter radionuclide 99mTc is eluted with sodium chloride from 

aluminium oxide (Al2O3) column, being obtained sodium pertechnetate 

(Na99mTcO4). A general representation of the components that constitutes a 

99Mo/99mTc generator is represented in fig. 3 [55]. 

 

 

 

Technetium-99m chemistry is primarily the chemistry of anionic pertechnetate 

(99mTcO4
-), obtained from the 99Mo/99mTc generator with high specific activity. 

Anionic pertechnetate is no-carrier-added because 99mTc activity is present in 

the radiopharmaceutical kit at 10-8 to 10-9 M [74].  

Figure 3.Components of the 99Mo/99mTc generator system (Cantone M. et al., 2011). 
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The element technetium belongs to the second-row elements of the group VIIB 

of the periodic table, between manganese and rhenium. The atomic radius of 

technetium is similar to rhenium, and thus, many similarities are found in the 

chemistry between these two elements. Technetium can exist in eight oxidation 

states, varying from (VII) to (-I). The most stable states are (VII), (V), (IV), (III), 

(I) and 0. The most difficult states to stabilize are (VI), (II) and (-I) [75]. 

The highest oxidation state (VII) is occupied by the pertechnetate anion (TcO4
-). 

The representation of the chemical structure of the pertechnetate anion is 

represented in fig. 4 [74].  

 

 

 

The chemical reactivity of the pertechnetate anion is negligible, therefore it does 

not bind directly to any ligand. Consequently, for the production of 99mTc 

pharmaceuticals, reduction to a lower oxidation state in the presence of a 

suitable ligand is a prerequisite for the synthesis of 99mTc-labelled molecules. 

During reduction, the ligand stabilizes the lower oxidation state, otherwise, 

colloidal TcO2 is formed in aqueous media [74]. 

The so-called coordination complexes of technetium (central metal) are formed 

by means of bonds between technetium acting as Lewis acid, and atoms or 

functional groups, acting as Lewis bases (donate electron pairs). Typical ligands 

for technetium complex formation may have one donor group (monodendate) 

such as amine, amide, thiol, phosphine, oxime, or isonitrile. With two donor 

groups, the complex is bidentate, where more than two groups form a single 

molecule bind to one Tc core, being designated chelate [74]. 

 

2.2.3. Physical and chemical characteristics of Rehnium-188 

Rhenium-188 (188Re) is a β- particle emitter, and is an excellent candidate for 

radionuclide therapy [76, 77]. This radionuclide is easily obtained carrier free as 

Figure 4.Pertechnetate anion (Mazzi U., 2007). 
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perrhenate ion (ReO4
-) in normal saline solution [78] or perrhenic acid (HReO4) 

in aqueous HCl or HNO3 [79] from a rugged and economical alumina based 

tungsten-188/rhenium-188 (188W/188Re) generator system. The alumina-based 

188W/188Re generator is completely analogous to the 99Mo/99mTc generator, 

nevertheless, the 188W/188Re generator system has a greater shelf life, since 

188W has a much longer physical half-life (69 days) than 99Mo (66 hours) [61, 

79, 80]. 188Re decays by emitting high energy β- particles (2.1 MeV) with a 

maximum penetration in tissue of 10–11mm making this radionuclide a suitable 

option for therapy of large tumour masses, as discussed before [66, 81]. Its 

gamma ray emission (0.155 MeV) can be exploited for dosimetry purposes and 

to monitor biological distribution during therapy [61, 66, 76, 82, 83]. It also has a 

relatively short physical half-life of 16.9 hours, which allows the use of high 

doses and reduces the problem of radioactive waste handling and storage [82, 

84].  

The element rhenium belongs to the third-row elements of the group VIIB of the 

periodic table. Rhenium can exist also in eight oxidation states, varying from 

(VII) to (-I). The highest oxidation state (VII) is occupied by a perrhenate anion 

(ReO4
-) [75]. 

An important factor that adds value to 188Re-labelled drugs is the fact that 99mTc 

is a chemical congener of Re, making the chemistry of both 99mTc and 188Re the 

same or nearly identical in many cases. Therefore, when the chemistries of 

these radionuclides are similar, the 99mTc agents can be used as the “matched 

pair” for the corresponding 188Re agent, making it feasible to obtain excellent 

diagnostic imaging in patients allowing for pre- and post-assessment of patients 

treated with therapeutic 188Re analogues. Strategies for synthesizing 188Re-

labelled site-specific radiopharmaceuticals are based on, and parallel to, efforts 

being made to develop new 99mTc drugs [41].  

 

2.2.4. Cold kits formulation for radionuclide labelling  

Radiopharmaceuticals are medical formulations containing radioisotopes which 

are safe for administration in humans for diagnosis or for therapy. Currently are 
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over 100 radiopharmaceuticals developed using either reactor or cyclotron 

produced radioisotopes [54]. 

The particularity of radiopharmaceuticals consist of their capability to retrieve 

information on a molecular level and to address systems with very low densities 

of receptor molecules in vivo and in a non-invasive way [41, 55]. 

The preparation of 99mTc pharmaceuticals is greatly facilitated by the availability 

of commercial cold kits containing the chemical ingredients as a lyophilized 

formulation ready for labelling with 99mTc-pertechnetate. The preparation of any 

99mTc pharmaceutical is performed by using a commercial cold kit and adding 

the required 99mTc activity in a certain volume of sodium pertechnetate. The 

labelled product is a sterile, pyrogen-free solution suitable for intravenous 

injection. Any abnormality observed by visual inspection of the injected solution 

is a cause to reject the preparation [71].  

Cold kits are prepared in such way as to have a long shelf life, ranging from 

several months to a few years, and may be transported at room temperature 

and then stored under refrigeration to ensure stability [54]. 

A kit contains the active ingredient (compound to be labelled with the 

radionuclide), a reducing agent, and may contain authorized excipients and 

additives, such as antimicrobial agents, antioxidants, buffer, a nitrogen 

atmosphere, etc. The reducing agent is responsible for the reduction of the 

radionuclide to a lower valency state. It’s considered an essential material, 

because without reduction, there is no labelling reaction, considering that, for 

example pertechnetate anion that is in the oxidation state (VII) is not chemically 

reactive and therefore it must be reduced. The shelf-life of lyophilised kits is 

usually in excess of 1 year. Freeze-drying, or lyophilisation, is the drying of 

frozen materials by sublimation, this is the direct transition from the frozen state 

into vapour, without any intermediate liquid phase [71, 85]. 

The lyophilisation method is similar to ordinary vacuum distillation with one 

essential difference, that is the material to be dried is first frozen and then 

subjected to a very low absolute pressure (high vacuum) and controlled heat 

input. The heat drives the water from the solid to the vapour state. Under these 
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conditions, the water content, in the form of an ice matrix, is selectively removed 

via sublimation [85].  

The same amount of heat that is required in the drying chamber for the 

sublimation of the water is subsequently liberated as the water vapour 

condenses at the ice condenser, and must be removed by means of 

refrigeration units. Therefore, three basic conditions have to be fulfilled in order 

to carry out the freeze-drying process: (i) the temperature of the material must 

be regulated so that thawing is avoided and vapour pressure above the material 

does not sink due to overcooling; (ii) the water vapour molecules escaping from 

the frozen material should be removed in such manner that saturation of vapour 

pressure above the substance to be dried is avoided; (iii) the process should 

take place in a vacuum so that removal of water molecules may not be impeded 

by the presence of residual gases [85]. 

In practice, the freeze-drying process should take place taking into account the 

following steps: 

1. The solution is dispensed into the vial from 0.5 to 2.5 cm height for an 

efficient drying. The vials are loosely capped with rubber stoppers, and then 

are put into the vacuum chamber. 

2. The vials with the product are gradually frozen below the eutectic point of 

the solution (typically to -40 °C). 

3. The condenser is turned on and observed until it reaches its maximum value 

(typically -50 °C). 

4. The vacuum pump is turned on until the lowest value of vacuum is obtained 

(typically 10 to 20 mHg). 

5. Heat is then applied to the product through a controlled heating-cooling 

system, to facilitate the sublimation process.  

6. A secondary drying cycle is usually applied so ensure the complete absence 

of humidity from the product. 

7. After completion of the drying cycles, the product is closed with a rubber 

stopper in the vacuum chamber under a nitrogen atmosphere [85]. 

 



 
 

44 
 

The 99mTc or 188Re eluate used for radiolabelling must comply with the 

specifications stated in the pharmacopeia. Additionally, the specific activity and 

the activity concentration (activity/ml) should be known. Labelling with 99mTc or 

188Re can be performed directly or by exchange. Direct labelling is performed by 

adding 99mTc or 188Re eluate in a suitable volume to a sterile kit. The labelling 

reaction requires reduction of pertechnetate/perrhenate, which is reacting with 

the ligand forming the labelled product in high yield (>90%). In a few 

exceptions, an intermediate ligand complex is formed that is stabilized by ligand 

exchange during heating [74].  

After dissolving the lyophilisate in the added volume, incubation is an essential 

step to obtain the radiolabelled medicinal product, considering that is in this 

phase that the chemical reactions take place, resulting in 99mTc or 188Re 

labelling. If incubation is inadequate, the labelling reaction may not be 

completed, and the radiopharmaceutical may not be suitable for administration. 

Each kit requires specific incubation conditions, but in general, this process is 

carried out at room temperature in a clean area. In certain cases, the incubation 

must be performed in a boiling water bath. Incubation is normally performed 

with occasional agitation of the shielded reaction vial [71]. 

Because there is no effective chemistry available to attach a pertechnetate or 

perrhenate ion to an organic moiety, reduction of 99mTc(VII) or 188Re(VII) in 

TcO4
- or 188ReO4

-, to a lower oxidation state is a prerequisite for 99mTc and 188Re 

complex formation in high yield and purity. Pertechnetate and Perrhenate are 

week oxidants, weaker than permanganate, being reduced by weak reductants 

in acid medium. Kits contain very low amounts of stannous ion for reduction of 

99mTc-pertechnetate or 188Re-perrhenate [74]. Nevertheless, SnCl2 (stannous 

chloride)is usually in high excess, most of the time because stannous slats are 

spontaneously oxidized in air, and also to assure validity of kits beyond the 

expiration date [61, 74]. The amount of stannous chloride is empirically 

optimized for each individual kit formulation, being necessary to maintain the 

balance between two parameters, the first is that a large excess of stannous 

chloride should be used with respect to the added pertechnetate or perrhenate 

activity and the second is that the amount of stannous chloride should be kept 

as low as possible in order to avoid further reduction of pertechnetate or 
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perrhenate to a lower oxidation state. The amount of stannous chloride in the 

commercially available kits, ranges normally from 0.0076-0.5 mg, corresponding 

to a ratio of Sn to 99mTc in the range of 103 to 105 [61, 86]. 

Formation of colloidal TcO2 or ReO2 is avoided in the presence of ligand, which 

competes for the reduced technetium or rhenium species, producing the 

labelled 99mTc or 188Re pharmaceutical. In the absence of ligand, a mixture of 

hydrolyzed, insoluble 99mTc or 188Re species, TcO2.nH2O and ReO2.nH2O, are 

formed. The kinetic mechanism of reduction-substitution is rather complicated, 

and sometimes it depends on the concentration of carrier 99mTcO4
- or 188ReO4

- 

[61, 86]. 

in conclusion, kit composition is optimized to ensure that the unique 99mTc- or 

188Re-labelled complex is obtained in high yield. Several factors influence the 

reduction/coordination process that is primarily the nature and the amounts of 

reductant and ligand, pH, and temperature. In order to provide suitable pH 

environment for the formation of a specific 99mTc or 188Re complex, buffers are 

important components in kit formulations [61, 74]. 

 

2.2.5. Quality control of radiopharmaceuticals 

Since radiopharmaceuticals are intended for human administration, it is 

imperative that they undergo strict quality control measures. Quality control 

involves several specific tests and measurements that ensure the purity, 

potency, product identity, biological safety, and efficacy of 

radiopharmaceuticals. The quality control tests are divided in physicochemical 

tests and biological tests. The physicochemical tests indicate the level of 

radionuclidic and radiochemical impurities, determine the pH, ionic strength, 

osmolality, and physical state of the sample. The biological tests establish the 

sterility, apyrogenicity, and toxicity of the material [55, 61]. 
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2.2.5.1. Radiochemical purity 

The radiochemical purity of a radiopharmaceutical is the fraction of the total 

radioactivity in the desired chemical form in the radiopharmaceutical. Values 

above 90% are desirable, because a different label will yield a different 

biodistribution, and thus will result in a distortion of the image and/or lead to 

problems in therapy. Radiochemical impurities arise from decomposition due to 

the action of several factors like the solvent, change in temperature or pH, light, 

presence of oxidizing or reducing agents in inadequate concentrations, and 

radiolysis. Examples of radiochemical impurities are free pertechnetate or 

perrhenate (99mTcO4
- or 188ReO4

-) and reduced/hydrolysed 99mTc or 188Re 

(TcO2.nH2O or ReO2.nH2O) [55, 61].  

A number of analytical methods are used to detect and determine the 

radiochemical impurities in a given radiopharmaceutical. One of the most 

important is the paper and thin-layer chromatography [55, 61].  

Paper and thin-layer chromatography (TLC) is commonly used for the 

determination of radiochemical purity in nuclear medicine. The principle of this 

analytical method is that a mobile phase (solvent) moves along a layer of 

adsorbent (stationary phase) due to capillary forces. Depending on the 

distribution of components between the stationary and mobile phase, a 

radioactive sample spotted onto the stationary phase will migrate with different 

velocities, and consequently, impurities are separated. The distance each 

component of a sample migrates is expressed as the Rf value. The Rf is the 

relative distance of migration of a component in relation to the solvent front 

(SF), and can be calculated following the equation 2 [55]: 

    
 istance from origin of the component

 istance of the SF
  

Equation 2.Equation for calculation of Rf. Rf is the distance of the migration of a 

certain component. SF is the solvent front (Cantone M. et al., 2011). 

 

The Rf values range from 0 to 1. If a component migrates with the solvent front, 

the Rf is 1, and if a component remains at the point of application (origin), the Rf 
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is 0. The main principles of separation are adsorption (electrostatic forces), 

partition (solubility), and ion exchange (charge). Depending on the movement of 

the mobile phase, TLC may be ascending or descending. In the nuclear 

medicine laboratory, ascending TLC is the method of choice [55, 87].  

TLC offers reliable separation properties with easy and rapid performance. The 

applied sample remains quantitatively on the plate, and thus, no losses of 

radioactivity during analysis occur. A broad range of stationary phases is 

commercially available including silica gel, reversed-phase silica, aluminium 

oxide, synthetic resins (ion-exchange chromatography), and cellulose (partition 

chromatography). The length of plates (foils) may vary between 10 and 20 cm. 

The main limitation for standard TLC techniques is the time required for 

analysis. Due to the particle size (20 µm) of adsorbent materials, the developing 

time is usually > 30 minutes, this is to long considering additional time for 

measurements and quantification [88]. Instant TLC (ITLC) materials are the 

most frequently used stationary phases in nuclear medicine, because they fulfil 

the need for rapid and accurate analysis of the radiochemical purity of 

radiopharmaceuticals. ITLC plates are made of fibreglass sheets, impregnated 

with an adsorbent, usually silica gel. Due to the fine mesh material, the 

migration properties are increased many-fold comparing to TLC materials. The 

time for development in an ITLC plate may be reduced to < 5 minutes, without 

affecting the separation of radiochemical impurities. Although ITLC materials 

are more expensive than TLC materials, fibreglass sheets offer high economy, 

since the flexible material may be cut to any size [55, 87, 88].  

The chemical properties of silica gel are based on siloxane (Si-O-Si) and silanol 

(Si-OH). Polar groups are responsible for the interaction of the adsorbent with 

water and with the sample to be analysed. Silica stationary phases (3-8 µm) 

have been produced for ITLC as silica gel (ITLC-SG) and silicic acid (ITLC-SA), 

being the ITLC-SG the most frequently used adsorbent for routine 

radiochemical purity determinations. Some separations of radiopharmaceuticals 

are based on adsorption chromatography with aluminium-coated plates. Also 

aluminium oxide (Al2O3) has polar properties it is also a weak anion exchange 

material.  
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Cellulose is an organic material that consists of polymerized glucose fibbers 

(400-500 molecules) in nature and also as a synthetic product (40-200 glucose 

molecules). Cellulose interacts with water and serves as stationary phase for 

the separation of polar substances by paper chromatography. As a powder, it is 

used as an adsorbent for TLC. Paper materials show low-resolution properties, 

however, since paper is robust and easy to cut, paper chromatography is still 

used for many applications. Like ITLC, paper chromatography is used 

“ascending” or “descending”. Likewise, a developing distance of 8-10 cm is 

usually sufficient for the separation of free pertechnetate or perrhenate and 

colloidal impurities. The developing time might be slightly higher, but usually it 

takes only 10 minutes if small sized paper strips are used. Whatman 3MM is the 

material of choice for determination of the radiochemical purity by partition 

chromatography [55]. The migration properties of free pertechnetate or 

perrhenate may be influenced by the choice of different mobile phases. When 

silica gel or paper is used as stationary phase, the migration of free 

pertechnetate or perrhenate depends on the solubility of this anion in the 

solvent. In a polar solvent like saline, 80% of methanol, acetone or 2-butanone 

(methyl ethyl ketone, or MEK) pertechnetate or perrhenate migrates with the SF 

(Rf = 0.6 – 1.0). If a non-polar, lipophilic solvent (e.g., ethylacetate, chloroform) 

is used and the sample is dried, free pertechnetate or perrhenate remains at the 

origin. Colloids do not migrate in most paper chromatography or ITLC systems 

since insoluble material will stay at the origin, and hanging the mobile or the 

stationary phase will not affect the migration properties of colloidal 99mTc or 

188Re [87, 88]. In saline, free pertechnetate or perrhenate and 99mTc or 188Re 

complex migrate with the SF, while reduced/hydrolysed 99mTc or 188Re remains 

at the start [55].  
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Section II. Literature Review 

Chapter 3.Primary Tumour and Metastases of Bone and the emerge of 

PEI-MP2 

 

3.1. Introduction 

Primary bone cancer means that the cancer originated from cells in the hard 

bone tissue [67]. Primary bone tumours are fairly rare (two in every 1000 

cancers). Some conditions that may simulate primary bone tumours, such as 

metastasis and non-neoplastic conditions for instance inflammatory processes, 

bone cysts, fibrous dysplasia, non-ossifying fibroma, Paget’s disease of bone, 

etc., by far outnumber the cases of true bone tumours. There are different types 

of primary bone cancer classified by the type of cell which occurs in the cancer. 

Types of benign bone tumours include osteoid osteoma, osteoblastoma, 

enchondroma, chondromyxoid fibroma. Types of malignant bone tumours 

include osteosarcoma, chondrosarcoma, Ewing’s sarcoma, malignant fibrous 

histiocytoma, fibrosarcoma, giant cell tumour bone and chordoma [67, 89, 90]. 

A short characterization of each of these malignant bone tumours is presented 

in table 9 [90, 91]. 

 

Table 9.Characterization of malignant bone tumours (NCI, 2008; ACS, 2012).  

Bone cancer Tissue of origin Affected bones 

Osteosarcoma Osteoide  Arms, legs and pelvis 

Chondrosarcoma Cartilage Trachea, larynx and chest wall 

Ewing’s sarcoma Bone, Soft tissue  Backbone, pelvis, legs and arms 

Malignant fibrous histiocytoma Soft tissue  Legs  and arms 

Fibrosarcoma Soft tissue Legs, arms and jaw  

Giant cell tumour bone Bone, Soft tissue Legs and arms 

Chordoma Soft tissue Skull and spine 

Legend: Characterization of some malignant bone tumours, considering the tissue of origin and 

the most affected bones in the body by type of tumour. 

 

                                            
2
 This Chapter is a modified version of the following publication: Ferreira S, Dormehl I, Botelho MF: 

Radiopharmaceuticals for bone metastasis therapy and beyond: a voyage from the past  to the present and a look to the 
future. Cancer biotherapy & radiopharmaceuticals 2012, 27(9):535-551. 
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The three most common genuine primary bone malignancies are 

osteosarcoma, chondrosarcoma, and Ewing’s sarcoma, accounting for only 

0.2% of all malignancies in the United Kingdom and United States of America. 

However in children (< 15 years), malignant bone tumours account for 

approximately 5% of all malignancies [67, 89, 90]. The treatment and prognosis 

for bone cancers depend, to a large extent, on the patient’s stage at diagnosis. 

One system that is used to stage all bone cancers is the American Joint 

Commission on Cancer (AJCC) system. It combines 4 factors to determine 

stage that go by the initials T, N, M, and G. The letter T stands for features of 

tumour (its size and if it is in more than one spot on the bone), N stands for 

spread of lymph nodes, M is for metastasis to distant organs, and G is for the 

tumour’s grade. The grade of a tumour is based on how abnormal the cells look 

when seen under a microscope. The higher the number, the more abnormal the 

cells appeared. Higher grade cancers tend to grow and spread more quickly 

than lower grade tumours [90]. The TMNG stages for bone cancer are 

summarized in table 10 [90, 92]. 

 

Table 10.TMNG stages of bone cancer (ACS, 2012; CRUK, 2013). 

Tumour (T) Description 

TX Primary tumour can’t be measured. 

T0 No evidence of the tumour. 

T1 Tumours that are 8 cm or less at their widest point. 

T2 Tumours larger than 8 cm. 

T3 High grade tumours where the tumour is in more than one place on 

the same bone. 

Node (N) Description 

N0 There are no cancer cells in lymph nodes close to the tumour. 

N1 There are cancer cells in nearby lymph nodes. 

Metastasis (M) Description 

M0 The cancer has not spread to any other part of the body. 

M1a The cancer has spread to the lung. 

M1b The cancer has spread to other areas of the body apart from the lungs 

Grade (G) Description 

G1-G2 Low grade. 

G3-G4 High grade. 

Legend: The TNMG stages of bone cancer is organized in four categories, namely the size of 

the primary tumour (T), the spread to lymph nodes (N), the presence of metastases (M) and the 

grade (G) of the tumour considering the number of abnormal cells, considering the origin. For 
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each of these categories, subdivisions may be made assigning a number to T, N, M or G, in a 

growing sequence, where the higher the number the lower is prognosis. For the category grade 

(G), two subdivisions are made, considering a low grade (G1-G2) and a high grade (G3-G4) 

tumour. 

 

This information about the tumour, lymph nodes, metastasis, and grade is 

combined in a process called the stage grouping. The stage is then described in 

Roman numerals from I to IV. This information is summarized in table 11 [90]. 

 

 

Table 11.Bone cancer staging (ACS, 2012; CRUK, 2013). 

Stage Description 

Stage I  

Stage IA 

 

 

 

 

Stage IB 

 

Low grade bone cancer that is still completely inside the bone in which 

is started. The tumour may press on the bone wall and cause swelling, 

but the cancer has not grown through the bone wall or spread to any 

other part of the body. This is called an intracompartmental bone 

cancer. T1, N0, M0, G1-G2. The tumour is 8 cm or less. 

Low grade bone cancer but has grown through the bone wall. It is called 

an extracompartmental bone cancer (this means the cancer has grown 

out of the area of the bone in which it started). T2 or T3, N0, M0, G1-G2. 

The tumour is either larger than 8 cm or it is in more than one place on 

the same bone. 

Stage II 

Stage IIA 

 

 

 

Stage IIB 

 

 

High grade bone cancer but still completely within the bone in which it 

started. It has not spread to other areas of bone or any other part of the 

body. It is an intracompartmental cancer. T1, N0, M0, G3-G4. The 

tumour is 8 cm or less. 

High grade bone cancer that have grown through the wall of the bone 

into nearby tissues. They are extracompartmental cancers. T2, N0, M0, 

G3-G4. The tumour is larger than 8 cm. 

Stage III Tumours have not spread outside the bone but are in more than one 

place on the same bone. They are high grade. T3, N0, M0, G3-G4. 

Stage IV 

Stage IVA 

 

Stage IVB 

 

Any size or grade of tumour that has spread to the lung. Any T, N0, 

M1a, G1-G4. 

Any size or grade of tumour that has spread to the lymph nodes and/or 

a part of the body other than the lung. Any T, N1, any M, G1-G4 or any 

T, any N, M1b, G1-G4. 

Legend: The combinations from the TNMG system can result in four stages of bone cancer, 

starting from stage I, representing a low grade bone cancer, where the tumour is still in situ, and 

then progressing to stages II, III and IV. The greater is the stage the higher the possibility of 

invasion to other bones, to lymph nodes and to other distant organs. These stages can also be 

subdivided in subcategories, representing an increase of severity within the group/stage. 
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The development of bone metastases is a common and often catastrophic 

event for the cancer patient. Overall, the skeleton is the third most common site 

of cancer metastases, surpassed only by lung and liver. Prostate, breast, and 

lung cancers are the most common malignancies in adults and are the most 

common tumours that metastasize to bone and about 70% of patients that had 

died from these cancers had evidence of metastatic bone disease [3, 67, 93]. 

Carcinomas of the thyroid, kidney, melanomas and bronchus also commonly 

give rise to bone metastasis, with an incidence at post mortem examination of 

30% to 40%. Tumours of the gastrointestinal tract rarely (5%) produce bone 

metastasis [93, 94].  

Bone metastasis is associated with increased morbidity and portends a poor 

outcome, with decreased survival, in cancer patients. Bone metastasis are 

classified as osteolytic, osteoblastic, or mixed, based on their radiographic 

appearance. Bone metastases from prostate cancer are predominantly 

osteoblastic, whereas metastatic lesions in bone from breast cancer can be 

osteoblastic, osteolytic, or mixed. Irrespective of the mechanisms involved in 

the generation of these radiographic phenotypes, the end result is a change in 

bone architecture, which predisposes the patient to a variety of skeletal 

complications [93, 95-97].  

Bone metastases are usually multifocal and have a predilection for the 

hematopoietic marrow sites in the proximal long bones and axial skeleton 

(vertebrae, pelvis ribs, and cranium) [93, 98]. Continuous and dynamic turnover 

of the bone matrix and bone marrow provides a fertile ground for tumour cells to 

utilize the vast available resources (cells, growth factors, cytokines, and 

receptors) for their homing and subsequent proliferation. Evidence exists that 

blood from some anatomic sites may drain directly into the axial skeleton. The 

drainage of blood to the skeleton via the vertebral-venous plexus may, at least 

in part, explain the tendency of breast and prostate cancers, as well as those 

arising in kidney, thyroid, and lung, to produce metastasis in the axial skeleton 

and limb girdles [67, 93, 94]. Of course, the vertebral-venous plexus does not 

provide the entire explanation of why these cancers metastasize to the 

skeleton. Molecular and cellular biological characteristics of the tumour cells 

and the tissues to which they metastasize are of paramount importance and 

influence the pattern of metastatic spread [99]. Abundant sinusoids and 
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sluggish blood flow in the metaphysic facilitate an intimate interaction between 

endothelium and tumour cells, which is necessary for their initial colonization in 

the bone marrow. Moreover, it appears that a subset of bone marrow cells 

(vascular endothelial growth factor receptor-1 expressing hematopoietic 

progenitor cells and fibroblasts) may form a “pre-metastatic niche” in response 

to the humeral factors secreted by the primary neoplasm. The cells comprising 

the pre-metastatic niche express cell surface ligands and receptors (integrin 

and fibronectin), which provide a permissive environment for the migrating 

tumour cells. In addition, various growth factors and cytokines in the bone 

marrow such as endothelin-1, basic fibroblast growth factor, transforming 

growth factor TGFβ, IL-6, and IL-8 serve as paracrine regulators of the initial 

growth of metastatic tumour cells. The interaction of receptor molecules in the 

bone marrow stroma (urokinase receptor, vascular cell adhesion molecule-1, 

and fibronectin) with the ligands that are over expressed on the tumour cells (β1, 

α4β1 and α5β1 integrins, cadherin-11, connective tissue growth factor, CXCR4 

and CXCL12) promotes colonization of circulating malignant cells in the bone 

marrow. The extracellular matrix proteins (especially type I collagen, type IV 

collagen, vitronectin, fibronectin, osteopontin, osteocalcin, bone sialoprotein, 

osteonectin, and stromal cell derived factor-1) are chemotactic for tumour cells 

and promote colonization of circulating tumour cells in the bone marrow [93, 

100].  

Although bone metastasis are rarely the cause of cancer-related death, they 

lead to serious complications that limit the patient`s mobility: (1) 30-60% of 

patients develop pain symptoms of varying intensity, related with different 

causes, like an inflammatory event or a spinal cord and/or nerve root 

compression; (2) predominantly the osteolytic type has the tendency to develop 

fractures resulting in considerable morbidity; (3) a hypercalcemic syndrome due 

to increased bone resorption of osteolytic metastasis can occur, and this can 

also appear as a paraneoplastic syndrome; and (4) if there is extensive 

metastatic disease the bone marrow can be destroyed and clinically relevant 

alterations of the blood counts can be observed [97, 101, 102]. 

Different sites of bone metastasis are associated with distinct clinical pain 

syndromes. Common sites of metastatic involvement associated with pain are 

the base of skull (in association with cranial nerve palsies, neuralgias, and 
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headache), vertebral metastasis (producing neck and back pain with or without 

neurologic complications secondary to epidural extension), and pelvic and 

femoral lesions (producing pain in the back and lower limbs, often associated 

with mechanical instability and incident pain). The pathophysiologic 

mechanisms of pain in patients with bone metastasis are poorly understood but 

probably include tumour-induced osteolysis, tumour production of growth 

factors and cytokines, direct infiltration of nerves, stimulation of ion channels, 

and local tissue production of endothelins and nerve growth factors [69, 96, 97, 

99]. 

It can be distinguish two types of pain, the nociceptive pain and the neurophatic 

or nerval pain. Pathophysiologicaly, it is difficult to differentiate these two types 

of pain. Nociceptive pain is mediated by free sensory nerve endings of the 

nociceptors that can be found throughout the body [69]. A large amount of 

nociceptors are located in the skin, the skeletal musculature, the tendons, the 

joints and the intestine [103]. Depending on their location, it’s possible to 

differentiate between somatic and visceral or superficially and deeply located 

nociceptive pain. Visceral excitations are frequently projected to special skin 

regions, the so called dermatome. While the nociceptive pain is generally 

described by the patient as being of a stinging, gnawing or dull character, 

neuropathic pain is described as burning and appearing suddenly [95]. 

Therefore, anamnesis will lead to a differentiation between the two pain entities 

at an early stage. This is extremely important because radionuclide therapy is 

useful in nociceptive pain patients but not for neuropathy pain [95].  

Physiologically, the nociceptor is not activated unless strong mechanical or 

thermal influences are present. However, the nociceptor can be sensitized by 

the production of endogenous pain mediators like those that occur in an arthritis 

patient that suffers from pain even if a small movement and/or a slight pressure 

is applied to an affected joint. In these cases, substances like prostaglandin E, 

bradykinin, histamine and interleukin act as pain mediators changing the 

microcirculation and permeability of vessels and leading to a decrease of 

excitation level [104]. Lymphocytes and macrophages assist in this process. 

The simultaneous excretion of different pain mediators can lead to an 

exponential increase in their effect. This principle is known in the field of 

pharmacology pain treatment, and therefore agents inhibiting the production of 
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prostaglandin E are successfully administered in pain patients. The nociceptor 

cell can also regulate its excitation level itself. By secretion of the so-called 

substance P, a vasodilatation and consequently an invasion of inflammatory 

cells and an enhanced secretion of pain mediators will occur. This process is 

often called a neurogenic inflammation. Bone metastasis can generate pain 

either by a strong mechanical impact to the nociceptor or by an osteoblastic 

excretion of pain mediators that result in the described sensitization of the 

nociceptors [69].  

 

3.2. Demographics and epidemiology  

Primary bone tumours are relatively uncommon and this has definitely limited 

the collection of data about their relative frequency, and as a consequence 

leads to the insufficient understanding of the risk factors. Although the incidence 

of benign bone tumours is higher than the incidence of primary malignant 

tumours, it is probable that benign lesions are underestimated considering that 

they often are asymptomatic and not clinically recognized. Therefore they 

remain undetected or are detected only incidentally at radiographic 

examinations for other reasons. In addition, primary bone tumours are 

outnumbered by metastases from carcinomas, melanoma, or hematologic 

malignancies [89, 105].  

More than 75% of malignant bone tumours are osteosarcoma, 

chondrosarcoma, and Ewing’s sarcoma [89]. The American Cancer Society’s 

estimates for cancer of the bones and joints in 2013 the diagnosis of about 

3,010 new cases and 1,440 deaths from these cancers. Primary cancers of 

bones account for less than 0.2% of all cancers. In adults, over 40% of primary 

bone cancers are chondrosarcomas. This followed by osteosarcomas (28%), 

chordomas (10%), Ewing’s sarcoma (8%), and malignant fibrous 

histiocytomas/fibrosarcomas (4%). In children and teenagers (younger than 20 

years), osteosarcoma (56%) and Ewing’s sarcoma (34%) are much more 

common than chondrosarcoma (6%). Chondrosarcomas develop most often in 

adults, with average age at diagnosis of 51, and less than 5% of cases occur in 

patients younger than 20. Chordomas are also more common in adults, and 
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less than 5% of cases occur in patients younger than 20. Both osteosarcoma 

and Ewin’s sarcoma occur most often in children and teens [90]. 

The incidence of malignant bone tumours shows a striking age-specific 

distribution, for example in the age group 0 to 40 years, there is an incidence 

peak between 10 and 20 years (primarily osteosarcoma and Ewing’s sarcoma) 

and for the age group above 40 years there is steady increase in incidence up 

to 80 years (primarily chondrosarcoma and to a lesser degree Paget’s related 

osteosarcoma) [89, 105]. 

In general, there is no significant gender predilection, although some tumours 

(e.g. Paget’s sarcoma, chordoma) show a higher prevalence in males. 

According to SEER data, in the period of 2004 to 2008, the median age at 

diagnosis for cancer of the bones and joints was 40 years of age. Approximately 

29.0% were diagnosed under age 20, 15.4% between 20 and 34, 10.5% 

between 35 and 44, 13.0% between 45 and 51, 11.4% between 55 and 64, 

8.3% between 65 and 74, 9.1% between 75 and 84, and 3.5% over 85 years of 

age [105, 106]. 

Benign bone tumours and many bone stimulating, non-neoplastic conditions 

also show a striking age distribution, occurring in the vast majority in the first 

two decades of life [89, 105].  

Several bone tumours may occur in the setting of inherited syndromes, 

nevertheless their histopathological features do not differ from those of sporadic 

cases. Additionally, although the majority of primary bone malignancies are de 

novo, there is increasing evidence that some develop in association with non-

neoplastic precursors or in the setting of previous benign tumours. Paget’s 

disease of bone, previous radiation therapy, and cartilaginous dysplasias are 

some of the most well known precancerous conditions for the development of 

bone sarcomas. High risk precursors are represented by Ollier’s disease and 

Maffucci syndrome, familial retinoblastoma syndrome and Rothmund Thompson 

syndrome, while conditions representing a moderate risk include multiple 

osteochondromas, Paget’s disease and radiation osteitis. A low risk for 

malignant transformation has been associated with fibrous dysplasia, bone 
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infarct, chronic osteomyelitis, prosthetic implants, osteogenesis imperfect, giant 

cell tumour, osteoblastoma and chondroblastoma [105]. 

The treatment of bone cancer is often very successful, particularly if the cancer 

has not spread to other parts of the body. Overall, more than 40 out of every 

100 men (over 40%) and more than half of woman (over 50%) will live more 

than 5 years after their primary bone cancer is diagnosed and treated. 

Considering that, if bone cancer is low grade it is more likely to be cured, on the 

other hand if cancer has spread beyond the bone it is more difficult to cure. 

Therefore, almost everyone with stage 1A, more than 95% of people with stage 

1B, more than 60% of people with stage 2A, over 40% of people with stage 2B 

bone cancer, lives more than 5 years [107]. 

Chemotherapy can work well at reducing the risk of the cancer coming back 

after surgery, particularly for Ewing’s sarcoma. For Ewing’s sarcoma that is 

localized and hasn’t spread elsewhere in the body, about 70 out every 100 

people (70%) live for at least 5 years after their diagnosis. If Ewing’s sarcoma 

has spread to the lungs, around 30 out of every 100 people (30%) will live for at 

least 5 years after their diagnosis. If Ewing’s sarcoma has spread to the brain 

then the 5 year survival is less than 10% [107]. 

Low grade osteosarcomas are not very common. However, over 90 out every 

100 people (90%) with this type of tumour live for at least 5 years after their 

diagnosis. Regardless of grade, localised osteosarcomas have a 5 year survival 

rate of about 60%, meaning that 60 out every 100 people (60%) with this type of 

cancer live for at least 5 years. In people whose chemotherapy works very well, 

survival may be more than 70%. In people whose osteosarcoma has spread to 

the lungs at the time of diagnosis the survival is lower, 10 out of every 100 

people (10%) live more than 5 years [107].  

Chondrosarcoma is more likely to be curable if it is low grade, considering that 

at least 80 out every 100 people (80%) will live for more than 10 years after 

treatment. But if the cancer is high grade the outlook is poorer and about 30 out 

of every 100 people (30%) will live for at least 5 years [107]. 
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3.2.1. Risk factors for primary bone cancer 

Most people with bone cancers do not have any apparent risk. The major risk 

factors for the development of bone cancers are the existence of genetic 

disorders, Paget disease, radiation, bone marrow transplantation and injuries 

[90].  

A very small number of bone cancers, especially osteosarcomas, appear to be 

hereditary and are caused by mutations in certain genes, for example, children 

with certain rare inherited syndromes have an increased risk of developing 

osteosarcoma. The Li-Fraumeni syndrome makes people much more likely to 

develop several types of cancer, including breast cancer, brain cancer, 

osteosarcoma, and other types of sarcoma. Most of those cases are caused by 

a mutation of the P53 tumour suppressor gene, but some are caused by 

mutations in the gene CHEK2 (Checkpoint kinase 2 gene). Another syndrome 

that includes bone cancer is the Rothmund-Thomson syndrome. Children with 

this syndrome are short, have skeletal problems, and rashes, and are more 

likely to develop osteosarcoma. This syndrome is caused by abnormal changes 

in the gene REQL4 (ATP-dependent DNA helicase Q4 gene) [90]. 

Retinoblastoma is a rare eye cancer of children that can be hereditary. The 

inherited form of retinoblastoma is caused by a mutation of the RB1 gene. 

Those with this mutation also have an inherited risk of developing bone or soft 

tissue sarcomas. Also, if radiation therapy is used to treat retinoblastoma, the 

risk of osteosarcoma in the bones around the eye is even higher. Finally there 

are several families with several members who have developed osteosarcoma 

without inherited changes in any of the known genes. Additionally, people with 

metal implants into bones, are more likely to develop osteosarcoma  [90, 91]. 

Paget disease is a benign but pre-cancerous condition that affects one or more 

bones. It results in formation of abnormal bone tissue and is mostly a disease of 

people older than 50. Affected bones are heavy, thick, and brittle. They are 

weaker than normal bones and are more likely to fracture. Bone cancer (usually 

osteosarcoma) develops in about 1% of those with Paget disease, usually when 

many bones are affected [90]. 



 
 

59 
 

Bone exposure to ionizing radiation may also increase the risk of developing 

bone cancer. A typical x-ray of a bone is not dangerous, but exposures to large 

doses of radiation pose a risk. Being treated at a younger age and/or being 

treated with higher doses of radiation (usually over 60 Gy) increases the risk of 

developing bone cancer. Exposure to radioactive materials such as radium and 

strontium can also cause bone cancer because these minerals build up in 

bones [90]. Osteosarcoma has been reported in a few patients who have 

undergone bone marrow transplantation. People have wondered whether injury 

to a bone can cause cancer, but this has never been proven [90]. 

Ewing sarcoma is not strongly associated with any hereditary cancer 

syndromes, congenital childhood diseases, or previous radiation exposure [90, 

91]. Multiple exostoses (sometimes called multiple osteochondromas) 

syndrome is inherited conditions that cause many bumps on a person’s bones. 

These bumps are made mostly of cartilage. They can be painful and cause 

bones to deform and/or fracture. This disorder is caused by a mutation in any of 

the 3 genes EXT1, EXT2, or EXT3. Patients with this condition have an 

inherited risk of chondrosarcoma. People who has multiple enchondromatosis 

(multiple enchondroma), have an increased risk of developing 

chondrosarcomas [90, 91].  

Chordomas seem to run in some families. The genes responsible have not yet 

been found, but familial chordoma has been linked to changes on chromosome 

7. Patients with inherited syndrome tuberous sclerosis, which can be caused by 

mutations in either of the genes TSC1 and TSC2, seem to have a high risk of 

chordomas during childhood [90, 91]. 

Simply having cancer is a risk factor for bone metastases. Among people with 

the same kind of cancer, tumours that are larger and have already spread to 

lymph nodes are generally more likely to spread to bone. For some kinds of 

cancer, a high grade and certain genetic changes make the cancer more likely 

to spread to bones [98]. For patients with prostate, breast, or lung cancers, the 

risk of metastasis to bones is very high [67]. 
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3.3. Diagnosis 

A patient´s symptoms, physical exam, and results of imaging tests, and blood 

tests may suggest that bone cancer is present. The main signs and symptom of 

a bone cancer are pain, swelling, fractures, and other symptoms like height 

loss, fatigue, and symptoms associated with the organs affected by the spread 

of the cancer. Pain in the affected bone is the most common complain of 

patients with bone cancer. At first, the pain is not constant, and it may be worse 

at night or when the bone is used. As the cancer grows, the pain will be there 

constantly. The pain increases with activity and the person might limp if the leg 

is involved [90]. 

If cancer is diagnosed, bone metastases may sometimes be found before they 

have a chance to cause any symptoms. Since single bone metastasis can have 

the same sign and symptoms as a primary bone tumour, many doctors require 

a biopsy to diagnose a patient’s first bone metastasis [90]. The biopsy is the 

only way to know that the tumour is cancer and not some other bone disease, 

or if it is a primary bone cancer or metastases. Several types of tissue and cell 

samples are used to diagnose bone cancer. The surgeon will choose a biopsy 

method based on whether the tumour looks benign or malignant and exactly 

what type of tumour is most likely. Some kinds of bone tumours can be 

recognized from needle biopsy samples, but larger samples are often needed to 

diagnose other types. [89, 90]. 

Several imaging techniques may be used for the diagnosis of primary bone 

cancer namely x-ray scans, bone scan, computed tomography (CT) scan, 

magnetic resonance imaging (MRI) procedure, positron emission tomography 

(PET) scan, and angiogram. Some of these imaging tests may be required to 

see how far the cancer has spread. This may be done before, during and after 

treatment [90, 91]. 

X-ray scans are often among the first tests ordered if a person with cancer is 

having bone pain or other symptoms. X-rays scans allow obtaining the 

information about location, size and shape of bone tumour. The bone at the site 

of the cancer may appear “ragged” instead of solid, and also appear as a hole 

in the bone. In osteolytic metastases, cancer cells will dissolve some of the 
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minerals in the bone, making an area of the bone less dense, therefore these 

changes will appear on x-ray as a darker hole in the gray-white bone image. In 

the case of osteblastic metastases, the area will appear denser and sclerotic. 

