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Abstract

This paper is concerned with the structure of implicit operations on R ∩ LJ1,

the pseudovariety of all R-trivial, locally idempotent and locally commutative semi-

groups. We give a unique factorization statement, in terms of component projections

and idempotent elements, for the implicit operations on R ∩ LJ1. As an applica-

tion we give a combinatorial description of the languages that are both R-trivial

and locally testable. A similar study is conducted for the pseudovariety DA ∩ LJ1

of locally idempotent and locally commutative semigroups in which each regular

D-class is a rectangular band.

1 Introduction

Since the publication of Reiterman’s paper [14],— where he showed that pseudovarieties
are defined by pseudoidentities, i.e., by formal equalities of implicit operations,— the
theory of implicit operations has received a great deal of attention, particularly in the
work of authors like Almeida, Azevedo, Selmi, Weil and Zeitoun [1, 3, 5, 8, 15, 19].
In fact, the description of the structure and properties of the semigroups of implicit
operations (also known as free profinite semigroups) on a pseudovariety proved to be a
useful tool in the study of that pseudovariety and on the variety of recognizable languages
associated with it (via Eilenberg’s Theorem on varieties [10]).

In a remarkable work, Almeida [2] gives a description of the structure of the free
profinite J -trivial semigroups and solves the word problem for them. He shows that
each implicit operation on the pseudovariety J of J -trivial semigroups admits a canonical
factorization in terms of component projections and regular elements. Azevedo [7, 8]
showed that this result can be partially extended to any subpseudovariety V of DS,
the pseudovariety of all finite semigroups in which all regular elements lie in groups.
In fact, he showed that each implicit operation on V can be factorized as a product
of component projections and regular elements. However, relatively few forms of such
factorizations are known to be canonical.

Let LJ1 be the pseudovariety of all locally idempotent and locally commutative
semigroups, that is, the pseudovariety of all finite semigroups S such that eSe is a
semilattice for each idempotent e of S. Brzozowski and Simon [9] and McNaughton [11]
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proved that the variety of recognizable languages associated with LJ1 is the important
class of locally testable languages. Recall that a language L is locally testable if one
can decide the membership of a given word u in L by considering the factors of a fixed
length k of u and its prefix and suffix of length k − 1.

This paper is a contribution to the study of implicit operations on subpseudovari-
eties of DS and LJ1. We give unique factorization statements for the implicit operations
on R ∩ LJ1, L ∩ LJ1, J ∩ LJ1 (for which we give a new proof of Selmi’s results [15])
and DA ∩ LJ1, where R (resp. L) is the pseudovariety of all finite R-trivial (resp.
L-trivial) semigroups, and DA is the pseudovariety of finite semigroups in which all
regular elements are idempotents. As a consequence of this work we are able to give
combinatorial descriptions of the classes of languages recognized by each of these pseu-
dovarieties. More precisely, for each finite alphabet A, we describe a set of generators for
the Boolean algebra of the recognizable languages of A+ that are both R-trivial (resp.
L-trivial, J -trivial, DA-recognizable) and locally testable. These generators are all of
the form u0A

∗
1u1A

∗
2 · · ·A∗nun where n ≥ 0, the ui are words over A, the Ai are pairwise

disjoint subsets of A, and where the extreme letters of the ui satisfy some conditions
depending on the pseudovariety involved. Note that several varieties of languages have
been described as Boolean combinations of languages of the form u0A

∗
1u1A

∗
2 · · ·A∗nun

imposing various conditions on the words ui and on the subsets Ai of A (e.g. piecewise
testable languages (Simon [16]), R-trivial languages (Eilenberg [10]), level 2 languages
in the Straubing hierarchy (Pin and Straubing [13]), etc).

As a consequence of our results we compute the join (R ∩ LJ1) ∨ (L ∩ LJ1) which
we prove is equal to DA ∩ LJ1. We then deduce that (R ∨ L) ∩ LJ1 = DA ∩ LJ1.
This is an interesting and somewhat unexpected equality since R∨L is “far from being
equal” to DA.

This paper is organized as follows. In section 2 we recall the main definitions and
properties concerning pseudovarieties, implicit operations and languages. In section 3
we describe the structure of the semigroups of implicit operations on R ∩ LJ1, J ∩ LJ1

and DA ∩ LJ1, and show that (R ∩ LJ1)∨(L ∩ LJ1) = DA ∩ LJ1. Section 4 is devoted
to the characterization of the varieties of languages associated with the pseudovarieties
considered in section 3. Finally, in section 5 we show that the (R ∩ LJ1)-recognizable
languages can be described by certain congruences.

2 Preliminaries

We begin by presenting basic definitions and notation concerning words. Next we recall
the notion of pseudovariety of semigroups and define the pseudovarieties mentioned in
this paper. We then review some definitions and facts concerning implicit operations
and pseudoidentities. Next we present the main definitions about recognizable languages
and their relations with pseudovarieties. We conclude by summarizing some properties
of the implicit operations on subpseudovarieties of DS. For omitted proofs and missing
definitions, the reader is referred to the books of Almeida [3], Eilenberg [10] and Pin [12],
and to the surveys [5, 17].

Words Let A be a finite non empty set, or alphabet. The elements of A are called
letters and those of A∗, the free monoid on A, words. The identity of A∗ is called the
empty word and is denoted by 1. If u = a1 · · · an (ai ∈ A) is a word of A+, the free
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semigroup on A, the number n is called the length of u and is denoted by |u|. The
length of the empty word is 0.

We denote by AN (resp. NA) the set of all words over A that are “infinite to the right”
(resp. “infinite to the left”), that is, the set of sequences of letters of A indexed by N
(resp. −N). The set of all letters appearing in a word (finite or infinite) u is denoted by
c(u) and is called the content of u.

A word u ∈ A∗ is a prefix (resp. suffix, factor) of a word x (finite or infinite) if there
exist words y and z such that x = uy (resp. x = yu, x = yuz). For each integer k we
denote by pk(x) (resp. sk(x), Fk(x)) the prefix (resp. suffix, set of factors) of x of length
k, if it exists.

Pseudovarieties A pseudovariety of semigroups is a class of finite semigroups closed
under taking subsemigroups, homomorphic images and finite direct products. The pseu-
dovariety of all finite semigroups is denoted by S, and I denotes the trivial pseudovariety,
consisting only of the 1-element semigroup. The pseudovarieties R, L, J and J1 are re-
spectively the classes of all R-trivial, L-trivial, J -trivial (where R, L and J are the
Green relations) and idempotent and commutative semigroups (or semilattices). We
denote by DS (resp. DA) the pseudovariety of all semigroups S in which each regular
D-class is a subsemigroup of S (resp. which is idempotent).

For any pseudovariety of semigroups V, the class LV of all finite semigroups S such
that eSe ∈ V for each idempotent e of S, is a pseudovariety of semigroups. Particularly
important in this paper is the pseudovariety LJ1 whose elements are called locally
idempotent and locally commutative semigroups. The pseudovariety LI of locally trivial
semigroups is one of its subpseudovarieties. We will also encounter K (resp. D) which
is the subpseudovariety of LI consisting of all finite semigroups S such that eS = e
(resp. Se = e) for each idempotent e of S. The pseudovariety of nilpotent semigroups
is N = K ∩D.

Finally V ∨W denotes the least pseudovariety containing both the pseudovarieties
V and W.

Implicit operations and pseudoidentities We first review some definitions and
facts concerning free profinite semigroups. For details and proofs, the reader is referred
to Almeida’s book [3] and to the survey [5].

Let V be a pseudovariety. A profinite (resp. pro-V) semigroup is a projective limit of
finite semigroups (resp. in V). A topological semigroup is profinite (resp. pro-V) if and
only if it is compact and 0-dimensional (resp. and all its finite continuous homomorphic
images are in V). If A is an alphabet, we say that a profinite semigroup S is A-generated
if there exists a mapping µ : A → S such that the subsemigroup generated by µ(A) is
dense in S. We denote by F̂A(V) the projective limit of the A-generated elements of V.
The elements of F̂A(V) are usually called (|A|-ary) implicit operations (on V).

If V admits a finite free object FA(V) over the alphabet A, then F̂A(V) = FA(V).
This is the case, for instance, of J1: F̂A(J1) is the semigroup P(A) of non empty subsets
of A under union.

The following important properties of F̂A(V), will be used freely in this paper.

Proposition 2.1 Let A be an alphabet and let V be a non trivial pseudovariety.