Also x-rays can show fractures in bones that have been weakened by 

metastases. CT and MRI allows obtaining more detailed morphologic images of 

the bones and tumours. The CT scans are also helpful in staging cancer helping 

to determine if the cancer has spread to other organs. CT scans can be useful 

especially if the bone metastases are likely to be osteolytic (hard to visualize in 

bone scans). A CT scan is sometimes used to guide a biopsy when a bone 

metastasis is deep in the body. CT scans are also good for judging the size and 

shape of a tumour in the bone and for assessing how stable a bone containing 

a tumour is. MRI scans are often best test to outlining a bone tumour, and are 

particularly helpful for looking at the brain and spinal cord. Bone scan and PET 

allows obtaining information, respectively, about the osteoblastic/osteoclastic 

activity and glucose metabolism (when administered 18F-FDG). Bone scan 

allows determining if the cancer has spread to other bones. It can find 

metastasis earlier than regular x-rays, and also show how much damage the 

primary cancer has caused in the bone. Areas of active bone changes appear 

as hot spots on the skeleton. These areas may suggest the presence of cancer, 

but other bone diseases can also cause the same pattern. PET scan give useful 

information about the spread of the cancer to other organs, but this images lack 

on resolution, therefore newer machines combine PET and CT or PET and MRI 

[90, 91]. 

Some types of cancer release certain substances called tumour markers into 

the bloodstream. Patients with these types of cancer may have to do blood tests 

at regular intervals to see if levels of these markers are rising. An increase in 

tumour markers levels mean that the cancer has spread, but it doesn’t show 

where the cancer has spread. Other tests will be needed to show if the 

metastases are in the bone or if they are somewhere else in the body. Prostate-

specific antigen is an example of a tumour marker, more specifically from 

prostate cancer. Other examples of tumour markers are high blood calcium and 

alkaline phosphatase levels. These markers result from the presence of bone 
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metastases that can dissolve the bone. Also, several substances can be 

released into urine when bone is damaged, namely N-telopeptide [98]. 

 

3.4. Therapy 

Treatment options depend on the type, size, location, and stage of the cancer, 

as well as the person´s age and general health [91]. Treatment options for 

primary bone cancer include surgery, chemotherapy, and radiation therapy [90, 

91].  

Surgery is the major treatment for most bone cancers, and it may be used to 

obtain a biopsy of the cancer. The type of surgery used will depend on the size 

of the cancer, the location in the body and whether it has grown into the tissues 

surrounding the bone. The main goal of the surgery is to remove all of the 

cancer, considering that if even a few cancer cells are left behind, they can 

grow and multiple to make a new tumour. Trying to be sure that this doesn’t 

happen, surgeons remove the tumours plus some of the normal surrounding 

tissue.  Various techniques can be used, namely the removal of the entire bone 

affected by the cancer, the limb sparing surgery, the amputation (when is a leg 

or arm) and the surgery to remove metastasis. Bone amputation may be 

performed if the tumour has spread into the tissues surrounding the bone, 

affecting the major nerves and blood vessels or muscles, or if the position of the 

tumour makes impossible the resource to limb sparing surgery. Sometimes, 

when a bone cancer has spread, the number and size of metastasis is small 

and the location is favourable, and can be removed surgically [90, 91].  

Patients who have bone cancer usually receive a combination of anticancer 

drugs (chemotherapy). Chemotherapy works very well for some types of bone 

cancers, particularly Ewing’s sarcomas and osteosarcomas, but not for all 

patients. Chemotherapy is often given before surgery to help shrink the tumour 

and make it easier to remove or after surgery to reduce the risk of the cancer 

coming back. Also, chemotherapy can be used to relieve the symptoms, by 

shrinkage of cancer. Chemotherapy is sometimes used for bone cancer that 

has spread through the bloodstream to the lungs and/or other organs. The 

drugs mainly used to treat bone cancer include the doxorubicin, cisplatin, 
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carboplatin, etoposide, ifosfamide, cyclophosphamide, methotrexate, and 

vincristine. Usually several drugs (two or three) are given together, for example, 

a very common combination is cisplastin and doxorubicin, ifosfamide and 

etoposide or ifosfamide and doxorubicin [90, 91]. 

Radiotherapy may also be used before surgery to shrink the tumour and make it 

easier to remove, or after surgery to help lower the risk of the cancer coming 

back. It is often used on tumours that do not respond well to chemotherapy, in 

patients who refuse surgery, or in unresectable bone tumours [90, 91]. 

For systemic treatment, and for most of the cases for palliative treatment, of 

bone metastasis, besides chemotherapy, also its possible to resort to hormone 

therapy (reducing osteoclast formation), immunotherapy, stimulation of bone 

formation (implanting biomaterials targeted with molecular signals designed to 

trigger the body’s repair mechanism), growth factors, gene therapy, 

diphosphonates (inhibitors of bone resorption), and radiation therapy using 

radiopharmaceuticals [98, 108, 109].  

Chronic pain syndrome is the most important complication of bone metastasis 

and has a negative impact on quality of life and at the social environment of the 

patient [101, 102]. Up to one-half of patients do not receive adequate pain 

treatment. About two-thirds of pain patients complain about break-through pain, 

meaning a simultaneous appearance of strong pain in spite of the intake of 

analgesics. It is therapeutically relevant that, in most of these patients with 

break-through pain, optimization of pain therapy is possible [69]. Nonsteroidal 

anti-inflammatory drugs are the first weapon to use in the treatment of such 

pain, followed up by opiates in a stepwise approach recommended by World 

Health Organization guidelines [110]. Some of the drugs have gastrointestinal 

side effects and lead to hepatic damage [111, 112]. Although narcotics are 

generally effective in relieving pain, the somnolence, nausea, and constipation 

that result from their use almost inevitably decrease the quality of life of the 

patient with advanced cancer [110].  

Chemotherapy is used as the main treatment for many types of metastatic 

cancer that has spread, and is often able to shrink tumours reducing pain. 

Besides chemotherapy drugs kill cancer cells it also damage some normal cells, 

causing side effects (e.g. nausea, loss of appetite, loss of hair, mouth sores, 

diarrhoea, etc.) [98].   
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Hormones in the body drive the growth of some common cancers, for example 

estrogen (produced in the ovaries) promotes growth of some breast cancers, 

and androgens (testosterone produced in testicles) promote growth of most 

prostate cancers. One of the main ways to treat breast and prostate cancers is 

to surgically remove the organs that make the hormones. More often, drugs are 

given to keep the hormones from being made. Both for men and women, 

respectively with prostate or breast cancer, can be given drugs such as 

luteinizing hormone-releasing hormone agonists or antagonists, which block 

testosterone and estrogen production. Also, for women in menopause, the 

ovaries no longer make hormones, a small amount of estrogen is still made in 

fat tissue. Drugs called aromatase inhibitors stop this estrogen from being 

produced. Another approach is preventing the hormones from affecting the 

cancer cells, and in this case it can be given anti-androgens or anti-estrogens 

(e.g. tamoxifen). Side effects of hormone treatments depend on the type of 

treatment used, being the most common side effect hot flashes. Hormone 

therapy for prostate cancer can lead to anaemia, weight gain, loss of sex drive, 

etc. Tamoxifen use increases the risk of blood clots and uterine cancer [98]. 

Immunotherapy, sometimes called biologic therapy or biotherapy, is a systemic 

therapy that uses certain parts of the immune system to fight diseases such as 

cancer. This can be done by stimulating the immune system to work harder or 

smarter to attack cancer cells, or by giving man made versions of immune 

system proteins to kill cancer cells. It is used by itself to treat some cancers, but 

for many cancers it seems to work best when used along with other types of 

treatment. Several types of immunotherapy are used to treat patients with 

metastatic cancer, including monoclonal antibodies, tumours vaccines, and 

cytokines. Monoclonal antibodies (mAbs) are men-made versions of immune 

system proteins, and are very useful in treating cancer because they can be 

designed to attack a very specific part of a cancer cell, targeting specific 

antigens. A major advantage of these drugs is that they may have only mild side 

effects if the right antigen is identified. For cancer, this is not always easy, and 

so far mAbs have proven to be more useful against some cancers than others. 

Cancer vaccines are substances putt into the body to start an immune response 

against certain diseases, helping to prevent or treat cancer. Because some 

cancers are caused by viruses, like uterine cervix carcinoma caused by human 
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papilomas virus and liver cancer caused by hepatitis B virus, some vaccines 

may help to protect against infections and prevent some cancers resulting from 

these viruses. Cancer treatment vaccines are different from the vaccines that 

work against viruses, considering that these vaccines try to get the immune 

system to mount an attack against cancer cells in the body. Instead of 

preventing disease, they are meant to get the immune system to attack a 

disease that already exists. Sipuleucel-T is the only vaccine approved by the 

United States Food and Drug Administration (FDA) to help treat cancer, and is 

used to treat advanced prostate cancer that is no longer being helped by 

hormone therapy. Non-specific immunotherapies do not target a certain cell or 

antigen, they boost the immune system in a very general way, but may still 

result in more activity against cancer cells. Some examples of non-specific 

immunotherapy’s are the ones that uses cytokines, interleukins, interferon’s, 

and granulocyte-macrophage colony-stimulating factor [98, 113].  

Diphosphonates or biphosphonates are analogues of pyrophosphate, a natural 

inhibitor of bone demineralization. They bind to hydroxyapatite crystals of the 

bone by adsorption, resulting in stabilization of bone mineral and inhibition of its 

dissolution. Moreover, it inhibits osteoclast function by various not fully 

understood mechanisms [98, 99, 114]. Recently, Yoneda et al. [115], in an 

experimental study with animal models of bone metastasis have shown that 

diphosphonates impaired the progression of bone metastasis primarily through 

enhancing apoptosis of osteoclasts and breast cancer cells colonised in bone 

[115]. However, the rate of bone resorption varies both between patients and 

within patients during periods of disease remission and progression, so it is 

somewhat simplistic to assume that all patients require the same dose of 

diphosphonates for treatment. Patients with normal or only minimally 

accelerated bone resorption probably do not need the intensity of treatment 

provided by current schedules of highly potent aminodiphosphonates. 

Additionally, clinical benefit from diphosphonates derivatives seems to be 

related to the effective suppression of accelerated bone resorption. There is 

growing evidence that treatment with diphosphonate in advanced cancer 

normalizes bone resorption, as in benign bone diseases [99]. Well known 

examples of diphosphonates include pamidronate (1-hydroxy-3-

aminopropylidene-diphosphonic acid - APD) and etidronate (1-hydroxy-
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ethylene-diphosphonic acid - HEDP), used to treat Paget´s disease, 

osteoporosis, and osteogenesis imperfecta, a hereditary bone disorder. 

 

3.4.1. Targeted radionuclide therapy of bone metastases and PEI-MP 

The delivery of ionizing radiation to a bone containing a metastatic tumour can 

be achieved using either radiation from an external X-ray or gamma ray beam 

or injecting radioisotopes that localize in the bone [108]. Radiotherapy with 

external beams is a treatment of primary importance in bone metastasis pain 

palliation despite these patients being by definition incurable [111, 112, 116]. 

However, palliative radiotherapy can reduce or eliminate pain from bone 

metastasis in 80% of patients [117]. Although higher doses of radiation can 

better control the tumour, the dose that can be delivered is limited by the 

possibility of damaging normal tissue surrounding the tumour. Ulceration, 

fistulas, severe fibrosis, and strictures may develop months or years after 

treatment, severely affecting the quality of life. On the other hand, if a small 

portion of the cancer is excluded from the irradiated volume the treatment can 

fail. Recent advances in conformal radiotherapy allow better dose distribution to 

the target volume with better adjustment to the shape of the tumour. The value 

of conformal techniques has been demonstrated in the treatment of localized 

prostate cancer. Prospective dose escalation studies have shown that higher 

doses can be delivered with a marked improvement at 5-years, without any 

increase of latent toxicity [118, 119].  

Treatment using tracer molecules to target radiation to tumour is well 

established [120, 121] and while local external beam irradiation is the first 

choice for palliative treatment for patients with a limited number of lesions [122], 

systemic radiotherapy with radiopharmaceuticals is preferable when widespread 

bone metastasis are present with multifocal sites of pain [84].  

Interest in designing an effective radiopharmaceutical for palliative therapy and 

treatment of bone metastasis has increased in recent years [102]. This is 

primarily due to the emergence of new sophisticated molecular carriers that 

may provide vehicles for selective deposition of radioactivity in the vicinity of 

cancer cells. In order to develop effective radiopharmaceuticals for therapy, it is 

essential to carefully consider the choices of appropriate radionuclides in 
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conjunction with the in vivo localization and pharmacokinetic properties of the 

radiotracer [123]. The treatment with radionuclides is a safe and effective tool in 

medicine because it acts mostly in the peripheral nerve endings, where tumour, 

inflammatory and immune cells cumulate and release substances [116]. An 

ideal radiopharmaceutical for the treatment of neoplastic bone disease would be 

a radiolabelled compound that predominantly accumulates in bone lesions, with 

low toxicity to the bone marrow and limited uptake by normal bone and other 

organs [111, 112]. In order to get radiopharmaceuticals that predominantly 

accumulate in bone lesions they must have affinity for hydroxyapatite and its 

components, allowing a selective accumulation in bone, with special emphasis 

on the affected areas with high bone-turnover [108]. The therapeutic 

radiopharmaceuticals are commonly composed by two key components: a 

radionuclide and a targeting ligand with which it is complexed. The radionuclide 

produces a relief after selective uptake at the target, ideally with negligible 

damage to healthy tissue. The function of the ligand is prevent dissociation of 

the complex and facilitate the transfer of the radionuclide to the target, as in the 

case of secondary bone metastasis requiring that it should be bone-seeking. 

The ligand of choice should selectively accumulate in regions of high Ca2+ 

concentration which is characteristic of areas affected by secondary bone 

metastasis [59, 102, 124]. Although, the mechanisms by which pain is relieved 

remain poorly understood it is speculated that the radiopharmaceuticals used in 

pain palliation treatment work by adsorption or fixation on bone in the areas of 

increased osteoblastic activity. Radiation of the attached radionuclide will then 

cause death in a fraction of cells within the range of the particles emitted and 

depending on their energy. The resulting decrease in intra-osseous mass and 

pressure brings relief to the patient. However, it is found that the reduction of 

the pain intensity takes a few days as tumour mass shrinks. So, the mechanism 

by which radiotherapy achieves analgesia probably is a mixed response due 

both to tumour shrinkage and to inhibition of pain mediators, such as 

prostaglandins and neurogenic peptides [101].  

In recent years there has been interest in the application of diphosphonates as 

potential radiopharmaceuticals for effective pain-palliation of metastatic bone 

cancer [112, 125, 126]. These versatile molecules are characterized by a P-C-P 
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structural element, and have a variety of important uses such as metal chelation 

ligands [127], therapeutic use in patients with two main types of disorders, 

ectopic calcification and ossification, and increased bone resorption [79] and in 

nuclear medicine as ligands for radiometals in bone-seeking diagnostic and 

therapeutic agents [128]. 

Phosphonates are known to have a particular affinity for calcium (Ca2+), so they 

accumulate selectively in bone [102]. Some (di)phosphonic acid derivates 

include EDTMP (ethylene-diamine-tetramethylene-phosphonate), MDP 

(methylene-diphosphonic acid), HEDP (1-hydroxy-ethylene-diphosphonic acid), 

APD (1-hydroxy-3-aminopropylidene-diphosphonic acid), APDDMP (N,N,-

dimethylene-phosphonate-1-hydroxy-4- aminopropylidene-diphosphonate) and 

recently, PEI-MP (polyethyleneiminomethyl phosphonic acid) [129]. The two last 

improve the properties of 153Sm-EDTMP, widely used in the pain palliation 

therapy of patients suffering from bone cancer, not only providing pain relief but 

also suppressing and decreasing bone metastasis and even osteosarcomas 

[59, 102, 124]. APD had been applied in the inhibition of osteoclast activity by 

adsorption on the bone surface (hydroxyapatite). In addition to minimizing 

resorption, APD also regenerates bone tissue by mobilizing Ca2+ and Mg2+ from 

blood plasma and subsequent deposition onto bone [125]. Being such a 

versatile ligand, attempts were made to capitalize its capabilities by complexing 

it to a radioactive metal-ion, and use it as a bone-cancer diagnostic agent (e.g. 

99mTc-APD for bone scintigraphy) [130]. However, in studies with trivalent 

lanthanides such as [131] 166Ho3+ and 153Sm3+ a neutral complex (MLH)0 is 

obtained and, hence, a colloid is formed at pH 7.4, which results in excessive 

liver uptake. Furthermore, APD exhibited a high affinity for Ca2+ which inhibits 

the delivery of the radionuclide 166Ho3+ to the bone. In an endeavour to avoid the 

formation of neutral species, APD was modified by adding two charged 

methylenephosphonate groups at the primary amine centre, resulting in the 

synthesis of APDDMP – with a net charge of 7. The radiolabelling of APDDMP 

with the same trivalent lanthanides resulted in complexes with a negative 

charge. Subsequent studies in animal models, using the complexes 166Ho-

APDDMP and 153Sm-APDDMP demonstrated that the uptake by the liver was 

avoided to a large extent. However, only the complex 153Sm-APDDMP showed 
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a good bone uptake, although was less than 153Sm-EDTMP [132]. MDP is use 

as a radioactive bone imaging agent after labelling with 99mTc (99mTc-MDP). 

HMDP (hydroxymethylene diphosphonate) is sometimes used to replace MDP 

to target bone. Comparing both agents, studies showed that the 

cancerous/compact bone uptake is greater for HMDP than for MDP. Another 

ligand used is HEDP. Although the bone uptake of 99mTc-HEDP is lower and its 

blood clearance slower than of 99mTc-MDP, it gives a greater contrast between 

regions of higher and lower calcification rates. As the areas with higher rates of 

calcification should be the target of a possible palliative radiopharmaceutical, 

HEDP seems to be a promising candidate [133]. 

There are several beta-emitting radioisotopes currently being used for pain 

relief including phosphorus-32 (32P), strontium-89 (89Sr), yttrium-90 (90Y), 

samarium-153 (153Sm), holmium-166 (166Ho), rhenium-186 (186Re), rhenium-188 

(188Re) and Lutetium-177 (177Lu). The individual nuclides differ in terms of 

efficacy, duration of pain relief, tumoricidal effects, repeatable treatments, 

toxicity and expense. Despite these differences all of the radionuclides or their 

attached ligands preferentially target osteoblastic surfaces, suggesting a greater 

benefit in metastasis associated with increased osteoblastic activity [59, 66]. 

The application of radionuclides for treatment of painful metastasis has been 

investigated for several decades. In 1960s, the first nuclide administered for 

pain therapy of multiple osseous metastases was 32P [134]. Initially it was 

believed that its effect was mainly from incorporation into the tumour itself. 

However, the tumour to non-tumour ratio was not very favourable and the relief 

of pain is primarily because of its uptake by the bone mineral, and not by the 

tumour. In addition, uptake was high in a rapidly dividing tissue such as the 

bowel, but particularly in the red marrow itself [65]. Today, it’s known that 32P is 

incorporated into the DNA of rapidly proliferating cells of the bone marrow as 

well as in the trabecular and cortical structures of the bone. The ratio of normal 

bone to metastatic tissue was calculated as 1:2, and therefore is relatively low 

[120]. This unfavourable ratio and the frequently observed strong 

myelosuppression were the reasons for abandoning of the 32P [69]. Also, the 

absence of any gamma radiation emitted during its decay complicated the study 

of its biodistribution and biokinetics in humans [65].  



 
 

70 
 

Many different beta-emitting radiopharmaceuticals like 89Sr-chloride, 90Y-citrate, 

90Y-DOTA-HBP, 153Sm-EDTMP, 166Ho-EDTMP, 186/188Re-HEDP, 186/188Re-MDP, 

have been investigated for use in therapy [134, 135].  

Strontium-89 chloride was the nuclide most widely used in nuclear medicine for 

therapy. It has a long physical half-life, requiring a low administered activity, 

resulting in a rather low initial dose rate. In addition, it does not need repeated 

administrations for effect [134]. Laing et al. treated 119 prostate cancer patients 

with painful metastatic bone disease, who did not respond to conventional 

therapy, by application of 89Sr. A total of 75% of the patients demonstrated a 

marked improvement of the pain status and 20% of these patients were almost 

completely pain free. The effect of 89Sr treatment began 10-20 days post 

injection and reached a maximum after 6 weeks [135, 136]. The pain 

improvement lasted for 6 months on average with a variation between 4 and 15 

months. The authors could not find a significant advantage of an activity of 3.0 

MBq/kg body weight above that of 1.5 or 2.2 MBq/kg, resulting in a 

recommended activity of 150 MBq of 89Sr. This activity has been considered the 

standard ever since [136]. Lewington et al. performed a randomized, placebo-

controlled, double-blinded study in prostate cancer patients who were refractory 

to hormonal treatment and external radiation therapy. The patients treated with 

89Sr showed a significant pain reduction compared to the patients in the placebo 

group. Considering that these patients were end-stage patients who had failed 

all conventional therapy, the effect of 89Sr treatment is impressive. Further 

studies confirmed the beneficial effect of 89Sr for pain treatment in prostate 

cancer patients [137]. Quilty et al. demonstrated in 284 prostate cancer patients 

that one injection of 89Sr was as efficient as a hemibody irradiation which often 

showed intolerable side effects [134, 138]. Depending on the extension of the 

metastatic disease, the tracer uptake in the skeletal system ranges between 

12% and 90% of the administered activity. With extensive presence of bone 

metastasis the higher the uptake in to the skeleton is. The accumulation of 89Sr-

chloride in the metastatic lesions is 5-20 times as high as the accumulation in 

normal bone tissue. Ninety days after the administration, 10-88% of the injected 

89Sr activity was found in metastatic bone lesions [139]. The effective half-life 

was calculated to be over than 50 days, thus 89Sr-chloride delivers a low dose 
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rate radiation [69]. Robinson RG reported a response rate of 81% in breast 

cancer patients with multiple bone metastases on investigating 500 patients 

with different tumours after injection of 89Sr at a standard activity [140]. Baziotis 

et al. treated 64 breast cancer patients by a single injection with 2MBq/kg body 

weight of 89Sr. They found an improvement of the pain situation in 80% of the 

cases including 35% of the patient demonstrating almost complete pain relief. 

The average time response was 3 months [141]. 

Like strontrium-89, the calcium analogue (it follows the biochemical pathways of 

calcium in the body) yttrium-90 (90Y) is taken up by the bone depending on the 

intensity of the osseous metabolism [69, 138]. Yttrium-90 (90Y) is a pure high 

energy beta emitter. Used as the citrate salt, it shows 80% uptake in the bones 

[142, 143]. In this form it has been used for pain palliation of metastatic disease. 

It has also the chemical properties suitable for chelation to several commonly 

used compounds or macrocyclic ligands such as DOTA (1,4,7,10-

tetraazacyclododecane-1,4,7,10-tetraacetic acid) [143]. Although 90Y-citrate 

indicates high accumulation in the bone, a part of the Y3+ released by the 

dissociation of the citrate complex binds to serum, which results in delayed 

blood clearance and accumulation in the liver. Ogawa K et al. hypothesized that 

a bone-specific 90Y-labelled radiopharmaceutical could be developed. So, they 

chose DOTA as the chelating site, and DOTA was conjugated with 4-amino-1-

hydroxybutylidene-1,1-bisphosphonate (HBP). They studied the biodistribution 

of 90Y-DOTA-HBP and compared it with 90Y-citrate. Their results showed that 

90Y-DOTA-HBP had superior biodistribution characteristics as a bone-seeking 

agent and led to a decrease in the level of unnecessary radiation exposure 

compared to 90Y-citrate. Even so, the plasma stability of 90Y-DOTA-HBP was 

not as high as expected. In addition, in the case of the absorbed dose to red 

marrow, which is the dose-limiting factor of radiopharmaceuticals for palliation 

of metastatic bone pain, the ratios of the absorbed dose in red marrow to that in 

osteogenic cells were almost the same for 90Y-DOTA-HBP and 90Y-citrate. Both 

compounds might show similar degrees of myelosuppression, which is the most 

important side effect. Because the radiation dose to bone marrow is highly 

influenced by the accumulation of radioactivity in the bone, improvement in the 

clearances from the blood and other tissues do not contribute much to the 
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radiation dose to red marrow. Meanwhile, although the ratios of the absorbed 

dose in soft tissues to that in osteogenic cells of 90Y-DOTA-HBP were also 

lower than those of 153Sm-EDTMP, 153Sm-EDTMP has the advantage over 90Y-

DOTA-HBP in terms of the effective dose equivalent (0.387 mGy/MBq of 153Sm-

EDTMP compared with 0.840 mGy/MBq of 90Y-DOTA-HBP) and effective dose 

(0.232 mGy/MBq of 153Sm-EDTMP compared with 0.652 mGy/MBq of 90Y-

DOTA-HBP). It is attributed to the difference in the radiation of red marrow. 

Therefore 153Sm could be preferred to 90Y as a radionuclide used in palliation 

therapy because the energy of the 90Y β particles could be too high [142]. 

Samarium-153 is one of the vital radionuclides amongst the lanthanide 

elements from the point of view of nuclear medicine. Due to its short half-life, 

153Sm replaced the comparatively long-lived 89Sr isotope. The therapeutic 

activity is 30 times more economic than the 89Sr-chloride. Clinical studies show 

that the toxicity is lower but the palliative effect is of shorter duration than 

desired [144, 145]. Samarium-153 chelated with EDTMP, is widely used in the 

clinic for the effective palliative treatment of widespread skeletal metastasis as it 

can be concentrated in bone metastasis having an osteoblastic component. 

Samarium-153 has a short physical half-life that can be advantageous because 

it can be administered repeatedly. However, because of its short physical half-

life and its production by reactor, delivery is difficult. The range of its beta 

particles is short (average 0.55 mm), resulting in good bone to bone marrow 

ratios [65]. One hundred and eighteen patients with painful bone metastasis 

were randomly assigned to receive a single dose of 18.5MBq/kg of 153Sm-

EDTMP. The results of a patient-rated scale revealed a progressive decrease in 

pain during the first four weeks of the study in the treatment groups. 153Sm-

EDTMP is rapidly cleared from the blood into the urine and only 1% of injected 

activity remains in the blood four hours post-administration whereas it is 

retained in the bone for a long time [144-146]. Alberts et al. concluded from a 

trial with 35 patients that 0.04 MBq/kg activity is adequate for 153Sm-EDTMP, 

often requiring multiple applications for safe palliation of pain associated with 

metastatic bone cancer [128, 147, 148]. Palliative and even curative effects 

have been demonstrated in dogs using 153Sm-EDTMP to treat a variety of 

skeletal neoplasias, both primary and metastatic. In a double-blind placebo-
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controlled study, Serafini et al. investigated the effect of 153Sm-EDTMP in 80 

prostate cancer patients. Four weeks after the injection of a single dose of 0.03 

MBq/kg body weight, an improvement of the pain situation was observed in 

72% of the patients. In 31% of the patients, an almost complete pain reduction 

could be found. Four months after the treatment, 43% of the patients showed a 

continuing improvement of pain symptoms. In this study, a visual analogue 

scale for different regions of the body, the consumption of analgesics and pain 

scoring performed by the physician served as criteria for treatment response. 

The response rate of 153Sm-EDTMP group was significantly better than that of 

the placebo group, showing response rates of 40% and 2% after 4 weeks and 4 

months, respectively [149]. However, Tian et al. were not able to confirm in their 

multicenter trial that the two different activity groups of 153Sm experienced 

different quality on pain palliation [150]. Collins et al reported that the onset of 

pain relief can be expected after 7-14 days [151].  

In an attempt to improve on the success of 153Sm-EDTMP, two possible 

strategies may be deployed. The first alternative is to use higher-energy β-

emitting radionuclides, as was attempted with 166Ho-EDTMP. Holmium-166 is a 

radionuclide that emits higher-energy β--particles, which is thought to improve 

the therapeutic efficacy of bone-seeking radiopharmaceuticals due to the 

deeper soft tissue penetration. However, in the past few years others have 

argued that minimizing the dose to bone marrow by using low-energy particle 

emitters such as 117mSn, will spare the bone marrow and is, therefore, more 

likely to deliver a therapeutic dose to the cortical bone. However, the chemistry 

of a substitute radionuclide (which generally belongs to a different chemical 

element) will differ from that of 153Sm. Even when the radionuclides are 

chemically similar and occur in the same oxidation state (3+ for Sm), there may 

still be a significant difference in their in vivo behaviour, as was proven for 

Ho(III). A different radionuclide normally requires a different ligand, so that the 

complex radiopharmaceutical shows a bone uptake which would resemble that 

of 153Sm-EDTMP. The high natural abundance of 165Ho, from which 166Ho is 

easily produced by neutron activation, lowers the cost of production compared 

with that of 153Sm. The attempts with the above-mentioned ligand together with 

166Ho proved to be unsuccessful, not because of the radiation characteristics of 
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166Ho, but rather due to the chemical properties of Ho(III) in combination of the 

ligands investigated. With 166Ho-EDTMP the in vivo stability of the complex 

proved to be inadequate (owing to changes in the Ho(III)-EDTMP formation 

constants, compared with Sm(III)-EDTMP), resulting in incomplete bone uptake 

[102]. 

186Re and 188Re are excellent examples of β--emitting radionuclides that could 

be used for pain palliation of bone metastasis [76, 77]. 186Re-HEDP is the 

diphosphonate complex most frequently studied [152-154]. This 

radiopharmaceutical can also be prepared using 188Re to form 188Re-HEDP, 

requiring both the carrier Re to ensure a good yield of the bone seeking agent 

[148, 155]. The physical half-life of 186Re allows frequent repeat administrations 

in a short period of time. However, the average beta energy is considerably 

higher than of the 153Sm and, consequently, the range is higher what is 

undesirable for the bone marrow [65]. Reaction conditions for the synthesis of 

186Re-MDP must be acidic (pH 1.4 –1.6) in order to facilitate reduction of the 

perrhenate with stannous ion and to keep the reduced species from being 

oxidized [156]. The synthesis and stabilization of 186Re-HEDP is different and 

can be accomplished at pH 5–8 [65]. It has also been reported that the 

comparative instability of the 186Re-HEDP radiopharmaceutical to in vivo 

oxidation in to perrhenate is a possible advantage [123]. The 

radiopharmaceutical 186Re-HEDP washes off from normal bone faster than it 

does from cancerous bone and, consequently, the abnormal/normal bone 

uptake ratio increases with time [128, 148]. 188Re-HEDP has shown therapeutic 

efficacy in the treatment of metastatic bone pain associated with cancer of the 

breast, prostate, lung and others [77, 84, 157]. Both 186Re-HEDP and 188Re-

HEDP have been used quite successfully in alleviating pain and for treatment of 

multiple metastatic foci of bone in bone cancer patients [65]. Hsieh B-T et al. 

compared various rhenium-188-labelled diphosphonates for the treatment of 

bone metastasis. In this study, they labelled MDP, HEDP, and HDP with 188Re 

and they analysed the biodistribution and bone uptakes following an 

intravenous injection in rabbits. Their results showed that 188Re-MDP and 188Re-

HDP tended to accumulate in the soft tissue and the liver. They believe that 

reactions between rhenium and diphosphonates are not the same as those 
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between technetium and diphosphonates, irrespective of being in the same 

group on the periodic table. In fact, technetium is inherently a better oxidant 

than rhenium. More SnCl2 needs to be added in the labelling of the rhenium-

diphosphonate complex. In this study, they concluded that the presence of 

carrier significantly affects the biodistribution of 188Re-HEDP in rabbits. The 

bone to soft tissue ratio of 188Re-HEDP significantly increased after adding the 

carrier to the preparation. However, carrier did not affect the biodistribution of 

188Re-MDP or 188Re-HDP. The mechanism of the carrier effect is still not clear, 

requiring further study. Thus the authors concluded that the HEDP was better 

than MDP and HDP as a bone-seeking tracer together with 188Re [148]. 

177Lu can be produced at adequate specific activities by irradiation of the natural 

lutetium target in moderate-flux reactors, and its long half-life allows for 

shipment over long distances. Additionally, its 208-keV gamma-emission (11% 

abundance) allows imaging of its distribution to facilitate dose calculations. 

Recently, the usefulness of 177Lu-1,4,7,10-tetraazacyclododecane-1,4,7,10-

tetramethylene phosphonate (177Lu-DOTMP) was demonstrated in a study 

performed in a mouse model [158]. The polyazamacrocyclic ligand framework 

may offer a complex which is kinetically more inert than 153Sm-EDTMP [159]. 

Dogs with osteosarcomas were previously demonstrated to be important 

models of naturally occurring disease in humans [160]. The results showed that 

the dogs receiving 177Lu-DOTMP tolerated the administration and the effects of 

the compound without apparent clinical toxicity, supporting the further 

evaluation in tumour-bearing dogs of 177Lu-DOTMP as a potential therapy for 

metastatic bone cancer and primary bone tumours in humans and dogs [143]. 

In contrast to the beta-emitters, the alpha-particle emitters deliver a much more 

energetic and localized radiation, defined as high-linear energy-transfer (LET) 

radiation [1, 160]. Despite the fact that alpha-emitters are more toxic and 

mutagenic than beta emitters, these adverse properties can be compensated in 

the targeted therapy due to irradiation of smaller volumes of normal cells when 

alpha emitters are targeting tumour cell clusters. Also the spatial distribution of 

the hydroxyapatite target within an osteoblastic tumour would facilitate a volume 

distribution of the radionuclide where the tumour cells would be easier reached 

by alpha-particles despite the limited track lengths [120].  
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The progress in the biomedical application of alpha emitters have been delayed 

by the low availability of radionuclides with proper physical and chemical 

characteristics, supply limitations, as well as the costs for the most popular 

alpha emitters, 211At (astatine-211; t½ = 7.2 h), 213Bi (bismuth 213; t½ = 45.6 

min) and 225Ac (actinium-225; t½ = 10 days) [59, 120]. Recent research on 

alpha emitters led to the development of long term operating generators that 

can provide them in large quantities. Examples of such alpha-emitters are 223Ra 

(radium-223; t½ = 11.4 days), 224Ra (radium-224; t½ = 3.7 days), 227Th 

(thorium-227; t½ = 18.7 days) and the alpha-emitter 212Pb (lead-212; t½ = 10.6 

h). In the absence of suitable complexing agents for radium isotopes 

investigation of 223Ra in radioimmunotherapy could not occur, but methods have 

recently been developed to encapsulate 223Ra and 225Ac into liposomes, 

ensuring adequate stability [120]. 

Like strontium, radium is a natural bone seeker that has previously been used 

for targeting non-malignant skeletal diseases, such as in the use of 224Ra 

(Radium-224) for treating ankylosing spondylitis, characterized by elevated 

bone synthesis [137]. Radium-223 (123Ra) is the most promising radium isotope, 

with favourable properties for use in targeted radiotherapy. 223Ra decays via a 

chain of daughter radionuclides with shorter half-life into stable lead, producing 

four alpha-particles. Radium-223 can be effectively produced in large amounts 

from sources of the precursor 227Ac (t½ = 21.7 years) in a long-term operating 

generator. Moreover, 223Ra half-life provides enough time for its preparation, 

distribution (including long distance shipment), and administration to patients. 

Its low gamma-irradiation facilitates handling, radiation protection, and 

treatment on an outpatient basis [120]. Based on the excellent physical 

characteristics of 223Ra, were performed a series of studies, aiming to analyse 

the potential of this radioisotope in the treatment of bone metastases. In a study 

with 223Ra in mice, biodistribution was measured at 1h, 6h, 24h, 3 days, and 14 

days after injection. A rapid uptake and prolonged retention was demonstrated 

in the skeleton, whereas soft tissue radioactivity cleared relatively rapidly [161, 

162]. Animal data and dosimetric studies have indicated that bone-targeting 

alpha-emitters can deliver therapeutically useful radiation doses to bone 

surfaces and skeletal metastases, at activity levels that are acceptable for 
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sparing bone marrow [163]. In a comparative study of 223Ra and the beta-

emitter 89Sr it was found out that 223Ra and 89Sr had similar bone uptake, and 

estimates of dose deposition in bone marrow demonstrated a clear advantage 

of alpha-particle emitters being bone marrow sparing [164].  

The therapeutic efficacy of 223Ra was studied in a nude mice model. In this 

study the animals were injected with 10 million MT-1 human breast cancer cells 

into the left ventricle. Seven days later they were treated with 223Ra dosage, 

ranging 6 to 30 kBq per animal. All untreated control animals had to be sacrified 

due to tumour induced paralysis 20 to 30 days following injection of tumour 

cells, whereas the mice treated with an activity superior to 10 kBq of 223Ra 

showed a significantly increased symptom-free survival. Based on the 

encouraging preclinical results, a phase I study has been conducted. This study 

involved 25 patients with bone metastases (10 females and 15 males). Each of 

the patients received a single injection of 223Ra and were monitored closely at 

the injection day, days 1, 2 and 7, and thereafter weekly to 8 week after the 

injection of 223Ra. Five patients were enrolled at each dosage level; starting at 

46 kBq/kg and then increasing to 93, 163, 213 and 250 kBq/kg of body weight. 

223Ra was well tolerated at therapeutically relevant dosages. The mild 

myelotoxicity, the generally weak side effects, and the encouraging pain scores 

found in this study encouraged the authors to conduct a phase II study [161]. 

In a randomised, double-blind, placebo-controlled, multicentre phase II study, 

the aim was to investigate the effect of repeated 223Ra doses in men with 

symptomatic, hormone-refractory prostate cancer. Sixty four patients due to 

receive local-field, external-beam radiotherapy to relieve pain from bone 

metastases were assigned to receive either four repeated monthly injections of 

50 kBq/kg 223Ra (33 patients) or repeated injections of saline (31 patients). 

Treatment lasted for 12 weeks, during which four injections were given at 4-

week intervals, with the first injection given at the time of external-beam 

radiotherapy and no later than 7 days afterwards. The results showed that 223Ra 

was well tolerated with little or no myelotoxic effect, and showed promising 

evidence of efficacy [165]. 
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A phase III, randomized, placebo-controlled, double-blind international human 

study had been conducted, comparing Alpharadin against placebo in men with 

symptomatic castration-resistant prostate cancer that has metastasized to the 

bone (ALSYMPCA – Alpharadin in Symptomatic Prostate Cancer). It involved 

921 patients, in over 100 centres in 19 different nations. They were all either 

ineligible for docetaxel, could not tolerate it, or had not responded to the therapy 

with docexatel. Patients were given either Alpharadin or a placebo intravenously 

up to six times, four weeks apart. In this study 809 patients of the 921 patients 

were included in a planned interim analysis. In June 3, 2011 the Independent 

Data Monitoring Committee recommended stopping the trial early due to 

evidence of a significant treatment benefit. The more recent data of the 921 

patients showed that Alpharadin improved overall survival by 44%, resulting in a 

30.5% reduction in the risk of death compared to placebo. The median overall 

survival benefit with Alpharadin was 3.6 months (14.9 months in patients given 

Alpharadin vs. 11.3 months with placebo). In addition to improving overall 

survival, 223Ra dichloride led to a statistically significant delay in the time to 

skeletal-related events.  Alpharadin has been granted Fast Track designation by 

the FDA. Bayer plans to file Alpharadin seeking marketing approval for 

castration-resistant prostate cancer with regulatory authorities in the United 

States and Europe based on the ALSYMPCA data in the second half of 2012 

[166, 167]. 

A radionuclide that could prove promising is radioactive 177mSn. It emits mono-

energetic conversion electrons (energies of 126-158 keV) with a discrete range 

(0.2-0.3 mm) in bone tissue, which allows for larger bone radiation doses 

without excessive radiation to the bone marrow. Being an Auger emitting 

radionuclide, 117mSn will introduce a highly localized distribution of the electrons 

once inside or close to the cell. Furthermore, 117mSn possesses a favourable 

half-life of 13.6 days that, depending on in vivo pharmacokinetics, is long 

enough to deliver more auger electrons for the treatment. In addition to these 

favourable radiation characteristics, tin-ions exhibit an inherent affinity for bone 

as is observed in biodistribution experiments with rats and adsorption studies of 

hydroxyapatite [112]. Although difficult to produce with the required specific 

activity, the interest in 117mSn arises from its favourable half-life and discrete 



 
 

79 
 

range in bone tissue, as compared with 153Sm, 32P and 166Ho [148]. In a study of 

Atkins HL, a bone to marrow ratio of 11 has been recorded for 117mSn-DTPA, 

which is far better than its closest rival, 153Sm-EDTMP. Considering 166Ho, its 

short half-life (26.7 h), might prove to be inadequate, while 117mSn (13.6 days 

half-life) would be ideal with a long half-life which is not too long to require 

radiation safety precautions. The oxidation state of the Sn is also important 

[102]. Zeevaart JR et al. sought an improved bone-seeking 

radiopharmaceutical, so they used 117mSn (II)–APDDMP. The results, using 

ECCLES (blood plasma model based on thermodynamic equilibrium), clearly 

showed that the target organs were the kidneys and bladder. ECCLES could in 

this case accurately predict that 117mSn (II)–APDDMP would have some bone as 

well as liver uptake. It furthermore, could explain the reasons for the high kidney 

uptake, namely 117mSn (II) radiopharmaceuticals are also dependant on the 

weakness of the complex between Sn (II) and the ligand carrier. This was 

verified by animal experiments with 117mSn (II)–APDDMP [94, 168]. 

A recent approach to develop an effective radiopharmaceutical for therapy of 

bone cancer, ensuring the selective uptake of the radiopharmaceutical, was to 

design a water-soluble polymer which is bone-seeking, and which would exploit 

the disrupted vasculature in tumours according to “Enhanced Permeability and 

Retention” (EPR) effect, as discussed by Maeda et al. [169] and Seymour [170] 

– the process in which macromolecules accumulate within tumour tissue due to 

leaky blood vessels and poor lymphatic clearance. The principal behind this 

scenario is that water-soluble macromolecules accumulate passively in solid 

tumours [171, 172]. 

The EPR effect is commonly observed in most solid tumours, either primary or 

metastatic in nature. In tumour biology, little is known about selective or tumour-

specific characteristics compared with those of normal tissues or organs. The 

concept of the EPR effect in solid tumours is one of the few tumour-specific 

characteristics that are becoming a gold standard in antitumor drug delivery 

[169]. 

Lyer A et al. explained this phenomenon by analysing the anatomy of the 

tumour vasculature [173]. The blood vessels in the tumour are irregular in 
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shape, dilated, leaky or defective, and the endothelial cells are poorly aligned or 

disorganized with large fenestration. Also the perivascular cells and the 

basement membrane, or the smooth-muscle layer, are frequently absent or 

abnormal in the vascular wall. The tumour vessel has a wide lumen, whereas 

tumour tissues have poor lymphatic drainage. This anatomical defect, along 

with functional abnormalities, results in extensive leakage of blood plasma 

components, such as macromolecules, nanoparticles and lipid particles, into the 

tumour tissue. Moreover, the slow venous return to tumour tissue and the poor 

lymphatic clearance mean that macromolecules are retained in the tumour, 

whereas extravasation into the tumour interstitium continues. The EPR effect is 

also modulated or mediated by various factors produced by tumour cells, 

infiltrating leukocytes or even tumour-surrounding normal cells. Blood vessels 

near tumour tissue are affected by vascular mediators, such as vascular 

permeability factor, bradykinin and prostaglandins, nitric oxide, peroxynitrite and 

matrix metalloproteinases, which increase the vascular permeability of the 

tumour tissue [171, 173, 174]. 

Through this phenomenon very high local concentrations of polymeric drugs at 

the tumour site can be achieved, for instance 10-50-fold higher than in normal 

tissue within 1-2 days. Interestingly, the EPR effect does not apply to low-

molecular-weight drugs because of their rapid diffusion into the circulating blood 

followed by renal clearance [173]. The polymer must, therefore, be large 

enough not to be taken up by healthy tissue, but not so large as to trapped in 

organs such as the liver or kidneys [111]. 

Because accumulation of macromolecules by the EPR effect is a progressive 

phenomenon, it is essential that the drugs are stable in the plasma for long 

periods. In addition to prolonging the half-life in plasma of low-molecular-weight 

drugs or proteins, polymer conjugation also guides the drugs or radionuclides to 

their target by the EPR effect. The alteration in conformation of some proteins 

or molecules constituting a drug gave a stealth character and the ability to 

suppress the antigenicity, as well as diminishes uptake by the 

reticuloendothelial system or macrophages. For example, succinylation of  

proteins or conjugation of poly(D-Glu-D-Ala-D-Lys) or poly(D-Glu-D-Lys) were 

all found to decrease substantially the immunogenicity of albumin, lactoglobulin, 
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myoglobin, γ-globulin and lysozyme. Therefore, the half-life of polymeric drugs 

in the blood circulation can be extended greatly [173]. 

Owing to the prolonged retention of the polymeric complexes by the EPR effect 

and the enhanced plasma half-life, polymer-conjugated drugs or radionuclides 

require less frequent administration compared with free drugs, which is a great 

benefit to patients [173, 175]. So, tumour-selective properties combined with a 

radionuclide with a short tissue penetration (with the resulting higher possible 

administered dose) could enable a very effective way of producing a 

radiopharmaceutical that would have not only palliative, but also therapeutic 

properties [102]. 

Dormehl IC et al., aiming for a molecule for use in palliative therapy for bone 

metastases after suitable radiolabelling and considering the EPR effect, 

developed PEI-MP (polyethyleneiminomethyl phosphonic acid), a water-soluble 

polymer polyethyleneimine, functionalised with methyl phosphonate groups, 

synthesized by condensation of polyethyleneimine, phosphonic acid and 

formaldehyde [111]. In addition to being bone-seeking, PEI-MP would 

accumulate in solid tumours due to the EPR effect. Studies followed to establish 

the biodistribution and pharmacokinetic properties of different complexes PEI-

MP/metal (99mTc, 117mSn and 186Re) [129, 168]. 

They used various molecular sized PEI-MP radiolabelled with 99mTc, taking into 

account the EPR effect, choosing three different sizes of the PEI-MP, namely 

30-300 kDa, 100-300 kDa and 10-30 kDa, to compare differences in their 

biodistribution and pharmacokinetics, using a normal primate model and 

scintigraphy. From the results, macromolecules with sizes ranging between 30-

300 kDa were characterized by excessive liver (21-57%) and kidney (40%) 

uptake and accompanying long residence times (t1/2 up to 24 hours). The 

percentage bone uptake averaged at 8% for these particles excluding sizes 

100-300 kDa, where very little bone uptake was seen (<1%). In this case the 

blood clearance was also slow (t1/2 approximately 2 hours). The fraction size 10-

30 kDa had comparatively low accumulation and short residence times in the 

liver (20%; 22 minutes) and kidneys (17.5%; 20 minutes) and although the bone 

uptake of 18% in this case was high, it is still low for a bone-seeking agent. 
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These particles cleared from the blood with t1/2 of 25 minutes, and seemed 

suitable for labelling with a therapeutic radioisotopic agent. Anionic species in 

the fraction of 10 to 30 kDa achieve good tumour uptake with minimum uptake 

in healthy bone, kidneys or liver. The polymer clearly demonstrates the potential 

to deliver a therapeutic radionuclide selectively to tumours [111]. 

Zeevaart et al. proposed that PEI-MP could be combined with radioactive 

117mSn. For the EPR effect to apply, the macromolecules of 117mSn-PEI-MP 

should be larger than 40 kDa, i.e. large enough to avoid renal clearance [102]. 

Choosing two different sizes of the PEI-MP, namely 30-50 kDa and 10-30 kDa, 

Jansen D et al. compared differences in their absorption characteristics when 

radiolabelled with 117mSn in two different oxidation states (Sn2+ and Sn4+). In 

addition to the size of the polymer, the oxidation state of the tin had a significant 

effect on the adsorption behaviour. The affinity of the tin in both valence forms 

was governed by the size of the PEI-MP ligand, with a four-fold increase in the 

affinity constants, accompanied by a slight improvement in the maximum 

absorption capacities when in presence of the smaller fraction, namely PEI-MP 

(10-30 kDa). In general, the optimum results were with Sn2+ in the presence of 

PEI-MP (10-30 kDa), where the metal-ion exhibited a higher affinity than the 

ligand whilst the adsorption capacity of the two were essentially equivalent. 

However this may not necessarily be an optimal combination when considering 

the EPR effect, in which the larger PEI-MP fraction could predominate, whilst 

the adsorption characteristics serve merely to complement the EPR 

accumulation. Furthermore, the Tin-PEI-MP complexes were not effectively 

desorbed and became immobilized on the hydroxyapatite surface, which may 

be advantageous for therapy, thereby facilitating passive accumulation of the 

radiopharmaceutical  [176]. 
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Section II. Literature Review 

Chapter 4.Bladder Cancer 

 

4.1. Introduction  

Bladder cancer is the most common malignancy of the urinary tract. The three 

main types of cancers that affect the bladder are urothelial carcinoma 

(transitional cell carcinoma), squamous cell carcinoma, and adenocarcinoma. 

Transitional cell carcinoma originate from the epithelial cells of the inner lining of 

the bladder wall, squamous cell carcinoma originate in thin, and flat squamous 

cells and adenocarcinoma originate in glandular cells that make and release 

mucus and other fluids. The cells that form squamous cell carcinoma and 

adenocarcinoma develop in the inner lining of the bladder as a result of 

metaplasia and chronic irritation and inflammation [177, 178].  

Transitional cell carcinoma is by far the most common form of bladder cancer 

accounting for more than 90% of these cancers, and is the second most 

common malignancy of genitourinary tract and the third most common cause of 

death among genitourinary tumours. Squamous cell carcinoma account for only 

6% to 8%, and adenocarcinoma account for 3% of all bladder cancers [177, 

178]. Transitional cell carcinoma is the 7th most common cancer in men and the 

17th most common in women worldwide [179].  

Transitional cell carcinoma can be subdivided by grade, stage and subtype 

[180]. Pathologic staging of bladder cancer is clinically the most powerful 

determinant in regard to patient prognosis and treatment decision in addition to 

grading [181-183]. Pathologic staging is based on the presence or absence of 

invasion and, in the case of invasive tumours, on the extent of invasion into the 

bladder wall, with the layers of the bladder wall and adjacent organs serving as 

staging landmarks [181].  

Transitional cell carcinoma has been traditionally characterized as either 

superficial or invasive. The clinical staging of bladder carcinoma is determined 

by the depth of invasion of the bladder wall by the tumour. This determination 
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requires a cytoscopy examination that includes biopsy, and examination under 

anaesthesia to assess the size and mobility of palpable masses, the degree of 

invasion of the bladder wall, and the presence of extravesical extension or 

invasion of adjacent organs. Bladder cancer tends to spread progressively from 

its origin in the mucosa to the lamina propria, muscularis, perivesical fat, and 

subsequently to contiguous pelvic structures, with an increasing incidence of 

pelvic lymph node metastases at each stage. Obviously, distant metastasis 

occurs via haematogenous dissemination, with increasing incidence of distant 

metastasis with higher stage of disease. The most affected organs by distant 

metastases of a bladder cancer are liver, lungs and bones [184]. It is important 

to note that even at the earliest stages of invasive bladder cancer, distant 

metastases can develop [177]. Most cases of transitional cell carcinoma (70%) 

present as superficial, limited to the mucosa, submucosa, or lamina propria 

[185, 186]. In general, progressive invasion into the bladder wall by microscopic 

level increases stage, including papillary urothelial carcinoma confined to the 

mucosa (pTa), papillary or nodular tumours with involvement of the lamina  

propria (pT1), nonexophytic or “flat” carcinoma in situ (CIS) confined to the 

urethelium (pTis), superficial or deep muscularis propria (pT2a and pT2b, 

respectively), perivesical fat either microscopically (pT3a) or macroscopically 

(pT3b), and adjacent organs (pT4a) or the pelvic/abdominal wall (pT4b). A 

schematic representation of transitional cell carcinoma staging is represented in 

fig. 5 [181, 185, 187].  
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The National Cancer Institute organizes and describes the stages for bladder 

carcinoma, as shown in the table 12, from stage 0 to IV [188]. 

Table 12.The National Cancer Institute staging for Bladder Carcinoma (NCI, 2014). 

Stage  Description 

Stage 0a Called papillary carcinoma, may look like tiny mushrooms 

growing from the lining of the bladder. 

Stage 0is Called carcinoma in situ, is a flat tumour on the tissue lining 

the inside of the bladder. 

Stage I Cancer has spread to the layer below the inner lining of the 

bladder. 

Stage II Cancer has spread to either the inner half or outer half of the 

muscle wall of the bladder. 

Stage III Cancer has spread from the bladder to the fatty layer of 

tissue surrounding it, and may have spread to the 

reproductive organs (prostate, uterus, and vagina). 

Stage IV Cancer has spread from the bladder to the wall of the 

abdomen or pelvis. Cancer may have spread to one or more 

lymph nodes or to other parts of the body. 

Legend: According to the National Cancer Institute, bladder carcinoma can be grouped in six 

stages. It starts by stages 0a and 0is that correspond to initial stages of the cancer where the 

cancer is still very superficial and contained. As it progresses to stages I, II, III and IV, the 

invasion to adjacent tissues or distant organs is increasingly likely. 

Figure 5.Transitional cell carcinoma staging. Carcinoma in situ, Tis or cis, are flat 

lesions showing dysplasia and are believed to be precursors to invasive urothelial cell 

carcinomas. Ta tumours represent the mildest form and show exophytic growth but do 

not engage the lamina propria. T1 tumours have transverse the basal membrane and 

engage the lamina propria. These tumours may also show a more solid growth pattern. 

Invasive tumours engage the underlying muscles and the surrounding organs in the 

most severe forms. Ta and T1 tumours are occasionally grouped together and 

characterized as superficial (Hoglund M., 2007). 
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The 2002 revision of the American Joint Committee on Cancer/International 

Union Against Cancer/Union International Contre le Cancer (AJCC/UICC) TNM 

system is the most widely used staging system at this time, and is summarized 

in table 13. This version was updated in 2009, but it has no changes for bladder 

tumours [189, 190]. 

 

Table 13.The 2009 TMN Staging System for Bladder Cancer (Edge S.B. et al., 2010). 

Primary tumour (T) 

TX 

T0 

Ta 

Tis 

T1 

T2 

   T2a 

   T2b 

T3 

   T3a 

   T3b 

T4 

 

   T4a 

   T4b 

Primary tumour cannot be assessed. 

No evidence of primary tumour. 

Non-invasive papillary carcinoma. 

Carcinoma in situ: “flat tumour”. 

Tumour invades subepithelial connective tissue (lamina propria). 

Tumour invades muscle (muscularis propria) of bladder wall. 

Tumour invades superficial muscle (inner half). 

Tumour invades deep muscle (outer half). 

Tumour invades perivesical tissue. 

Microscopically. 

Macroscopically (extravesical mass). 

Tumour invades any of the following: prostate, uterus, vagina, pelvic wall, 

and abdominal wall. 

Tumour invades prostate, uterus or vagina. 

Tumour invades pelvic or abdominal wall. 

Regional lymph nodes (N) 

NX 

N0 

N1 

 

N2 

 

 

N3 

Regional lymph nodes cannot be assessed. 

No regional lymph node metastasis. 

Metastases in a single lymph node in the true pelvis (hypogastric, 

obturator, external iliac, or presacral), 2 cm or less in greatest dimension. 

Metastases in a single lymph node in the true pelvis (hypogastric, 

obturator, external iliac, or presacral), more than 2 cm but not more than 

5 cm in greatest dimension. 

Metastasis in iliac lymph node(s), more than 5 cm in greatest dimension. 

Distant Metastasis (M) 

MX 

M0 

M1 

Distant metastasis cannot be assessed. 

No distant metastasis. 

Distant metastasis. 

Legend: The TNM staging system for bladder cancer stages is organized in three categories, 

namely the size of the primary tumour (T), the spread to lymph nodes (N), and the presence of 

metastases (M). For each of these categories, subdivisions may be made assigning a number 

to T, N or M, in a growing sequence, where the higher the number the lower is prognosis. TX, 

NX or MX means that the tumour, invasion to regional lymph nodes and the presence of 

metastases cannot be assessed. 
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In addition to the TNM system, the cancer may also be evaluated and assigned 

a grade (G). Physicians use the term “grade” to describe how much the tumour 

tissue looks like normal bladder tissue under a microscope. Pathologic grade, 

which is based on cellular atypia, nuclear abnormalities, and the number of 

mitotic figures, is of great prognostic importance. Many urologic surgeons 

classify grading based on the chance that the cancer will recur or progress, and 

plan their treatment based on the grade. In 2004 the World Health Organization 

(WHO) developed a new grading system for early bladder cancer, which is 

increasingly being used. This system divides bladder cancers into the following 

groups, summarized in table 14 [188, 191]: 

 

Table 14.The 2004 WHO Grading System for Bladder Cancer (Miyamoto H. et al., 

2010). 

Grading Description 

Urothelial papilloma Non cancerous (benign) tumour. 

Papillary urothelial neoplasm of low 

malignant potential (PUNLMP) 

Very slow growing and unlikely to spread. 

These types of cancer may recur but 

have a low risk of progressing. 

Low grade papillary urothelial carcinoma Slow growing and unlikely to spread. 

These types of cancer are more likely to 

recur and progress compared with 

PUNLMP. 

High grade papillary urothelial carcinoma More quickly growing and more likely to 

spread. These types of cancer are the 

most likely to recur and progress. 

Legend: The 2004 WHO grading system for bladder cancer, is divided in four groups, starting 

with the urothelial papilloma that is a benign tumour, followed by groups with a increasingly 

higher malignancy, the papillary urothelial neoplasm, the low grade papillary urothelial 

carcinoma, ending with the high grade papillary urothelial carcinoma. The higher the grade, the 

greater is the ability of invasion and growth. 

 

Ta lesions account for approximately 70% of superficial transitional cell 

carcinoma. Histologically, these papillary tumours are composed of a branching 

fibrovascular core and mucosa greater than 8 cells layers with features of 

anaplasia [192, 193]. Most Ta tumours are low grade, rarely progress, and are 

associated with a favourable prognosis, whereas high-grade Ta and T1 tumours 

represent a significant risk of tumour progression and recurrence. Carcinoma in 

situ, Tis, is a flat lesion commonly found in association with malignant tumours 
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and is generally believed to be precursor of invasive cancer, being considered 

of high grade [187, 194].  

Transitional cell carcinoma is characterized by a number of chromosomal and 

genetic alterations. Cytogenetic loss and loss of heterozygosity of chromosome 

9 is particularly frequent occurring in 40-50% of the cases [187]. The most 

commonly lost region in 9p includes CDKN2A (Cyclin-dependent kinase 

inhibitor 2A gene) that frequently also shows homozygous losses. Several 

regions of chromosome arm 9q have been suggested to harbour tumour 

suppressor genes but no definite gene has so far been identified [195]. The 

receptor gene FGFR3 (Fibroblast growth factor receptor 3 gene) is activated by 

mutations in up to 70% of the Ta tumours but less frequently in invasive 

tumours [196]. The reverse pattern is seen for P53. This has led to the 

suggestion that transitional cell carcinoma may constitute two entities of 

tumours developing through two different genetic pathways [197]. 

 

4.2. Demographics and epidemiology  

Bladder cancer is the fifth most common tumour world-wide and is responsible 

for about 2% of all cancer deaths [183, 198]. More than 110.000 new cases 

were diagnosed in Europe in 2008 [199], and the estimated incidence of bladder 

cancer in the United States is approximately 70.000 new cases a year [183]. It 

is less common in women than men, ranking as the eight most common cancer 

and tenth leading cause of cancer-related death in women. A genetic 

susceptibility to bladder cancer is suggested by the marked differences in the 

gender and ethnic-related incidences of this cancer [194]. Although most 

patients are older than 60 years of age, bladder cancer may affect younger 

patients [180]. 

In most countries of the Western world, bladder cancer is predominantly of 

transitional cell type; and the great majority of cases are thought to be induced 

by inhaled carcinogens in cigarette smoke, whereas in countries in which 

bilharziasis is endemic, most bladder cancers are squamous cell carcinomas. 

There are significant variations in incidence, morbidity, and mortality rates of 
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bladder cancer in different countries and ethnic groups [200]. African American 

men have a much lower incidence of bladder cancer, but their mortality rates 

are similar to whites [201]. 

The incidence of transitional cell carcinoma ranks it as the sixth most common 

cancer and as the fourth most common if transitional cell carcinoma stage Ta is 

included. The variations noted can partly be attributed to different methodology, 

mainly the inclusion  of transitional cell carcinoma stage Ta or carcinoma in situ 

in different national registries, thus even among countries with comparable 

intensity of care and similar transitional cell carcinoma risks, epidemiologic data 

vary [179]. 

Non-muscle-invasive tumours have a high prevalence because their low 

progression rates allow many patients to survive a long time, while patients with 

muscle-invasive disease are at significantly higher risk of dying from their 

disease. The prevalence of transitional cell carcinoma is among the highest for 

all urologic malignancies [179]. 

 

4.2.1. Risk factors for urothelial bladder cancer 

Risk factors are best differentiated into inherited genetic predispositions and 

external exposures [179]. 

The risk of bladder cancer is two-fold higher in first-degree relatives of bladder 

cancer patients. Inherited genetic factors, such as the genetic slow acetylator N-

acetyltransferase 2 variants and glutathione S-transferase mu 1 null genotypes, 

have been established as risk factors for bladder cancer. Factors such as slow 

acetylation may not intrinsically lead to bladder cancer but may confer additional 

risk to exposure of carcinogens such as tobacco products [179]. 

Smoking is recognized as the most important risk factor for urothelial bladder 

cancer and is estimated to account for 50% of tumours [202]. In 1956 Lillienfield 

et al [203] first documented an association between cigarette smoking and 

bladder cancer, and this relationship has since been confirmed in multiple 

epidemiologic studies. Smokers have a 4-times higher increased incidence of 
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cancer versus non-smokers, and this risk correlates with number of cigarettes, 

duration of smoking, and degree of inhalation [182, 204]. Tobacco smoke 

contains aromatic amines, such as β-naphthylamine, and polycyclic aromatic 

hydrocarbons known to cause urothelial bladder cancer. These are renally 

excreted and exert a carcinogenic effect on the entire urinary system. Tobacco 

consumption is common, and thus its epidemiologic impact is massive [202]. 

Following smoking, occupational exposures to carcinogens – namely, aromatic 

amines (benzidine, 4-aminobiphenyl, 2-naphthylamine, 4-chloro-o-toluidine), 

polycyclic aromatic hydrocarbons, and chlorinated hydrocarbons – is viewed as 

the second most important risk factor for urothelial bladder cancer. Roughly 

20% of all urothelial bladder cancers have been suggested to be related to such 

exposure, mainly in industrial areas processing paint, dye, metal, and petroleum 

products [179, 180, 194, 205]. Detoxification of these carcinogens by the rapid 

acetylation of aromatic amines may prevent their carcinogenic action [206]. 

Higher bladder cancers rates are also seen in those with defects in the P450 

cytochrome oxidase system, suggesting a role for this system in carcinogen 

detoxification [207]. The number of bladder cancers resulting from exposure to 

aromatic amines is at this time very small, given to the banning of many of 

these carcinogens and their derivates from the workplace.   [194].  

As for other cancers, nutritional aspects have been attributed to urothelial 

bladder cancer risk. Fluid intake is commonly evaluated because of its impact 

on voiding, but the association with bladder cancer is controversial. On one 

hand, the amount of fluid ingested may reduce exposure of urothelial tissue to 

carcinogens by diluting urine and increasing the frequency of micturition, but on 

the other hand, the type of fluid is related to urothelial bladder cancer risk if it 

contains relevant carcinogens such as arsenic and disinfection by-products 

[179, 208]. 

Michaud et al performed a case-control study finding water intake to be 

inversely associated with urothelial bladder cancer risk, as they observed 

urothelial bladder cancer risk halved in subjects consuming greater compared 

with smaller amounts of fluids per day. Chlorination of drinking water and 

subsequent levels of trihalomethanes have been viewed as one source of 
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relevant carcinogens [209]. While coffee, a complex mixture of chemicals, has 

been suggested as a possible urothelial bladder cancer relevant carcinogen, 

such an effect remains controversial. Villanueva et al recently evaluated the 

relation of coffee consumption to urothelial bladder cancer incidence in a case-

control study and found only a modest increase in risk among coffee drinkers, 

which was confounded by smoking [210]. In a recent meta-analysis of 16 case-

control and 3 cohort studies, Pelucchi et al found no association between 

amount of alcohol consumption and urothelial bladder cancer risk [211]. 

Besides fluid intake, dietary habits have been considered relevant in urothelial 

bladder cancer tumorigenesis, as many carcinogens ingested via food are 

excreted into the urine, resulting in direct exposure of the urothelium. In other 

cancers, consumption of meat has been suggested to increase risk while 

consumption of vegetables and fruits has been suggested to be beneficial. In 

urothelial bladder cancer, however, neither effect is evident [179]. 

With regard to gender, women have a lower urothelial bladder cancer incidence 

and a higher mortality rate than men. Palou et al found female gender to be an 

adverse prognosticator of time of recurrence, progression, and cancer-specific 

survival in patients with pT1 urothelial bladder cancer undergoing bacillus 

Calmette-Guérin therapy [212]. While there is no uniform theory to explain these 

phenomena, unequal access to health care, delays in diagnosis and treatment, 

environmental exposure to carcinogens, anatomic and hormonal factors have 

been suggested [179].  

Few data on the impact of race in urothelial bladder cancer incidence exist. 

However, African Americans show a lower age-standardized incidence rate per 

100 000 of 13, compared with 22 in white individuals in the United States, and 

black race has been reported to be associated with adverse stage at initial 

presentation and reduced survival in a recent Surveillance Epidemiology and 

End Results (SEER) analysis [213]. 

In a further SEER analysis, marital status has been reported to affect urothelial 

bladder cancer survival, as married men had better survival than unmarried 

men independent of other factors such as race, socioeconomic status, 

comorbidities, or aggressive treatment [214]. Low socioeconomic status has 
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been related to unfavourable urothelial bladder cancer-specific survival in an 

analysis of patients receiving social welfare medical aid in a recent analysis, 

while previous reports did not find such an effect [215]. While no stringent 

explanations have been established for these phenomena, reduced access to 

health care and increased exposure to the main urothelial bladder cancer-

related carcinogen – that is, smoking – have been postulated [179]. 

Medical conditions may predispose individuals to bladder tumorigenesis through 

direct causation or as a side effect of treatment. Examples of direct causative 

roles include chronic urinary retention and upper tract dilation increasing 

urothelial exposure to carcinogens and carcinogenesis associated with chronic 

inflammation or schistosomiasis [179].   

Chemotherapeutic agents and pelvic radiotherapy have also been implicated in 

the development of bladder cancer. Cyclophosphamide induces bladder cancer 

in human beings in a dose-response relationship that may be related to the 

development of drug-induced hemorrhagic cystitis. Overall, patients treated with 

cyclophosphmide have up to a 9-fold increased risk of bladder cancer [216]. 

Pelvic radiotherapy results in a 4-fold increase in the risk of bladder cancer in 

women receiving between 30 and 60 Gy for the treatment of cervical cancer 

[217] 

The risk factors for the development of superficial transitional cell carcinoma are 

summarized in table 15. 
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Table 15.Major risk factors for development of superficial transitional cell carcinoma 

(Amling C.L., 2001; Burger M. et al., 2013). 

Cigarette smoking 

       4-Aminobiphenyl 

       O-toluidine 

Occupational arylamine exposure 

       2-Naphthylamine 

       Benzidine 

       4-Aminobiphenyl 

Chemotherapy 

      Cyclophosphamide 

Pelvic radiotherapy 

Legend: The major risk factors for the development of superficial transitional cell carcinoma are 

mainly the exposition to aromatic amines, polycyclic aromatic hydrocarbons, and chlorinated 

hydrocarbons resulted from cigarette smoking and occupational exposure. Also the exposure to 

chemotherapeutic agents and pelvic radiation resulted from pelvic radiotherapy, are risk factors 

for the development of superficial transitional cell carcinoma. 

 

4.3. Diagnosis 

Physical examination should include rectal and vaginal bimanual palpation. A 

palpable pelvic mass can be found in patients with locally advanced tumours. In 

addition, bimanual examination under anaesthesia should be carried out before 

and after transurethral resection to assess whether there is a palpable mass or 

if the tumour is fixed to the pelvic wall. However, considering the discrepancy 

between bimanual examination and pT stage after cystectomy (11% clinical 

overstaging and 31% clinical understaging) some caution is suggested with the 

interpretation of bimanual examination [188]. 

The most common sign of bladder cancer is haematuria. Approximately 80% of 

all patients with transitional cell carcinoma will be diagnosed with either gross or 

microscopic haematuria [218]. The distinction between gross and microscopic 

haematuria is not a useful guideline to distinguish between patients who need 

evaluation and those who do not [183]. Cystoscopy must usually be included for 

an adequate evaluation of haematuria and remains the cornerstone for the 

diagnosis of bladder cancer. Urine cytologic study is an important non-invasive 

tool used in the diagnosis and follow-up of patients with transitional cell 

carcinoma. It can be obtained from both voided and bladder barbotage urine 

specimens [219]. The disadvantage of urine cytologic study is its poor sensitivity 
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for detection of low-grade cancers. Because the cells of such tumours closely 

resemble normal urothelium, it is much more difficult to identify them as 

abnormal [220].  

However, although bladder cancer is usually asymptomatic, some patients 

(particularly those with carcinoma in situ) will initially be seen with significant 

symptoms of bladder irritability, including urinary frequency, urgency, and 

dysuria [194]. 

Various imaging modalities are used not only for detection but also for staging 

of infiltrating urothelial carcinoma. They include ultrasound, intravenous 

urography (IVU), CT and MRI [180]. 

Transabdominal ultrasonography of the bladder is quick, non-invasive, 

inexpensive and available in most institutions. However, staging accuracy is 

less than 70% for infiltrating bladder tumours. Sensitivity reaches only 63%, yet 

with a specificity of 99% [180]. Ultrasonography may be useful in detecting the 

presence of a renal mass and in determining whether it is solid or cystic in 

nature. However, is inadequate to evaluate the urothelium for filling defects that 

would be most consistent with transitional cell carcinoma [183]. 

While IVU is reliable in diagnosing intraluminal processes in ureter, pelvis and – 

with lesser accuracy – in bladder, it fails to detect the extent of extramural 

tumour [180]. Although it has obvious limitations, IVU is still the preferred initial 

imaging modality. The upper urinary tract collecting system is usually well 

visualized by IVU with or without concomitant retrograde pyelography. However, 

IVU is significantly more sensitive in detecting filling defects in the upper urinary 

tract than in the bladder [183].  

Recent studies have begun to explore the utility of CT scanning in the initial 

evaluation of microscopic haematuria. The advantage of this modality is a more 

sensitive evaluation of the renal parenchyma for small renal masses, improved 

detection of non-urologic disease processes that otherwise would have been 

missed on IVU [194].  In most institutions CT is used as a primary staging tool 

as it is more accessible and more cost effective than MRI. However, both CT 

and MRI scanning often fail to differentiate between edema post-transurethral 
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resection and tumour [180]. The urothelium is not well evaluated by CT, 

particularly for identification of smaller urothelial lesions. In the bladder, CT 

scanning is unable to detect tumours smaller than 1 cm and cannot differentiate 

between superficial and intramural tumour invasion [194]. Staging accuracy of 

CT has been described in the range of 55% for urothelial carcinoma in the 

urinary bladder. Understaging of lymph node metastases in up to 40% and 

overstaging 6% of the cases are the major causes of error [180]. However, CT 

scanning can detect extravesical tumour extension (stages T3 and T4) with 

80% accuracy and is useful in ruling out lymph node involvement and distant 

metastases [221]. MRI appears to be somewhat better to assess the depth of 

intramural invasion and extravesical tumour growth but does not exceed 83% 

[180]. 

Unlike in other tumours diagnostic accuracy of positron emission tomography 

(PET) in patients with invasive carcinoma of the bladder is poor [180]. 

If a bladder tumour has been visualised unequivocally in earlier imaging studies, 

such as CT, MRI, or US, a diagnostic cytoscopy may be omitted and the patient 

can proceed directly to TUR for a histological diagnosis. The goal of TUR is to 

enable histopathological diagnosis and staging, which requires the inclusion of 

bladder muscle in the resection biopsies. The strategy of resection depends on 

the size of the lesion. Small tumours (less than 1 cm) can be resected en bloc, 

where the specimen contains the complete tumour plus a part of the underlying 

bladder wall including bladder muscle. Larger tumours have to be resected 

separately in fractions, which include the exophytic part of the tumour, the 

underlying bladder wall with the detrusor muscle and the edges of the resection 

area [188, 222].  

 

4.4. Therapy 

Systemic treatment options for bladder cancer include surgery, chemotherapy, 

radiation, and immunotherapy. Treatment modalities are often combined. In 

early bladder cancer, transurethral resection is a common mode while partial or 



 
 

96 
 

radical cystectomy is performed for muscle-invasive and locally advanced 

bladder cancer [177]. 

The standard initial treatment of superficial bladder cancer is transurethral 

resection of all visible bladder lesions. This establishes the diagnosis and allows 

pathologic analysis of the resected tumour specimen for tumour grade and 

depth of bladder invasion [177, 194]. A significant number of patients with 

superficial bladder cancer who are treated with transurethral resection alone will 

have development of tumour recurrence or progression at some point in their 

follow-up. Sixty to seventy percent of superficial bladder cancers recur, and 

20% to 30% of these recurrent tumours will eventually progress to higher stage 

or grade disease. The high recurrence rate and the probability of disease 

progression have led to widespread use of intravesical therapy after initial 

tumour resection. The main goal of intravesical therapy in the treatment of 

superficial bladder cancer is to prevent tumour recurrence and progression 

[223].  

In patients with low-risk tumours, that is, tumours that are small, solitary, well-

differentiated, and pathologic stage Ta, adjuvant treatment after surgical 

resection may be unnecessary. These patients have a relatively benign type of 

superficial cancer that is unlikely to recur after transurethral resection. A much 

larger group of patient consists of those who will have development of a 

superficial recurrence of their cancer without progression. In these patients, 

intravesical chemotherapies may be given to decrease the recurrence rate 

[224].  

Some chemotherapeutic agents used for intravesical therapy are thiopeta, 

doxorubicin, mitomycin-C, epirubicin and ethoglucid.  

Thiopeta is an alkylating agent that inhibits the synthesis of nucleic acid, 

therefore interfering with protein synthesis. Because its molecular weight is 

relatively low at 189, systemic absorption and toxicity can occur [194].  

Doxorubicin is an anthracycline antibiotic that exerts its antineoplastic effect by 

binding to pairs of DNA, interrupting DNA replication and transcription and 

inhibits protein synthesis. Although it is classified as a non-cell cycle-specific 
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agent, its most toxic effect is seen in the S-phase of the cell cycle. Doxorubicin 

has a relatively high molecular weight of 580, and thus absorption and systemic 

toxicity is extremely rare [225].  

Mitomycin-C is an alkylating agent with a mechanism of action that is poorly 

understood. Some evidence suggests that it acts by binding to DNA resulting in 

synthesis intubation and strand breakage. Although it is classified as a non-cell 

cycle-specific agent, mitomycin-C is most sensitive in late G1 and the early S-

phase. With a molecular weight of 334 kDa, mitomycin-C is minimally absorbed 

[194].  

Epirubicin is an anthracycline derivative of doxorubicin. The mechanism of 

action of this agent is similar to that of doxorubicin. The toxicity profile, however, 

appears to be more favourable [226].  

Ethoglucid is a podophyllin derivative with molecular weight of 262 kD. Its 

mechanism of action is similar to that of an alkylating agent [227].  

In a review of the long-term results of intravesical therapy in superficial bladder 

cancer, Lamm [228] found that in a group of 3899 patients the percentage of 

patients with short-term recurrences decreased 14% with the use of intravesical 

chemotherapeutic agents. The results among various chemotherapeutic agents 

were comparable. However, the modest 14% short-term advantage to 

intravesical chemotherapy disappears within a period of 5 years with no 

apparent advantage to the use of maintenance therapy [229]. The use of 

chemotherapy should be restricted to patients with tumours of intermediate or 

low-risk.  

Photodynamic therapy is another option that allows effective ablation of most 

superficial tumours. The advantages of laser treatment are minimal bleeding, 

ability to use with flexible cytoscopes, and the potential for less postoperative 

irritative symptoms [230]. Photodynamic therapy relies on the photosensitization 

of cancerous cells with subsequent administration of light therapy.  

Treatment of superficial bladder cancer with photodynamic therapy was first 

described in 1975 [231]. A hemoporphyrin photosensitizer was given 

intravenously with subsequent activation by mercury light illumination of the 
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bladder [232]. Effective photosensization and cell death requires oxygen in 

addition to the sensitizer and the light source. After excitation by light exposure, 

the photosensitizer reacts with oxygen to form cytotoxic free radicals [233]. 

Photodynamic therapy is less effective in larger bladder cancers, likely because 

of the relative lack of oxygen in portions of these tumours.  

Photofrin (porfimer sodium), a porphyrin mixture of dihematoporphrin ethers and 

esters, is the most commonly used sensitizer in bladder cancer [232]. Although 

photodynamic therapy appears to be effective, its widespread use has been 

limited by its toxicity. Most patients have significant irritative bladder symptoms 

associated with microscopic haematuria that usually peaks on the second post-

treatment day. Dermal sensitivity resulting in sunburn has been reported in 19% 

of patients. Decreased bladder volume (at least 50%) occurs in 16% of patients 

and debilitating bladder fibrosis can also occur, leading to cystectomy [232]. 

Intravesical immunotherapy is used successfully in patients in whom other 

forms of intravesical therapy failed [194]. Immunotherapy can be used to 

enhance the host immune functions against tumour cells. Intravesical 

immunotherapy in bladder cancer has been attempted with agents such as 

bacilli Calmette-Guerin (BCG), interferon, bropirimine, keyhole limpet 

hemocyanin, etc.  

BCG is commonly used and is the most effective immunotherapeutic agent 

against superficial transitional cell carcinoma [234, 235] and is known to 

decrease the rate of progression [236, 237]. However, only two thirds of patient 

respond to BCG and one third of the responses will have recurrent disease 

[238-241]. The exact mechanism of action of BCG remains uncertain, however 

it is known that BCG organisms bind to the urothelium, facilitated by fibronectin, 

and initiate an immune response [242, 243]. It is uncertain whether the 

antitumor effect of BCG is due to a tumour antigen-specific humoral or cell 

mediated response or whether it is due to local release of cytokines. However, 

although an intact T-cell immune system appears to be necessary for antitumor 

effect of BCG, tumour-specific T cells have not been shown to be induced by 

BCG treatment [244]. Also care should be taken to avoid the toxicity associated 

with this agent [245].  
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Keyhole-limpet hemocyanin (KLH) is a high-molecular weight protein antigen 

derived from the hemolymph of the giant keyhole limpet (sea mollusk). It is a 

nonspecific immunostimulant inducing both a cell-mediated (delayed type) and 

humoral (antibody) response in human beings. Olsson et al [246] reported the 

first use of KLH for superficial bladder cancer in 1974. A randomized control 

study demonstrated that KLH was as effective as mitomycin-C in the 

prophylaxis of recurrent tumours [247]. KHL appears to be less effective than 

BCG with regard to tumour prophylaxis [247].  

Interferon-α has been the most extensively studied interferon for the treatment 

of bladder cancer. Interferon’s are produced by several cell types in response to 

antigenic stimuli and have multiple antitumor activities. It is effective with either 

papillary disease or carcinoma in situ and can be useful in patients whose 

conditions have failed to respond to BCG previously [248]. 

For muscle invasive bladder cancer the standard treatment is radical 

cystectomy. Although 70% muscle invasive bladder cancer recur or progress to 

metastatic disease despite radical treatment, radical cystectomy with bilateral 

pelvic lymph node dissection remains the gold standard for patient management 

and is associated with 5 and 10 year relapse-free survival rates of respectively 

68% and 66% [249].  

Conservative management with organ preservation is now the standard of care 

in numerous malignancies, including carcinomas of the breast, the anus, and 

the head and neck region, where radical surgery can be avoided in most 

patients without compromising survival [250].  

Radical cystectomy may cause important changes in the lives of patients, not 

only in urinary and sexual function, but also in social function, daily living 

activities and satisfaction with body image [186, 251]. Bladder preservation to 

the patient means less surgery, no need for a urinary diversion, and the 

possibility of a normal sexual life. Modern sophisticated techniques for urinary 

diversion have not altered the fact that cystectomy is still associated with 

physical and psychological limitations [252].  
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The non-surgical treatment of invasive bladder cancer has been traditionally 

reserved for patients who are unfit for, or refuse radical cystectomy, but there is 

growing evidence that the evolution of radiotherapy techniques and the 

availability of new chemotherapeutic protocols have made bladder-saving 

treatment a competitive alternative to radical cystectomy in selected patients 

[198]. However, although bladder preservation may be attained by means of 

transurethral resection, chemotherapy or radiotherapy as single treatments, 

historical series show that local disease in controlled in only about 20% of 

patient treated with transurethral resection alone [253, 254] and  40% treated 

with radiotherapy alone [255, 256].  

Some studies have shown that combined transurethral resection and 

chemotherapy [230, 257] or radiotherapy and chemotherapy [258, 259] can 

improve the disease, but the best results are obtained using a trimodality 

strategy in which radiochemotherapy follows transurethral resection.  

Current therapy options may be summarized and organized according to the 

stage of the tumour, as can be seen in table 16.  
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Table 16.Current treatment options for bladder carcinoma, according with the stage of 

tumour (Witjes J.A. et al., 2013). 

Stage Treatment options 

Stage 0 TUR with fulguration alone, followed by intravesical BCG or intravesical 

chemotherapy. 

Segmental cystectomy (rarely indicated) or radical cystectomy in selected 

patients with extensive or refractory superficial tumour. 

Stage I TUR with fulguration alone, followed by intravesical BCG or intravesical 

chemotherapy. 

Segmental cystectomy (rarely indicated) or radical cystectomy in selected 

patients with extensive or refractory superficial tumour. 

Interstitial implantation of radioisotopes with or without external-beam 

radiation therapy. 

Stage II Radical cystectomy with or without pelvic lymph node dissection. 

Neoadjuvant platinum-based combination chemotherapy followed by 

radical cystectomy. 

External-beam radiation therapy (EBRT) with or without concurrent 

chemotherapy. Interstitial implantation of radioisotopes before or after 

EBRT. 

TUR with fulguration (in selected patients). 

Segmental cystectomy (in selected patients). 

Stage III Radical cystectomy with or without pelvic lymph node dissection. 

Neoadjuvant platinum-based combination chemotherapy followed by 

radical cystectomy. 

EBRT with or without concurrent chemotherapy or with interstitial 

implantation of radioisotopes 

Segmental cystectomy (in highly selected cases). 

Stage IV Radical cystectomy with pelvic lymph node dissection. 

External-beam radiation therapy. 

Urinary diversion or cystectomy for palliation. 

Chemotherapy as an adjunct to local treatment. 

Legend: The current treatment options for bladder cancer according with the stage of the 

tumour are TUR and segmental cystectomy for initial stages, resorting to more aggressive 

therapies in the more advanced stages of the tumour, like radical cystectomy, chemotherapy 

and radiotherapy. As can be seen, the therapy is not achieved by applying only one technique, 

but rather by combining several therapeutic techniques. 

 

Over the last decade, the growing use of targeted therapies in everyday clinical 

practice has led to dramatic changes in the medical treatment of all but a few 

tumours. Unfortunately, bladder cancer is not one of these: a number of trials of 

epidermal growth factor receptor and/or vascular endothelial growth factor-

targeting tyrosine-kinase inhibitors have led to discouraging results when 
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administered alone to patients with advanced disease [260-264], and the role of 

monoclonal antibodies combined with chemotherapy in unclear [265, 266]. 

Also there is no reference to the use of radionuclides/radiopharmaceuticals for 

systemic radiotherapy, it is important to notice that some molecules with specific 

properties, properly radiolabelled could have an important potential to be used 

as agents for directed therapy, or even diagnosis, of bladder cancer and its 

metastasis. As described in Chapter 3, from the various studies performed with 

PEI-MP labelled with several radionuclides, the dosimetric calculations 

demonstrated that the critical organ was consistently the bladder [111, 129, 

174, 267]. The high value of accumulation and retention by the bladder wall by 

different radiolabelled PEI-MP complexes seems something that deserves to be 

further and better studied. If these complexes are highly uptake by normal 

bladder cells, could it be that the uptake by bladder tumour cells is also high? 

And also taking in consideration the EPR effect associated with PEI-MP [169, 

170], thus this polymer has a potential for therapy or diagnosis after convenient 

radiolabelling? These are some questions that led to the development of this 

work. 
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Section III. Experimental Studies 

Chapter 5.In vitro 

 

5.1. Introduction 

As described in Chapter III, polyethyleneiminomethyl phosphonic acid (PEI-MP) 

was developed by Dormehl IC et al [111], is a water-soluble polymer for use in 

palliative therapy of bone metastases after suitable radiolabelling [67, 111]. 

After preliminary experiments to achieve biodistribution of and pharmacokinetic 

properties of different complexes PEI-MP/metal radionuclides [129, 174, 267],  it 

was clear that the bladder wall was the critical organ [111, 267]. The high 

uptake and retention by the bladder wall cells of different PEI-MP/metal 

radionuclides seems something that deserves to be further and better studied. 

As referred in Chapter 4, the possibility of a high uptake of PEI-MP complexes 

by bladder tumour cells, associated with the EPR effect [169, 170], assigns a 

high potential to the PEI-MP, if appropriately radiolabelled, for diagnosis and 

therapy of bladder cancer. More specifically, through the use of 99mTc-PEI-MP 

for nuclear medicine imaging or of 188Re-PEI-MP for radionuclide therapy. This 

second complex could be used as a theranostic agent. 

Thus, the aim in this chapter is to explore in vitro, the potential of PEI-MP 

radiolabelled with 99mTc or 188Re, for the early diagnosis and therapy of bladder 

cancer, through the evaluation of the chemical properties of PEI-MP, the 

radiotoxicity of 99mTc and the kinetics of 99mTc-PEI-MP and 188Re-PEI-MP  in a 

human bladder transitional cell carcinoma cell line. It is also an objective to 

compare the potential of those complexes in a human osteosarcoma cell line, 

taking into account the original intent of the synthesis of PEI-MP.  

To perform this work, it is reported the synthesis, the radiolabelling procedures, 

the quality control protocol, the partition coefficient determination of 99mTc-PEI-

MP, the evaluation of cytotoxicity of PEI-MP by MTT assay and flow cytometry, 

the evaluation of radiotoxicity of 99mTc by clonogenic assay and flow cytometry 

and the cellular uptake and retention studies of the 99mTc-PEI-MP and of the 

188Re-PEI-MP. 
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5.2. Material and methods 

5.2.1. Synthesis of PEI-MP 

Synthesis of the polymer PEI-MP was achieved by condensation of 

polyethyleneimine (PEI), phosphorous acid and formaldehyde by a modified 

Mannich-type reaction in the presence of hydrochloric acid, as described by 

Moedritzer and Irani [111, 132, 268], and prepared in the Radiochemistry 

Department of the Nuclear Energy Corporation of South Africa (NECSA) 

laboratories by doctors Werner Louw and Jan Zeevaart. The reaction was 

performed under an inert atmosphere by continuous purging with argon. 