(1) There exists a natural injective mapping ι : A → F̂A(V) such that ι(A) generates
a dense subsemigroup of F̂A(V).
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(2) F̂A(V) is the free pro-V semigroup over A: if µ is a mapping from A into a pro-V
semigroup S, then µ admits a unique continuous extension µ̂ : F̂A(V) → S such
that µ̂ ◦ ι = µ.

Usually we will ignore the mapping ι : A → F̂A(V), and consider A as a sub-
set of F̂A(V). Observe that, if W is a subpseudovariety of V, then every pro-W
semigroup is also pro-V. So, in particular, we have the following important appli-
cation of Proposition 2.1: the identity of A induces a continuous onto homomorhism
π : F̂A(V)→ F̂A(W), called the canonical projection of F̂A(V) onto F̂A(W). The image
π(x) of an element x ∈ F̂A(V) is called the restriction of x to W. In particular, when V
is a pseudovariety containing J1, the canonical projection c : F̂A(V)→ F̂A(J1) = P(A)
is called the content homomorphism on V. As one can easily show, c extends to the
elements of F̂A(V) the notion of content for words of A+.

For each x ∈ F̂A(V), the sequence (xn!)n converges in F̂A(V). Its limit, denoted by
xω, is the only idempotent in the topological closure of the subsemigroup generated by
x.

Let V be a pseudovariety and let A be an alphabet. A pseudoidentity on V on the
alphabet A (or, in |A| variables) is a pair (u, v) of elements of F̂A(V), and is usually
denoted u = v. It is said to be non trivial if the elements u and v are distinct. We
say that u = v is an identity if u and v are words, i.e., finite products of elements of
A, or elements of ι(A+). We say that a pro-V semigroup S satisfies a pseudoidentity
u = v on V, and we write S |= u = v, if, for any continuous morphism µ : F̂A(V)→ S,
we have µ(u) = µ(v). We say that a class W of pro-V semigroups satisfies a set Σ of
pseudoidentities on V, and we write W |= Σ, if each element of W satisfies each element
of Σ. The class of all finite semigroups which satisfy Σ is said to be defined by Σ and is
denoted [[Σ]]V ([[Σ]] if V = S). For instance, we have the following equalities:

• J1 = [[xy = yx, x2 = x]];

• R = [[(xy)ωx = (xy)ω]]; L = [[y(xy)ω = (xy)ω]];

• K = [[xωy = xω]]; D = [[yxω = xω]];

• LI = [[xωyxω = xω]];

• LJ1 = [[xωyxωyxω = xωyxω, xωyxωzxω = xωzxωyxω]];

• DA = [[(xy)ω(yx)ω(xy)ω = (xy)ω, xωx = xω]];

• DS = [[((xy)ω(yx)ω(xy)ω)ω = (xy)ω]].

The following remark will be useful.

Proposition 2.2 Let W ⊆ V be pseudovarieties and let A be an alphabet. Let π :
F̂A(V) → F̂A(W) be the canonical projection and let x, y ∈ F̂A(V). Then, W |= x = y
if and only if π(x) = π(y).

The following fundamental theorem is due to Reiterman [14].

Theorem 2.3 Let V be a pseudovariety and let W be a class of semigroups in V. Then
W is a pseudovariety if and only if there exists a set Σ of pseudoidentities on V such
that W = [[Σ]]V.
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Languages recognized by a pseudovariety V Let A be an alphabet and let V
be a pseudovariety. A subset L of A+ is called a language. It is said to be recognizable
(resp. V-recognizable) if there exists a finite semigroup S (resp. in V) and a morphism
µ : A+ → S such that L = µ−1(µ(L)). In that case, we say that S recognizes L. The
syntactic congruence of a language L is the congruence ∼L over A+ given by

u ∼L v if and only if xuy ∈ L⇔ xvy ∈ L for all x, y ∈ A∗.

The syntactic semigroup of L, denoted by S(L), is the quotient of A+ by ∼L. We
know that L is recognizable (resp. V-recognizable) if and only if S(L) is finite (resp.
S(L) ∈ V). Furthermore, a semigroup S recognizes a language L if and only if S(L)
divides S (that is, if S(L) is a homomorphic image of a subsemigroup of S). For more
details on recognizable languages, the reader is referred to [10, 12].

A class of (recognizable) languages is a correspondence C associating with each al-
phabet A a set A+C of (recognizable) languages of A+. A variety of languages is a class
V of recognizable languages such that

(1) for every alphabet A, A+V is closed under finite union, finite intersection and
complement;

(2) for every morphism ϕ : A+ → B+, L ∈ B+V implies ϕ−1(L) ∈ A+V;

(3) if L ∈ A+V and a ∈ A, then a−1L = {u ∈ A+ : au ∈ L} and La−1 = {u ∈ A+ :
ua ∈ L} are in A+V.

Let V be a pseudovariety and let V be the class of recognizable languages which
associates with each alphabet A the set A+V of V-recognizable languages of A+. One
can show that V is a variety of languages. Moreover, Eilenberg [10] proved the following
fundamental result.

Theorem 2.4 The correspondence V 7→ V defines a bijective correspondence between
pseudovarieties of semigroups and varieties of languages.

We summarize in the next theorem the well-known characterizations of the varieties
of languages associated with LI, LJ1, R, L and DA (see Pin [12]).

Theorem 2.5 For each alphabet A, the following hold.

(1) The Boolean algebra of all LI-recognizable languages of A+ is generated by the
languages of the form wA∗ and A∗w where w ∈ A+.

(2) The Boolean algebra of all LJ1-recognizable (or, equivalently, locally testable) lan-
guages of A+ is generated by the languages of the form wA∗, A∗w and A∗wA∗

where w ∈ A+.

(3) The Boolean algebra of all R-(resp. L-)recognizable languages of A∗ is generated
by the languages of the form

A∗0a1A
∗
1 · · · anA∗n

where Ai ⊆ A (i = 0, . . . , n) and ai ∈ A \Ai−1 (resp. ai ∈ A \Ai) (i = 1, . . . , n).



José Carlos Costa May 1999 6

(4) The Boolean algebra of all DA-recognizable languages of A+ is generated by the
languages of the form

A∗0a1A
∗
1 · · · anA∗n (1)

with a1, . . . , an ∈ A, A0, . . . , An ⊆ A and the product (1) is unambiguous in the
sense that each of its elements w has a unique factorization w = u0a1u1 · · · anun
with ui ∈ A∗i (i = 0, . . . , n).

We say that a family X of subsets of F̂A(V) separates the points of F̂A(V) if, for
each pair of distinct elements x and y in F̂A(V), there exists an element X of X such
that either x ∈ X and y 6∈ X, or x 6∈ X and y ∈ X. The next result, due to Almeida
[3, 5], will be very useful.

Proposition 2.6 Let A be an alphabet, let V be a pseudovariety satisfying no non
trivial identity and let V be the corresponding variety of languages. Let L be a subset of
A+V and let L be the set of the topological closures in F̂A(V) of the elements of L.

The Boolean algebra A+V is generated by L if and only if the points of F̂A(V) are
separated by L.

Subpseudovarieties of DS Almeida and Azevedo [4] gave a number of factorization
and regularity results for the implicit operations on subpseudovarieties of DS, which will
prove fundamental in this paper. Some of these results are summarized in the following
proposition.

Proposition 2.7 Let V be a subpseudovariety of DS containing J1 and let x, y ∈
F̂A(V).

(1) x can be written as a product of the form

x = u0x1u1 · · ·xnun

where the ui are words and the xi are regular implicit operations on V.

(2) If x and y are regular, then xJ y if and only if c(x) = c(y).

(3) If w ∈ F̂A(V), c(w) ⊆ c(y), x = wy (resp. x = yw) and y is regular, then x is
regular and xL y (resp. xR y).

We now consider the pseudovarieties N, K, D and LI. It is well known that N
satisfies no non trivial identity. This means that the natural morphism ι : A+ → F̂A(N)
is injective for each alphabet A. In particular, we may identify the free semigroup A+

with a subsemigroup of F̂A(N). Since N is contained in K, D and LI the same is true
for each of these pseudovarieties.

Furthermore, we have (see [3]) that:

• F̂A(N) = A+ ∪{0} and the product in F̂A(N) is extended from the product in A+

by letting 0w = w0 = 0 if w ∈ A+ ∪ {0};

• F̂A(K) = A+ ∪AN and the product in F̂A(K) is extended from the product in A+

by letting ww′ = w if w ∈ AN;

• F̂A(D) = A+ ∪ NA and the product in F̂A(D) is extended from the product in A+

by letting w′w = w if w ∈ NA;
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• F̂A(LI) = A+ ∪ (AN × NA) and the product in F̂A(LI) is given, for all u, u′ ∈ A+

and (v, w), (v′, w′) ∈ AN × NA, by:

u · u′ = uu′

u · (v, w) = (uv,w)
(v, w) · u = (v, wu)

(v, w) · (v′, w′) = (v, w′).