Phosphorous acid (18.4 g) (Riedel-de Haën AG) was dissolved in 51.3 ml of 

concentrated hydrochloric acid (32%, pro analysis, E Merck, Darmstadt) and 

then was added to a reaction vessel equipped with a thermometer, a magnetic 

stirrer bar, a dropping funnel and a condenser. Dissolution of the phosphorous 

acid was achieved by stirring and heating to 80ºC. The dropping funnel was 

charged with 32% formaldehyde solution (23.3 ml) (pro analysis, E Merk, 

Darmstsdt) which was added drop wise to the reaction mixture. On completion 

the temperature was raised to 90ºC (refluxing temperature) and a solution of 

polyethyleneimine (8.33 g in 40 ml of water, PolyminTM Water-Free, a BASF 

product in which the ratio of primary, secondary and tertiary amine groups is 

1:1:1) was slowly added to the reaction mixture at a rate of 0.3 ml/min with the 

aid of a peristaltic pump. On completion of the addition of polyethyleneimine, 

the mixture was stirred under reflux for an additional hour, then allowed to cool 

slowly during which the product separated as viscous oil. After decanting the 

mother liquor, 50 ml of water was added to oil which formed a doughy mass 

upon stirring. The liquid phase was decanted and the process repeated twice. 

The doughy material was dissolved in 37 ml molar sodium carbonate solution to 

form the water-soluble sodium salt of the PEI-MP. After lyophilisation, 12 g of 

product were obtained.  

To obtain 10 to 30 kDa fraction, the macromolecule PEI-MP was further purified 

into different macromolecular sized MW-fractions using membrane ultrafiltration 

(polyether sulfone membranes). An aqueous solution of sodium PEI-MP was 

subjected to a sequential filtration process through a sequence of 300, 100, 50, 

30, 10 and 3 kDa ultrafiltration membranes (Filtron Technology Corporation. 
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Mass., USA). The membrane was washed with distilled water to a theoretically 

calculated purity of 99%, to yield 3-10, 10-30, 30-50, 50-100 and 100-300 kDa 

macromolecular sized MW-fractions. Typical elemental analysis gave a C:N 

molar ratio of 2.97:1, which on the basis of an empirical formula of a PEI-MP 

monomer of C9H18N3O9P3, indicates a high level of methylphosphonation, in 

contrast to PEI with a monomer empirical formula of C6H5N3 and a ratio C:N of 

2:1 [111, 269]. The chemical structure of PEI-MP is represented in fig. 6 [270]. 

 

 

 

5.2.2. Preparation of PEI-MP labelling kits 

The reconstitution of the PEI-MP labelling kits were performed by adding 500 

mg of PEI-MP (10 to 30 kDa) in 25 ml of water (pH = 6.0). The solution was 

purged with argon during 15 minutes and subsequently was filtrated through a 

0.22 µm filter (Frilabo 1520012). To this solution was added 0.05 ml of a 

solution previously prepared, comprising 0.5 mg of SnCl2.2H2O (Merck 

1116845) dissolved in 1.0 ml 10M hydrochloric acid (Sigma H1758), pH = 5.0 to 

6.0. The volume of this solution was adjusted with water and 1ml was 

dispensed into sterile vials. This solution was lyophilized and the vials flushed 

and filled with sterile argon.  

 

Figure 6.Chemical structure of PEI-MP (Milner R.J., 2013). 
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5.2.3. Preparation of 99mTc- PEI-MP and 188Re-PEI-MP  

For the preparation of 99mTc-PEI-MP, it was added directly to the PEI-MP kit, 

1739 to 1850 MBq (47 to 50 mCi) of sodium pertechnetate (Na99mTcO4) in a 

volume of 2 ml, without introducing air. The kit was inverted a few times to 

dissolve the freeze-dried contents. It was left to stabilize at room temperature 

for 15 minutes before use. The labelling was possible given to the reduction of 

99mTc from the oxidation state +7 to +5, making 99mTc reactive and able to form 

chemical bonds with  the nitrogen of the amine groups in PEI, and/or make 

chemical bonds with phosphorus in the methyl-phosphonate groups [74, 269]. 

All 99mTc-pertechnetate was given by the Departments of Nuclear Medicine of 

the Hospitais da Universidade de Coimbra, Centro Hospitalar e Universitário de 

Coimbra, and Instituto Português de Oncologia de Coimbra Francisco Gentil, 

E.P.E.  

For the preparation of 188Re-PEI-MP, it was necessary to acquire an 188W/188Re 

generator (itm AG Rhenium-188 Generator), to obtain sodium perrhenate 

(Na188ReO4). For the preparation of 188Re-PEI-MP, a more complex labelling 

process was needed. The range of 188Re activities obtained by the elution of 

188W/188Re to perform the labelling of PEI-MP at this time were about 370-740 

MBq (10-20 mCi), and the specific activity of 188Re was 982 Ci/mg, meaning 

that for 10 mCi there was 10 ng of 188Re. For the amount of PEI-MP present in 

the labelling kits, the introduction of 10 mCi of 188Re would result in poor 

radiochemical purity. To this reason it was needed to add cold rhenium in the 

form of sodium perrhenate (NaReO4).  

For the preparation of cold NaReO4 it was dissolved 5 mg of Re-metal were 

dissolved in 2 ml of 10% hydrogen peroxide (H2O2). The solution was left to 

react during 2 hours at room temperature to form perrhenic acid (HReO4). The 

HReO4 was neutralized with a stoichiometric amount of 0.1M of sodium 

hydroxide (NaOH) to form NaReO4. The solution was then evaporated to 

dryness (80-90 ºC) overnight.  

To the labelling it was used only deoxygenated solvents and solutions, and 

performed all operations under an inert atmosphere of argon. The labelling kit 

was dissolved in 1.0 ml of ultrapure and deoxygenated water, and was added 



 
 

107 
 

an appropriate volume of NaReO4 (3.83 mg/ml) and 370-740 MBq (10-20 mCi) 

of Na188ReO4. The pH of the solution was adjusted to 1 with 1M hydrochloric 

acid (HCl). The kit was heated in boiling water bath during 30 minutes and after 

left to cool to room temperature. After, citrate buffer 1.0M was added and the 

pH was adjusted to 5.0-7.0 with NaOH 1M. The solution was then, 3 times 

submitted to ultrasound during 7 minutes and left to stabilize overnight, and 

filtered before use.  

The labelling was possible given to the reduction of 188Re from the oxidation 

state +7 to +5, making 188Re reactive and able to form chemical bonds with  the 

nitrogen of the amine groups in PEI, and/or make chemical bonds with 

phosphorus in the methyl-phosphonate groups  [74, 269], in the same way as it 

happens with the labelling of PEI-MP with 99mTc. 

 

5.2.4. Radiochemical quality control 

The radiochemical purity of 99mTc-PEI-MP and 188Re-PEI-MP was evaluated 

using ascendant thin-layer chromatography, at 1, at 2, at 3, at 4 and at 5 hours 

after the radiolabelling. To accomplish this goal two chromatographic systems 

were used: the first one to isolate free pertechenetate/perrhenate and the 

second one to isolate colloidal forms. The first consisted of instant thin layer of 

silica gel impregnated glass-fibre sheets (ITLC-SG, Varian, US) as stationary 

phase and acetone (CH3(CO)CH3; Sigma-Aldrich 34850) as mobile phase. The 

second system was Whatman 3MM cellulose paper (3MM, Maidstone, UK) as 

stationary phase and a solution of citrate buffer (pH = 7.0, 1.0 M) as mobile 

phase. These two systems were chosen to determine the percentage of free 

99mTc or 188Re and the percentage of hydrolysed/reduced 99mTc or 188Re 

species, respectively for the first and second system [87, 271]. The strips of the 

stationary phases were prepared by marking the final length that corresponds to 

the solvent front with a colour pen and the start (origin) with a pencil. When the 

solvent gets in contact with the marker, the colour also migrates with the 

solvent, indicating that the solvent reach the end of the development. The strip 

should be marked in such a way that the colour does not interfere with the 

sample track to avoid artificial results [87]. A sample of 5 µl of 99mTc-PEI-
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MP/188Re-PEI-MP was spotted in the middle of origin of the stationary phase, 

which was placed vertically in a chromatographic chamber previously prepared 

with a saturated atmosphere. After applying the sample, the strip must be 

placed into the chromatographic chamber and developed immediately, without 

drying the spot. Dried samples may lead to artificial results due to oxidation of 

99mTc/188Re complexes and formation of free pertechnetate/perrhenate. The 

strip was placed into the chamber vertically and carefully avoiding any damage 

of the surface. These solid phases, have limited mechanical resistance, 

whereby should be supported (e.g., clipped to the lid of the chamber), otherwise 

they will slip into the solution or touch the chamber wall during the development. 

The solvent should cover the bottom no more than 5 mm high, to be below the 

level of the origin line of the stationary phase [87].  The strips were prepared as 

demonstrated in fig. 7. 

 

 

 

 

When the solvent reached the final mark, the strips were removed from their 

respective chromatographic chambers and allowed to dry at room temperature. 

Subsequently each strip was cut in half, and each half after being cut in small 

pieces, was placed into radioimmunoassay (RIA) tubes, and the radioactivity 

present in each portion was measured separately in a well-type gamma counter 

(Gamma-C 12 DPC, Berthold, Germany), to quantify radioactivity on each half 

Figure 7.Schematic representation of a stationary phase for radiochemical quality 

control. 
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strip. The results of measurements are used to calculate the radiochemical 

purity as the ratio between the radioactivity corresponding to the half-strip of 

interest, divided by the total recovered radioactivity of the chromatogram. The 

final results are shown as a percentage. The background radioactivity is 

subtracted from each count leading to a more accurate analysis. Each 

experiment was performed in 3 different sets of tests.  

There are several methods for the quantification of radiochromatograms. 

Depending on the available instrumentation, the resolution will vary, and the 

amount of the radioactivity used for analysis will differ considerably. The 

quantification with a well-type gamma counter has as an advantage the 

sensitivity. The resolution is dependent on the sample geometry which should 

be maintained at the counting tube bottom. For this reason each half-strip is cut 

in small pieces kept together at the bottom of the RIA tube. The main limitations 

of this method are that the saturation of the counter due to the activities of the 

half-strip of interest, and the time consumption once the procedure has many 

sequential steps such as cut the samples and fill the RIA tubes, time of 

measurements, and posterior percentage calculations. Also a gamma-camera 

could be used to perform this quantification. The dried strip can be placed over 

the head of the gamma camera, and images are acquired. Using the region of 

interest (ROI) technique, for each ROI drawn the total counts are obtained and 

the radiochemical purity is expressed as a fraction of the total strip activity. As 

advantage of this methodology is the use of undiluted sample for 

chromatography allowing measurement with high count rates. The main 

disadvantage is related with the time-consuming procedure (measurement and 

analysis), and consequently, the time of machine [87].  

In order to investigate the effect of temperature and cell culture medium 

(Dulbecco´s Modified Eagle´s Medium, Sigma D-5648)  in radiochemical purity 

of 99mTc-PEI-MP, and using the same chromatographic systems and methods of 

quantification, the radiochemical purity was assessed over time (30 minutes, 1h, 

3h and 5h). The solution of 99mTc-PEI-MP and in saline with and without cell 

culture medium was exposed to temperatures of 22°C, 37°C and 45°C. The 

temperatures were regulated by a digital thermoblock (FALC Instruments, 

Treviglio, Italy). Each experiment was performed in 4 independent sets of tests.  
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5.2.5. Determination of partition coefficient of 99mTc-PEI-MP 

Partition coefficient (log Po/w) of 99mTc-PEI-MP was calculated after the 

determination of Po/w, that is the ratio of specific activities of the organic and 

aqueous phases [272, 273], 1h, 2h, 3h and 4 h after radiolabelling. A mixture of 

1 ml of 1-octanol (Sigma O4500) and 1 ml of 0.9% sodium chloride (0.9% NaCl, 

Braun) containing 3.7 MBq (0.1 mCi) of 99mTc-PEI-MP at 37 °C was vortexed for 

2 minutes and left 5 minutes to rest. Following centrifugation at 1872 g (3000 

rpm) (Multifuge 1L-R, Germany) for 5 minutes, equal aliquots (100 µl) of sample 

were taken from each phase and counted for radioactivity in a well-type counter 

(Gamma-C 12 DPC, Berthold, Germany). Each experiment was performed in 

duplicate and repeated in 4 independent sets of tests. 

 

5.2.6. Cell culture 

Human bladder transitional carcinoma cell line (HT-1376 - ATCC® CRL1472™) 

and human osteosarcoma cell line (MNNG/HOS – ATCC®CRL-1547™) (fig. 8), 

acquired from American Type Culture Collection (ATCC), were cultured in 

Dulbecco´s Modified Eagle´s Medium (Sigma D-5648) supplemented with 100 

mM sodium pyruvate (Gibco 11360), 5% heat-inactivated foetal bovine serum 

(Sigma F7524), and 1% antibiotic/antimycotic (100 U/ml penicillin, 10 µg/ml 

streptomycin and 25 µg/ml amphotericin B, Sigma A5955) (fig. 9).  
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Cells were maintained at 37 °C with 95% air and 5% CO2 (fig. 10) in a cell 

incubator (BINDER, CO² incubator C 150, 150 litres, 230 V, 1 N, 50/60 Hz). 

Figure 9.Culture medium Dulbecco´s Modified Eagle´s Medium supplemented with 100 

mM sodium pyruvate, 5% heat-inactivated foetal bovine serum, and 1% 

antibiotic/antimycotic. 

Figure 8.HT-1376 (A) and MNNG/HOS (B) cell lines in culture, visualized in a optical 

microscope (Nikon Eclipse TS100, Japan) with a magnification of 10x. 
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In order to obtain cell suspensions for use in the in vitro studies, cells were 

washed with PBS, than harvested with a solution of 0.25% trypsin/EDTA (Sigma 

T4049), centrifuged at 209 G (1000 rpm) (Multifuge 1L-R, Germany) during 5 

minutes and finally resuspended in medium. To count the number of viable cells 

in each cell suspension, it was used the trypan blue exclusion method. The 

trypan blue exclusion method is based on the principle that viable cells had 

intact membranes that prevent entry of the dye, while the disrupted membranes 

of the non-viable cells can’t prevent that penetration of the dye into the cell. 

Upon entry into the cell, the dye crosses the nuclear membrane, and the nuclei 

are stained in blue. Thus, the blue cells correspond to dead cells while the 

viable cells have a shiny appearance (not stained of blue) [274]. To perform this 

procedure, an aliquot of 20μl of cell suspension is added to 20μl of trypan blue 

(Sigma T0776) in an eppendorf tube, and after homogenization, cell suspension 

was placed in a haemocytometer using a micropipette, to be viewed under an 

optical microscope (Nikon Eclipse TS100, Japan). The cell count was 

performed in the four quadrants of the haemocytometer. 

 

 

 

Figure 10.Cells in adherent culture flasks maintained at 37 ºC with 95% air and 5% 

CO2 in the incubator. 
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5.2.7. Evaluation of the cytotoxicity of PEI-MP 

5.2.7.1. Metabolic activity 

To evaluate the effect of PEI-MP in the metabolism of cells, it was used the 

colorimetric test MTT (3-(4,5-dimethylthiazolyl-2)2,5-diphenyltetrazolium 

bromide; Sigma M2128). The dehydrogenase enzymes, present in metabolically 

active cells, have the ability to cleave the tetrazolium ring of MTT and form dark 

blue formazan crystals (fig. 11) that can subsequently be solubilised and the 

colour of the resulting solution quantified by spectrophotometry [275-277].  

 

 

 

For each experiment, cells were plated in 48 multiwells plates (Corning Costar, 

USA) in a concentration of 25 000 cells/ml and kept in the incubator overnight to 

allow the cells attachment. Cells were incubated with different concentrations of 

PEI-MP (1, 5, 15, 25, 50, 100, 250, 500 and 1000 µM), obtained by dissolving 

the PEI-MP with 0.9% sodium chloride (0.9% NaCl, Braun), during 24, 48, 72 

and 96 hours. After these periods of time, cell metabolism was evaluated. For 

this purpose, culture medium was removed, 500 µl of phosphate buffered saline 

(PBS) was added and then discarded, and finally a 100 µl of MTT solution (5 

mg/ml, Sigma M2128) was added. After 3 hours, 100 µl of a solution of 

isopropanol (Sigma 279544) in 0.04M hydrochloric acid (Sigma H1758) was 

added and cells were re-suspended. The content of each well was transferred 

Figure 11.Representation of coloured solutions obtained after MTT test showing the 

blue coulour as a result of formazan crystals formation. 
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to a plate with 96 wells (Sarstedt, USA) and the absorbance was quantified at 

570 nm with a reference filter of 620 nm in an ELISA spectrophotometer (SLT-

Spectra). Each experiment was performed in duplicate and repeated in 5 

independent sets of tests. These tests were performed in the two cell lines 

referred above. 

 

5.2.7.2. Flow cytometry 

To characterize the redox intracellular environment after incubation of PEI-MP, 

it was chosen the maximum concentration of 1000 µM to determine by flow 

cytometry the cell viability, the reactive oxygen species (ROS) production, the 

expression of reduced glutathione (GSH) and the changes of mitochondrial 

membrane potential. The analysis was performed using a six-parameter four-

color FACSCalibur flow cytometer (Becton Dickinson, San Jose, CA) equipped 

with a 15 nW argon laser. For each assay, at least 104 events were collected 

using Cell Quest software (Becton Dickinson, San Jose, CA, USA), and 

analysed using Paint-a-Gate software (Becton Dickinson, San Jose, CA). For 

flow cytometry analysis, 400 000 cells were seeded in 75 cm2 adherent culture 

flasks (Corning, USA) and after 5 days were incubated with 1000 µM of PEI-

MP. After 24 hours, cells were washed with PBS, harvested with a solution of 

0.25% trypsin/EDTA (Sigma T4049), centrifuged at 1300 G (2500 rpm) 

(Multifuge 1L-R, Germany) during 5 minutes and finally in phosphate buffered 

saline (PBS) for examination by flow cytometry. Each experiment was 

performed in duplicate and repeated in 4 independent sets of tests. These tests 

were performed in the two cell lines referred above. 

 

a) Cell viability and death 

The first cell death to be defined was necrosis, and then the apoptosis [278]. 

Apoptosis is a regulated process, carried out in a controlled manner to ensure 

the safety of surrounding cells and tissues. Apoptosis is strictly defined by 

morphological criteria including changes of the nucleus (chromatin 

condensation and margination, condensation and reduction in the size of the 
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cell nucleus associated with its fragmentation) cellular shrinkage and ruffling of 

the plasma membrane, called budding [279]. The DNA is furthermore 

fragmented in several steps to form mono- and/or oligomers of 200 base pairs 

[280]. Eventually the cell becomes divided in apoptotic bodies, which consist of 

cell organelles and/or nuclear material surrounded by an intact plasma 

membrane. Apoptotic bodies expose phosphatidylserine residues, that normally 

exist in the inner leaflet of plasma membranes [281]. This allows for the 

recognition of apoptotic bodies, which are generally phagocyted and destroyed 

by neighbouring cells without damage to adjacent tissue. The execution of 

apoptosis is closely linked to serial activation of a family of proteases called 

caspases [282, 283], even though caspase-independent apoptosis pathways 

also exist through apoptosis inducing factor, Endonuclease G, and/or serine 

protease HTRA2 (HtrA serine peptidase 2) [284, 285]. Necrosis is generally 

considered to be an accidental and unregulated cell death [279] even though 

programmed necrosis also has been described [286]. When necrosis is 

induced, a rapid plasma membrane permeabilization occurs, which leads to 

leakage of cell content and induction of inflammation. Necrosis is usually 

defined in a negative fashion, as a type of cell demise that involves rupture of 

the plasma membrane without the hallmarks of and without massive autophagic 

vacuolization [287]. The main features of necrosis include an improvement of 

cell volume that finally culminates in rupture of the plasma membrane, and the 

unorganized dismantling of swollen organelles.  

To evaluate cell viability, a double labelling with annexin-V and propidium iodide 

(AV/PI) was used. One of the main features of cell death by apoptosis is the 

redistribution of plasma membrane phosphatidylserine, a phospholipid that, in 

apoptotic cells, is translocated from the inner to the outer leaflet of the plasmatic 

membrane and binds to annexin-V. Complementarily, PI, which does not 

permeate viable cells, in cells with membrane lesions like cells on late apoptotic 

and/or necrosis, can reach the nucleus and binds to deoxyribonucleic acid 

(DNA) intercalating between the bases [288]. In this assay, 106 cells were 

incubated during 15 minutes, at room temperature in the dark, with a binding 

buffer with 2.5 µl of Annexin V (Immunostep, Salamanca, Spain) and 1 µl of PI 

(Immunostep, Salamanca, Spain), subsequently cell suspension was vortexed 
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to homogenize. In the cytometer cells were excited with a light of a wavelength 

of 525 nm for AV and with 640 nm for PI, collecting 104 events to assess the 

percentage of viable, early apoptotic, late apoptotic/necrotic, and necrotic cells 

[289]. 

 

b) Detection of intracellular peroxides and superoxide 

There are many types of radicals, but those of most important in biological 

systems are derived from oxygen, and known collectively as reactive oxygen 

species. Oxygen has two unpaired electrons in separate orbitals in its outer 

shell. This electronic structure makes oxygen especially susceptible to radical 

formation. Sequential reduction of molecular oxygen leads to formation of a 

group of reactive oxygen species like superoxide anion (O2
−), peroxide (O2

2−) 

and hydroxyl radical (OH•). Oxygen-derived radicals are generated constantly 

as part of normal aerobic life, being formed in mitochondria as oxygen is 

reduced along the electron transport chain. Mitochondria are unique organelles, 

as they are the main site of oxygen metabolism, accounting for approximately 

85–90% of the oxygen consumed by the cell. Incomplete processing of oxygen 

and/or release of free electrons results in the production of oxygen radicals. 

Mitochondria constantly metabolize oxygen thereby producing reactive oxygen 

species (ROS) as a by-product. This organelle has its own ROS scavenging 

mechanisms that are required for cell survival. Under normal conditions, the 

effects of ROS are counteracted by a variety of antioxidants, by both enzymatic 

and non-enzymatic mechanisms. Oxidative stress is considered to be the result 

of an imbalance of two opposing and antagonistic forces, ROS and 

antioxidants, in which the effects of ROS are more potent than the 

compensatory capacity of antioxidants [290]. Reactive oxygen species are also 

formed as necessary intermediates in a variety of enzyme reactions. Other 

situations may lead to the formation of reactive oxygen species, like drugs with 

oxidizing effects or ionizing radiation. The production of ROS is associated with 

many forms of apoptosis. Excessive ROS can induce apoptosis through both 

the extrinsic and intrinsic pathways. In the extrinsic pathway of apoptosis, ROS 

are generated by FAS ligand as an upstream event for FAS activation via 
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phosphorylation, which is necessary for subsequent recruitment of Fas-

associated protein with death domain and caspase 8 as well as apoptosis 

induction. In the intrinsic pathway, ROS function to facilitate cytochrome c 

release by activating pore-stabilizing proteins (BCL-2 and BCL-XL) as well as 

inhibiting pore-destabilizing proteins (BCL-2-associated X protein, BCL-2 

homologous antagonist/killer). Even higher ROS levels can result in both 

apoptosis and necrosis in cancer cells. ROS can also induce cell death through 

autophagy, which is a self-catabolic process involving sequestration of 

cytoplasmic contents (exhausted organelles and protein aggregates) for 

degradation in liposomes [291-293]. 

2,7-dichlorodihydrofluorescein diacetate (DCFH2-DA) a lipid permeable and 

non-fluorescent compound, is cleaved by intracellular esterase by entering cells 

and leads to 2,7-dichlorodihydrofluorescein (DCFH2). In the presence of 

peroxides, DCFH2 is oxidised with formation of dichlorofluorescein (DCF), a 

highly green fluorescent compound, upon excitation at 488 nm, proportional to 

the concentration of intracellular peroxides [294]. Peroxides, along with 

superoxide are responsible to activate the intrinsic apoptotic pathway, and 

therefore an increase in the amount of free radicals will signify an increase in 

apoptosis [295]. A cell suspension of 106 cells was incubated with 5 µM of 

DCFH2-DA (Sigma D6883) (1 µl) for 45 minutes at 37 °C in the dark. 

Subsequently, the cells were centrifuged at 1300 G (2500 rpm) (Multifuge 1L-R, 

Germany) during 5 minutes, then the supernatant was discarded and the cells 

were washed with PBS and analysed by flow cytometry. The analysis was 

performed with an excitation light with a wavelength of 504 nm, being the 

emission wavelength 529 nm. The results were obtained as mean fluorescence 

intensity (MFI) values, and then were normalized in relation to the control to 

which was assigned the value of 1. 

Dihydroethidium (DHE) easily crosses cell membranes and is converted by 

superoxide radical to ethidium, a red fluorescent compound that merges the 

DNA remaining inside the cell [296]. A cell suspension of 106 cells was 

resuspended in PBS and incubated with 5 µM of DHE (Sigma 37291) dissolved 

in DMSO (Sigma D8418) (2.5 µl) for 15 minutes at 37 °C in the dark. 

Subsequently, the cells were centrifuged at 1300 G (2500 rpm) (Multifuge 1L-R, 
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Germany) during 5 minutes, then the supernatant was discarded and the cells 

were washed with PBS and analysed by flow cytometry. The analysis was 

performed with an excitation light with a wavelength of 620 nm. The results 

were obtained as mean fluorescence intensity (MFI) values, and then were 

normalized in relation to the control to which was assigned the value of 1. 

 

c) GSH expression  

L-glutamyl-L-cysteinyl-glycine (GSH) in its reduced form is a tripeptide 

enzymatically formed by glycine, cysteine and glutamate, and is the most 

abundant non-protein thiol in mammalian cells. GSH acts as a reducing agent 

and as a major antioxidant within cells by maintaining a tight control of the redox 

status. GSH is also involved in many distinct physiological reactions including 

cellular signalling, metabolism of xenobiotics, thiol disulfide exchange reactions, 

and as an important reservoir of cysteine. Intracellular GSH depletion is an early 

hallmark of progression of cell death in response to different apoptotic stimuli. 

Has been reported that GSH depletion during apoptosis induced by cytotoxic 

agents, such as xenobiotics, chemotherapeutics, and metals, may induce 

oxidative stress mediated by GSH oxidation to glutathione disulphide (GSSG) 

by reactive species of oxygen (ROS) and nitrogen (RNS), or by its conjugation 

to highly reactive compounds. GSH depletion has been shown to regulate both 

extrinsic and intrinsic apoptotic signalling cascades at distinct checkpoints. GSH 

depletion may predispose cells to apoptosis or, alternatively, directly trigger cell 

death which can result from, by modulation of the permeability transition pore 

formation or by activation of execution caspases [295, 297].  

The expression of GSH, was performed by flow cytometry using the fluorescent 

compound mercury orange [295]. This compound binds stoichiometrically to 

mercurial sulphydryl groups with the formation of fluorescent ducts. However, 

this compound faster reacts with GSH than with the sulphydryl groups of 

proteins and the reaction product emits an intense red fluorescence when 

excited with an argon laser at a wavelength of 488 nm [298]. A cell suspension 

of 106 cells was incubated with 1 µl of mercury orange (Sigma 83377) in 

acetone (Sigma 650501) for 15 minutes at room temperature in the dark. 
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Subsequently, the cells were centrifuged at 1300 G (2500 rpm) (Multifuge 1L-R, 

Germany) during 5 minutes, the supernatant discarded and the cells washed 

with PBS and analysed by flow cytometry. The analysis was performed with an 

excitation light with a wavelength of 620 nm. The results were obtained as 

mean fluorescence intensity (MFI) values, and then were normalized in relation 

to the control to which was assigned the value of 1. 

 

d) Mitochondrial membrane potential measurement 

The intrinsic pathways of apoptosis involve the mitochondria, the endoplasmatic 

reticulum, and the DNA damaging pathways. These pathways are activated by 

a wide variety of stimuli including chemotherapeutic and cytotoxic agents 

(environmental pollutants, xenobiotics, drugs), stress (radiation, 

hyperglycaemia, hypoxia, oxidative and osmotic stress), and cytokine 

withdrawal. Activation of the mitochondria pathway mediates the release of 

cytochrome c that is associated with the opening of the mitochondrial 

permeability transition pore and loss of the mitochondrial membrane potential. 

Also mitochondria use substrates able to be oxidized to produce a membrane 

potential in the form of a proton gradient across the mitochondrial inner 

membrane. It was shown recently that the supply of these substrates to 

mitochondria depends on the concentration of external growth factors. 

Withdrawal of growth factors or loss of the extracellular glucose supply will lead 

to a decline of mitochondrial membrane potential. If growth factor or glucose 

deprivation persists, cells ultimately undergo apoptosis that is initiated by 

cytochrome c release from mitochondria [295, 299]. The lipophilic cationic 

5,5´,6,6´-tetrachloro-1,1´,3,3´-tetraethylbenzimidazol-carbocyanine iodide (JC-1) 

is a molecule able to selectively enter the cell and which exists in two forms, 

monomers (M) and aggregates (A), depending on the state of 

polarization/depolarization of the mitochondrial membrane, that will be reduced 

when the cell is apoptotic [295]. When the membrane potential is high, the JC-1 

forms aggregates that emit red fluorescence (590 nm). On the other hand, as 

the mitochondrial membrane potential decreases or in cases where the 

membrane is depolarized, JC-1 is excluded from mitochondria and remains in 
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the cytoplasm in the form of monomers that emits green fluorescence (529 nm). 

Thereby the ratio between the intensities of green and red fluorescence’s (M/A), 

determined by flow cytometry, provides an estimate of mitochondrial membrane 

potential [300]. To perform JC-1 (Invitrogen, T-3168) assay the cells were 

incubated at a final concentration of 5 mg/ml, in DMSO (1 µl) during 15 minutes 

at 37 °C in the dark. Subsequently, the cells were centrifuged at 1300 G (2500 

rpm) (Multifuge 1L-R, Germany) during 5 minutes, the supernatant discarded 

and the cells washed with PBS and analysed by flow cytometry. The results 

were obtained as aggregate/monomer ratio, and then were normalized in 

relation to the control to which was assigned the value of 1. 

 

5.2.8. Evaluation of the radiocytotoxicity of 99mTc 

5.2.8.1. Clonogenic activity 

The clonogenic cell survival assay determines the ability of a cell to proliferate, 

thereby retaining its reproductive ability to form a large colony or a clone. 

Although clonogenic cell survival assays were initially described for studying the 

effects of radiation on cells and have played an essential role in radiobiology, 

they are now widely used to examine the effects of agents with potential 

applications in the clinic. Several mechanisms have been described for cell 

death; however, loss of reproductive integrity and the inability to proliferate are 

the most common features. Therefore, a cell that keeps its ability to synthesize 

proteins and DNA and go through one or two mitoses, but is unable to divide 

and produce a large number of progeny is considered dead. This is very 

commonly referred to as loss of reproductive integrity or reproductive death and 

is the end point measured with cells in culture. On the other hand, a cell that is 

not reproductively dead and has retained the capacity to divide and proliferate 

can produce a large clone or a large colony of cells and is referred as 

“clonogenic.” The ability of a single cell to grow into a large colony that can be 

visualized with the naked eye is proof that it has retained its capacity to 

reproduce. The loss of this ability as a function of dose of radiation or 

chemotherapy agent is described by the dose-survival curve. A cell survival 

curve is therefore defined as the relationship between the dose of the agent 



 
 

121 
 

used to produce an insult and the fraction of cells that retain their ability to 

reproduce [301]. Technetium-99m, besides emitting gamma rays also emits 

less than 1% of auger electrons per decay. These electrons have been 

recognized as potentially useful for targeted tumour radiotherapy, specially do 

to the auger electron range (which is of manometer range) and the high 

ionization density of electrons [302]. However, to this study, the aim of using 

this radioisotope is for diagnostic imaging, and therefore in the range of 

diagnostic radiation doses, the 99mTc shouldn’t be radiotoxic to cells. The 

effective doses for most nuclear medicine diagnostic procedures varies 

between 0.3 and 20 mSv (equivalent to 0.3 and 20 mGy) [303]. With the 

clonogenic assay the aim was to determine cell survival based on the ability of a 

single cell to grow and form a colony after the cells being subjected to doses of 

radiation, either being irradiated externally (determining gamma radiation 

effects) or internally (determining gamma radiation and auger electrons effects). 

For this study, 2 million cells were seeded in 75 cm2 adherent culture flasks 

(Corning, USA). After 24 hours the cells where irradiated externally or internally 

with 2, 5, 10 and 20 mGy of 99mTc. For external irradiation the flaks containing 

cells were placed on top of a 75 cm2 adherent culture flasks filled with water, 

were it was added the correct amount of Na99mTcO4. For internal irradiation it 

was added the correct activity of Na99mTcO4 to the flaks containing the cells. 

The time of exposure was calculated for the doses taking in consideration the 

distance, added activity and decay. After irradiation the cells where washed with 

PBS, harvested with a solution of 0.25% trypsin/EDTA (Sigma T4049) and 

finally medium was added. After, for HT-1376 cells, 300 and 600 cells were 

seeded in triplicate in a six well plate (Corning Costar 3516, USA), and for 

MNNG/HOS 100 and 200 cells were seeded also in triplicate in a six well plate 

(Corning Costar 3516, USA). After 5 days, the medium was changed and at 

twelfth day the colonies were prepared for visualization. For that, culture 

medium was aspirated, cells were washed with PBS, and methanol (Sigma 

34860) was added to fix the colonies, a procedure that was repeated twice. 

After, the plates have been dried, and the crystal violet dye (Sigma M2128; 

0.5% diluted in methanol) was added. Subsequently, the plates were washed 

with warm water and allowed to dry, after which the number of colonies were 
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counted and the plate efficiency (equation 3) and survival factor (equation 4) 

determined following the formulas below [276]. 

                     
                          

                         
     

Equation 3.Percentage of plate efficiency, that is determined by the ratio of the 

number of counted colonies and the number of seeded colonies. 

 

 

                    
                                  

                                   
     

Equation 4.Percentage of survival factor, which is determined by the ratio of the plate 

efficiency of treated samples and the plate efficiency of control samples. 

 

Each experiment was performed in triplicate and repeated in 4 independent sets 

of tests for internal irradiation and 5 independent sets of tests for external 

irradiation. These tests were performed in the two cell lines referred above. 

 

5.2.8.2. Flow cytometry 

To characterize the redox intracellular environment after internal or external 

irradiation with 99mTc, it was chosen the dose of 20 mGy, to determine by flow 

cytometry the cell viability, the reactive oxygen species (ROS) production, the 

expression of reduced glutathione (GSH), changes of mitochondrial membrane 

potential and distribution of cells in cell cycle. The analysis and process was 

performed using the equipment and procedures described before.  

For flow cytometry analysis, 2 million cells were seeded in 75 cm2 adherent 

culture flasks (Corning, USA). After 24 hours the cells where irradiated 

externally or internally with 20 mGy with 99mTc following the procedures 

described in clonogenic assays. After 24 hours, cells were washed with PBS, 

than harvested with a solution of 0.25% trypsin/EDTA (Sigma T4049) and finally 

resuspended in phosphate buffered saline (PBS) for examination by flow 

cytometry. Each experiment was performed in duplicate and repeated in 4 
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independent sets of tests. These tests were performed in the two cell lines 

referred above. 

Procedures of flow cytometry to evaluate cell viability, detection of intracellular 

peroxides and superoxide radical, GSH expression and mitochondrial 

membrane potential was the same as described before. Although the procedure 

is similar, is necessary to understand some concepts, namely the induction of 

apoptosis and necrosis by ionizing radiation. Radiation induced apoptosis can 

be subdivided into early apoptosis, or interphase apoptosis which occurs within 

hours following the apoptotic stimuli, and delayed apoptosis, or post-mitotic 

apoptosis which occurs days after exposure to the stimuli, during or following 

mitosis [304-306]. Radiation induced early apoptosis occurs only a few hours 

after exposure in interphase and as premitotic event without requirement for cell 

division. This mode of radiation induced apoptosis has been characterized and 

demonstrated to include pyknosis, cell shrinkage and internucleosomal 

breakdown of chromatin, all of which are hallmarks of apoptotic death [306]. 

This apoptotic process is highly radiosensitive and most often activated in a 

P53-dependent way. However, the relatively low levels of radiation induced 

apoptosis that take place in solid tumours are generally observed much later 

following mitotic catastrophe. This delayed type of apoptosis, has been reported 

that occurs in association to the G2/M arrest or as post-mitotic event [306-309]. 

The morphology of this delayed type of radiation induced apoptosis can differ 

from that of classical apoptosis as it often occurs in cells that are “giant” instead 

of cells with shrunken volume [310, 311]. Radiation induced necrosis can be 

subdivided into early necrosis and delayed necrosis. Early necrosis is an ultra-

fast cell death that is induced following particularly strong stimuli, such as high 

doses of irradiation (i.e. bigger than 100 Gy) [312]. Delayed necrosis is a slow 

cell death and one of the mechanisms by which mitotic catastrophe is executed 

[313]. 
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a) Cell cycle  

The cell cycle is divided into the tour fundamental parts: 1) mitosis, during which 

one cell divides into two identical progeny cells; 2) G1 phase; 3) S phase, in 

which occurs DNA synthesis; and 4) G2 phase [1, 59, 314]. The length of cell 

cycle varies from hundreds of hours for some stem cells to 24 hours for quick 

dividing mammalian cells. DNA damage delays normal cell cycle progression. A 

complex network of responses is activated as soon as the damage is registered 

in the genome, and these are rapidly manifested at cell cycle checkpoints. 

Massive insults to DNA, such as double-strand DNA breaks after cellular 

exposure to ionizing radiation, may induce changes in any cell cycle checkpoint, 

ultimately leading to the outcome of cell survival if DNA is properly repaired or, if 

not, to cell death. The checkpoint protein P53 has been established as one of 

the most important and it plays a major role in the complex cellular responses to 

radiation. The most important function for P53 after irradiation exposure is its 

acting as transcription factor with action in target genes that influences cell 

cycle arrest, DNA repair, apoptosis, senescence and autophagy. In general, 

cells are most radiosensitive in M and G2 phases and most radioresistant in 

latter part of S phase, while for cells with long cycle time, it’s possible to see 

another peak of resistance in early G1 [1, 59, 314]. After irradiation, DNA 

damage can cause a progression delay in G1, S and G2 phases, to give cells 

time to repair the damages. In each checkpoint there are a series of cyclin-

dependent kinases (CDK), which regulate cell progression from one phase to 

another. If DNA damage happened in G1 phase, the G1/S arrest will give to cell 

time to repair the damage before entry into S phase avoiding replication of the 

damaged DNA damaged. There is a very close relationship between the 

functional status of P53 and G1 arrest. The DNA damage can cause the 

accumulation of P53, which in turn up-regulate the CIP1 protein. CIP1 binds to 

cyclin/CDK complex and inhibit its activity resulting in the delay of cell cycle. 

Similarly, the G2/M arrest can enable the cell to repair DNA damage before cell 

division. G2 phase arrest is a prominent checkpoint of DNA damage and the 

mechanisms of DNA damage-induced G2 arrest have been intensively studied. 

Currently, two main mechanisms are proposed for G2 phase arrest, one related 
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to the cyclin B1/p34cdc2 complex and another involves the oncogene RAS. The 

S phase arrest occurs only after relatively high dose radiation [1, 59, 314]. 

Propidium Iodide (PI) is the most commonly used dye for DNA and cell cycle 

analysis for flow cytometry. The PI binds to DNA by intercalating into the double 

stranded macromolecule. PI also binds to RNA, and is necessary to remove the 

RNA with a nucleases treatment (RNase) for optimal DNA resolution. The 

quantification of the DNA, allows the knowledge about distribution of a cell 

population along the different phases of the cell cycle. The principle with these 

dyes is that they are stoichiometric, this is they bind in proportion to the amount 

of DNA present in the cell. In this way cells that are in S phase will have more 

DNA than cells in G1. They will take up proportionally more dye and will 

fluoresce more brightly until they have doubled their DNA content. The cells in 

G2 will be approximately twice more bright then G1 cells [315]. In this assay, 

106 cells were vortex with 200 µl of 70% ethanol and incubated during 30 

minutes in the dark at a refrigerator. Since PI is membrane impermeable, 

ethanol is used to both fix and permeabilize cells. After the cells were washed 

with PBS and centrifuged at 1300 G (2500 rpm) (Multifuge 1L-R, Germany) 

during 5 minutes. Supernatant was discarded and 500 µl of PI/RNase solution 

was added, with a gently stir in the vortex. The cells were incubated during 15 

minutes, at room temperature in the dark, in binding buffer with 500 µl of 

PI/RNase (Immunostep, Salamanca, Spain). Subsequently, cells were excited 

with a light of a wavelength of 640 nm and 104 events to assess the percentage 

of cells in Pre-G1, G0/G1, S, and G2/M were collecting. 

 

5.2.9. Cellular uptake and retention studies 

To evaluate the in vitro cellular kinetics of 99mTc-PEI-MP and 188Re-PEI-MP it 

was proceeded to the evaluation of the cellular uptake (what enters to the cell) 

and retention (what stays in the cell) over time. These studies were performed 

in both cell lines HT-1376 and MNNG/HOS. 

Cells were washed with PBS, than harvested with a solution of 0.25% 

trypsin/EDTA (Sigma T4049) and finally resuspended in medium to obtain a 

concentration of 2×106 cells/ml in 25 cm2 flasks. After 1 hour of incubation at 
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37°C 99mTc-PEI-MP or 188Re-PEI-MP was added to the cell suspension with an 

activity of 0.925MBq/ml (25µCi/ml), following methodologies described 

elsewhere [316]. Duplicate samples of 200 µl were collected to eppendorf tubes 

containing ice-cold PBS for determination of tracer uptake at 1 (only for 99mTc-

PEI-MP), 5, 15, 30, 45, 60, 90, 120, 150, 210 and 240 minutes. These samples 

are then centrifuged at 5585 G (10000 rpm) (Costar Mini Centrifuge, USA), 

during 60 seconds to separate pellet from the supernatant, twice. Radioactivity 

of cell pellets and supernatants was measured separately in a well-type gamma 

counter (Gamma-C 12  PC, Berthold, Germany) to determine tracer’s uptake 

percentage, and then draw the influx curves. The obtained experimental values 

of cellular uptake were fitted to an exponential model (equation 5) using the 

software OriginPro (OriginLab Corporation, Northampton, EUA), version 8.0: 

                                 

Equation 5.Percentage of cellular uptake, where A is the maximum uptake obtained 

(steady state) and T50% is the time needed to reach half of the maximum uptake.  

 

To determine the percentage of retention over time, the procedure was very 

similar to the protocol of the uptake studies. The preparation of the cell 

suspension to the studies was the same, obtaining a cell suspension of 

2×106/ml in a 50 ml falcon. 99mTc-PEI-MP or 188Re-PEI-MP was added to the 

cell suspension with an activity of 0.925MBq/ml (25µCi/ml), and incubated at 

37°C during 150 minutes. After this time the cell suspension was centrifuged at 

3512 G (4000 rpm) (Multifuge 1L-R, Germany) during 1 minute at 4°C and then 

it was substituted the culture medium. The cell suspension was transferred to 

25 cm2 flasks and duplicate samples of 200 µl were collected to eppendorf 

tubes containing ice-cold PBS to determination of tracer retention at 1, 3 (times 

1 and 3 only for 99mTc-PEI-MP), 5, 7, 15, 30, 45, 60, 90, 120, 150, 210 and 240 

minutes. During tracer retention studies, for every sample taken, the cells were 

resuspended in order to ensure uniformity. These samples are then centrifuged 

at 5585 G (10000 rpm) (Costar Mini Centrifuge, USA) during 60 seconds to 

separate pellet from the supernatant. This procedure was repeated twice. 

Radioactivity of cell pellets and supernatants was measured separately in a 
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well-type gamma counter (Gamma-C 12 DPC, Berthold, Germany) to determine 

tracer’s retention percentage in the cells. The obtained experimental values for 

the cellular retention were fitted to an exponential model (equation 6) using the 

software OriginPro (OriginLab Corporation, Northampton, EUA), version 8.0: 

                                      

Equation 6.Percentage of cellular retention, where A is the minimum retention 

obtained (steady state) and Tm is the time delay to reach 50% of the retention plus A/2, 

this is, the midpoint between 100% and the minimal retention.  

 

As a control, the uptake and retention percentages were determined after the 

addition of 99mTc-Pertechnetate or 188Re-Perrhenate, following the same 

protocols for each complex. For the retention studies, cell suspensions were 

incubated with 99mTc-Pertechnetate or 188Re-Perrhenate during 60 minutes 

before starting the studies. Each experiment was performed in duplicate and 

repeated in 4 independent sets of tests. These tests were performed in the two 

cell lines referred above. 

 

5.2.10. Statistical analysis 

The obtained results were analysed using the software IBM SPSS (IBM 

Corporation, Armonk, New York, EUA), version 20, at a significance level of 5% 

(p < 0.05). The descriptive analysis of quantitative variables under study, was 

performed by calculating estimators of central tendency, dispersion and 

location. In inferential analysis, the normal distribution of quantitative variables 

was assessed using the Shapiro-Wilk test.  

The comparison of values from the radiochemical purity of 99mTc/188Re-PEI-MP, 

and the partition coefficient of 99mTc-PEI-MP over time, were made according to 

the Friedman test with multiple comparisons according to Bonferroni correction. 

The comparison of values from the radiochemical purity of 99mTc-PEI-MP over 

time, at several temperatures and incubation with culture medium, were made 

according to the Friedman test with multiple comparisons according to 
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Bonferroni correction, and between conditions according to Kruskal-Wallis. The 

results of the MTT assay obtained after the incubation with various 

concentrations of PEI-MP by MTT assay were compared for each cell line and 

time of incubation. The comparison of values between concentrations was 

made according to the ANOVA test in case they check a normal distribution and 

homogeneity of variance or according to the Kruskal-Wallis otherwise. The 

multiple comparisons were performed according to the Bonferroni correction. 

The comparison of the results of cell death, peroxides and superoxide radical 

production, GSH expression, mitochondrial membrane potential and cell cycle, 

between groups and cell lines, in both studies cytotoxicity of PEI-MP and 

radiotoxicity of 99mTc by flow cytometry, were made according to the t Student 

test for independent samples in case they check a normal distribution or 

according to the Mann-Whitney otherwise. The comparison of peroxides and 

superoxide radical production, GSH expression and mitochondrial membrane 

potential values after exposure to PEI-MP, with the control, was performed 

according to the t Student test for a mean, comparing the sample values to 1. 

The comparison of peroxides and superoxide radical production and 

mitochondrial membrane potential values after exposure to doses of 99mTc, with 

the control, was performed according to the t Student test for a mean, 

comparing the sample values to 1. For the cell viability and cell cycle the 

comparison was performed according to the t Student test for independent 

samples or Mann-Whitney, according to the previously explained. 

The comparison of values from the clonogenic activity after external and internal 

irradiation for each cell line and with the control were made according to the t 

Student test for a mean in comparison with the control (reference value 1), and 

using the test ANOVA of a factor (in the case of normal distribution and 

homogeneity of variances) or according to the Kruskal-Wallis test (otherwise) 

with multiple comparisons, with Bonferroni correction for the comparison 

between the remaining doses. 

The parameters obtained in uptake and retention studies were compared using 

the ANOVA test of a factor, with multiple comparisons according to the 

Bonferroni correction. It was considered a type I error of 0.05 for all the 

comparisons. 
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5.3. Results 

5.3.1. Radiochemical quality control 

The radiochemical purity was evaluated over time, using two chromatographic 

systems described before. When the acetone migrates through the ITLC-SG 

strip, 99mTc-Pertechnetate or 188Re-Perrhenate migrates with the solvent front 

(Rf = 1.0), allowing the determination of the percentage of these impurities. On 

the other hand, when citrate migrates through the W3MM strip, 99mTc/188Re-

Hydrolyzed/Reduced remains at the origin (Rf = 0.0), and the rest of the 

99mTc/188Re species migrates with the solvent front, allowing the determination 

of the percentage of these radiochemical impurities [87, 271]. By analysing the 

radiochemical purity of 99mTc-PEI-MP kit over time (during 5 hours after 

radiolabelling), it’s possible to verify that the labelling efficiency remained high, 

varying from 89.46% in the first hour to 92.72% five hours after the 

radiolabelling (table 17), revealing the high stability of the labelling kit 

formulation and the high labelling efficiency just one hour after the 

radiolabelling. The variation of the labelling efficiency over time was not 

statistically significant. 
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By analysing the radiochemical purity of 188Re-PEI-MP kit over time (during 5 

hours after radiolabelling), it’s possible to verify that the labelling efficiency 

remained relatively high, varying from 85.00% in the first hour to 81.73% five 

hours after the radiolabelling (table 18), revealing the high stability of the 

labelling kit formulation and the high labelling efficiency just one hour after the 

radiolabelling, even though less than that obtained with 99mTc-PEI-MP. The 

variation of the labelling efficiency over time was only statistically significant 

between 4 and 5 hours after radiolabelling (p = 0.019), decreasing from 90.50% 

at 4h to 81.73% at 5h. The decrease of the radiochemical purity seems to be 

associated with the increase of the percentage of the reduced/hydrolyzed 188Re 

species between 4h (4.80%) and 5h (17.00%), with statistical significant 

differences (p = 0.019). 

 

 

 

 

 

 

 

 

 

 

 

Legend: Percentage of 
99m

Tc species over time (1, 2, 3, 4 and 5 hours after radiolabelling), 

for radiochemical purity control. The percentage of the desired 
99m

Tc-PEI-MP was always 

superior to 89% over time. 

Table 17.99mTc-PEI-MP radiochemical purity control over time. The results express 

the average of 3 independent experiments  standard deviation. 

Time 

(hours) 
%99mTc-PEI-MP 

% 99mTc-Reduced/ 

Hydrolyzed 
%99mTc-Pertechnetate 

1 89.460.47 10.480.44 0.080.02 

2 90.021.55 9.891.46 0.030.02 

3 91.140.96 8.740.86 0.090.07 

4 90.231.32 9.661.25 0.110.07 

5 92.721.11 7.271.12 0.020.01 
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Also it was investigated the effect of temperature (22, 37 and 45°C) and of cell 

culture medium (DMEM) in radiochemical purity of 99mTc-PEI-MP over time (30 

minutes, 1h, 3h and 5h). The changes in temperatures are important because 

the human body temperature is 37°C as well as the cell culture propagation. As 

room temperature is normally around 22°C, we also choose this value. The 

higher temperature (45°C) was chosen in order to have a high value. By 

analysing the table 19, we can observe that the variation of the labelling 

efficiency over time, among temperatures and among temperatures plus DMEM 

was not statistically significant, and the values remained relatively constant, 

showing that both the variation of temperature and exposure to DMEM has no 

influence on the radiochemical purity. 

 

 

 

 

 

 

 

 

Legend: Percentage of 
188

Re species over time (1, 2, 3, 4 and 5 hours after radiolabelling), for 

radiochemical purity control. The percentage of the desired 
188

Re-PEI-MP was always superior 

to 81% over time. 

 

Table 18.188Re-PEI-MP radiochemical purity control over time. The results express 

the average of 3 independent experiments  standard deviation. 

Time 

(hours) 
%188Re-PEI-MP 

% 188Re-Reduced/ 

Hydrolyzed 
%188Re-Perrhenate 

1 85.002.46 13.103.15 2.470.40 

2 87.971.81 8.501.42 2.430.93 

3 86.802.65 7.301.21 2.400.35 

4 90.500.92 4.801.06 2.470.45 

5 81.733.15 17.001.39 3.700.60 
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Table 19.Radiochemical purity of 99mTc-PEI-MP, at 22 ºC, 37 ºC and ºC 45 ºC, and for 

the same temperatures and the exposure to DMEM. The results express the average 

of 4 independent experiments  standard deviation. 

Conditions Time %99mTc-PEI-MP 

% 99mTc-

Reduced/ 

Hydrolyzed 

%99mTc-

Pertechnetate 

22ºC 

30 min 87.40  0.37 12.59  0.37 0.00  0.00 

1h 85.80  1.01 14.13  0.95 0.05  0.01 

3h 85.05  0.34 14.81  0.32 0.10  0.01 

5h 81.38  1.51 17.86  1.94 1.89  0.31 

22ºC + DMEM 

30 min 83.34  1.89 16.47  1.93 0.17  0.05 

1h 88.52  0.55 10.40  0.71 1.84  0.50 

3h 87.91  1.18 11.65  1.06 0.43  0.03 

5h 88.92  2.33 11.02  2.32 0.06  0.02 

37ºC 

30 min 85.70  3.48 14.30  3.48 0.01  0.00 

1h 85.09  3.70 14.86  3.70 0.05  0.01 

3h 79.10  1.80 20.73  1.78 0.04  0.01 

5h 82.02  3.24 16.05  3.52 2.30  0.48 

37ºC + DMEM 

30 min 84.29  3.27 15.55  3.26 0.17  0.01 

1h 90.13  0.71 8.77  0.78 1.14  0.05 

3h 86.70  1.06 12.74  1.30 0.42  0.06 

5h 88.05  2.09 11.85  2.07 0.10  0.04 

45ºC 

30 min 85.81  2.06 14.19  2.05 0.00  0.00 

1h 86.88  2.38 13.05  2.39 0.07  0.02 

3h 79.09  4.76 19.87  4.87 0.15  0.08 

5h 80.95 3.15 17.08  3.90 3.68  2.89 

45ºC + DMEM 

30 min 83.94  4.95 20.58  3.50 0.25  0.04 

1h 88.66  1.61 8.85  0.46 1.65  0.41 

3h 85.77  1.72 13.68  1.78 0.55  0.10 

5h 88.68 1.95 11.22  1.97 0.11  0.03 

Legend: Percentage of 
99m

Tc species over time (30 min, 1h, 3h and 5h after radiolabelling), 

when exposed to  temperatures of 22 ºC, 37 ºC and 45 ºC, and for the same temperatures when 

exposed to DMEM. 
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5.3.2. Determination of the partition coefficient of 99mTc-PEI-MP 

In order to determine the hydrophilicity or lipophilicity of 99mTc-PEI-MP, it was 

determined the partition coefficient over time. After obtained the counts of each 

phase (1-octanol/water), and calculated the partition coefficient of the 99mTc-

PEI-MP with the formula presented before, it was verified that the 1-

octanol/water partition coefficient was always negative during time (4 hours) 

and the values were relatively constant, ranging from -3.280.08 at 1 hour and -

3.820.01 at 4 hours (table 20). These results demonstrate that 99mTc-PEI-MP 

is a hydrophilic complex. 

 

5.3.3. Evaluation of the cytotoxicity of PEI-MP 

5.3.3.1. Metabolic activity 

It was intended to verify if the PEI-MP was cytotoxic to cells, and whether it 

could function as a carrier and not as a drug. To this, the effects of PEI-MP in 

the metabolic activity of the HT-1376 and MNNG/HOS cells were examined for 

different concentrations of PEI-MP and periods of incubation, using MTT assay. 

With the values obtained, it wasn’t possible to estimate the IC50 for each cell line 

and time of incubation, therefore it was compared the various concentration 

used for each cell line and time of incubation. The fig. 12 represents the 

percentage of metabolic activity of HT-1376 and MNNG/HOS cells 24, 48, 72 

and 96 hours after incubation. We can see in the fig. 12, that for each 

concentration of PEI-MP, the percentage of cellular metabolic activity for each 

cell line and incubation time was always equal or superior to 100%, 

demonstrating that PEI-MP doesn’t have a significantly inhibitory influence on 

Table 20.Partition coefficient of 99mTc-PEI-MP over time. The results express the 

average of 4 independent experiments  standard deviation. 

Time (hours) PO/W 
99mTc-PEI-MP 

1 -3.280.08 

2 -3.640.05 

3 -3.620.06 

4 -3.820.01 

Legend: Partition coefficient (PO/W) of 
99m

Tc-PEI-MP over time (1h, 2h, 3h and 4h after 

radiolabelling). The partition coefficient was always negative revealing the hydrophilicity of the 

complex. 
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cell metabolic activity. There are no significant statistical differences between 

the two cell lines, or within each cell line, for every concentration of PEI-MP and 

incubation time. 
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Figure 12.Percentage of metabolic cell activity 24, 48, 72 and 96 hours after exposure 

to concentrations of PEI-MP in HT-1376 and MNNG/HOS cell lines. The results 

express the average of 5 independent experiments  standard deviation. 

 

5.3.3.2. Flow cytometry 

In order to support the results obtained by the MTT assay, the effects of PEI-

MP, with the maximum concentration of 1000 µM, in HT-1376 and MNNG/HOS 

cells, was evaluated by flow cytometry, studying the cell viability, the ROS 
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production, the expression of GSH and changes in mitochondrial membrane 

potential. 

The assessment of cell viability was performed by flow cytometry using the 

AV/PI incorporation assay. This technique allows distinguishing different cell 

populations: viable cells, cells in early apoptosis, cells in late apoptosis/necrosis 

and necrosis. Cytometry studies demonstrated that after 24 hours of incubation 

with PEI-MP, there are no statistical significant differences in cell viability 

between the control and the exposed cells, remaining above 82% in both cell 

lines, as shown in fig. 13.  espite cell viability didn’t decrease, apoptosis 

increased in both cell lines after the incubation with PEI-MP, with a reduction of 

necrosis. Besides the small values, statistically significant differences were 

found for apoptosis in HT-1376 cells (p = 0.006) and MNNG/HOS cells (p = 

0.029). Also necrosis has reduced significantly for MNNG/HOS (p = 0.004).  
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Figure 13.Cell viability by flow cytometry using dual staining with AV and PI. Figure 

represents the percentage of viable cells, in early apoptosis, in late apoptosis/necrosis, 

and necrosis after 24 hours of incubation with 1000 µM of PEI-MP in HT-1376 and 

MNNG/HOS cells. The results express the average of 4 independent experiments  

standard deviation. 

 

The production of ROS was also evaluated by the quantification of the 

expression of peroxides and superoxide radicals. To evaluate the production of 

peroxide and superoxide radicals, it was used DCFH2-DA and DHE, 

respectively, for the analysis of the fluorescence intensities by flow cytometry. 

As can be seen in the fig. 14, there is an increase in the intracellular production 

of peroxides in both cell lines, particularly for HT-1376 cells, after 24 hours of 

incubation with 1000 µM of PEI-MP. However, it wasn’t found any statistically 

significant differences in the production of peroxides in relation to the control 

and between cells lines. Also is possible to see that the production of 
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superoxide seems not to alter with the exposure to PEI-MP, and comparing the 

values it wasn’t found any statically significant differences. 
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Figure 14.Production of peroxides and superoxide by flow cytometry using DCFH2-DA 

and DHE, respectively. HT-1376 and MNNG/HOS cells were incubated during 24 hours 

with 1000 µM of PEI-MP and subsequently the production of peroxides and superoxide 

was detected. The results are expressed as mean intensity normalized in relation to the 

control, comparing the results with the value of 1. The results express the average of 4 

independent experiments  standard deviation. 

 

To evaluate the expression of intracellular GSH, it was used the orange 

mercury probe and the fluorescence intensities was analysed by flow cytometry. 

Through the analysis of fig. 15, there is a decrease in the expression of GSH in 

both cell lines, particularly for HT-1376 cells, after 24 hours of incubation with 

1000 µM of PEI-MP. However, it wasn’t found statistically significant 

differences, between the control and the cell lines. 
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Figure 15.Expression of GSH by flow cytometry using orange mercury. HT-1376 and 

MNNG/HOS cells were incubated during 24 hours with 1000 µM of PEI-MP and 

subsequently the expression of intracellular GSH was detected. The results are 

expressed as mean intensity normalized in relation to the control, comparing the results 

with the value of 1. The results express the average of 4 independent experiments  

standard deviation. 

 

To evaluate the mitochondrial membrane potential, it was used the JC-1 probe, 

a molecule able to selectively enter the cell and which exists in two forms, 

monomers (M) and aggregates (A), depending on the state of 

polarization/depolarization of the mitochondrial membrane. As can be seen in 

fig. 16, there is a slightly decrease in mitochondrial membrane potential in both 

cell lines after 24 hours of incubation with PEI-MP, in the concentration of 1000 

µM. It wasn’t found statistically significant differences between the two cell lines 

or in relation to the control. 
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Figure 16.Analysis of mitochondrial membrane potential by flow cytometry using the 

fluorescent probe JC-1. HT-1376 and MNNG/HOS cells were incubated during 24 

hours with 1000 µM of PEI-MP and subsequently mitochondrial membrane potential 

was detected. The results are expressed as mean intensity normalized in relation to the 

control, comparing the results with the value of 1. The results express the average of 4 

independent experiments  standard deviation. 

 

5.3.4. Evaluation of the radiocytoxicity of 99mTc 

5.3.4.1. Clonogenic activity 

It was intended to verify if doses of 99mTc-Pertechnetate activities in the range of 

diagnostics had influence in cell survival based on the ability of a single cell to 

grow and form a colony, either being irradiated externally (evaluation of gamma 

rays effects) or internally (evaluation of gamma rays and auger electrons 

effects). To this, it was examined the clonogenic activity of HT-1376 and 

MNNG/HOS cells after external and internal irradiation with 2, 5, 10 and 20 

mGy of 99mTc. 

The fig. 17 and fig. 18 represents the medium survival factor of HT-1376 and 

MNNG/HOS cells after external and internal irradiation, respectively, with 2, 5, 

10 and 20 mGy of 99mTc.It can be seen in fig. 17 and fig. 18 that for each dose 

of 99mTc, independently of the irradiation be internal or external, the cell survival 

didn’t decrease, demonstrating that for diagnostic effective doses, the gamma 

rays and auger electrons, has no apparent effect on cell survival. In the 

comparison of all the conditions, it wasn’t found statistically significant 

differences. 
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Figure 17.Cell survival after external irradiation with doses of 99mTc in HT-1376 and 

MNNG/HOS cell lines. The results express the average of 5 independent experiments 

 standard deviation. 

 

Figure 18.Cell survival after internal irradiation with doses of 99mTc in HT-1376 and 

MNNG/HOS cell lines. The results express the average of 4 independent experiments 

 standard deviation. 

 

5.3.4.2. Flow cytometry 

In order to support the results obtained with clonogenic test, the effects of 20 

mGy of 99mTc, after external and internal irradiation of HT-1376 and 

MNNG/HOS cells, was evaluated by flow cytometry, studying the cell viability, 
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the ROS production, the expression of GSH, changes in mitochondrial 

membrane potential and distribution of cells in cell cycle. 

The assessment of cell viability was performed by flow cytometry using the 

AV/PI incorporation assay. This technique allows distinguishing different cell 

populations: viable cells, cells in early apoptosis, cells in late apoptosis/necrosis 

and necrosis. Cytometry studies show that after external irradiation with 20 mGy 

of 99mTc, cell viability didn’t decrease, remaining above 82% in both cell lines, as 

shown in fig. 19. To these values of cell viability it wasn’t found any statistical 

significant differences between the control and the irradiated cells, in both cell 

lines. Early apoptosis, late apoptosis/necrosis seems to increase for both cell 

lines after the external irradiation, especially for HT-1376 cells. However, 

statistical significant differences were not found. Necrosis seems to increase for 

HT-1376 and decrease for MNNG/HOS cells, however these differences were 

not statistically significant. 
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Figure 19.Cell viability by flow cytometry using dual staining with AV and PI. Figure 

represents the percentage of viable cells, in early apoptosis, in late apoptosis/necrosis, 

and necrosis after external irradiation with 20 mGy of 99mTc in HT-1376 and 

MNNG/HOS cells. The results express the average of 4 independent experiments  

standard deviation. 

 

For internal irradiation, cytometry studies show that after irradiation with 20 mGy 

of 99mTc, cell viability didn’t decrease, remaining above 84% in both cell lines, as 

shown in fig. 20. To these values of cell viability it wasn’t found any statistical 

significant differences between the control and the irradiated cells, in both cell 

lines. Late apoptosis/necrosis seems to increase for both cell lines after the 

internal irradiation, especially for HT-1376 cells. However, statistical significant 

differences were not found. Necrosis seems to decrease for HT-1376 and 

increase for MNNG/HOS cells, however these differences were not statistically 
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significant. Also, it was not found statistically significant differences for 

apoptosis in both cell lines. 

A b s o rb e d  d o s e  (m G y )

%
 C

e
ll

s
 V

ia
b

le

C
o

n
tr

o
l 

2
0
 

0

2 0

4 0

6 0

8 0

1 0 0

H T -1 3 7 6  c e ll lin e

M N N G -H O S  ce ll line

A b s o rb e d  d o s e  (m G y )

%
 C

e
ll

s
 i

n
 E

a
r
ly

 A
p

o
p

to
s

is

C
o

n
tr

o
l 

2
0
 

0

2

4

6

8

H T -1 3 7 6  c e ll lin e

M N N G -H O S  ce ll line

A b s o rb e d  d o s e  (m G y )

%
 C

e
ll

s
 i

n
 L

a
te

 A
p

o
p

to
s

is
/N

e
c

r
o

s
is

C
o

n
tr

o
l 

2
0
 

0

5

1 0

1 5

H T -1 3 7 6  c e ll lin e

M N N G -H O S  ce ll line

A b s o rb e d  d o s e  (m G y )

%
 C

e
ll

s
 i

n
 N

e
c

r
o

s
is

C
o

n
tr

o
l 

2
0
 

0

2

4

6

8

H T -1 3 7 6  c e ll lin e

M N N G -H O S  ce ll line

Figure 20.Cell viability by flow cytometry using dual staining with AV and PI. Figure 

represents the percentage of viable cells, in early apoptosis, in late apoptosis/necrosis, 

and necrosis after internal irradiation with 20 mGy of 99mTc in HT-1376 and 

MNNG/HOS cells. The results express the average of 4 independent experiments  

standard deviation. 

 

The production of ROS was also evaluated by the quantification of the 

expression of peroxides and superoxide radicals. To evaluate the production of 

peroxide and superoxide radicals, it was used DCFH2-DA and DHE, 

respectively, for the analysis of the fluorescence intensities by flow cytometry. 

As can be seen in the fig. 21, there is slight increase in the intracellular 

production of peroxides for MNNG/HOS and superoxide in both cell lines, after 

external irradiation with 20 mGy of 99mTc. However, it wasn’t found any 
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statistically significant differences in the production of peroxides and superoxide 

in relation to the control and between cells lines. Also is possible to see that the 

production of peroxides in HT-1376 cells seems not to alter after the external 

irradiation with 20 mGy of 99mTc, and comparing the values it wasn’t found any 

statically significant differences. 
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Figure 21.Production of peroxides and superoxide by flow cytometry using DCFH2-DA 

and DHE, respectively. HT-1376 and MNNG/HOS cells were irradiated externally with 

20 mGy of 99mTc and subsequently the production of peroxides and superoxide was 

detected. The results are expressed as mean intensity normalized in relation to the 

control, comparing the results with the value of 1. The results express the average of 4 

independent experiments  standard deviation. 

 

For internal irradiation, as can be seen in the fig. 22, the production of peroxides 

in both cell lines and the production of superoxide for HT-1376 cells seem not to 

change after the internal irradiation with 20mGy of 99mTc, and comparing the 

values it wasn’t found any statically significant differences. Also, it was possible 

to visualize a slight increase in the intracellular production of superoxide in 

MNNG/HOS cells, after internal irradiation with 20 mGy of 99mTc. However, it 

wasn’t found any statistically significant differences in the production of 

superoxide in relation to the control and between cells lines. 
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Figure 22.Production of peroxides and superoxide by flow cytometry using DCFH2-DA 

and DHE, respectively. HT-1376 and MNNG/HOS cells were irradiated internally with 

20 mGy of 99mTc and subsequently the production of peroxides and superoxide was 

detected. The results are expressed as mean intensity normalized in relation to the 

control, comparing the results with the value of 1. The results express the average of 4 

independent experiments  standard deviation. 

 

To evaluate the expression of intracellular GSH, it was used the orange 

mercury probe and the analysis of the fluorescence intensities by flow 

cytometry. As can be seen in fig. 23, the expression of intracellular GSH seems 

to decrease slightly for HT-1376 cells and not having alterations for MNNG/HOS 

cells. However, it wasn’t found any statistically significant differences in the 

expression of intracellular GSH in relation to the control and between cells lines. 

 

 

 



 
 

146 
 

A b s o rb e d  d o s e  (m G y )

M
e

a
n

 f
lu

o
r
e

s
c

e
n

c
e

 i
n

te
n

s
it

y

(n
o

r
m

a
li

z
e

d
 i

n
 r

e
la

ti
o

n
 t

o
 t

h
e

 c
o

n
tr

o
l)

2
0
 

0 .0

0 .5

1 .0

1 .5

H T -1 3 7 6  c e ll lin e

M N N G -H O S  ce ll line

 

Figure 23.Expression of GSH by flow cytometry using orange mercury. HT-1376 and 

MNNG/HOS cells irradiated externally with 20 mGy of 99mTc and subsequently the 

expression of intracellular GSH was detected. The results are expressed as mean 

intensity normalized in relation to the control, comparing the results with the value of 1. 

The results express the average of 4 independent experiments  standard deviation. 

 

For internal irradiation, as can be seen in fig. 24, the expression of intracellular 

GSH seems to increase slightly for both cell lines. However, it wasn’t found any 

statistically significant differences in the expression of intracellular GSH in 

relation to the control and between cells lines. 
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Figure 24.Expression of GSH by flow cytometry using orange mercury. HT-1376 and 

MNNG/HOS cells irradiated internally with 20 mGy of 99mTc and subsequently the 

expression of intracellular GSH was detected. The results are expressed as mean 

intensity normalized in relation to the control, comparing the results with the value of 1. 

The results express the average of 4 independent experiments  standard deviation. 

 

To evaluate the mitochondrial membrane potential, it was used the JC-1, a 

molecule able to selectively enter the cell and which exists in two forms, 
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monomers (M) and aggregates (A), depending on the state of 

polarization/depolarization of the mitochondrial membrane. For external 

irradiation, as can be seen in the fig. 25, the mitochondrial membrane potential 

seems not to alter in both cell lines after the external irradiation with 20mGy of 

99mTc, and comparing the values it wasn’t found any statically significant 

differences.  
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Figure 25.Analysis of mitochondrial membrane potential by flow cytometry using the 

fluorescent probe JC-1. HT-1376 and MNNG/HOS cells irradiated externally with 20 

mGy of 99mTc and subsequently mitochondrial membrane potential was detected. The 

results are expressed as mean intensity normalized in relation to the control, 

comparing the results with the value of 1. The results express the average of 4 

independent experiments  standard deviation. 

 

For internal irradiation, as can be seen in the fig. 26, the mitochondrial 

membrane potential seems not to alter in both cell lines after the internal 

irradiation with 20mGy of 99mTc, and comparing the values it wasn’t found any 

statically significant differences.  
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Figure 26.Analysis of mitochondrial membrane potential by flow cytometry using the 

fluorescent probe JC-1. HT-1376 and MNNG/HOS cells irradiated internally with 20 

mGy of 99mTc and subsequently mitochondrial membrane potential was detected. The 

results are expressed as mean intensity normalized in relation to the control, 

comparing the results with the value of 1. The results express the average of 4 

independent experiments  standard deviation. 

 

The assessment of cell cycle was performed by flow cytometry using the 

PI/RNase incorporation assay. This technique allows distinguishing the 

distribution of cells in cell cycle: pre G1, G0/G1, S and G2/M phases. Cytometry 

studies show that after external irradiation with 20 mGy of 99mTc, the distribution 

of cells in cell cycle didn’t alter for both type of cells, as shown in fig. 27, and 

comparing the values it wasn’t found any statically significant differences. 
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Figure 27.Cell cycle distribution by flow cytometry using PI/RNase. Figure represents 

the percentage of cells in pre G1, G0/G1, S and G2/M phases, after external irradiation 

with 20 mGy of 99mTc in HT-1376 and MNNG/HOS cells. The results express the 

average of 4 independent experiments  standard deviation. 
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For internal irradiation, cytometry studies show that after irradiation with 20 mGy 

of 99mTc, the distribution of cells in cell cycle didn’t alter for both type of cells, as 

shown in fig. 28, and comparing the values it wasn’t found any statically 

significant differences. 
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Figure 28.Cell cycle distribution by flow cytometry using PI/RNase. Figure represents 

the percentage of cells in pre G1, G0/G1, S and G2/M phases, after internal irradiation 

with 20 mGy of 99mTc in HT-1376 and MNNG/HOS cells. The results express the 

average of 4 independent experiments  standard deviation. 

 

5.3.5. Cellular uptake and retention studies 

To evaluate the in vitro cellular kinetics of 99mTc-PEI-MP and 188Re-PEI-MP it 

was proceeded to the evaluation of the cellular uptake and retention over time.  

From the results showed in fig. 29, fig. 30 and table 21, the maximum uptake for 

99mTc-PEI-MP in both cell lines was higher than for 99mTc-Pertechnetate. In cell 

line HT-1376 the maximum uptake of 99mTc-PEI-MP obtained was in the order 

of 1.16 instead of the lower value 0.27 of maximum uptake for 99mTc-

Pertechnetate, being the differences statistically significant (p = 0.001). Also it 

was verified that the maximum uptake was higher for 99mTc-PEI-MP, the time 

spend to reach half of the maximum uptake was higher for 99mTc-PEI-MP (55.46 

minutes) than for 99mTc-Pertechnetate (3.88 minutes), however it wasn’t found 

statistically significant differences. In cell line MNNG/HOS the maximum uptake 

of 99mTc-PEI-MP obtained was in the order of 1.00, a higher value than the 0.19 

of maximum uptake for 99mTc-Pertechnetate, being found statistically 

significance differences (p < 0.001). Similarly as for the HT-1376 cell line, the 

time spend to reach half of the maximum uptake was higher for 99mTc-PEI-MP 
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(10.12 minutes) than for 99mTc-Pertechnetate (0.89 minutes), however it wasn’t 

found statistically significant differences. 

 

 

Figure 29.Uptake of 99mTc-PEI-MP and 99mTc-Pertechnetate by HT-1376 cells over 

time. The cells were incubated with 0.925MBq/ml (25 µCi/ml), and after the percentage 

of uptake of the radiotracer formulation by influx studies was determined. The results 

express the mean of 4 independent experiments  standard deviation. 

 

Figure 30.Uptake of 99mTc-PEI-MP and 99mTc-Pertechnetate by MNNG/HOS cells over 

time. The cells were incubated with 0.925MBq/ml (25 µCi/ml), and after the percentage 

of uptake of the radiotracer formulation by influx studies was determined. The results 

express the mean of 4 independent experiments  standard deviation. 
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From the results demonstrated in fig. 31, fig. 32 and table 22, the minimum 

retention for 99mTc-PEI-MP in both cell lines was higher than for 99mTc-

Pertechnetate. In cell line HT-1376 the minimum retention of 99mTc-PEI-MP 

obtained was in the order of 3.89 instead of the lower value 1.03 for 99mTc-

Pertechnetate, being the differences statistically significant (p < 0.001). In cell 

line MNNG/HOS the minimum retention of 99mTc-PEI-MP obtained was in the 

order of 3.78, a higher value than the 0.54 for 99mTc-Pertechnetate, being found 

statistically significance differences (p < 0.001). There were no statistically 

significant differences between the Tm (min) of 99mTc-Pertechnetate and 99mTc-

PEI-MP in both cell lines.  

 

 

Table 21.Mean values of A (%) and T50% (min) for the uptake of 99mTc-Pertechnetate 

and 99mTc-PEI-MP in the cell lines HT-1376 and MNNG/HOS. The results analysed 

were obtained from 4 independent experiments. 

Cell Line Radiopharmaceutical A (%) T50% (min) 

HT-1376 

99mTc-Pertechnetate 0.270.02 3.880.90 
99mTc-PEI-MP 1.160.16 55.4621.60 

MNNG/HOS 

99mTc-Pertechnetate 0.190.01 0.893.02 
99mTc-PEI-MP 1.000.11 10.127.7 

Legend: Mean values of A   standard deviation and T50%  standard deviation, for the uptake of 
99m

Tc-Pertechnetate and 
99m

Tc-PEI-MP in the cell lines HT-1376 and MNNG/HOS. The A is the 

maximum uptake and T50% is the time needed to reach half of the maximum uptake. 
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Figure 31.Retention of 99mTc-PEI-MP and 99mTc-Pertechnetate by HT-1376 cells over 

time. The cells were incubated with 0.925MBq/ml (25 µCi/ml) during 150 minutes and 

then culture medium was substituted, and the percentage of retention of the radiotracer 

formulation by efflux studies was determined. The results express the mean of 4 

independent experiments  standard deviation. 

 

 

Figure 32.Retention of 99mTc-PEI-MP and 99mTc-Pertechnetate by MNNG/HOS cells 

over time. The cells were incubated with 0.925MBq/ml (25 µCi/ml) during 150 minutes 

and then culture medium was substituted, and the percentage of retention of the 

radiotracer formulation by efflux studies was determined. The results express the mean 

of 4 independent experiments  standard deviation. 
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From the results showed in fig. 33, fig. 34 and table 23, the maximum uptake for 

188Re-PEI-MP in both cell lines was higher than for 188Re-Perrhenate. In cell line 

HT-1376 the maximum uptake of 188Re-PEI-MP obtained was in the order of 

9.88 instead of the lower value 0.16 of maximum uptake for 188Re-Perrhenate, 

being the differences statistically significant (p = 0.001). Also it was verified that 

the maximum uptake was higher for 188Re-PEI-MP, the time spend to reach half 

of the maximum uptake was lower for 188Re-PEI-MP (0.06 minutes) than for 

188Re-Perrhenate (26.07 minutes), however it wasn’t found statistically 

significant differences. In cell line MNNG/HOS the maximum uptake of 188Re-

PEI-MP obtained was in the order of 13.09, a higher value than the 0.20 of 

maximum uptake for 188Re-Perrhenate, being found statistically significance 

differences (p < 0.001). The time spend to reach half of the maximum uptake 

was higher for 188Re-PEI-MP (0.09 minutes) than for 188Re-Perrhenate (0.06 

minutes), however it wasn’t found statistically significant differences. 

 

 

 

 

 

 

 

 

 

Legend: Mean values of A  standard deviation and Tm  standard deviation, for the retention of 
99m

Tc-Pertechnetate and 
99m

Tc-PEI-MP in both the cell lines HT-1376 and MNNG/HOS. The A is 

the minimum retention and Tm is the time delay to reach 50% of the retention plus A/2, or the 

midpoint between 100% and the minimal retention. 

Table 22.Mean values of A (%) and Tm (min) for the retention of 99mTc-Pertechnetate 

and 99mTc-PEI-MP, in the cell lines HT-1376 and MNNG/HOS. The results analysed 

were obtained from 4 independent experiments. 

Cell Line Radiopharmaceutical A (%) Tm (min) 

HT-1376 

99mTc-Pertechnetate 1.030.16 0.190.04 
99mTc-PEI-MP 3.890.06 0.150.02 

MNNG/HOS 

99mTc-Pertechnetate 0.540.13 0.200.09 
99mTc-PEI-MP 3.780.24 0.160.04 
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Figure 33.Uptake of 188Re-PEI-MP and 188Re-Perrhenate by HT-1376 cells over time. 

The cells were incubated with 0.925MBq/ml (25 µCi/ml), and after the percentage of 

uptake of the radiotracer formulation by influx studies was determined. The results 

express the mean of 4 independent experiments  standard deviation. 

 

Figure 34.Uptake of 188Re-PEI-MP and 188Re-Perrhenate by MNNG/HOS cells over 

time. The cells were incubated with 0.925MBq/ml (25 µCi/ml), and after the percentage 

of uptake of the radiotracer formulation by influx studies was determined. The results 

express the mean of 4 independent experiments  standard deviation. 
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From the results demonstrated in fig. 35, fig.36 and table 24, the minimum 

retention for 188Re-PEI-MP in both cell lines was higher than for 188Re-

Perrhenate. In cell line HT-1376 the minimum retention of 188Re-PEI-MP 

obtained was in the order of 45.67 instead of the lower value 0.24 for 188Re-

Perehenate, being the differences statistically significant (p < 0.001). In cell line 

MNNG/HOS the minimum retention of 188Re-PEI-MP obtained was in the order 

of 68.94, a higher value than the 0.21 for 188Re-Perrhenate, being found 

statistically significance differences (p < 0.001). There are no statistically 

significant differences between the Tm (min) of 188Re-Perrhenate and 188Re-

PEI-MP in both cell lines. 

 

 

 

Table 23.Mean values of A (%) and T50% (min), for the uptake of 188Re-Perrhenate 

and 188Re-PEI-MP in both the cell lines HT-1376 and MNNG/HOS. The results 

analysed were obtained from 4 independent experiments. 

Cell Line Radiopharmaceutical A (%) T50% (min) 

HT-1376 

188Re-Perrhenate 0.160.00 26.070.00 
188Re-PEI-MP 9.880.44 0.060.00 

MNNG/HOS 

188Re-Perrhenate 0.200.01 0.060.01 
188Re-PEI-MP 13.090.48 0.090.00 

Legend: Mean values of A  standard deviation and T50%  standard deviation, for the uptake of 
188

Re-Perrhenate and 
188

Re-PEI-MP in the cell lines HT-1376 and MNNG/HOS. The A is the 

maximum uptake and T50% is the time needed to reach half of the maximum uptake.  
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Figure 35.Retention of 188Re-PEI-MP and 188Re-Perrhenate by HT-1376 cells over 

time. The cells were incubated with 0.925MBq/ml (25 µCi/ml) during 150 minutes and 

then culture medium was substituted, and the percentage of retention of the radiotracer 

formulation by efflux studies was determined. The results express the mean of 4 

independent experiments  standard deviation. 

 

Figure 36.Retention of 188Re-PEI-MP and 188Re-Perrhenate by MNNG/HOS cells over 

time. The cells were incubated with 0.925MBq/ml (25 µCi/ml) during 150 minutes and 

then culture medium was substituted, and the percentage of retention of the radiotracer 

formulation by efflux studies was determined. The results express the mean of 4 

independent experiments  standard deviation. 
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5.4. Section discussion 

With the intention of analysing in vitro the potential of PEI-MP radiolabelled with 

99mTc for diagnosis and with 188Re for therapy of bladder cancer, in this chapter 

it was evaluated the chemical properties of PEI-MP, the radiotoxicity of 99mTc 

and the cellular uptake and retention of 99mTc-PEI-MP and 188Re-PEI-MP, using 

for this cell lines of human bladder transitional cell carcinoma and 

osteosarcoma (considering the first propose of using PEI-MP) [111, 317].  

Following the success in the synthesis of the polymer PEI-MP and the 

preparation of the labelling kits, it was proceeded with the radiolabelling with 

99mTc-Pertechnetate and 188Re-Perrhenate. Thus, once the aim was to use 

99mTc-PEI-MP for imaging and 188Re-PEI-MP for therapy, it was necessary to 

determine the radiochemical purity by ascendant microchromatography. The 

results demonstrated that the radiochemical purity for 99mTc-PEI-MP and 188Re-

PEI-MP, during 5 hours after radiolabelling, was always high and superior to 

89% and 85%, respectively for 99mTc-PEI-MP and 188Re-PEI-MP, just in the first 

hour. These results reveal the stability of the kit formulation, and thus ensure its 

use for a long period of time. After several experiments with different 

chromatographic systems, it was perceived that the two systems chosen were 

appropriated. 99mTc/188Re-PEI-MP are polar and water-soluble molecules, 

therefore by using a stationary phase that is strongly polar, like ITLC-SG, 

99mTc/188Re-PEI-MP will have a strong interaction with the stationary phase, and 

will not move with the solvent, in this case the acetone. On the other hand, 

Table 24.Mean values of A (%) and Tm (min), for the retention of 188Re-Perrhenate 

and 188Re-PEI-MP in both the cell lines HT-1376 and MNNG/HOS. The results 

analysed were obtained from 4 independent experiments. 

Cell Line Radiopharmaceutical A (%) Tm (min) 

HT-1376 

188Re-Perrhenate 0.240.00 3.820.00 
188Re-PEI-MP 45.670.47 2.211.39 

MNNG/HOS 

188Re-Perrhenate 0.210.00 2.670.00 
188Re-PEI-MP 68.940.44 0.080.00 

Legend: Mean values of A  standard deviation and Tm  standard deviation, for the retention of 
188

Re-Perrhenate and 
188

Re-PEI-MP in both the cell lines HT-1376 and MNNG/HOS. The A is the 

minimum retention and Tm is the time delay to reach 50% of the retention plus A/2, or the midpoint 

between 100% and the minimal retention.  
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99mTc-Pertechnetate and 188Re-Perrhenate that are non-polar molecules will 

have no affinity for the stationary phase and will be dragged by the polar 

solvent. The 99mTc/188Re-Reduced-Hydrolyzed being non-soluble molecules will 

remain in the origin, presenting an Rf equal to zero. This way it is possible to 

calculate the percentage of 99mTc-Pertechnetate and 188Re-Perrhenate that 

present an Rf equal to one. Upon use the stationary phase W3MM and the 

citrate as mobile phase the aim was to separate the 99mTc/188Re-Reduced-

Hydrolyzed from 99mTc/188Re-PEI-MP, 99mTc-Pertechnetate/188Re-Perrhenate. 

To this W3MM demonstrated to be an adequate stationary phase. Because 

W3MM is non-polar, using a polar solvent like citrate, 99mTc/188Re-PEI-MP will 

be drag by the solvent, as well as 99mTc-Pertechnetate or 188Re-Perrhenate, and 

99mTc/188Re-Reduced-Hydrolyzed being non-soluble molecules will remain in the 

origin [87, 271]. Therefore, knowing the percentage of 99mTc-Pertechnetate or 

188Re-Perrhenate and the percentage of 99mTc/188Re-Reduced-Hydrolyzed it 

was possible to calculate the percentage of 99mTc-PEI-MP or 188Re-PEI-MP.  

Also it was investigated the effect of temperature and presence of cell culture 

medium (DMEM) in radiochemical purity of 99mTc-PEI-MP over time, once to 

perform the in vitro studies, the complex is exposed to cellular culture medium 

and environmental temperatures that may vary from 22 to 45 ºC. The results 

demonstrated that the radiochemical purity was not affected significantly, being 

equal or superior to 85% in the first hour for all conditions, at least during 5 

hours after radiolabelling, when in contact with culture medium and exposed to 

different temperatures. Therefore the in vitro studies could be performed with 

99mTc-PEI-MP, ensuring that the results were not altered by the loss of 

radiochemical purity. Considering the similarities of 188Re-PEI-MP with 99mTc-

PEI-MP, the results discussed before were also expected for 188Re-PEI-MP. 

The hydrophilicity or lipophilicity of a labelled compound is crucial for the 

biodistribution in vivo, therefore the determination of the partition coefficient (log 

Po/w) of 99mTc-PEI-MP was crucial. The results demonstrated that 99mTc-PEI-MP 

is a hydrophilic complex, with an increased hydrophilicity over time (at least 4 

hours after radiolabelling), but with no statistical significant differences. Also, it 

wasn’t possible to calculate the hydrophilicity of the 188Re-PEI-MP, however due 

to the similarity of the complexes, it is expected similar values of hydrophilicity. 
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This water solubility could be an advantage in terms of unnecessary liver and 

fat tissue uptake, and also a faster kidney-uptake, if administered in vivo [273]. 

These results may represent a theoretical advantage either for imaging and 

therapy however, in vivo studies must be performed for a final conclusion on 

this topic. 

To understand if PEI-MP would act as a carrier without any secondary effects to 

cells, it was verified the effects on cell metabolic activity after the incubation with 

several concentrations of PEI-MP, in different periods of time. To this it was 

used the human cell lines of bladder carcinoma and osteosarcoma. The results 

obtained by MTT assay demonstrated that, for any of the cell lines used for the 

experiment, and any of the concentrations in each period of time, PEI-MP didn’t 

had significantly inhibitory influence on metabolic activity, remaining equal or 

superior to 100%. To confirm and reinforce these last results, it was study other 

possible responses of cells when incubated with 1000 µM of PEI-MP during 24 

hours. To this it was resorted to flow cytometry, and it was studied the types of 

cell death and viability, the production of free radicals, the expression of 

reduced GSH, and changes in the mitochondrial membrane potential. The 

results demonstrated that cell viability didn’t decrease significantly, remaining 

superior to 82% in both cell lines, despite the increase of apoptosis and a slight 

decrease of the mitochondrial membrane potential, especially in the HT-1376 

cells. The intrinsic pathway of apoptosis involves the mitochondria, and 

mediates the release of cytochrome c that is associated with the opening of the 

mitochondrial permeability transition pore and loss of the mitochondrial 

membrane potential. Therefore it is expected that with the increase of apoptosis 

the mitochondrial membrane potential may also be decreased [299], as it was 

expressed in the previous results. However there are reasons to believe that 

this increase in apoptosis is not relevant, and does not preclude its use, 

considering the results obtained in the MTT tests and the other results of flow 

cytometry, where cell viability didn’t decrease and that weren’t found significant 

changes in the production of free radicals and in the expression of GSH. 

Therefore, the idea that PEI-MP can act as a carrier without significant side 

effects and that can be labelled with 99mTc for functional imaging or labelled with 
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188Re for therapy still remains, considering the consistent results obtained by 

the MTT assay and flow cytometry. 

Because it was intended to use 99mTc-PEI-MP for diagnosis, it’s important that 

the doses of radiation used don’t represent a risk. As described before 99mTc not 

also emits gamma rays of low energy (140 keV), but also highly energetic auger 

electrons, that could represent a risk [59]. Therefore it was proceeded with the 

analysis of the radiotoxicity of 99mTc with several doses in the range of 

diagnostics, for both bladder cancer and osteosarcoma cells. The effective 

doses for most nuclear medicine diagnostic procedures varies between 0.3 and 

20 mSv (equivalent to 0.3 and 20 mGy) [303], therefore it was performed 

clonogenic tests to evaluate cell survival based on the ability of a single cell to 

grow and form a colony after external and internal irradiation of cells with 

several doses, namely 2, 5, 10 and 20 mGy. After external irradiation it’s 

possible to evaluate the effects of gamma rays and not of auger electrons. Only 

with internal irradiation it’s possible to evaluate the effects of gamma rays plus 

auger electrons, considering the low range of these electrons, therefore it needs 

to be in close contact with cells to produce effects [302]. The results 

demonstrated, as expected, that for doses of 99mTc in the range of diagnosis, 

and independently of the irradiation being external or internal, there are no 

significant influence in cell survival for both bladder carcinoma and 

osteosarcoma cells. The cell survival didn’t decrease, at least in terms of 

capacity to grow and form a colony, demonstrating that for diagnostic effective 

doses, the gamma rays and auger electrons, has no apparent effect on cell 

survival. To support the results obtained with clonogenic assay, it was study 

other possible responses of cells when irradiated with 20 mGy of 99mTc. For this 

purpose, flow cytometry was used to study the types of cell death and viability, 

the production of free radicals and the expression of reduced GSH, the changes 

in the mitochondrial membrane potential and the cell cycle. The results 

demonstrated that cell viability didn’t decrease significantly, remaining superior 

to 82% for external irradiation and above 84% for internal irradiation in both cell 

lines, with no significant differences for apoptosis or necrosis. The absence of 

significant alterations in the production of peroxides and superoxide, expression 

of GSH, changes in the mitochondrial membrane and changes in the 
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distribution throughout the cell cycle, after external an internal irradiation 

support the results of flow cytometry for cell death and viability and the results 

obtained in clonogenic studies, demonstrating that doses of 99mTc in diagnostic 

range is considered harmless and 99mTc-PEI-MP may be used for nuclear 

medicine imaging. Unfortunately, given the impossibility of getting a new 

generator of 188W/188Re, it was not possible to evaluate the radiotoxicity 188Re. 

However taking into consideration that this radionuclide emits high-energy β- 

particles, we can predict a decrease of cell survival and all the consequences of 

the effects of ionizing radiation on human tissues [290, 291, 293, 295, 297, 306, 

309, 310]. And because 188Re is harmful for cancer cells, it is also for healthy 

cells, therefore there is a great need of specificity that may be given by PEI-MP 

for bladder cancer. 

To be used for imaging, 99mTc-PEI-MP should have a significant cellular uptake 

and retention over time. Thus it was evaluated the cell uptake and retention of 

99mTc-PEI-MP in both bladder carcinoma and osteosarcoma cells. From the 

results, it was possible to verify that in both cell lines the maximum percentage 

of uptake of 99mTc-PEI-MP (1.16% in HT-1376 cells; 1.00% in MNNG/HOS 

cells), was significantly higher than the maximum uptake of 99mTc-Pertechnetate 

(0.27% in HT-1376 cells; 0.19% in MNNG/HOS cells). Also the percentage of 

uptake of both 99mTc-PEI-MP and 99mTc-Pertechnetate in HT-1376 cells was 

higher than in MNNG/HOS cells, is not statistically significant. Relatively to the 

percentage of retention, it was possible to verify that in both cell lines the 

minimum percentage of retention of 99mTc-PEI-MP was relatively high (3.89% in 

HT-1376 cells; 3.78% in MNNG/HOS cells), and superior to 99mTc-

Pertechnetate (1.03% in HT-1376 cells; 0.54% in MNNG/HOS cells). Also it’s 

important to refer that the retention over time seems to be more stable for both 

cell lines, particularly for HT-1376 cells.  

These values of uptake and retention, demonstrate that PEI-MP is possible an 

excellent carrier for 99mTc to cancer cells, namely to bladder carcinoma and 

osteosarcoma cells. Therefore 99mTc-PEI-MP could be an excellent agent for 

imaging in vivo.  

To be used for therapy, 188Re-PEI-MP should also have a significant cellular 

uptake and retention over time. Thus it was evaluated the cell uptake and 
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retention of 188Re-PEI-MP in both cell lines, HT-1376 and MNNG/HOS, using 

the same procedures as for 99mTc-PEI-MP. From the results, it was possible to 

verify that in both cell lines the percentage of uptake of 188Re-PEI-MP (9.88% in 

HT-1376 cells; 13.09% in MNNG/HOS cells), over time, was significantly higher 

than the uptake of 188Re-Perrhenate (0.16% in HT-1376 cells; 0.20% in 

MNNG/HOS cells). Relatively to the percentage of retention, it was possible to 

verify that in both cell lines the minimum percentage of retention of 188Re-PEI-

MP was relatively high (45.67% in HT-1376 cells; 68.94% in MNNG/HOS cells), 

and superior to 188Re-Perrhenate (0.24% in HT-1376 cells; 0.21% in 

MNNG/HOS cells). Also it’s important to refer that the retention over time seems 

to be more stable for both cell lines, particularly for HT-1376 cells. Therefore, 

these results could be an indication that 188Re-PEI-MP could be used for 

therapy in vivo of both bladder and bone cancer. The results of uptake and 

retention obtained for 188Re-PEI-MP in proportion are a bit different to those 

obtained with 99mTc-PEI-MP, demonstrating that changing the radionuclide used 

for radiolabelling PEI-MP, the uptake and retention besides being always high is 

also superior when radiolabelled with 188Re. Given that 188Re has an atomic 

mass number superior to 99mTc [61], the complex 188Re-PEI-MP is possibly a 

larger molecule than 99mTc-PEI-MP and, as it is known, the cellular tumour 

uptake of large molecules is dominated by the EPR effect, and possibly for this 

reason the uptake and retention of 188Re-PEI-MP is higher. However, 

comparing the results of uptake and retention of 99mTc-PEI-MP or 188Re-PEI-MP 

with the ones of control (99mTc-Pertechnetate or 188Re-Perrhenate), the uptake 

and retention of the radiolabelled PEI-MP were always significantly higher, 

independently of the radionuclide used for labelling, being an indication of the 

possible specificity of PEI-MP to bladder carcinoma and osteosarcoma cells.  

Since in vitro studies are conducted in a controlled environment, the results may 

not correspond to those obtained in a living organism. Therefore it was 

important to conduct in vivo studies. 
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Section III. Experimental Studies 

Chapter 6.In vivo and Ex vivo 

 

6.1. Introduction 

Considering the in vitro results, and knowing that these studies are not enough 

to answer to all questions, including if the dynamic behaviour of the 99mTc-PEI-

MP or the 188Re-PEI-MP in tumour mass in terms of uptake and retention is 

maintained, what are the target organs, what are the routes of excretion, or if 

will they be good agents for imaging or therapy in vivo? Trying to answer these 

questions, in vivo and ex vivo studies were performed.  

Thus, the aim of this chapter was to explore through in vivo and ex vivo 

evaluations, the potential of PEI-MP radiolabelled with 99mTc or 188Re for the 

early diagnosis and/or therapy of bladder cancer, based on the results obtained 

in vitro. These in vivo and ex vivo studies include the biodistribution and 

biokinetics of 99mTc-PEI-MP and 188Re-PEI-MP, in controls and in animal 

models of bladder cancer and osteosarcoma, using imaging to control the 

administration of the complexes, and to see the biodistribution, which was 

complemented with the uptake quantification for each organ after animal 

sacrifice. 

Taking into consideration the results of the partition coefficients it was expected 

that the complexes would be mainly excreted by renal system what was 

confirmed by the image visualization and by ex vivo studies. These showed a 

high count rate in kidneys, bladder and urine after the intravenous 

administration of the 99mTc-PEI-MP or 188Re-PEI-MP.  

For this work it was necessary the development of animal models of bladder 

cancer and osteosarcoma, which could be used not only for nuclear medicine 

imaging but also for ex vivo, evaluations, to achieve the biodistribution studies 

after administration of 99mTc-PEI-MP and 188Re-PEI-MP complexes. All 

procedures described in this chapter were performed after approval by the 

Ethics Committee for Health of the Faculty of Medicine of the University of 

Coimbra.  
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6.2. Material and methods 

6.2.1. Animal tumour models 

Experimental models of cancer have played an important role in cancer drug 

discovery for more than 60 years. In vivo cancer models can be considered to 

fall within two broad classes, transplantable models, and in situ models, each 

with some subtypes. Additionally, with recent advances in preclinical imaging 

technologies, these models proved to be useful in the development and testing 

of new imaging techniques and contrast agents. There are several types of 

tumour models such as the transplantable syngeneic models, spontaneous and 

autochthonous models, orthotopic models, human tumour xenografts, models of 

metastasis and transgenic tumour models [318].  

Transplantable syngeneic leukaemia and solid tumour models were developed 

from spontaneous or induced tumours, subsequently adapted to a serial in vivo 

passage in the same animal strain. Disadvantages of these models are related 

with the different genetic background of murine cancer, not always identical to 

human counterparts, decreasing the expectation of a clinical correlation [319]. 

Spontaneous and autochthonous models may be relevant to understand the 

development of human disease because the tumours reside in the tissue 

appropriate for the histotype. However, these kind of studies are difficult 

because of low tumour incidence, characteristic variations, and delayed onset of 

tumour growth, as well as the deep location of the tumour tissues [318]. An 

orthotopic model involves the implantation of a tumour into the organ from 

which it arose [320-322]. Orthotopic models have additional advantages over 

subcutaneous besides the cellular microenvironment context. These 

advantages may include retention of differentiated structures within the tumour, 

vascular growth differences, more realistic tissue pharmacokinetics at the 

tumour site, and metastatic spread. However, tumour implantation for orthotopic 

models requires potentially complex surgery procedures. Observation of tumour 

growth in internal organs typically requires serial sacrifice of cohorts of animals, 

the acceptance and the growth tumour rates can be highly variable, and may be 

difficult and costly the pharmacodynamic and pathological analyses of the 

tumours. These factors increase costs and decrease the yield [318]. 
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The application of xenotransplantation (transplantation of tissues or organs from 

one species into different species) techniques to the growth of human tumours 

in experimental animals was a major breakthrough in cancer biology and drug 

discovery research [318]. One of the first of these models was to take 

advantage of the immunologically privileged status of the subrenal capsule 

(SRC) [323, 324], where human tumour fragments were implanted under this 

capsule. Unfortunately, the SRC xenograft assay is labour intensive and both 

tumour growth and response to therapy are often highly variable [318]. A major 

breakthrough in the in vivo evaluation of novel agents against human tumours 

was the development and the characterization of immunodeficient mice and 

rats. These animals have genetic immune deficiencies that minimize or prevent 

the rejection of the grafted tissues from other species. The difficulty in using 

immune compromised animals is that they are highly susceptible to viral, 

bacterial, and fungal infections. These infections can change the outcome and 

the reproducibility of experiments. Therefore, immunodeficient animals are 

maintained in specific pathogen-free environments, dramatically increasing 

research costs [318]. Nude, scid, xid and beige mice are the four primary types 

of immunodeficient mice. Each type of immunodeficient mouse has one or more 

mutations that diminish the animal´s capacity to reject transplantable allografts 

and xenografts. None of the mutations completely eliminates the immune 

system function [325-327]. Nude and scid mice are predominantly used for 

cancer drug evaluation. Xenografted tumours often exhibit a more neoplastic 

phenotype in scid mice than in nudes, presumably because of the more severe 

immunodeficiency of scid mice. The availability of these animals, has introduced 

new paradigms on the drug discovery. There are different approaches for 

xenograft studies in immunocompromised mice such as the subcutaneous 

xenografts and the hollow fibber assay. Subcutaneous xenografts are human 

tumour xenografts (cells, brei, or fragments) that are injected underneath the 

skin of immunodeficient animals and not into the underlying tissue or cavities. 

These models are cost effective, and provide a direct assessment of tumour 

size through simple, non-invasive calliper measurement of tumour axes. The 

accessibility of the tumour is also an advantage for harvesting of tumour tissue 

[328-330]. Although the use of human tumour xenografts has many advantages, 

there are also a number of disadvantages. Human cells are placed in a murine 
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environment generating interactions that may not faithfully reflect the human 

disease process (e.g., differences in the local cellular environment, cytokines, 

chemokines, growth factors or immunologic state, among others) [318]. The 

hollow fibber assay [331] uses polyvinylidene fluoride hollow fibbers inoculated 

with human tumour cell lines [332]. The fibbers are then sealed and implanted 

into the intraperitoneal cavity or subcutaneously of immunodeficient mice for 3-

10 days. After a treatment, the fibbers are removed and live cells are counted. 

Advantages of this method are that multiple cell lines can be tested 

simultaneously in one animal, contributing to low cost and high throughput. 

Disadvantages are that the technique requires surgery, the tumour cells are 

unable to interact with the normal animal stroma, and the cells have no 

opportunity to develop a blood supply. Hence, this assay does not reflect 

treatment-induced changes in stroma-tumour interactions nor vascular effects 

[318]. The general stability of the tumour tissue in the models discussed above 

are an advantage, however often they lack some key features of human cancer, 

such as dissemination to secondary organ. Several models of metastatic 

dissemination employ direct or systemic injection techniques. The choice of the 

site or route of administration is generally based on vascular proximity to the 

injection place. Spontaneous models of metastatic dissemination, including 

subcutaneous, transgenic, orthotopic, and autochthonous models provide a 

better representation of the entire process than direct injection models, and are 

especially suited for testing therapeutics for prevention of metastasis [318]. The 

massive shift of drug discovery efforts toward inhibition of specific oncogene or 

suppressor gene related targets has led to increased interest in the use of 

transgenic models for target validation and the evaluation of drug candidates 

[333-335]. Transgenic tumour models are created by the introduction of 

heritable (germ line) or somatic mutations that are implicated in neoplastic 

transformation. Target genes can be replaced by new alleles, conditionally 

expressed, conditionally turned off, or mutated. A key advantage of transgenic 

models is that the aetiology of the tumour development closely mimics that in 

humans. The animals can be treated with therapeutic agents at any stage of 

tumour development to further elucidate therapeutic efficacy and the 

mechanism of action [335]. Transgenic models driven by germ line mutations 

can be problematic. Mutations of interest are often embryonically lethal. 
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Additionally, adverse physiological or toxic effects during the development may 

occur that render the model unusable. Organ specificity can also be difficult to 

control and the study of multiple gene defects can require complex breeding 

efforts. Lastly, these animal models are often characterized by long tumour 

latency periods [318]. 

For the development of in vivo and ex vivo studies, and considering the animal 

models discussed before and the resources available, it was chosen as animal 

tumour model the balb/c nu/nu mice, 6 to 8 weeks old with a body weight 

ranging 20 to 31 g, for the development of subcutaneous xenografts of bladder 

carcinoma and osteosarcoma. In vivo studies allowed obtain information on the 

routes of metabolism and excretion, as well as the target organs of the 99mTc-

PEI-MP and 188Re-PEI-MP. This strain was chosen because of the advantages 

referred before and because these animals have gallbladder, allowing to obtain 

important information about biodistribution of 99mTc-PEI-MP and 188Re-PEI-MP. 

To obtain the xenografts of the tumours under study it was injected 

subcutaneously in the right axilla dug of blab/c nu/nu mice a suspension of 5 

million HT-1376 or MNNG/HOS cells, respectively for bladder carcinoma and 

osteosarcoma, in 0.1 ml of saline. This injection zone was chosen because it 

has several advantages with respect to the development of xenograft, 

emphasizing the fact that is contra lateral to the heart, is away from the liver, 

bladder and kidneys, avoiding the overlapping of structures in images. On the 

other hand, is a good area for expansion, and has good vascularisation, which 

allows the quick development of xenograft.  

The volume of tumours was controlled every week by simple calliper 

measurement. The determination of the tumour’s volume was calculated 

following the equation 7.  

    
      

 
  

Equation 7.Tumour volume determination. LT corresponds to the largest tumour 

diameter and S the smallest diameter (Dagrosa M.A. et al., 2003) 
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Studies with xenograft of bladder carcinoma and xenograft of osteosarcoma 

started when the tumour volumes reached 500-1000 mm3. 

 

6.2.2. Nuclear medicine imaging 

Molecular imaging is a growing research tool in preclinical area that allows 

testing novel drugs, reagents, and methods, giving fundamental information 

through image that mapping a specific step of a molecular pathways in vivo, 

some of them key-targets in disease processes [39, 55]. The current 

assessment of disease is based on anatomic or physiologic changes that are a 

late manifestation of molecular alterations which truly underlie disease. 

Functional information of these molecular changes will affect the patient care 

because they allow earlier detection of disease. In addition, with these 

functional images is possible to observe the effects of therapy shortly after its 

beginning, allowing to quickly determining the effectiveness of treatment. 

Oppositely, in the morphological imaging methods, many months are often 

required to determine whether pharmacologic or biological intervention has 

been beneficial [39, 55]. Widely used, molecular imaging agents are 

radiopharmaceuticals, paramagnetic materials, fluorescent/luminescent 

materials, and microbubbles, among others [55].  

Nuclear medicine imaging involves the image formation through the detection of 

gamma rays with energies preferably ranging 100-200 keV, or annihilation 

photons with energy of 511 keV, emitted during the decay of a radioisotope, 

which may be attached or not to a molecule. The gamma-camera, also known 

as Anger camera, emerged as the standard device for single photon nuclear 

imaging. The key element for image formation is a scintillation crystal with a 

high atomic number. In this crystal, radiation interactions occur, and gamma 

photons are converted into a multiple visible light photons. Sodium iodide doped 

with thallium (Na(Tl)) crystals meets the requirement for single photon nuclear 

imaging. A mechanical collimator is placed in front of the crystal, and is useful to 

define the direction of the gamma photons emitted by the radioactive source. 

The collimator will enable the selection of gamma-rays nearly perpendicularly to 

the crystal surface, while obliquely incident gamma-rays are absorbed in the 
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collimator septa. Each light photon generated in the scintillation crystal will 

undergo to low-noise amplification in a photomultiplier dynode system and 

further amplification and shaping in the preamplifier. The electrical output 

signals from these photomultipliers are used for localization (position (x,y) 

absorbed within the crystal) and for pulse height analysis following summation. 

The integrator smoothes the signal, while the pulse height analyser, performs a 

rough pre-selection of signal amplitude. The signal then undergoes analogue-

to-digital conversion and is passed on to a multichannel analyser, in which 

individual signals are binned according to their pulse amplitudes. Given that this 

pulse height is proportional to the energy of the absorbed gamma-ray photon, 

the accumulated spectrum of pulse heights will represent the energy spectrum 

of the gamma-radiation incident on the detector [336]. 

Therefore, for the in vivo evaluation of the biodistribution and biokinetics of 

99mTc-PEI-MP and 188Re-PEI-MP, nuclear medicine imaging after the 

administration of 99mTc-PEI-MP or 188Re-PEI-MP in mice, were performed. To 

obtain these images a gamma-camera (GE 400 AC) coupled with a low energy, 

parallel hole and high resolution collimator, as represented in fig. 37, was used.  

 

 

Figure 37.Gamma-camera (GE 400 AC) coupled with a low energy, parallel hole and 

high resolution collimator. 
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Before starting with the image acquisition, mice were anesthetized with a 

solution of ketamine 77% (Ketalar®, Parke-Davis) and chlorpromazine 23% 

(Largactil®, Vitoria Laboratories) injected subcutaneously in the back of the 

mice, with an adequate dosage considering weight. 

Taking into account that, one of the adverse effects of anaesthesia is the 

decrease on body temperature, it is necessary to maintain the body 

temperature of the mice during all the image acquisition. For this purpose the 

mice were kept in a box airy, spacious and heated with an electric blanket, as 

represented in fig. 38. The temperature was adjusted continuously in order to 

maintain the animal comfort condition.  

 

 

 

During image acquisition a warm light was projected over mice, to maintain 

body temperature, taking care to cover the eyes once they are photosensitive. 

For image acquisition, mice were placed in prone on top of the gamma-camera 

collimator, previously shield with a plastic to avoid direct contamination of the 

collimator, as can be seen in fig.39.  

Figure 38.Balb/c nu/nu mice with xenografts, anesthetized for holding images after 

administration of the radiopharmaceutical. 
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Images started with the intravenous administration in the animal tail vein, of the 

radiopharmaceuticals 99mTc-Pertechnetate, 99mTc-PEI-MP, 188Re-Perrhenate or 

188Re-PEI-MP. As control animal model balb/c mice 6 to 8 weeks old with a 

body weight ranging 20 to 31 g were used. As tumour animal models it was 

used the ones referred before.  

 

6.2.2.1. Imaging with 99mTc-Pertechnetate and 99mTc-PEI-MP  

Images were acquired in control mice, and in mice with xenograft of bladder 

carcinoma and osteosarcoma. For each type of mice it was administered 99mTc-

Pertechnetate or 99mTc-PEI-MP. For each group, taking in consideration the 

type of mice and the radiopharmaceutical administered, images were acquired 

up to 120 minutes and up to 240 minutes. The organization of these groups is 

summarized in the table 25.  

 

 

Figure 39.Positioning of balb/c nu/nu mouse in the detector of the gamma-camera 

(GE 400 AC). 
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Table 25.Number and organization of mice by type, administered radiopharmaceutical 

(99mTc-Pertechnetate or 99mTc-PEI-MP) and time of the final images.  

Mice Images  Radiopharmaceuticals 
99mTc-Pertechnetate 99mTc-PEI-MP 

Normal Up to 120 min 4 mice 4 mice 

Up to 240 min 4 mice 4 mice 

Xenograft of bladder 

carcinoma 

Up to 120 min 4 mice 4 mice 

Up to 240 min 4 mice 4 mice 

Xenograft of 

osteosarcoma 

Up to 120 min 4 mice 4 mice 

Up to 240 min 4 mice 4 mice 

Legend: Number of mice used for imaging studies, according to the radiopharmaceutical 

administered (
99m

Tc-Pertechnetate or 
99m

Tc-PEI-MP) and the type of animal model, that is, 

normal mice, mice with xenograft of bladder carcinoma and mice with xenograft of 

osteosarcoma. Each of these groups were divided in two, where depending if the images were 

performed until 120 minutes or 240 minutes hours after the intravenous administration of 
99m

Tc-

Pertechnetate or 
99m

Tc-PEI-MP. 

 

The images obtained with the 99mTc-Pertechnetate are controls for the 

biodistribution of the radiopharmaceutical under evaluation, since it can be a 

radiochemical impurity produced during the normal process of labelling of PEI-

MP kit with 99mTc-Pertechnetate. The normal 99mTc-Pertechnetate biodistribution 

show a high uptake in thyroid, stomach, and choroid plexus. In turn, if there was 

the presence of reduced/hydrolysed technetium species, as radiochemical 

impurities, is expected to see a high uptake in the liver and spleen. In fact, the 

biodistribution verified in the images will be a mirror of the radiochemical purity 

of the complex 99mTc-PEI-MP, which makes very important the quality control of 

the radiochemical purity after radiolabelling. 

After the administration of 18-37 MBq (0.5-1.0 mCi) of 99mTc-Pertechnetate or 

99mTc-PEI-MP in a small volume (0.1 ml) into the tail vein of the mice, a dynamic 

acquisition was carried out through the gamma-camera controlled by the Genie 

Acq computer to a workstation Xeleris for further visualization and data 

processing. The dynamic imaging sequence besides the distribution of the 

radiopharmaceuticals in the bloodstream of mice, gave us also information 

about the quality of the injection. The dynamic images acquisition was followed 

by the acquisition of static images until the predefined times in order to achieve 

information about the biodistribution of the radiopharmaceuticals. For that, the 

static images were performed every 30 minutes until 120 or 240 minutes, after 
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the administration of the radiopharmaceuticals. The image parameters used for 

the acquisition of dynamic and static images are summarised in table 26. 

 

Table 26.Gamma-camera image parameters for dynamic and static acquisition after 

the administration of 99mTc-Pertechnetate or 99mTc-PEI-MP. 

Image parameters Dynamic acquisition Static acquisition 

Number of images 60 images 8 images 

Time per image 10 seconds 2 minutes 

Total time for imaging 10 min 

Images at 30, 60, 90, 120, 

150, 180, 210 and 240 

minutes after administration 

Matrix 128x128 pixels 256x256 pixels 

Zoom 2 2 

Photopeak 140 keV 140 keV 

Energy window, centred 

at photopeak 
20% 20% 

Legend: Gamma-camera image parameters for the acquisition of dynamic and static images 

after the administration of 
99m

Tc-Pertechnetate or 
99m

Tc-PEI-MP, namely the number and time 

per image, the matrix, the zoom given to the image (considering the small size of mice), the 

photopeak that corresponds to the energy of the gamma rays emitted by 
99m

Tc, and the energy 

acceptance window that must be centred in the photopeak, accepting only gamma rays with 

energies ranging from 130 to 150 keV. 

 

After the end of the last image, the mice were euthanized to the achievement of 

ex-vivo studies.  

After mice with xenograft of bladder carcinoma or osteosarcoma, in which was 

administered 99mTc-PEI-MP were sacrificed, the tumour and a muscle of the 

thigh of the hind paw were collected and imaged. The tumour and muscle were 

positioned in an absorbent pad over the gamma-camera detector and in the 

centre of the collimator. The tumour was positioned in the right lower quadrant, 

and the muscle was positioned in the left higher quadrant. The image of the 

tumour and the muscle was acquired during 5 minutes, for a matrix of 256x256 

pixels, zoom of 2, a photopeak of 140 keV and an energy window of 20%, 

centred in the photopeak.  
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6.2.2.2. Imaging with 188Re-Perrhenate and 188Re-PEI-MP 

Images were also performed after the administration of 188Re-Perrhenate or 

188Re-PEI-MP. As described in the topic 6.2.2.1., these images were also 

acquired in control mice, and in mice with xenograft of bladder carcinoma and 

osteosarcoma. Equally, for each group, and taking into account the type of mice 

and the radiopharmaceutical administered, images were acquired up to 120 

minutes and up to 240 minutes. The organization of these groups is 

summarized in the table 27.  

The images obtained with the 188Re-Perrhenate are controls for the 

biodistribution of the radiopharmaceutical under evaluation, since it can be a 

radiochemical impurity produced during the normal process of labelling of PEI-

MP kit with 188Re-Perrhenate. As with the 99mTc-Pertechnetate, the normal 

188Re-Perrhenate biodistribution show a high uptake in thyroid, stomach, and 

choroid plexus. In turn, if there was the presence of reduced/hydrolysed 

rhenium species, as radiochemical impurities is expected to see a high uptake 

in the liver and spleen. In fact, the biodistribution verified in the images will be a 

mirror of the radiochemical purity of the complex 188Re-PEI-MP. 

 

Table 27.Number and organization of mice by type, administered radiopharmaceutical 

(188Re-Perrhenate or 188Re-PEI-MP) and time of the final images.  

Mice Images  Radiopharmaceuticals 
188Re-Perrhenate 188Re-PEI-MP 

Normal Up to 120 min 4 mice 4 mice 

Up to 240 min 4 mice 4 mice 

Xenograft of bladder 

carcinoma 

Up to 120 min 4 mice 4 mice 

Up to 240 min 4 mice 4 mice 

Xenograft of 

osteosarcoma 

Up to 120 min 4 mice 4 mice 

Up to 240 min 4 mice 4 mice 

Legend: Number of mice used for imaging studies, according to the radiopharmaceutical 

administered (
188

Re-Perrhenate or 
188

Re-PEI-MP) and the type of animal model, that is, normal mice, 

mice with xenograft of bladder carcinoma and mice with xenograft of osteosarcoma. Each of these 

groups were divided in two, where depending if the images were performed until 120 minutes or 240 

minutes after the intravenous administration of 
188

Re-Perrhenate or 
188

Re-PEI-MP. 

 

After the administration of 18-37 MBq (0.5-1 mCi) of 188Re-Perrhenate or 188Re-

PEI-MP in a small volume (0.1 ml) into the tail vein of the mice, a dynamic and 
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static acquisition was carried out through the gamma-camera controlled by the 

Genie Acq computer to a workstation Xeleris for further visualization and data 

processing. The dynamic and static imaging had the same proposes as 

described in the topic 6.2.2.1. Image parameters were similar to those chosen 

for the acquisition of images after the administration of 99mTc-Pertechnetate or 

99mTc-PEI-MP, with only changes in the parameters dependent of the physical 

characteristics of radionuclide used. The image parameters chosen for the 

acquisition of dynamic and static images after the administration of 188Re-

Perrhenate or 188Re-PEI-MP are summarised in table 28. 

 

Table 28.Gamma-camera image parameters for dynamic and static acquisition after 

the administration of 188Re-Perrhenate or 188Re-PEI-MP. 

Image parameters Dynamic acquisition Static acquisition 

Number of images 20 images 8 images 

Time per image 30 seconds 2 minutes 

Total time for imaging 10 min 

Images at 30, 60, 90, 120, 

150, 180, 210 and 240 

minutes after administration 

Matrix 128x128 pixels 256x256 pixels 

Zoom 2 2 

Photopeak 159 keV (I-123 photopeak) 159 keV (I-123 photopeak) 

Energy window, centred 

at photopeak 
20% 20% 

Legend: Gamma-camera image parameters for the acquisition of dynamic and static images 

after the administration of 
188

Re-Perrhenate or 
188

Re-PEI-MP, namely the number and time per 

image, the matrix, the zoom given to the image (considering the small size of mice), the 

photopeak that should correspond to the energy of the gamma rays emitted by 
188

Re, that is 155 

keV. Considering the options for photopeak selection in the computer acquisition, and that the 

energy of gamma rays emitted by 
188

Re during its decay is 155 keV, the choice of iodine-123 

photopeak (159 keV) seems to be the most suitable. Also the energy window selected will allow 

accepting gamma-rays with energies ranging between 149-169 keV, being contained in this 

interval the gamma-rays emitted by 
188

Re. 

 

Tumour and muscle images were also acquired for mice with xenograft of 

bladder carcinoma or osteosarcoma, in which was administered 188Re-PEI-MP, 

in the same way as described in topic 6.2.2.1. These images were only 

performed after the sacrifice of mice, and after the excision of the tumour and 

muscle of the thigh of the hind paw. The tumour and the muscle were 
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positioned in an absorbent pad over the gamma-camera detector and in the 

centre of the collimator. The tumour was positioned in the right lower quadrant, 

and the muscle was positioned in the left higher quadrant of the absorbent pad. 

The image of the tumour and the muscle was acquired during 5 minutes, for a 

matrix of 256x256 pixels, zoom of 2, a photopeak of 159 keV and an energy 

window of 20%, centred in the photopeak. 

 

6.2.3. Ex-vivo biodistribution studies  

For the evaluation of the biodistribution and biokinetics of 99mTc-PEI-MP and 

188Re-PEI-MP, in vivo imaging may not be enough to respond to all questions. 

These limitations result from the image characteristics once they are projections 

and the organs can be superimposed each other which makes the ROI’s 

drawing difficult. Also, the images resolution may not be adequate to obtain 

quantitative data, having into account the animal size Thereby, it was necessary 

to sacrifice the animals to collect the organs, tissues and tumours to quantify 

the percentage of 99mTc-PEI-MP or 188Re-PEI-MP administered activity per 

gram of organ/tissue/fluid. The ex-vivo studies performed in mice after the 

administration of 99mTc-Pertechnetate or 188Re-Perrhenate are controls of 99mTc-

PEI-MP and 188Re-PEI-MP, respectively. 

 

6.2.3.1. Ex-vivo biodistribution studies with 99mTc-Pertechnetate and 99mTc-

PEI-MP  

As referred before, each group of mice (controls, xenograft of bladder 

carcinoma and xenograft of osteosarcoma) who were administered 99mTc-

Pertechnetate or 99mTc-PEI-MP, was split in two, one in which the images were 

acquired up to 120 minutes and another in which images were acquired up to 

240 minutes. After last image acquisition, the mice were euthanized by cervical 

dislocation in accordance with the legislation. Subsequently several organs 

were collected (heart, lung, thyroid, gallbladder, liver, spleen, stomach, small 

intestine, large intestine, genital, urinary bladder, brain and cerebellum) as well 
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as some tissues (cartilage, muscle, bone, blood) and fluids (urine and bile). The 

preparation of mice for organ and tissue collection is presented in fig. 40. 

 

Figure 40.Euthanized mouse ready for collection of organs and tissues. 

 

Each organ, tissue or fluid was weighted (in grams) and placed in a 

radioimmunoassay (RIA) tube. Each tube was counted in a well-type gamma 

counter (Gamma-C 12 DPC, Berthold, Germany) to obtain counts per minute 

(CPM). For xenograft of bladder carcinoma or osteosarcoma, also the tumour 

was collected, weighted and counted in a well counter to obtain CPM. With the 

values of CPM obtained, and converted into activity, we calculated the 

percentage of activity (99mTc-Pertechnetate or 99mTc-PEI-MP) administered per 

gram of organ/tissue/fluid (% injected activity/gram), according to equation 8.  
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Equation 8.Percentage of injected activity per gram of organ/tissue/fluid. It’s 

determined by dividing the ratio of counts per minute and mass of each organ/tissue 

/fluid with the total administered activity.    

 

Beyond the calculation of the percentage of activity injected per gram of 

organ/tissue/fluid, it was also determined the values of the ratios 

tumour/muscle, tumour/bladder, tumour/liver, tumour/lung and tumour/bone, for 

all groups. The bladder cancer has its origin in the bladder wall and can invade 

surrounding organs even in an early stage [184]. In case of metastization the 

major target organs are the liver, the lungs and the bone. This dissemination 

justifies the choice of the organs to calculate the specific uptake and to 

determine the tumour ratios. These calculations allow to determine whether the 

tumour uptake of a administered radiopharmaceutical is higher or lower than 

those organs, which is important for nuclear medicine be able to distinguish the 

lesions, and consequently to make a clear diagnosis. If the uptake of the 

radiopharmaceutical by the tumour or its metastases is equal to the uptake of 

the other organs, it’s not possible to identify them, and therefore the diagnosis 

could be inconclusive or negative to metastases or tumour. 

 

6.2.3.2. Ex-vivo biodistribution studies with 188Re-Perrhenate and 188Re-PEI-

MP 

As referred before, for each group of mice (controls, xenograft of bladder 

carcinoma and xenograft of osteosarcoma) who were administered 188Re-

Perrhenate or 188Re-PEI-MP, was split in two, one in which the images were 

acquired up to 120 minutes and another in which images were acquired up to 

240 minutes. After last image acquisition, the mice were euthanized by cervical 

dislocation in accordance with the legislation. Subsequently several organs, 

some tissues, and fluids were collected following the procedures referred in the 

topic 6.2.3.1. Each organ, tissue or fluid was weighted (in grams) and placed in 

a radioimmunoassay (RIA) tube. Each tube was counted in a well-type gamma 
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counter (Gamma-C 12 DPC, Berthold, Germany) to obtain CPM. For xenograft 

of bladder carcinoma or osteosarcoma, also the tumour was collected, weighted 

and counted in a well counter to obtain CPM. With the values of CPM obtained, 

and converted into activity, it was calculated the percentage of 

radiopharmaceutical 188Re-Perrhenate or 188Re-PEI-MP administered per gram 

of organ/tissue/fluid (% injected activity/gram), according to equation 8 referred 

before.  

Beyond the calculation of the percentage of activity injected per gram of 

organ/tissue/fluid, it was also determined the values of the ratios 

tumour/muscle, tumour/bladder, tumour/liver, tumour/lung and tumour/bone for 

all groups. Considering the evolution of a bladder carcinoma, explained in 

before, to determine whether the tumour uptake of an administered 

radiopharmaceutical is higher than these organs, is crucial to determine these 

tumour ratios, so that when performing radionuclide therapy the main target is 

the tumour and its metastasis, and the non-target organs are spared of the 

effects of high doses of ionizing radiation. If the uptake of the 

radiopharmaceutical by the tumour or its metastases is equal or lower to the 

uptake of the other organs, it’s not possible to perform the therapy, since it 

would be the non-target organs the most affected by ionizing radiation and the 

therapy would not be effective, and possibly it would result in serious side 

effects. 

 

6.2.4. Statistical analysis  

Results were analysed using the software IBM SPSS (IBM Corporation, 

Armonk, New York, EUA), version 20, at a significance level of 5% (p < 0.05). 

The comparison of the ratios tumour/muscle, tumour/bladder, tumour/liver, 

tumour/lung and tumour/bone, for mice with xenograft of bladder carcinoma and 

xenograft of osteosarcoma, both injected with 99mTc-PEI-MP or 188Re-PEI-MP, 

were made according to the t Student test for a mean, comparing the sample 

values to 1, that represents the equality of uptake for both tissues, and with the 

Bonferroni correction for multiple comparisons. 
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6.3. Results 

6.3.1. Animal tumour models and nuclear medicine imaging 

As animal tumour model it was chosen balb/c nu/nu mice with xenograft of 

bladder carcinoma and xenograft of osteosarcoma. To obtain the xenograft of 

bladder cancer and osteosarcoma it was injected subcutaneously in the right 

axilla dug of blab/c nu/nu mice a suspension of 5 million cells. The volume of 

tumours was controlled by calliper measurement and determined following the 

equation 7. For the development of xenografts of bladder carcinoma and 

osteosarcoma it was needed 4 and 3 weeks, respectively. Studies in vivo and 

ex-vivo using these animal models started when the tumour volumes reached 

500-1000 mm3.  

Images were performed after the development of the xenograft. For image 

acquisition, mice were anesthetized and placed in prone on top and in the 

middle of the gamma-camera detector. Images started immediately after the 

administration, in the tail vein of the mice, of 99mTc-Pertechnetate, 99mTc-PEI-

MP, 188Re-Perrhenate or 188Re-PEI-MP, with activities ranging 18-37 MBq (0.5-

1 mCi). Immediately after the administration and during 10 minutes dynamic 

images were acquired and posterior static images were performed every 30 

minutes after the administration of the radiopharmaceutical until 120 or 240 

minutes. The mice were always sacrificed after the last image. 

As a control of these animal models, mice with no tumour, namely balb/c mice, 

were used. To these mice it was also performed images after the administration 

of 99mTc-Pertechnetate, 99mTc-PEI-MP, 188Re-Perrhenate or 188Re-PEI-MP, 

following the same procedures explained before. 

 

6.3.1.1. Imaging with 99mTc-Pertechnetate and 99mTc-PEI-MP 

By analysing the image, presented in fig.41, obtained after the intravenous 

administration of 99mTc-Pertechnetate in the tail vein of balb/c without any 

tumour (normal mice), it is possible to visualize a high uptake by the thyroid 

gland, stomach and bladder. This biodistribution is considered normal as 

explained before. The activity present in bladder is explained by the fact that 
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99mTc-Pertechnetate is excreted by the renal system and therefore eliminated 

through urine. 

 

 

 

By analysing the images obtained after the intravenous administration of 99mTc-

Pertechnetate in the tail of balb/c nu/nu mice with xenograft of bladder 

carcinoma (fig. 42) and xenograft of osteosarcoma (fig.43), it was also possible 

to visualize a high uptake by the thyroid gland, stomach and bladder, 

corresponding to the same biodistribution verified in normal balb/c mice. The 

uptake of tumour, in both bladder carcinoma and osteosarcoma xenograft, is 

faintly visible and possible dependent on the blood flow.  

Figure 41.Images obtained after the administration of 99mTc-Pertechnetate in the 

dorsal vein of the tail of balb/c mouse. The first images are dynamic and obtained 

immediately after the administration of the radiopharmaceutical. After static images 

were acquired every 30 minutes after the administration until 240 minutes. 
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Figure 42.Images obtained after the administration of 99mTc-Pertechnetate in the 

dorsal vein of the tail of balb/c nu/nu mouse with a xenograft of bladder carcinoma. 

The first images are dynamic and obtained immediately after the administration of the 

radiopharmaceutical. After static images were acquired every 30 minutes after the 

administration until 240 minutes. 
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After obtaining the images of 99mTc-Pertechnetate in normal balb/c mice, and in 

mice with xenografts of bladder carcinoma and osteosarcoma, the same animal 

models were evaluated after administration of 99mTc-PEI-MP. By analysing the 

images obtained after the intravenous administration of 99mTc-PEI-MP in the tail 

of controls balb/c mice, presented in fig. 44, it is possible to visualize a high 

uptake in kidneys and bladder. This biodistribution may indicate that the 99mTc-

PEI-MP is mainly excreted through the renal system and therefore eliminated 

through urine. Also it’s visible a faint uptake by the lungs, demonstrating some 

retention on this organ. 

Figure 43.Images obtained after the administration of 99mTc-Pertechnetate in the 

dorsal vein of the tail of balb/c nu/nu mouse with a xenograft of osteosarcoma. The 

first images are dynamic and obtained immediately after the administration of the 

radiopharmaceutical. After static images were acquired every 30 minutes after the 

administration until 240 minutes. 
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By analysing the images obtained after the intravenous administration of 99mTc-

PEI-MP in the tail vein of balb/c nu/nu mice with a xenograft of bladder 

carcinoma (fig. 45) and xenograft of osteosarcoma (fig. 46), it is also possible to 

visualize a high uptake in kidneys and bladder. It is also possible to visualize a 

faint uptake by the lungs in both xenografts (bladder carcinoma and 

osteosarcoma), which seems to diminish over time. Moreover the tumour is 

small in both xenografts, and despite low resolution of the gamma camera, is 

possible to visualize a faint uptake of the 99mTc-PEI-MP by both type of tumours.   

The quantification of 99mTc-PEI-MP uptake by the tumour will be only possible 

with ex vivo studies. 

Figure 44.Images obtained after the administration of 99mTc-PEI-MP in the dorsal vein 

of the tail of balb/c mouse. The first images are dynamic and obtained immediately 

after the administration of the radiopharmaceutical. After static images were acquired 

every 30 minutes after the administration until 240 minutes. 
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Figure 45.Images obtained after the administration of 99mTc-PEI-MP in the dorsal vein 

of the tail of balb/c nu/nu mouse with a xenograft of bladder carcinoma. The first 

images are dynamic and obtained immediately after the administration of the 

radiopharmaceutical. After static images were acquired every 30 minutes after the 

administration until 240 minutes. 
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6.3.1.2. Imaging with 188Re-Perrhenate and 188Re-PEI-MP 

By analysing the images obtained after the intravenous administration of 188Re-

Perrhenate in the tail of balb/c mice, presented in fig. 47, it is possible to 

visualize a high uptake by the thyroid gland and stomach. This biodistribution is 

considered normal as explained before.  

Figure 46.Images obtained after the administration of 99mTc-PEI-MP in the dorsal vein 

of the tail of balb/c nu/nu mouse with a xenograft of osteosarcoma. The first images 

are dynamic and obtained immediately after the administration of the 

radiopharmaceutical. After static images were acquired every 30 minutes after the 

administration until 240 minutes. 
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By analysing the images obtained after the intravenous administration of 188Re-

Perrhenate in the tail vein of balb/c nu/nu mice with xenograft of bladder 

carcinoma (fig.48) and xenograft of osteosarcoma (fig 49), presented in fig.48 

and fig 49, it was is also possible to visualize a high uptake by the thyroid gland 

and stomach, corresponding to the same biodistribution verified in normal balb/c 

mice. The uptake of tumour is not visible in the mouse of the fig.48, and faintly 

visible on the mouse of the fig. 49, and possibly dependent on the blood flow. 

The fact that the photonic flow of gamma rays of 155 keV from 188Re is low, and 

in association with a low resolution of the gamma camera detector, considering 

the size of the animal and its organs, its normal that the resolution of the images 

with 188Re-Perrhenate or 188Re-PEI-MP will be lower comparing with the ones 

Figure 47.Images obtained after the administration of 188Re-Perrhenate in the dorsal 

vein of the tail of balb/c mouse. The first images are dynamic and obtained 

immediately after the administration of the radiopharmaceutical. After static images 

were acquired every 30 minutes after the administration until 240 minutes. 
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obtained with 99mTc-Pertechnetate or 99mTc-PEI-MP, considering the higher 

photonic flow of the 140 keV from 99mTc. 

 

 

 

 

 

 

 

 

 

 

Figure 48.Images obtained after the administration of 188Re-Perrhenate in the dorsal 

vein of the tail of balb/c nu/nu mouse with a xenograft of bladder carcinoma. The first 

images are dynamic and obtained immediately after the administration of the 

radiopharmaceutical. After static images were acquired every 30 minutes after the 

administration until 240 minutes. 
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After obtaining the images of 188Re-Perrhenate in normal balb/c mice, and in 

mice with xenografts of bladder carcinoma and osteosarcoma, the same animal 

models were evaluated after administration of 188Re-PEI-MP. By analysing the 

images obtained after the intravenous administration of 188Re-PEI-MP in the tail 

of controls balb/c mice, presented in fig. 50, it is possible to visualize a high 

uptake by the bladder. This biodistribution may also indicate that the 188Re-PEI-

MP is mainly excreted through the renal system and therefore eliminated 

through urine. Also it’s possible to visualize a faint uptake by lungs that seem to 

diminish over time, but also the uptake seems more intense than the one 

verified in images of mice where 99mTc-PEI-MP was administered. For a more 

reasonable and quantitative conclusions it should be consider the results 

obtained in ex-vivo studies. 

Figure 49.Images obtained after the administration of 188Re-Perrhenate in the dorsal 

vein of the tail of balb/c nu/nu mouse with a xenograft of osteosarcoma. The first 

images are dynamic and obtained immediately after the administration of the 

radiopharmaceutical. After static images were acquired every 30 minutes after the 

administration until 240 minutes. 
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By analysing the images obtained after the intravenous administration of 188Re-

PEI-MP in the tail of balb/c nu/nu mice with a xenograft of bladder carcinoma 

(fig. 51 ) and xenograft of osteosarcoma (fig. 52), it is also possible to visualize 

a high uptake by the bladder, as in the case of control balb/c mice were 188Re-

PEI-MP was administered. For both xenografts it’s possible to visualize the 

uptake of 188Re-PEI-MP by lungs, which seem to diminish over time. Moreover 

the tumour is small in both xenografts, and because the low resolution of the 

gamma camera, the tumours are almost not visible in the images.  

The quantification of 188Re-PEI-MP uptake by the tumour will be only possible 

with ex vivo studies.   

Figure 50.Images obtained after the administration of 188Re-PEI-MP in the dorsal vein 

of the tail of balb/c mouse. The first images are dynamic and obtained immediately 

after the administration of the radiopharmaceutical. After static images were acquired 

every 30 minutes after the administration until 240 minutes. 
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Figure 51.Images obtained after the administration of 188Re-PEI-MP in the dorsal vein 

of the tail of balb/c nu/nu mouse with a xenograft of bladder carcinoma. The first 

images are dynamic and obtained immediately after the administration of the 

radiopharmaceutical. After static images were acquired every 30 minutes after the 

administration until 240 minutes. 
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6.3.2. Biodistribution studies ex vivo 

As explained before the images were performed until 120 or 240 after the 

administration of 99mTc-Pertechnetate, 99mTc-PEI-MP, 188Re-Perrhenate or 

188Re-PEI-MP, and then normal mice, mice with xenograft of bladder cancer 

and xenograft of osteosarcoma were euthanized by cervical dislocation.  

Several organs (heart, lung, thyroid, gallbladder, liver, spleen, stomach, small 

intestine, large intestine, genital, urinary bladder, brain and cerebellum), tissues 

(cartilage, muscle, bone, blood), fluids (urine and bile) and tumour (if applicable) 

were collected and placed in RIA tubes for gamma counting and weighing to 

obtain the percentage of radiopharmaceutical administered per gram of 

Figure 52.Images obtained after the administration of 188Re-PEI-MP in the dorsal vein 

of the tail of balb/c nu/nu mouse with xenograft of osteosarcoma. The first images are 

dynamic and obtained immediately after the administration of the 

radiopharmaceutical. After static images were acquired every 30 minutes after the 

administration until 240 minutes. 
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organ/tissue/fluid. Also the ratios tumour/muscle, tumour/bladder, tumour/liver, 

tumour/lung and tumour/bone were determined for all groups of mice with 

xenografts. 

 

6.3.2.1. Ex-vivo biodistribution studies with 99mTc-Pertechnetate and 99mTc-

PEI-MP 

By analysing the fig. 53 that correspond to the normal mice sacrificed 120 and 

240 minutes after the administration of 99mTc-Pertechnetate, it’s possible to 

visualize a high uptake in the thyroid gland and stomach. This biodistribution is 

considered normal as explained before and supports the results observed in the 

images of the biodistribution in vivo of 99mTc-Pertechnetate in normal mice. 
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Figure 53.Biodistribution represented in percentage of activity per gram of 

organ/tissue/fluid, 120 and 240 minutes after the administration of 99mTc-Pertechnetate 

and determined ex-vivo in normal mice.  

 

The results that correspond to mice with xenograft of bladder cancer (fig. 54) 

and xenograft of osteosarcoma (fig. 55), sacrificed 120 and 240 minutes after 
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the administration of 99mTc-Pertechnetate, showed a high uptake in the thyroid 

gland and stomach, supporting the results obtained in the images of the 

biodistribution in vivo of 99mTc-Pertechnetate in mice with xenografts of bladder 

cancer and osteosarcoma. Also it’s possible to visualize a small uptake by the 

tumours, which is possibly related with the blood flow to the xenograft. This 

uptake by the tumours was also verified in the in vivo biodistribution images, 

however faintly visible, but now confirmed by the ex vivo studies.  
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Figure 54.Biodistribution represented in percentage of activity per gram of 

organ/tissue/fluid, 120 and 240 minutes after the administration of 99mTc-Pertechnetate 

and determined ex-vivo in mice with xenografts of bladder cancer. 
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Figure 55.Biodistribution represented in percentage of activity per gram of 

organ/tissue/fluid, 120 and 240 minutes after the administration of 99mTc-Pertechnetate 

and determined ex-vivo in mice with xenografts of osteosarcoma. 
 

 

Additionally, tumour/muscle, tumour/bladder, tumour/liver, tumour/lung and 

tumour/bone ratios were determined for both types of animal models, with 

xenograft of bladder cancer and with xenograft of osteosarcoma. Analysing the 

fig. 56, that represents the tumour ratios of mice with xenograft of bladder 

carcinoma injected with 99mTc-Pertechnetate, it is possible to visualize that 

tumour/muscle ratio is high comparing with the other tumour ratios, especially 

240 minutes after the administration of 99mTc-Pertcehnetate. For 120 and 240 

minutes after the administration, the tumour/muscle ratio was 1.670.72 and 

2.540.56, respectively, demonstrating that the uptake by the tumour is higher 

than of the muscle. However, comparing these values with 1, that represents 

the equality of the numerator and the denominator, the tumour/muscle ratio was 

statistically significantly higher than the unit (p=0.048) only at 240 minutes. 

Tumour/bladder (0.480.20 at 120 min; 0.690.45 at 240 min), tumour/liver 

(0.220.09 at 120 min; 0.250.26 at 240 min), tumour/lung (0.410.11 at 120 

min; 0.580.22 at 240 min) and tumour/bone (0.660.15 at 120 min; 1.020.30 
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at 240 min) ratios were always inferior or equal to one, demonstrating that the 

uptake by the tumour was inferior or equal comparing to these organs. However 

these tumour ratios were only statistically significant lower than one for 

tumour/liver at 120 minutes (p<0.001) and 240 minutes (p=0.040), and for 

tumour/lung at 120 minutes (p=0.008). Considering these results, metastasis 

from a bladder carcinoma in liver, lung and bones would appear as cold lesions 

in nuclear medicine images, after the administration of 99mTc-Pertechenetate. 

However, the probability of detecting metastases in the liver at 120 and 240 

minutes and in the lungs at 120 minutes after the administration of 99mTc-

Pertechnetate will be greater, considering that the values of these tumour ratios 

were significantly lower than one. 
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Figure 56.Tumour/muscle, tumour/bladder, tumour/liver, tumour/lung and tumour/bone 

ratios obtained for balb/c nu/nu mice with xenografts of bladder carcinoma after 

administration of 99mTc-Pertechnetate.  

 

Analysing the fig. 57, that represents the tumour ratios of mice with xenograft of 

osteosarcoma and injected with 99mTc-Pertechnetate, it’s possible to visualize 

that tumour/muscle ratio is high comparing with the other tumour ratios, 
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especially 240 minutes after the administration of 99mTc-Pertcehnetate. For 120 

and 240 minutes after the administration, the tumour/muscle ratio was 

2.931.12 and 3.510.55, respectively, demonstrating that the uptake by the 

tumour is higher than of the muscle. However comparing these values with 1, 

the tumour/muscle ratio was not statistically significantly higher than the unit. 

Tumour/bladder (0.720.38 at 120 min; 0.660.46 at 240 min) and tumour/lung 

(0.650.10 at 120 min; 0.660.47 at 240 min) ratios were always inferior to one, 

demonstrating that the uptake by the tumour was inferior comparing to these 

organs. However these tumour ratios were only statistically significant lower 

than one for tumour/lungs at 120 minutes (p=0.028). Tumour/liver ratio was 

higher than one at 120 minutes (1.230.65) and lower than one at 240 minutes 

(0.350.31), demonstrating that at 120 minutes the uptake by the tumour is 

higher than the liver and at 240 minutes occurs the inverse situation. However 

these differences are not statistically significant. Tumour/bone ratios at 120 

minutes (2.020.69) and 240 minutes (1.190.96) were always superior to one, 

even at 240 minutes were the tumour/bone ratio decreases. However these 

differences are not statistically significant. Considering these results, metastasis 

from an osteosarcoma in lung would appear as cold lesions, in liver would 

appear at 120 minutes as hot lesions and at 240 minutes as cold lesions, and in 

bone it would appear as hot lesions in nuclear medicine images, after the 

administration of 99mTc-Pertechenetate. However, the probability of detecting 

metastases in the lungs at 120 after the administration of 99mTc-Pertechnetate 

will be greater, considering that the value of this tumour ratio was significantly 

lower than one. 
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Figure 57.Tumour/muscle, tumour/bladder, tumour/liver, tumour/lung and tumour/bone 

ratios obtained for balb/c nu/nu mice with xenografts of osteosarcoma after 

administration of 99mTc-Pertechnetate.  

 

By analysing the fig. 58 that correspond to the normal mice sacrificed 120 and 

240 minutes after the administration of 99mTc-PEI-MP, it’s possible to visualize a 

high uptake by the bladder wall and kidneys. These results support those 

obtained in the images of the biodistribution in vivo of 99mTc-PEI-MP in normal 

mice. As explained before this may indicate that 99mTc-PEI-MP is mainly 

excreted through the renal system. However, considering that the bladder is 

carefully washed to remove any traces of urine, this uptake by the bladder wall 

demonstrates once again that 99mTc-PEI-MP as affinity for bladder cells, being 

this the primary reason to suspect that PEI-MP had some affinity to bladder 

carcinoma cells. The activity in the kidneys and bladder diminished at 240 

minutes. The high uptake by the gallbladder indicates that 99mTc-PEI-MP is also 

excreted through the hepatobiliary route. Being PEI-MP a polymer and a large 

molecule it is possible that 99mTc-PEI-MP is trapped by the Kupffer cells in the 

liver, that make part of the reticuloendothelial system. The activity in the liver 

and gallbladder diminished at 240 minutes. Also it is possible to verify some 
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uptake by the lungs, supporting the results obtained in the in vivo images of 

normal mice, however is diminished at 240 minutes. Considering the first 

propose of PEI-MP, that was for palliative therapy of bone metastases and also 

the results obtained in previous biodistribution studies [111], it’s not surprising 

the uptake at bones. Also it’s possible to visualize some retention of 99mTc-PEI-

MP in the spleen, demonstrating that some percentage of this complex is 

trapped by the reticuloendothelial system. The percentage of 99mTc-PEI-MP in 

blood is also high and seems to diminish over time. 
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Figure 58.Biodistribution represented in percentage of activity per gram of 

organ/tissue/fluid, 120 and 240 minutes after the administration of 99mTc-PEI-MP and 

determined ex-vivo in normal mice.  

 

By analysing the fig. 59 and fig. 60, which correspond to the mice with xenograft 

of bladder carcinoma and osteosarcoma, respectively, sacrificed 120 and 240 

minutes after the administration of 99mTc-PEI-MP, it is possible to visualize a 

high uptake by the bladder wall and kidneys. These results support those 

obtained in the in vivo images of mice with xenograft of bladder carcinoma and 

xenograft of osteosarcoma after the administration of 99mTc-PEI-MP, and are 

supported by the results of the biodistribution ex vivo for normal mice after the 
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administration of 99mTc-PEI-MP. As explained before this may indicate that 

99mTc-PEI-MP is mainly excreted through the renal system and that has an 

affinity for bladder cells. The high uptake by the gallbladder indicates once 

again that 99mTc-PEI-MP is also excreted through the hepatobiliary route. The 

activity in the liver and gallbladder diminished at 240 minutes. Also it is possible 

to verify some uptake by the lungs, supporting the results obtained in the in vivo 

images. In the same way as for ex vivo biodistribution studies in normal mice 

after the administration of 99mTc-PEI-MP, in fig.59 and fig.60 it is possible to 

visualize some uptake by spleen and bone, possibly explained by the reasons 

presented before. The percentage of 99mTc-PEI-MP in blood is also high and 

seems to diminish over time. 
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Figure 59.Biodistribution represented in percentage of activity per gram of 

organ/tissue/fluid, 120 and 240 minutes after the administration of 99mTc-PEI-MP and 

determined ex-vivo in mice with xenografts of bladder cancer. 
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Figure 60.Biodistribution represented in percentage of activity per gram of 

organ/tissue/fluid, 120 and 240 minutes after the administration of 99mTc-PEI-MP and 

determined ex-vivo in mice with xenografts of osteosarcoma. 

 

Analysing the fig. 61, that represents the tumour ratios of mice with xenograft of 

bladder carcinoma and injected with 99mTc-PEI-MP, it’s possible to visualize that 

tumour/muscle ratio is high comparing with the other tumour ratios. For 120 and 

240 minutes after the administration, the tumour/muscle ratio was 1.810.34 

and 1.880.38, respectively, demonstrating that the uptake by the tumour is 

higher than of the muscle. However comparing these values with 1, the 

tumour/muscle ratio was not statistically significantly higher than 1 at 120 or 240 

minutes. Tumour/bladder (0.230.27 at 120 min; 0.120.09 at 240 min), 

tumour/liver (0.500.38 at 120 min; 0.920.62 at 240 min), tumour/lung 

(0.290.16 at 120 min; 0.640.17 at 240 min) and tumour/bone (0.220.16 at 

120 min; 0.130.07 at 240 min) ratios were always inferior to 1, demonstrating 

that the uptake by the tumour was inferior comparing to these organs. However 

these tumour ratios were only statistically significant lower than 1 for 

tumour/bladder at 120 minutes (p=0.044) and 240 minutes (p<0.001), for 

tumour/lung at 120 minutes (p=0.012) and for tumour/bone at 120 minutes 
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(p=0.008) and 240 minutes (p<0.001). Considering these results, metastasis 

from a bladder carcinoma in liver, lung and bones would appear as cold lesions 

in nuclear medicine images, after the administration of 99mTc-PEI-MP. However, 

the probability of detecting metastases in the lungs at 120 and 240 minutes and 

in the bones at 120 and 240 minutes after the administration of 99mTc-PEI-MP 

will be greater, considering that the values of these tumour ratios were 

significantly lower than one. 
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Figure 61.Tumour/muscle, tumour/bladder, tumour/liver, tumour/lung and tumour/bone 

ratios obtained for balb/c nu/nu mice with xenografts of bladder carcinoma after 

administration of 99mTc-PEI-MP. 

 

Analysing the fig. 62, that represents the tumour ratios of mice with xenograft of 

osteosarcoma and injected with 99mTc-PEI-MP, it’s possible to visualize that 

tumour/muscle ratio is high comparing with the other tumour ratios. For 120 and 

240 minutes after the administration, the tumour/muscle ratio was 1.900.53 

and 3.721.60, respectively, demonstrating that the uptake by the tumour is 

higher than of the muscle. However comparing these values with 1, the 

tumour/muscle ratio was not statistically significantly higher than 1 at 120 or 240 

minutes. Tumour/bladder (0.700.47 at 120 min; 0.330.26 at 240 min), 
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tumour/liver (0.420.25 at 120 min; 0.210.11 at 240 min), tumour/lung 

(0.210.06 at 120 min; 0.240.10 at 240 min) and tumour/bone (0.250.16 at 

120 min; 0.170.08 at 240 min) ratios were always less than 1, demonstrating 

that the uptake by the tumour was inferior comparing to these organs. However 

these tumour ratios were only statistically significant lower than one for 

tumour/liver at 240 minutes (p=0.004), for tumour/lung at 120 minutes (p<0.001) 

and at 240 minutes (p=0.04), and for tumour/bone at 120 minutes (p=0.008) 

and 240 minutes (p<0.001). Considering these results, metastasis from an 

osteosarcoma in liver, lung and bones would appear as cold lesions in nuclear 

medicine images, after the administration of 99mTc-PEI-MP. However, the 

probability of detecting metastases in the liver at 240 minutes, in the lungs at 

120 and 240 minutes and in bones at 120 and 240 minutes after the 

administration of 99mTc-PEI-MP will be greater, considering that the values of 

these tumour ratios were significantly lower than 1. 
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Figure 62.Tumour/muscle, tumour/bladder, tumour/liver, tumour/lung and tumour/bone 

ratios obtained for balb/c nu/nu mice with xenografts of osteosarcoma after 

administration of 99mTc-PEI-MP. 
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6.3.2.2. Ex-vivo biodistribution studies with 188Re-Perrhenate and 188Re-PEI-

MP 

By analysing the fig. 63 that correspond to the normal mice sacrificed 120 and 

240 minutes after the administration of 188Re-Perrhenate, it is possible to 

visualize a high uptake by the thyroid gland and stomach. This biodistribution is 

considered normal as explained before and supports the results observed in the 

images of the biodistribution in vivo of 188Re-Perrhenate in normal mice. 
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Figure 63.Biodistribution represented in percentage of activity per gram of 

organ/tissue/fluid, 120 and 240 minutes after the administration of 188Re-Perrhenate 

and determined ex-vivo in normal mice.  

 

By analysing the fig. 64 and fig. 65, that correspond to mice with xenografts of 

bladder cancer and osteosarcoma, respectively, sacrificed 120 and 240 minutes 

after the administration of 188Re-Perrhenate, it’s also possible to visualize a high 

uptake by the thyroid gland and stomach, supporting the results obtained in the 

images of the biodistribution in vivo of 188Re-Perrhenate in mice with xenografts 

of bladder cancer and osteosarcoma, respectively. Also it is possible to 

visualize a small uptake by the tumours that can be related with the blood flow 

to the xenograft. This uptake by the tumours was verified in the in vivo 



 
 

205 
 

biodistribution images, however faintly visible, but now confirmed by the ex vivo 

studies.  
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Figure 64.Biodistribution represented in percentage of activity per gram of 

organ/tissue/fluid, 120 and 240 minutes after the administration of 188Re-Perrhenate 

and determined ex-vivo in mice with xenografts of bladder cancer. 
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Figure 65.Biodistribution represented in percentage of activity per gram of 

organ/tissue/fluid, 120 and 240 minutes after the administration of 188Re-Perrhenate 

and determined ex-vivo in mice with xenografts of osteosarcoma. 

 

In addition, tumour/muscle, tumour/bladder, tumour/liver, tumour/lung and 

tumour/bone ratios were determined for all groups, with xenografts. Analysing 

the fig. 66, that shows the tumour ratios of mice with xenograft of bladder 

carcinoma and injected with 188Re-Perrhenate, it’s possible to visualize that 

tumour/muscle ratio is high comparing with the other tumour ratios. For 120 and 

240 minutes after the administration, the tumour/muscle ratio was 2.920.55 

and 2.800.51, respectively, demonstrating that the uptake by the tumour is 

higher than the muscle. Comparing these values with 1, that represents the 

equality between the tumour and muscle uptakes, the tumour/muscle ratio was 

statistically significantly higher at 120 minutes (p=0.024) and at 240 minutes 

(p=0.024). Tumour/bladder (0.450.27 at 120 min; 0.380.20 at 240 min) and 

tumour/lung (0.750.08 at 120 min; 0.730.18 at 240 min) ratios were always 

inferior to 1, demonstrating that the uptake by the tumour was inferior 

comparing to these organs. However these tumour ratios were only statistically 

significant lower for tumour/bladder at 240 minutes (p=0.032) and for 
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tumour/lung at 120 minutes (p=0.036). Tumour/liver (1.090.26 at 120 min; 

1.110.19 at 240 min) and tumour/bone (1.900.53 at 120 min; 1.250.44 at 

240 min) ratios were always superior to 1, demonstrating that the uptake by the 

tumour was superior comparing to these organs, however these ratios were not 

statistically significant. Considering these results, metastasis from a bladder 

carcinoma in lungs would appear as cold lesions, and metastasis in liver and 

bones would appear as hot lesions in nuclear medicine images. Therefore, if the 

goal was the therapy of bladder cancer metastases with 188Re-Perrhenate, it 

wouldn’t be possible taking into account the low selectivity of this 

radiopharmaceutical for metastatic tissue derived from a bladder carcinoma. 
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Figure 66.Tumour/muscle, tumour/bladder, tumour/liver, tumour/lung and tumour/bone 

ratios obtained for balb/c nu/nu mice with xenografts of bladder carcinoma after 

administration of 188Re-Perrhenate. 

 

Analysing the fig. 67, that represents the tumour ratios of mice with xenograft of 

osteosarcoma and injected with 188Re-Perrhenate, it’s possible to visualize that 

tumour/muscle ratio is high comparing with the other tumour ratios, however the 

difference between tumour/muscle ratio and tumour/bone ratio is smaller than 
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the others. For 120 and 240 minutes after the administration, the tumour/muscle 

ratio was 2.711.19 and 0.940.46, respectively, demonstrating that the uptake 

by the tumour is higher than of the muscle at 120 minutes and inferior or equal 

at 240 minutes. However comparing these values with 1, these tumour ratios 

were not statistically significant. Tumour/bladder ratio (0.620.38 at 120 min; 

0.080.04 at 240 min) was always inferior to 1, demonstrating that the uptake 

by the tumour was inferior comparing with the bladder. However, 

tumour/bladder ratio was only statistically significant lower than unit at 240 

minutes (p<0.001). Tumour/liver (1.610.47 at 120 min; 0.370.10 at 240 min), 

tumour/lung (1.350.33 at 120 min; 0.330.08 at 240 min) and tumour/bone 

(2.290.93 at 120 min; 0.640.22 at 240 min) ratios, were always superior to 1 

at 120 minutes and inferior to one at 240 minutes. However these tumour ratios 

were only statistically significant lower for tumour/liver ratio at 240 minutes 

(p=0.004) and for tumour/lung ratio at 240 minutes (p<0.001). Considering 

these results, metastasis from an osteosarcoma in the liver, lung or bone at 120 

minutes would appear as hot lesions and at 240 minutes would appear as cold 

lesions, in nuclear medicine images, after the administration of 188Re-

Perrhenate. Therefore, if the goal was the therapy of osteosarcoma metastases 

with 188Re-Perrhenate, it wouldn’t be possible taking into consideration the low 

selectivity of this radiopharmaceutical for metastatic tissue derived from a 

osteosarcoma. 
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Figure 67.Tumour/muscle, tumour/bladder, tumour/liver, tumour/lung and tumour/bone 

ratios obtained for balb/c nu/nu mice with xenografts of osteosarcoma after 

administration of 188Re-Perrhenate. 

 

By analysing the fig. 68 that corresponds to the normal mice sacrificed 120 and 

240 minutes after the administration of 188Re-PEI-MP, it is possible to visualize 

a high uptake by the bladder wall and some uptake by the kidneys. These 

results support those obtained in the images of the biodistribution in vivo of 

188Re-PEI-MP in normal mice. As explained before this may indicate that 188Re-

PEI-MP is mainly excreted through the renal system. As explained before, the 

hydrophilicity of 188Re-PEI-MP was not tested, however considering that 99mTc-

PEI-MP is similar to 188Re-PEI-MP it is expected that this complex is also 

hydrophilic and water soluble and the excretion should occur through the renal 

system. Considering that the bladder is carefully washed to remove any traces 

of urine, this uptake by the bladder wall demonstrates that 188Re-PEI-MP as 

affinity for bladder cells, being this the primary reason to suspect that PEI-MP 

had some affinity to bladder carcinoma cells. Also it is possible to verify a high 

uptake by the lungs, supporting the results obtained in the in vivo images of 

normal mice. This could be explained by the fact that PEI-MP is a large 
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molecule, being trapped in the lung capillaries. Also the activity present at the 

liver and gallbladder, even being small, demonstrates that this polymer is also 

excreted through the hepatobiliary system. Being PEI-MP a polymer and a large 

molecule it is possible that 188Re-PEI-MP is trapped by the Kupffer cells in the 

liver, that make part of the reticuloendothelial system. Considering the first 

propose of PEI-MP, that was for palliative therapy of bone metastases and also 

de results obtained in previous biodistribution studies [111], it’s not surprising 

the uptake at bones. Moreover it is possible to visualize some retention of 

188Re-PEI-MP in the spleen, demonstrating that part of this complex is trapped 

by the reticuloendothelial system. The percentage of 188Re-PEI-MP in blood is 

also high and seems to diminish over time. 
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Figure 68.Biodistribution represented in percentage of activity per gram of 

organ/tissue/fluid, 120 and 240 minutes after the administration of 188Re-PEI-MP and 

determined ex-vivo in normal mice. 

 

By analysing the fig. 69 and fig. 70, which correspond to the mice with xenograft 

of bladder carcinoma and xenograft of osteosarcoma, respectively, sacrificed 

120 and 240 minutes after the administration of 188Re-PEI-MP, it is possible to 

visualize a high uptake by the bladder wall and kidneys. These results support 
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those obtained in the in vivo images of mice with xenografts of bladder 

carcinoma or osteosarcoma after the administration of 188Re-PEI-MP, and are 

similar to the results of the biodistribution ex vivo in normal mice after the 

administration of 188Re-PEI-MP. As explained before this may indicate that 

188Re-PEI-MP is mainly excreted through the renal system and that has an 

affinity for bladder cells. The uptake by the liver and gallbladder indicates, once 

again, that 188Re-PEI-MP is also excreted through the hepatobiliary system, 

being possibly explained by the reasons discussed before. The activity in the 

liver diminished at 240 minutes. Also it is possible to verify some uptake by the 

lungs, supporting the results obtained in the in vivo images, and similar to the 

results of the ex vivo biodistribution in controls, being possibly explained by the 

reasons discussed before. In the same way as for ex vivo biodistribution studies 

in control mice after the administration of 188Re-PEI-MP, it is possible to 

visualize some uptake by spleen and bone, possibly explained by the reasons 

discussed before. The percentage of 188Re-PEI-MP in blood is also high and 

seems to decrease over time. 
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Figure 69.Biodistribution represented in percentage of activity per gram of 

organ/tissue/fluid, 120 and 240 minutes after the administration of 188Re-PEI-MP and 

determined ex-vivo in mice with xenografts of bladder cancer. 
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Figure 70.Biodistribution represented in percentage of activity per gram of 

organ/tissue/fluid, 120 and 240 minutes after the administration of 188Re-PEI-MP and 

determined ex-vivo in mice with xenografts of osteosarcoma. 

 

Analysing the fig. 71, that represents the tumour ratios of mice with xenograft of 

bladder carcinoma and injected with 188Re-PEI-MP, it is possible to visualize 

that tumour/muscle ratio is high comparing with the other tumour ratios. For 120 

and 240 minutes after the administration, the tumour/muscle ratio was 

1.790.71 and 1.850.36, respectively, demonstrating that the uptake by the 

tumour is higher than the muscle. However comparing these values with 1, the 

tumour/muscle ratio was not statistically significantly higher at 120 or 240 

minutes. Tumour/bladder (0.290.18 at 120 min; 0.170.06 at 240 min), 

tumour/liver (0.250.06 at 120 min; 0.240.03 at 240 min), tumour/lung 

(0.060.04 at 120 min; 0.090.15 at 240 min) and tumour/bone (0.700.21 at 

120 min; 0.750.10 at 240 min) ratios were always inferior to 1, demonstrating 

that the uptake by the tumour was inferior comparing to these organs. However 

these tumour ratios were only statistically significant lower for tumour/bladder at 

240 minutes (p<0.001), for tumour/liver at 120 minutes (p<0.001) and at 240 

minutes (p<0.001), for tumour/lung at 120 minutes (p=0.004) and at 240 
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minutes (p=0.004). Considering these results, metastasis from a bladder 

carcinoma in liver, lung and bones would appear as cold lesions in nuclear 

medicine images, after the administration of 188Re-PEI-MP. Therefore, the 

therapy of bladder cancer metastases with 188Re-PEI-MP it wouldn’t be 

recommended, since the irradiation of non-target tissues such as the liver, the 

lungs and bones would be higher than desirable, and can mean significant side 

effects, if this radiopharmaceutical was used. Also the uptake by these 

metastases would be too low so that the therapy with this radiopharmaceutical 

could be effective. 
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Figure 71.Tumour/muscle, tumour/bladder, tumour/liver, tumour/lung and tumour/bone 

ratios obtained for balb/c nu/nu mice with xenografts of bladder carcinoma after 

administration of 188Re-PEI-MP. 

 

Analysing the fig. 72, that represents the tumour ratios of mice with xenograft of 

osteosarcoma and injected with 188Re-PEI-MP, it is possible to visualize that 

tumour/muscle ratio is high comparing with the other tumour ratios. For 120 and 

240 minutes after the administration, the tumour/muscle ratio was 1.580.45 

and 1.640.35, respectively, demonstrating that the uptake by the tumour is 
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higher than the muscle. However comparing these values with 1, the 

tumour/muscle ratio was not statistically significantly higher at 120 or 240 

minutes. Tumour/bladder (0.140.08 at 120 min; 0.110.02 at 240 min), 

tumour/liver (0.320.15 at 120 min; 0.560.13 at 240 min), tumour/lung 

(0.250.09 at 120 min; 0.420.15 at 240 min) ratios were always inferior to 1, 

demonstrating that the uptake by the tumour was inferior comparing to these 

organs. However these tumour ratios were only statistically significant lower 

than one for tumour/bladder at 240 minutes (p<0.001), for tumour/liver at 240 

minutes (p=0.028) and for tumour/lung at 240 minutes (p=0.016). Tumour/bone 

ratio (1.020.30 at 120 min; 0.600.17 at 240 min), was almost equal to one 

at 120 minutes and inferior at 240 minutes. However comparing these 

values with 1, these tumour ratios were not statistically significant. Considering 

these results, metastasis from an osteosarcoma in liver and lungs would appear 

as cold lesions, and in bones wouldn’t be visible at 120 minutes and would 

appear as cold lesions at 240 minutes in nuclear medicine images, after the 

administration of 188Re-PEI-MP. Therefore, if the goal was the therapy of 

osteosarcoma metastases with 188Re-PEI-MP, it wouldn’t be recommended 

because the irradiation of non-target organs like the liver, the lungs and bones 

would be higher than desirable, with significant side effects from the use of this 

radiopharmaceutical. Furthermore, the uptake by these metastases would be 

too low, and the treatment with this radiopharmaceutical wouldn’t be effective. 
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Figure 72.Tumour/muscle, tumour/bladder, tumour/liver, tumour/lung and tumour/bone 

ratios obtained for balb/c nu/nu mice with xenografts of osteosarcoma after 

administration of 188Re-PEI-MP. 

 

 

6.4. Section discussion 

As mentioned before, since in vitro studies are conducted in a controlled 

environment, and knowing that a tumour is not only a set of tumour cells but a 

complex aggregate of tumour cells, supporting cells, nerves and vascular and 

lymphatic vessels, the in vitro results may not correspond to those obtained in a 

living organism. Therefore, it was imperative to conduct in vivo studies to 

analyse the potential of PEI-MP radiolabelled with 99mTc for early diagnosis and 

with 188Re for therapy of bladder cancer, and to sustain the results obtained in 

vitro. The main purposes were to verify if the tumour cell uptake and retention of 

the referred complexes was maintained, to understand the biodistribution and 

biokinetics of these complexes in vivo, and identify the target organs, the routes 

of metabolism and excretion of 99mTc-PEI-MP and 188Re-PEI-MP, by nuclear 

medicine imaging in a first approach and, after using animals for determination 

of the biodistribution for each organ. It was also an objective to compare the 
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potential of the referred complexes in osteosarcoma animal models. For the 

fulfil of all procedures involving animals, first it was obtained the approval by the 

Ethics Committee for Health of the Faculty of Medicine of the University of 

Coimbra and all the studies were performed according to their legislation.  

The first step for carrying the in vivo and ex vivo studies was to choice a 

suitable animal tumour model. The animal tumour models chosen were the 

immunodeficient mice balb/c nu/nu with subcutaneous xenografts of bladder 

carcinoma or osteosarcoma. The balb/c nu/nu mice have genetic immune 

deficiencies, this is, has one or more mutations that minimize or prevent the 

rejection of the grafted tissues from other species [318]. These models have 

several advantages, namely, they are cost effective, provide a direct 

assessment of efficacy against a human cancer through calliper measurement 

of tumour size, and the tumour is accessible allowing the harvesting of tumour 

tissue [328-330]. The xenografts of osteosarcoma and bladder carcinoma 

developed well in 3 and 4 weeks, respectively, after the subcutaneous injection 

of a suspension of 5 million cells in the right axilla dug of the mice. The place 

chosen for the development of the xenografts demonstrated to be the best 

choice, given the fact that is contra lateral to the heart, is away from the liver, 

bladder and kidneys, avoiding the overlapping in the nuclear medicine images, 

once those organs can also be target of the administered radiopharmaceuticals. 

Also is a good area of expansion, and has a good vascularisation, which can 

explain the fast development of the xenografts, and is an area that allows a 

quick and easy excision of the tumour. Therefore for the planed experiments the 

animal tumour models chosen served its purpose. However it is important not to 

forget that human cells are placed in a murine environment, creating 

interactions that may not faithfully reflect the human disease process (e.g., 

differences in the local cell environment, cytokine, chemokine, and growth factor 

incompatibility, differences in immunologic state, etc.) [318]. Also, since for the 

development of these tumour models, immunocompromised animals are 

needed, and knowing that these animals are highly susceptible to viral, 

bacterial, and fungal infections, and that there are agents that can change the 

outcome and the reproducibility of the experiments, the animals must be 
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maintained in specific pathogen-free (SPF) environments, which increases the 

research costs [318].  

Studies in vivo and ex-vivo using balb/c nu/nu mice with xenograft of bladder 

carcinoma and xenograft of osteosarcoma started when the tumour volumes 

reached 500-1000 mm3, considered as sufficient for nuclear medicine imaging, 

taking into account the size of the mice. Also it is the maximum volume which 

will allow the least discomfort possible for the mice. 

For nuclear medicine images it is important to maintain the mice immobilized, 

because if they move during the acquisition images, makes impossible the 

image analysis. The best way to immobilize a mouse is to anesthetize him. The 

anaesthesia was performed after the subcutaneous administration in the back 

of the mouse of a solution of ketamine 77% and chlorpromazine 23%. Ketamine 

is a rapid-acting general anaesthetic producing an anaesthetic stated 

characterized by profound analgesia, normal pharyngeal-laryngeal reflexes, 

normal or slightly enhanced skeletal muscular tone, cardiovascular and 

respiratory stimulation, and occasionally a transient and minimal respiratory 

depression. Has a wide margin of safety and short period of action, allowing 

several administrations to maintain the anaesthetic state. The chlorpromazine is 

a dopamine antagonist, possessing anti-cholinergic properties that cause 

sedation [337]. This solution demonstrated to be effective in producing an 

anaesthetic state without significant side effects to the mice. One of the side 

effects of the anaesthesia is the decrease of body temperature, therefore during 

the anaesthetic state, it was controlled [337]. For image acquisition, mice were 

placed in prone on top of the gamma-camera collimator, with the superior and 

inferior members kept away from the trunk. This position is appropriate so that 

the organs are closer to the detector without interference of the spine, and 

allows the tumour stay well-defined in the images. 

Images started after the intravenous administration in the tail vein of the 

radiopharmaceuticals 99mTc-Pertechnetate, 99mTc-PEI-MP, 188Re-Perrhenate or 

188Re-PEI-MP in mice without and with xenograft of bladder carcinoma and 

osteosarcoma. The dynamic images proved to be useful to confirm the injection 

and the distribution of the radiopharmaceuticals in the bloodstream of mice. The 
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static images obtained each 30 minutes following the administration of the 

radiopharmaceuticals proved to be adequate to obtain images with a better 

resolution and to follow the biodistribution along the time. 

The images obtained with the 99mTc-Pertechnetate and 188Re-Perrhenate are 

controls and show the normal biodistribution of these radiopharmaceuticals, but 

they can also be radiochemical impurities produced during the labelling process 

of PEI-MP kit with 99mTc-Pertechnetate or with 188Re-Perrhenate. In these 

images is normal to obtain a high uptake in the thyroid, stomach, and choroid 

plexus. On another hand, if the radiochemical impurities exist the 

reduced/hydrolyzed technetium/rhenium species, it was expected to obtain a 

high uptake in the liver and the spleen. The biodistribution verified in the images 

will be a mirror of the radiochemical purity of the 99mTc-PEI-MP and 188Re-PEI-

MP, therefore is very important to control the radiochemical purity after 

radiolabelling. Images obtained after the administration of 99mTc-Pertechnetate 

and 188Re-Perrhenate in normal mice, in mice with xenograft of bladder 

carcinoma and in mice with xenograft of osteosarcoma, demonstrated the 

expected biodistribution mentioned above. In the mice with xenografts of 

bladder carcinoma and osteosarcoma, it was verified a small uptake by the 

tumour. Since the images had low resolution, the uptake quantification was 

difficult, whereby it was important to obtain more quantitative data with the ex 

vivo studies. 

After obtaining the images of the control mice without tumour and with 

xenografts of bladder carcinoma and osteosarcoma with 99mTc-Pertechnetate or 

188Re-Perrhenate, 99mTc-PEI-MP or 188Re-PEI-MP were intravenously injected in 

the same animal models. By analysing the images obtained in these animal 

models mice, it was possible to visualize a high uptake in kidneys and bladder, 

indicating that these radiopharmaceuticals are excreted mainly through the 

renal system. In fact, taking in consideration the results of the partition 

coefficient demonstrated in Chapter V, clearly demonstrating that 99mTc-PEI-MP 

is a hydrophilic molecule, and therefore water soluble, it’s not surprising that the 

main way of excretion is through the renal system and consequently eliminated 

through urine. This is an advantage because there are no retention in liver and 

fat tissue, and the faster kidney excretion allows for a higher target/background 
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ratio [273]. The hydrophilicity of the 188Re-PEI-MP was not tested, however 

considering that 99mTc-PEI-MP is similar to 188Re-PEI-MP it is expected that this 

complex is also hydrophilic and water soluble, what seems to be proved by the 

obtained images. 

Also it was found a faint uptake by the lungs in the in vivo images that seem to 

decrease over time, especially after the intravenous administration of 188Re-PEI-

MP. This could be explained because the PEI-MP is a large molecule, being 

trapped in the lung capillaries, and as the 188Re has a number of atomic mass 

bigger than the 99mTc, the complex 188Re-PEI-MP may be larger than 99mTc-PEI-

MP [61]. 

In mice with xenografts of bladder carcinoma and osteosarcoma was verified a 

small uptake of 99mTc-PEI-MP or 188Re-PEI-MP by the tumour. Also the images 

had low resolution to be possible to quantify the uptake, therefore it was 

important to obtain more quantitative data with the ex vivo studies. 

The evaluation of the biodistribution and biokinetics of 99mTc-PEI-MP and 188Re-

PEI-MP by in vivo imaging may not be enough to respond to all questions, given 

the low resolution of the conventional gamma-camera. Therefore, it was 

necessary to obtain the percentage of uptake of the radiopharmaceutical 

administered for each organ and tissue, as well as the uptake ratios of between 

the tumour and some organs, especially those where it is expected that have 

metastases from the tumours. This information was only gathered after the 

sacrifice of mice and the collection of every organs, tissue, fluid and tumour. 

The ex vivo studies performed after the administration of 99mTc-Pertechnetate 

and 188Re-Perrhenate in mice without tumour and with xenografts of bladder 

carcinoma and osteosarcoma supports the results obtained in the in vivo 

images, being the target organs the thyroid, the stomach, and the choroid 

plexus. Also it was verified a small uptake by the tumours, supporting the 

results obtained in the in vivo images after the administration of 99mTc-

Pertcehnetate and 188Re-Perrhenate. The uptake by bladder carcinoma and 

osteosarcoma xenografts may be related with the blood supply to these 

xenografts, which is in accordance with the rich vascularisation of the axillary 

dug where the xenografts grew. 
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The ex vivo studies performed after the administration of 99mTc-PEI-MP and 

188Re-PEI-MP in mice without tumour and with xenografts of bladder carcinoma 

and osteosarcoma supports the results obtained in the in vivo images, where it 

is verified a high count rate in the kidneys and the bladder, demonstrating that 

these complexes are mainly excreted through the renal system. However, 

considering that the bladder was carefully washed to remove any traces of 

urine, this activity of the bladder wall demonstrates, once again, that 99mTc-PEI-

MP or 188Re-PEI-MP as affinity for bladder cells, being this the primary reason 

to suspect that PEI-MP could have some affinity to bladder cancer cells.  

Supporting the results of the in vivo images it was possible to verify in the ex 

vivo studies, some uptake in lungs, possibly explained by reason referred 

before. 

What was not possible to visualize in the in vivo images, but was verified in the 

ex vivo studies, for mice injected with 99mTc-PEI-MP or 188Re-PEI-MP, was 

some uptake by the liver and the gallbladder demonstrating that, in part, these 

radiopharmaceuticals are also excreted through the hepatobiliary system. Being 

PEI-MP a polymer and being a large molecule, it is possible that these 

radiopharmaceuticals may be trapped by the Kupffer cells in the liver that make 

part of the reticuloendothelial system, are degraded and subsequently released 

in the gallbladder. Also it was possible to visualize some retention of 99mTc-PEI-

MP and 188Re-PEI-MP in the spleen, demonstrating that some percentage of 

this complex is trapped by the reticuloendothelial system. 

Considering the first propose of PEI-MP, that was for palliative therapy of bone 

metastases and also de results obtained in previous biodistribution studies 

[111], it’s not surprising the uptake of 99mTc-PEI-MP and 188Re-PEI-MP by the 

bone.  

Also, it was verified some uptake by the tumours, what supports results 

obtained in the images after the administration of 99mTc-PEI-MP and 188Re-PEI-

MP. The uptake by bladder carcinoma and osteosarcoma xenografts may be 

related not only with the good blood supply to these xenografts,, but also with 

the EPR effect associated to this polymer.  
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As discussed by Maeda et al. [169] and Seymour [170] the EPR effect, is the 

process in which water soluble macromolecules accumulate passively within 

tumour tissue, either primary or metastatic in nature, due to leaky blood vessels 

and poor lymphatic clearance. Therefore, theoretically, being PEI-MP a water 

soluble macromolecule it would follow this principle. Several studies were 

already conducted that assigns to PEI-MP this characteristic. For example, 

Dormehl IC et al. developed PEI-MP considering the EPR effect [111], and 

studied the biodistribution of several molecular sized PEI-MP radiolabelled with 

99mTc. The results demonstrated that the smaller fraction of PEI-MP (10-30 kDa) 

had the best tumour uptake. In the same way Jansen D et al., demonstrated 

that 117mSn-PEI-MP, in the same fraction, also presented a higher affinity for 

tumour tissue [176]. Therefore it was expected that 99mTc-PEI-MP and 188Re-

PEI-MP, in the chosen fraction 10-30 kDa, would have a good uptake by the 

tumour tissue, which was confirmed by the in vivo and ex vivo studies. The 

retention of these complexes in the tumour, at least for 240 minutes, may be 

related with the EPR effect. As mentioned before tumour tissues have poor 

lymphatic drainage and slow venous return, allowing that macromolecules like 

PEI-MP are retained in the tumour, whereas extravasation into the tumour 

interstitium continues [171, 173]. The high period of retention of 99mTc-PEI-MP 

may be an advantage to perform diagnostic nuclear medicine images, to 

localize and delineate the tumour. Also for 188Re-PEI-MP the tumour retention 

for a long period of time could be an advantage since gives time to deliver the 

high energetic β- particles to the tumour cells, inducing tumour cell death [59]. 

Because the accumulation of macromolecules by the EPR effect is a 

progressive phenomenon, it is essential that the molecules are stable in the 

plasma for long periods [173]. In the ex vivo biodistribution studies was clear a 

high percentage of 99mTc-PEI-MP or 188Re-PEI-MP in the blood, despite its 

reduction at 240 minutes after the administration. Owing to the prolonged 

retention of the polymeric complexes like 99mTc-PEI-MP or 188Re-PEI-MP by the 

EPR effect and the enhanced plasmatic half-life, less frequent administrations 

would be needed, which is of great benefit to patients [173, 175]. 

However, the affinity of PEI-MP to bladder carcinoma or osteosarcoma is 

related not only with the vascularisation and the EPR effect, but also with the 
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fact that PEI-MP is a phosphonate derivative. Taniguchi M. et al. reported a 

case of a calcified transitional cell carcinoma of the bladder visualized in a bone 

scintigraphy performed with 99mTc-HMDP (a diphosphonate) and suggested 

possible uptake mechanisms. Calcification in uroepithelial tumours of the 

bladder is a rare radiographic finding and clearly characterized by a high 

concentration of calcium. As it is known, phosphonates has a particular affinity 

for calcium (Ca2+) [102], hence its uptake. In the transitional cell carcinoma of 

the bladder, the most common location of calcifications is on the surface of the 

tumour epithelium creating incrustations. It is believed that the incrustation 

reflects a local interaction of pH related with urinary calcium and the tumour 

epithelium, since calcium precipitation is favoured by an alkaline urinary pH 

[338]. On the other hand, Moreno AJ et al. reported a case of transitional cell 

carcinoma of the kidney identified by imaging with 99mTc-MDP, that after 

histopathological examination it wasn’t found any calcification in the tumour, 

suggesting several uptake mechanisms other than chemisorption, such as a 

possible selective binding of 99mTc-MDP with the tissue receptors or a 

hypervascularization [339]. Therefore, being PEI-MP a diphosphonate, the 

uptake of 99mTc-PEI-MP or 188Re-PEI-MP by bladder carcinoma could be related 

with some of the factors mentioned by the referred authors. For osteosarcoma, 

the uptake is related with the presence of high concentrations of Ca2+ and with 

the strong affinity of phosphonates to the hydroxyapatite crystals, as already 

mentioned [102, 108]. 

In addition of calculating the percentage of activity per gram of 

organ/tissue/fluid, it was also determined the values of the tumour/muscle, 

tumour/bladder, tumour/liver, tumour/lung and tumour/bone ratios for all groups. 

Considering that, in case of metastases of a bladder carcinoma, the major 

target organs are the liver, lungs and the bone, and knowing that the bladder 

carcinoma has its origin in the bladder wall and in an initial stage the tumour will 

invade the muscle adjacent to this organ [184], is crucial to determine these 

tumour ratios, which can be done by nuclear medicine images. If the 

radiopharmaceutical uptake by the primary tumour or its metastases is equal to 

the uptake of the other organs, it’s not possible to identify them, and therefore, 

the diagnosis could be inconclusive or negative to the tumour or to the 



 
 

223 
 

metastases. Also, the determination of those tumour/organ ratios is important, 

mainly when radionuclide therapy with 188Re-PEI-MP in an option. In these 

circumstances, the main target should be the tumour and its metastases, and 

the non-target organs should be spared of high doses of ionizing radiation. If the 

radiopharmaceutical uptake by the tumour or its metastases is equal or lower to 

the uptake of the other organs, it is not possible to perform the therapy, since it 

would be the non-target organs the most affected by ionizing radiation and the 

therapy would not be effective, and possibly it would result in serious adverse 

effects. 

For mice with xenografts of bladder carcinoma or osteosarcoma, after the 

administration of 99mTc-PEI-MP or 188Re-PEI-MP, the tumour/muscle ratios were 

always superior to 1, demonstrating that the uptake by the tumour (bladder 

carcinoma or osteosarcoma) was bigger than muscle. The fact of the 99mTc-PEI-

MP uptake by the tumour is higher than by the muscle, is an advantage and 

could allow to determine the degree of muscle invasion and could assist the 

surgery to determine how much muscle should be excised with the tumour and 

the bladder [188]. Also the high tumour/muscle ratio obtained with 188Re-PEI-

MP is an advantage for the therapy, allowing sparing the muscle from the action 

of high doses of ionizing radiation. 

For the mice with xenografts of bladder carcinoma and osteosarcoma where 

99mTc-PEI-MP were administered, tumour/bladder, tumour/liver, tumour/lung 

and tumour/bone was always inferior to 1 demonstrating that the uptake by the 

tumour was inferior to the quoted organs. Considering these results, the tumour 

of the bladder wall, and the metastases from a bladder carcinoma or 

osteosarcoma in liver, lung and bones would appear as cold lesions in nuclear 

medicine images, after the administration of 99mTc-PEI-MP. Therefore, it would 

be possible to identify the tumour and its metastases, in a non-invasive and in 

an effective way, after intravenous injection of 99mTc-PEI-MP, and the images 

must be acquired until 240 minutes after the radiopharmaceutical 

administration. Equally, for mice with xenografts of bladder carcinoma and 

osteosarcoma where 188Re-PEI-MP were administered, tumour/bladder, 

tumour/liver, tumour/lung and tumour/bone was always inferior to 1 

demonstrating that the uptake of the tumour was inferior comparing with these 



 
 

224 
 

organs. Considering these results, the primary tumour and its metastases from 

a bladder carcinoma or osteosarcoma in liver, lung and bones would appear as 

cold lesions in nuclear medicine images, after the administration of 188Re-PEI-

MP. Therefore, if the goal was the therapy of bladder carcinoma or 

osteosarcoma, and their metastases after the intravenous administration of 

188Re-PEI-MP, it wouldn’t be possible taking into consideration that the 

irradiation of non-target tissue like the bladder wall, the liver, the lungs and the 

bones would be higher than desirable, and could present significant adverse 

effects from the use of this radiopharmaceutical. Also the uptake by these 

metastases would be too low, so that the therapy with this radiopharmaceutical 

could be non-effective. 
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Section IV. Discussion, Conclusions and Future Perspectives 

Chapter 7.Final Discussion 

 

Cancer is a serious disease and the bladder cancer (primary or secondary) is a 

catastrophic event for the patient and has a negative impact on quality of life 

and on social environment [67, 340].  As referred in Chapter 2, cancer is easier 

to treat and cure, if it is diagnosed early [35, 36]. Current diagnostic methods for 

bladder cancer are mainly morphologic imaging techniques like pyelography, 

ultrasonography, CT scanning, magnetic resonance imaging and cytoscopy, 

having each of these methods advantages and disadvantages [183, 194, 219-

221]. The potential of functional imaging techniques is not being fully availed for 

this type of cancer. The advantage of being able to visualize physiopathological 

processes is based on the fact that they arise prior to morphological changes, 

which allows the diagnosis in a very early stage of the disease [183, 194, 219-

221]. If we had a molecule with specificity affinity to a particular target of the 

bladder cancer, it could be used, if properly radiolabelled, to give information 

about the physiopathological processes through an image, helping to identify 

neoplastic masses of reduced size, and evaluate the eventual spread of bladder 

cancer, that could be impossible or very difficult to identify early with the 

diagnostic methods currently used. Until now, has not yet been developed a 

molecule with specific affinity for the bladder tissue. 

Therefore, it seems urgent to identify new molecules that could be radiolabelled 

for diagnostic nuclear medicine imaging or for metabolic radiotherapy. 

Non-invasive and early diagnosis of cancer is of crucial importance for effective 

treatment, and also would allow a more conservative management and therapy 

[35, 36]. Systemic treatment options for bladder cancer include surgery, 

chemotherapy, radiation, and immunotherapy. The choice on the therapeutic 

modality will depend on the tumour staging. In early stage of bladder cancer 

transurethral resection is a common surgical option while partial or radical 

cystectomy is performed for muscle-invasive and locally advanced bladder 

cancer [177]. Conservative management with organ preservation is now the 
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standard of care in numerous malignancies, and for bladder cancer patients it is 

imperative, because less surgery means no need for an urinary diversion, and 

the possibility of a normal sexual life [252]. Non-surgical treatment of invasive 

bladder cancer has been traditionally reserved for patients who are unfit for, or 

refuse radical cystectomy, but there are growing evidences that the evolution of 

radiotherapy (XRT) techniques and the availability of new chemotherapeutic 

protocols, have made bladder-saving treatment a competitive alternative to 

radical cystectomy in selected patients [198]. Historically, it is shown that local 

disease is controlled in only about 20% of patient treated with transurethral 

resection alone [253, 254] and 40% treated with XRT alone [255, 256]. Some 

studies have shown that combined transurethral resection with chemotherapy 

[230, 257] or XRT with chemotherapy [258, 259] can improve the treatment of 

the disease, but the best results are obtained using a trimodality strategy in 

which radiochemotherapy follows transurethral resection. As mentioned in 

Chapter 4 there is no reference to the use of radiopharmaceuticals for 

radiotherapy in bladder cancer. If we think in diagnose, the alliance of a 

radionuclide with a molecule with specific affinity to a particular cell or organ, 

gives specific functional information about that cell or organ. In terms of bladder 

cancer therapy, if we have a radiolabelled molecule with specific affinity to 

bladder tumour cells, it could improve the therapy of the primary tumour and its 

metastasis, enabling the delivery of high radiation doses to the target tissue with 

minimal side effects.  

As described in Chapter 3, polyethyleneiminomethyl phosphonic acid (PEI-MP) 

was developed by Dormehl IC et al. for use in palliative therapy of bone 

metastases after suitable radiolabelling [67, 111]. Besides to be a bone-seeking 

agent, PEI-MP would accumulate in solid tumours due to the EPR effect [169, 

170]. The studies that followed have established the biodistribution and 

pharmacokinetic properties of different complexes PEI-MP/metal radionuclides 

(99mTc, 117mSn and 186Re) [129, 174, 267]. For any of the three complexes 

obtained and studied the dosimetric calculations have shown that the critical 

organ was consistently the bladder [111, 267]. The high count rate in the 

bladder wall with the different PEI-MP/metal radionuclides seems something 

that deserves to be further and better studied. As referred in Chapter 4, the 
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possibility of a high uptake of PEI-MP complexes by bladder tumour cells, and 

the EPR effect associated with this polymer [169, 170], assigns a high potential 

to the PEI-MP, if conveniently radiolabelled, for diagnosis and therapy of 

bladder cancer, more specifically, through the 99mTc-PEI-MP for diagnosis and 

188Re-PEI-MP for therapy of bladder cancer. As described in Chapter II, the 

technetium-99m (99mTc) is the most widely used radioisotope in diagnostic 

nuclear medicine due to its availability, its favourable physical properties and its 

versatile chemistry that allows the labelling of a great variety of ligands [55, 71], 

including the PEI-MP, making possible to apply this molecule for the diagnostic 

imaging. Also in Chapter 2, rhenium-188 (188Re) is described as an excellent 

candidate for β- particle therapy, particularly for large tumour masses given to 

the energy and tissue penetration of their β- particles [66, 76-78, 81]. Other 

physical characteristics of 188Re that constitute an advantage is its gamma ray 

emission that can be used for dosimetry purposes and to monitor biological 

distribution during therapy [61, 66, 76, 82, 83], and the relatively short physical 

half-life of 16.9 hours that allows the use of high activities and reduces the 

problem of radioactive waste handling and storage [82, 84]. The rhenium is a 

chemical congener of 99mTc, which means that 99mTc agents can be used as the 

“matched pair” for the corresponding 188Re agent. This particularity associated 

with its physical characteristics of the rhenium makes feasible to obtain 

excellent diagnostic imaging, allowing pre- and post-assessment of patients 

treated with 188Re radiopharmaceuticals [41]. According to these physic-

chemical characteristics, the PEI-MP may also be radiolabelled with 188Re, 

whereby it is possible to evaluate the potential of 188Re-PEI-MP for therapy. 

Therefore, the aim of this work was to verify the potential of PEI-MP 

radiolabelled with 99mTc for the early diagnosis, and radiolabelled with 188Re for 

therapy of bladder cancer. Also, taking into account the initial purpose of PEI-

MP the same studies were conducted in parallel for bone cancer [102, 111]. 

After a successful synthesis of the polymer and preparation of the kits, it was 

proceeded to labelling of the PEI-MP kits with 99mTc-pertechenetate and 188Re-

perrhenate, and radiochemical purity of the complexes was evaluated. The 

results of radiochemical purity showed to be better for 99mTc-PEI-MP (superior 

to 89%) than for the 188Re-PEI-MP (superior to 85%). This high radiochemical 
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purity was maintained during at least 5 hours, revealing the stability of the kit 

formulation, and ensuring its use for a long period of time which is an 

advantage, since allows performing several experimental studies in the same 

day, which would also be an advantage for clinical use. To determine the 

radiochemical purity of these labelling kits the chromatographic systems chosen 

demonstrated to be adequate and efficient in separating the contaminant 

radiochemical species of 99mTc and 188Re (free and reduced/hydrolyzed forms) 

[61, 71, 87].  

Considering that during the experimental studies the complexes 99mTc-PEI-MP 

and 188Re-PEI-MP would be exposed to cellular culture medium (DMEM) and to 

variations of room temperature (22 ºC to 45 ºC), radiochemical purity of 99mTc-

PEI-MP complex was evaluated in those conditions. Given the impossibility of 

performing this experiment with 188Re-PEI-MP, the results of radiochemical 

purity of this complex in cellular culture medium and at several temperatures, 

can only be extrapolated according to its similarities with 99mTc-PEI-MP 

complex. The results demonstrated that the exposure to temperatures of 22, 37 

and 45 ºC didn’t change significantly the radiochemical purity of 99mTc-PEI-MP 

during 5 hours. Similarly, the addition of cellular culture medium didn’t change 

significantly the radiochemical purity, independently of the temperature, 

remaining superior to 85%. These results demonstrated that experimental 

studies could be performed without the worrying of loose the high radiochemical 

purity of 99mTc-PEI-MP, and certainly of 188Re-PEI-MP. 

The hydrophilicity and lipophilicity of a radiolabelled molecule has 

consequences on the biodistribution and biokinetics of the complex. Therefore 

the hydrophilicity of 99mTc-PEI-MP was evaluated over 4 hours after the 

radiolabelling. The results demonstrated that this complex was hydrophilic, and 

hence water soluble. Although it was not possible to perform these evaluations 

with 188Re-PEI-MP, but considering their similarities, it would be expected the 

same hydrophilicity, which in turn was confirmed by the results obtained in the 

in vivo and ex vivo studies. These characteristic, perhaps means that the 

complexes would not be uptaked significantly by the liver or fat tissue, and 

would be eliminated very quickly through the renal system [273]. However, 
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these expected results didn’t correspond totally with those obtained in the in 

vivo and ex vivo studies as it will be discussed after. 

For diagnostic and therapeutic purposes PEI-MP should act only as a carrier 

and having no therapeutic or harmful effect. Therefore the cytotoxicity of PEI-

MP was analysed through the evaluation of the inhibition of the cellular 

metabolic activity by MTT assay and the cell viability, the types of cell death, the 

production of peroxides and superoxide anion, and the expression of reduced 

GSH by flow cytometry. The results demonstrated that PEI-MP didn’t inhibit the 

metabolic activity of bladder carcinoma or osteosarcoma cells, and the cell 

viability didn’t decrease, there were no significant changes in the production of 

peroxides or superoxide anion that are harmful to cells [291, 293], and there 

were no significant changes in the expression of GSH, a major antioxidant that 

maintains a tight control of the redox status [295, 297]. Although the results 

have shown that the percentage of apoptosis has increased, and consequently 

decrease the mitochondrial membrane potential, these results should be 

carefully seen, since cellular viability did not change, as well as no changes 

were observed in the production of reactive oxygen species (ROS) or in the 

expression of GSH. In fact, the production of ROS and the depletion of GSH are 

associated with the induction of apoptosis [291, 295], and taking into account 

that none of these parameters was changed significantly, the result of the 

increased apoptosis seems not to be relevant. Therefore, PEI-MP would act as 

a carrier, not producing significant adverse effects to cells, thus it may be 

radiolabelled with 99mTc or 188Re to study its potential for diagnosis (99mTc-PEI-

MP) and for therapy (188Re-PEI-MP) of bladder carcinoma and osteosarcoma. 

As described before 99mTc not also emits gamma rays of low energy (140 keV), 

but also highly energetic auger electrons, that could represent a risk [59]. 

Additionally, as the objective is to use 99mTc-PEI-MP to perform safely 

diagnostic nuclear medicine images after its intravenous administration, is 

important to understand, if activities in the range of diagnostics represent or not 

a risk. Therefore it was evaluated the effects of equivalent doses until 20 mGy, 

(considering that the equivalent doses of most nuclear medicine diagnostic 

procedures varies between 0.3 and 20 mGy [303], after internal and external 

irradiation of bladder carcinoma and osteosarcoma cells. For this purpose, it 



 
 

230 
 

was analysed the ability of a cell to form a colony though the clonogenic assay, 

and it was also evaluated the cell viability, the types of cell death, the production 

of peroxides and superoxide anion, the expression of GSH, the changes in 

mitochondrial membrane potential and the cell cycle by flow cytometry. The 

results show that, for diagnostic equivalent doses, 99mTc didn’t had any 

significant effects in the inhibition of cell growth, cell viability, cell death, and 

there were no changes in the production of ROS, in expression of GSH, and in 

mitochondrial membrane potential or cell cycle arrest. Therefore it is safe the 

use of 99mTc-PEI-MP for nuclear medicine imaging taking into account that the 

equivalent dose should not overcome the 20 mGy. The cytotoxicity of 188Re 

doses was not determined, once again given the lack of a 188W/188Re generator, 

however considering the emission of high energetic β- particles by the 188Re, is 

possible to extrapolate the response of cells to its exposure, especially if 

internally irradiated where the cells were exposed to these particles and also to 

gamma photons of 155 keV. High energetic β- particles may interact with 

cellular DNA and cause double or single-strand breaks and if these are not 

repaired correctly may lead to cellular death. This ionizing radiation may interact 

directly with the cellular DNA or indirectly with water molecules inside the cell, 

which may lead to an avalanche process in which are produced reactive oxygen 

species that, indirectly, will react with the cellular DNA and other cellular 

components producing damage [304, 306]. As consequence of the production 

of reactive oxygen species, the expression of GSH may be increased in order to 

control the redox status [295, 297]. Additionally, if the intrinsic pathway of 

apoptosis is activated, the mitochondria membrane potential goes eventually 

decrease [290, 304]. Therefore, the selection of 188Re for therapy would be a 

good choice, but only if the selectivity for the target tissue is guaranteed. 

For a radiolabelled molecule with diagnostic or therapeutic purposes it is 

important that the uptake and retention by the target tissue or organ is high and 

that at the non-target organs are as low as possible. Therefore, cellular uptake 

and retention studies were performed after adding 99mTc-PEI-MP or 188Re-PEI-

MP to bladder carcinoma or osteosarcoma cells in culture. The results showed 

that the uptake by cells of 99mTc-PEI-MP or 188Re-PEI-MP was, during the 240 

minutes of study, significantly higher than the uptake of 99mTc-Pertechnetate or 
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188Re-Perrhenate, respectively. These results demonstrated clearly that PEI-MP 

has a particular affinity to cells of bladder carcinoma and osteosarcoma, and 

therefore can be an excellent carrier for 99mTc or 188Re to perform diagnostic 

nuclear medicine images or therapy, respectively, in cases of bladder 

carcinoma or osteosarcoma. However, there are significant differences between 

the uptake of 99mTc-PEI-MP and 188Re-PEI-MP, being the in vitro uptake of the 

last higher.  A possible explanation is that 188Re has a high atomic mass that 

makes 188Re-PEI-MP a larger molecule than 99mTc-PEI-MP, and as mentioned 

before the tumour uptake of large molecules is dominated by the EPR effect. 

Related with this phenomenon, it is known that smaller molecules are cleared 

more rapidly and easier than larger molecules, and as a result the uptake and 

retention of larger molecules may be higher [169, 170, 341]. Schmidt M et al. 

[341] stated that smaller molecules require tighter binding to maintain significant 

tumour uptake than larger molecules, considering that larger molecules with 

some affinity to tumour cells (that is possibly the case of PEI-MP for bladder 

carcinoma and osteosarcoma cells) even losing the bound to the tumour cells, 

because they are cleared slowly, they have time to rebind to tumour cells. 

Therefore, the uptake and retention of larger molecules, like 188Re-PEI-MP, 

would be higher than 99mTc-PEI-MP that is comparatively smaller. These results 

will be discussed again, when those obtained in vivo and ex vivo are analysed. 

Manual techniques for determining the cellular uptake and retention of 99mTc-

PEI-MP and 188Re-PEI-MP have some limitations like any other techniques. 

During the procedures is very difficult to maintain the cells at 37 ºC, being this 

the normal temperature in which the cells would be in real physiological 

conditions, once to obtain cell samples over time they must be removed from 

the incubator. Also the procedures are per se relatively aggressive to cells that 

may lead to changes in their behaviour. Therefore, as a future prospect, it would 

be interesting the study of cellular uptake and retention using a device such as 

the LigandTracer Yellow. This instrument is equipped with a scintillator-based 

detector suitable for all nuclides used in PET/SPECT imaging, allowing for real-

time detection of tracer cell-interactions [342]. With this equipment it would be 

less human interaction and the cells could be maintained at 37 ºC during all 

procedure. 
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After finished the in vitro studies it was proceeded to the in vivo studies. To 

animal tumour models it was chosen the balb/c nu/nu mice (immunodeficient 

mice) with xenografts of bladder carcinoma or osteosarcoma. As referred in the 

discussion of the Chapter 6, this type of animal tumour model has several 

advantages and disadvantages. The advantages of using this animal tumour 

model is the accessibility, the low costs, and as a first approach gives 

information about the behaviour of the administered radiopharmaceutical in an 

animal with a tumour implanted. However, as discussed before, this type of 

tumour model may not faithfully reflect the human disease process, because 

lacks some of the features of human cancer, such as, metastasis development 

to secondary sites, enabling only to understand the biodistribution of 99mTc-PEI-

MP or 188Re-PEI-MP. Spontaneous models of metastasis, like orthotopic 

models have several advantages over subcutaneous xerograph models. These 

advantages may include the development of differentiated structures within the 

tumour, such as vascular and lymphatic vessels, and possibility of metastatic 

spread, which turns the model more realistic [318]. Therefore, this type of 

animal models is very important for imagiologic nuclear medicine evaluation 

after the administration of 99mTc-PEI-MP and for therapy evaluation after 

administration of 188Re-PEI-MP in cases of invasive and metastatic bladder 

carcinoma. However, tumour implantation for orthotopic models sometimes 

requires complex surgical procedures. Observation of tumour growth in internal 

organs typically needs the sacrifice of cohorts of animals because tumour 

acceptance and growth rates can be highly variable, as well as may be difficult 

and costly, to harvest tumour tissue for pathological analysis. These factors 

increase cost and decrease yield of the animal model [318]. 

Images obtained after the administration of 99mTc-PEI-MP or 188Re-PEI-MP in 

control mice without tumour and with xenografts of bladder carcinoma and 

osteosarcoma, showed a high count rate in the kidneys and the bladder, results 

that were supported by the ex vivo studies. These results demonstrated that 

one of the main ways of excretion of these complexes is through the renal 

system, and therefore, eliminated with urine. Taking into account the results of 

the partition coefficient revealed in Chapter 5 and discussed before, 

demonstrating that 99mTc-PEI-MP is a hydrophilic molecule, and therefore water 
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soluble, it’s not surprising that the main way of excretion is through the renal 

system. The same can be extrapolated to the 188Re-PEI-MP due to their 

similarities. This characteristic, theoretically would mean a small liver and fat 

tissue uptake and a higher target/background ratio [273], however through the 

in vivo images and ex vivo studies it was possible to identify other target 

organs, such as the lungs, the liver and gallbladder, the spleen and the bone. 

Nevertheless, these results are not related to its hydrophilicity, but due to the 

fact that PEI-MP is a polymer, a large molecule and a phosphonate derivative, 

as discussed in the discussion section of the Chapter 6.  

The uptake of 99mTc-PEI-MP or 188Re-PEI-MP by bladder carcinoma or 

osteosarcoma xenografts is only faintly visible in gamma-camera images, 

especially in the 188Re-PEI-MP images. This can be explained due to the 

different photonic flow of the two complexes. In fact, the photonic flow of 155 

keV gamma rays from the 188Re is low when compared with those from 140 keV 

coming from the 99mTc. This small photonic flow associated with the low 

resolution of the gamma camera detector, considering the animal size, justifies 

the reduced referred tumour visualization. This reduced visualization, turns very 

difficult or even impossible the quantification of the tumour uptake in relation to 

other organs. If there was the possibility to make precise measurements by in 

vivo imaging, and even perform measurements over time to better characterize 

the biokinetics of these radiopharmaceuticals, the number of sacrificed animals 

could be reduced greatly. A possible solution was to perform this nuclear 

medicine images in small animal dedicated gamma-cameras, equipment that 

would allow an higher spatial resolution and sensitivity [343]. 

The ex vivo studies also showed reduced uptake by the tumours of animals 

injected with 99mTc-PEI-MP or 188Re-PEI-MP. As discussed previously the 

uptake by bladder carcinoma and osteosarcoma xenografts may be related not 

just with the xenografts blood perfusion, but also with the EPR effect associated 

to this polymer, besides being a phosphonate derivative. The EPR effect related 

with this polymer, would allow the accumulation within the tumour for a long 

period of time due to leaky blood vessels and poor lymphatic clearance of the 

tumour [169, 170]. In fact the results of the ex vivo studies demonstrated that 

the uptake of 99mTc-PEI-MP and 188Re-PEI-MP (fraction 10-30 kDa ) by the 
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xenografts of bladder carcinoma and osteosarcoma was relatively high and 

stable during 240 minutes. Because accumulation of macromolecules by the 

EPR effect takes time, it is essential that the molecules are stable in the plasma 

for long periods [173], what was found with the ex vivo biodistribution studies 

that clearly revealed a high percentage of 99mTc-PEI-MP or 188Re-PEI-MP in the 

blood. The long period of retention of 99mTc-PEI-MP may be an advantage to 

perform diagnostic nuclear medicine images, to localize and delineate the 

tumour. Also for 188Re-PEI-MP this high retention for a long period of time in the 

tumour could be an advantage to deliver the high energetic β- particles to the 

tumour cells, causing tumour cell death [59]. Also the fact that PEI-MP be a 

phosphonate may explain its particular affinity to bladder carcinoma and 

osteosarcoma cells. Taniguchi et al. [338], had reported the diphosphonate 

99mTc-HMDP uptake by a calcified transitional cell carcinoma of the bladder, 

relating this uptake with the particular affinity of phosphonates to calcium (Ca2+) 

[102], that would be in abundance in a calcified tumour. On the other hand 

Moreno et al. [339], reported the diphosphonate 99mTc-MDP uptake by a non-

calcified carcinoma of the kidney, and therefore it suggested that this uptake 

was possible due to the presence of selective tissue receptors or due to 

hypervascularity. Therefore being PEI-MP a diphosphonate, the uptake of 

99mTc-PEI-MP or 188Re-PEI-MP by bladder carcinoma could be related with 

some of the factors mentioned by the authors Taniguchi et al. and Moreno et al. 

For osteosarcoma this affinity is related with the presence of high 

concentrations of Ca2+ and with the strong affinity of phosphonates to the 

hydroxyapatite crystals, as mentioned many times before [102, 108]. 

Considering these possibilities, the high uptake and retention obtained in the in 

vitro studies, could be related with the uptake mechanism suggested by those 

authors, and demonstrates that PEI-MP has a particular affinity for bladder 

carcinoma and osteosarcoma cells. The same possible uptake mechanism, in 

addition to the EPR effect, may explain the fact that 188Re-PEI-MP uptake and 

retention was significantly higher than 99mTc-PEI-MP. This difference is not 

visible in the in vivo and ex vivo studies, and is possibly related with the 

biodistribution upon intravenous administration, when much of 188Re-PEI-MP is 

uptaken by other organs. 
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A manner of better characterize the biokinetics of 99mTc-PEI-MP and 188Re-PEI-

MP after intravenous administration it would be useful to choose more 

appropriate endpoints guided by functional imaging information. However, 

besides the eventual increase of animal number, what collides with the 3Rs 

principle, the obtained information would be much more rich and perhaps more 

clinically relevant. 

The fact that the biodistribution of 99mTc-PEI-MP and 188Re-PEI-MP remain with 

minor changes until 120 and 240 minutes after the intravenous administration, 

demonstrates the radiochemical stability of these complexes in vivo. This 

behaviour gives the guarantee that the nuclear medicine images show the 

biodistribution of the labelled PEI-MP and not the contaminant species after 

labelling break. Also for therapy it is important that 188Re-PEI-MP has a high 

stability in vivo, to ensure the delivery of β- particles of 188Re to tumour tissue 

coupled to PEI-MP vehicle, and according to the principle of the EPR, the 

complex gradually would accumulate into the tumour. To support the results 

regarding the radiochemical stability of 99mTc-PEI-MP and 188Re-PEI-MP in vivo 

blood sample collected over the time, and the radiochemical purity can be 

obtained, using the same quality control procedures. In order to avoid the 

sacrifice of more animals, these stability tests could be performed in vitro using 

human serum samples maintained at 37°C. 

Considering that presence of metastasis of a bladder carcinoma, the major 

target organs are the liver, the lungs and the bone, and knowing that the 

bladder carcinoma has its origin in the bladder wall and in an initial stage the 

tumour can invade the muscle adjacent to this organ [184], to determine 

whether the tumour uptake of an administered radiopharmaceutical is higher or 

lower than the surrounding organs, is crucial to determine tumour/muscle, 

tumour/bladder, tumour/liver, tumour/lung and tumour/bone ratios. These 

results would be useful to clarify if it’s possible to perform the diagnosis with 

99mTc-PEI-MP and therapy with 188Re-PEI-MP. For mice with xenografts of 

bladder carcinoma or osteosarcoma, after the administration of 99mTc-PEI-MP or 

188Re-PEI-MP, the tumour/muscle ratios were always superior to 1, 

demonstrating that the uptake by the tumour was superior to the muscle. The 

fact that the uptake of 99mTc-PEI-MP by the tumour is higher than the muscle, is 



 
 

236 
 

an advantage to determine the degree of muscle invasiveness, and could assist 

the surgeon in determine how much muscle should be excised along with the 

tumour and the bladder [188]. Also the high tumour/muscle ratio obtained for 

188Re-PEI-MP is an advantage for the therapy, allowing sparing the muscle from 

the action of high doses of ionizing radiation. 

For mice with xenografts of bladder carcinoma and osteosarcoma where 99mTc-

PEI-MP or 188Re-PEI-MP were administered, tumour/bladder, tumour/liver, 

tumour/lung and tumour/bone ratios were always inferior to 1 demonstrating 

that the uptake of the tumour was inferior comparing with these organs. 

Considering these results, the tumour in the bladder wall, and the metastasis 

from a bladder carcinoma or osteosarcoma in liver, lung and bones would 

appear as cold lesions in nuclear medicine images, after the administration of 

99mTc-PEI-MP. Therefore it would be possible to identify the tumour and its 

metastases, in an effective way, by intravenous administration of 99mTc-PEI-MP, 

in the late images. The results are not so good if the objective is the therapy 

with 188Re-PEI-MP, because after the intravenous administration the irradiation 

of non-target tissues such as the bladder wall, the liver, the lungs and the bones 

would be higher than desirable, and can mean significant adverse effects. Also 

the uptake by its metastases would be too low for the therapy with this 

radiopharmaceutical could be effective. Thus, the use of 188Re-PEI-MP for 

systemic therapy of bladder carcinoma and its metastasis by intravenous 

administration wouldn’t be suitable. However, for the therapy of bladder 

carcinoma alone, direct instillation of 188Re-PEI-MP to the bladder could be a 

viable option, considering the high uptake of this complex by the tumour cells. 

Nevertheless, with this option the bladder wall would also be exposed to 

radiation, whereby more studies should be conducted to review the feasibility of 

this hypothesis. 
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Section IV. Discussion, Conclusions and Future Perspectives 

Chapter 8.Conclusions and Future Perspectives 

The presented work, unique and innovative, allowed pre-clinical evaluation of 

the potential of 99mTc-PEI-MP to perform images in the scope of diagnostic 

nuclear medicine, and thus allowing to take a step for future clinical studies. 

Studies with 188Re-PEI-MP were not fully completed, given the lack of an 

188W/188Re generator, however the uptake and retention studies performed in 

vitro plus the biodistribution studies performed in vivo and ex vivo, allowed to 

draw preliminary conclusions regarding its potential. 

In this work it was possible to develop a pharmaceutical formulation of the and 

constitute a reproducible cold kits that allows to obtain high radiochemical purity 

after labelling with 99mTc (>90%) or 188Re (>85%). Also the in vitro stability was 

demonstrated to be high, ensuring the possible use of the labelling kit for a long 

period of time, being this an advantage for clinical application. Also the 

radiochemical stability of 99mTc-PEI-MP was not changed by the exposure to 

cellular culture medium or to room temperatures that could vary from 22 to 45 

ºC when carrying out the in vitro studies. The same results would be expected 

for 188Re-PEI-MP given the complexes’ similarity. The chromatographic systems 

used to determinate the radiochemical purity demonstrated to be efficient, 

allowing calculating the different radiochemical species present in the labelling 

kits after adding 99mTc or 188Re. 

The polymer PEI-MP was confirmed to be a hydrophilic molecule, given the fact 

that partition coefficient was always inferior to -3. Also, PEI-MP demonstrated to 

be harmless to cells of bladder carcinoma and osteosarcoma, at least in terms 

of metabolic activity and cell viability. Therefore PEI-MP could be used as a 

carrier of 99mTc or 188Re to target cells, tissues or organs.  

Equivalent doses of 99mTc in the diagnostic range (0.3 to 20 mGy) to bladder 

carcinoma and osteosarcoma cells demonstrated that significant adverse 

effects were not produced, at least in terms of clonogenic activity and cell 

viability, whereby 99mTc-PEI-MP could be used for nuclear medicine imaging, 
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considering that the activity administered doesn’t mean equivalent doses 

superior to 20 mGy. 

In vitro studies demonstrated that the maximum uptake of 99mTc-PEI-MP was 

about 4 times the maximum uptake of the 99mTc-Pertechnetate in HT-1376 cell 

line, and approximately 5 times higher in the MNNG/HOS cell line. The 

minimum retention of 99mTc-PEI-MP was about 4 times the minimum retention of 

the 99mTc-Pertechnetate in HT-1376 cell line, and approximately 7 times higher 

in the MNNG/HOS cell line. The same studies demonstrated that the maximum 

uptake of 188Re-PEI-MP was about 62 times the maximum uptake of the 188Re-

Perrhenate in HT-1376 cell line, and approximately 65 times higher in the 

MNNG/HOS cell line. The minimum retention of 188Re-PEI-MP was about 194 

times the minimum retention of the 188Re-Perrhenate in HT-1376 cell line, and 

approximately 328 times higher in the MNNG/HOS cell line. These studies 

demonstrated that in vitro the uptake and retention of 99mTc-PEI-MP or 188Re-

PEI-MP was significantly higher than their controls, evidencing the specificity of 

PEI-MP. 

In vivo and ex vivo studies demonstrated that 99mTc-PEI-MP and 188Re-PEI-MP 

were mainly excreted through the renal system, possible explained by the fact 

that PEI-MP is a hydrophilic molecule. Also a small amount of 99mTc-PEI-MP 

and 188Re-PEI-MP in the liver and gallbladder was confirmed by the ex vivo 

studies, demonstrating that a small part is excreted through the hepatobiliary 

system.  

The in vivo and ex vivo studies confirmed the uptake of 99mTc-PEI-MP and 

188Re-PEI-MP by lungs, possible explained by the fact that these complexes are 

large molecules that could be trapped in the lung capillaries. 

Some uptake was observed in xenografts of bladder carcinoma and 

osteosarcoma. This tumour uptake can be related not only with the blood 

perfusion to the tumour or the EPR effect associated with PEI-MP, but also  with 

the presence of specific membrane receptors in the case of bladder carcinoma 

and high concentrations of Ca2+ in both tumour types. 
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The tumour/muscle ratio for 99mTc-PEI-MP and 188Re-PEI-MP for both 

xenografts of bladder carcinoma and osteosarcoma was superior to 1. For 

nuclear medicine imaging, the high tumour to muscle ratio would ensure the 

tumour visualization and allows understanding of the degree of invasiveness of 

muscle and assisting the surgeon, especially for bladder carcinoma. 

Tumour/bladder, tumour/liver, tumour/lung and tumour/bone ratios for 99mTc-

PEI-MP and 188Re-PEI-MP and for both xenografts of bladder carcinoma and 

osteosarcoma were always inferior to 1. These results demonstrated that for 

diagnostic nuclear medicine the tumour and its metastases would present as 

cold lesions allowing to identify them in the images. One the other hand the 

therapy of bladder carcinoma or osteosarcoma and its metastasis seem not to 

be feasible if administered intravenously, considering the high dosimetry to 

other organs. 

 

In order to improve or complement the obtained results it would be interesting to 

complete the studies with 188Re, namely determining the partition coefficient of 

188Re-PEI-MP, analysing the cytotoxicity of 188Re and increasing the sample 

size of the studies already conducted. 

Considering the limitations associated with the manual techniques for 

determining the cellular uptake and retention, and to overcome these 

limitations, it would be interesting to complete the cellular uptake and retention 

studies using the device LigandTracer Yellow. 

The xenograft model may not faithfully reflect the human disease process, 

because it lacks some of the features of human cancer development. The 

orthotopic models overcomes these limitations, therefore it would be interesting 

to conduct in vivo studies after the administration of 99mTc-PEI-MP or 188Re-PEI-

MP in orthotopic models of bladder carcinoma or osteosarcoma, to analyse 

more realistically the biodistribution and the pharmacokinetics of those 

complexes. 

Using a gamma-camera that was built for human imaging to perform images of 

a small animal, turns it very difficult due to the resolution of this equipment that 
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is not highly enough for the small structures of a mouse. As a consequence it 

was not possible to quantify the tumour uptake in relation to other organs only in 

images, and therefore the need of sacrifying the animals. A possible solution 

was to perform this nuclear medicine images in small animal dedicated gamma-

cameras, equipment that would allow a higher spatial resolution and sensitivity. 

The uptake of 99mTc-PEI-MP and 188Re-PEI-MP by the bladder cancer cells may 

be related not only with the blood perfusion or EPR effect, but also with the high 

concentration of Ca2+ if tumour microcalcifications are present as well as the 

expression of specific membrane receptors. Therefore it would be exciting the 

identification of these receptors and eventually associate them as one of the 

possible reasons for the high uptake of the radiolabelled PEI-MP by bladder 

tissue and bladder tumour tissue. 

Considering the high uptake of 188Re-PEI-MP by the bladder carcinoma 

xenograft, this complex could still be considered for therapy of bladder 

carcinoma, if administered directly by instillation to the bladder. However 

dosimetry to the bladder wall should be always considered. Nevertheless it 

would be attractive to conduct studies to confirm or not the feasibility of this 

hypothesis. 
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