Note that if x = (u, v) is an element of F̂A(LI)\A+, then u (resp. v) is the restriction
of x to K (resp. D). In particular, LI satisfies a pseudoidentity x = y if and only if K
and D satisfy x = y. This is another way of stating the well known equality LI = K∨D.

3 Implicit Operations on R ∩ LJ1, DA ∩ LJ1 and J ∩ LJ1

This section is concerned with the structure of semigroups of implicit operations on
R ∩ LJ1, DA ∩ LJ1 and J ∩ LJ1. We prove that every element of each of these semi-
groups can be written in a canonical form as a product of words and idempotents.
We apply these results to the computation of the pseudovariety (R ∩ LJ1) ∨ (L ∩ LJ1)
which we prove is equal to DA ∩ LJ1.

Implicit operations on R ∩ LJ1 We begin by proving a crucial result about the
implicit operations on LJ1 (see [3]). Since LJ1 satisfies no non trivial identity (say
because N ⊆ LJ1) the free semigroup A+ can be seen as a subsemigroup of F̂A(LJ1).
Let F̂A(LJ1)1 denote the monoid F̂A(LJ1) ∪ {1} and let x ∈ F̂A(LJ1). We denote by
Fact(x) the set of all words u ∈ A+ such that u is a factor of x, i.e., such that x = yuz
for some y, z ∈ F̂A(LJ1)1.

Proposition 3.1 Let A be an alphabet and let x, y ∈ F̂A(LJ1). Then, x = y if and only
if Fact(x) = Fact(y) and LI |= x = y.

Proof. Since LI is contained in LJ1 the necessary condition is immediate. Suppose
now that Fact(x) = Fact(y) and that LI |= x = y. As we recalled in Theorem 2.5,
the Boolean algebra of all LJ1-recognizable languages of A+ is generated by the set
L = {wA∗, A∗w,A∗wA∗ : w ∈ A+}. The set of the topological closures in F̂A(LJ1) of
the elements of L is

L = {wF̂A(LJ1)1, F̂A(LJ1)1w, F̂A(LJ1)1wF̂A(LJ1)1 : w ∈ A+}.

Indeed we have wA∗ ⊆ wF̂A(LJ1)1 ⊆ wA∗ since A+ is dense in F̂A(LJ1). Now,
since wF̂A(LJ1)1 is closed, we deduce that wF̂A(LJ1)1 = wA∗. The computation of the
closure of A∗w or A∗wA∗ is similar.

Now, we claim that L does not separate x and y. Let us suppose first that x ∈
F̂A(LJ1)1wF̂A(LJ1)1. This means that w is a factor of x and, by hypothesis, w is also
a factor of y. Then, y ∈ F̂A(LJ1)1wF̂A(LJ1)1. Suppose now that x ∈ wF̂A(LJ1)1. This
means that w is a prefix of the restriction of x to K. Since LI satisfies x = y, we have
that K satisfies x = y. Hence w is also a prefix of the restriction of y to K, meaning
that y ∈ wF̂A(LJ1)1. Finally, if we suppose x ∈ F̂A(LJ1)1w we can show analogously
that y ∈ F̂A(LJ1)1w, proving the claim. So, by Proposition 2.6, we have that x = y.
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Now we characterize the idempotents of F̂A(R ∩ LJ1).

Proposition 3.2 Let A be an alphabet and let x and y be idempotents in F̂A(R ∩ LJ1).
Then, x = y if and only if c(x) = c(y) and K |= x = y.

Proof. Suppose first that x = y. Since J1 and K are contained in R ∩ LJ1, we
conclude immediately that c(x) = c(y) and that K satisfies x = y.

Suppose now that c(x) = c(y) and that K satisfies x = y. Since R ∩ LJ1 is a sub-
pseudovariety of DS containing J1, we have xJ y by Proposition 2.7. But F̂A(R ∩ LJ1)
is R-trivial, and so xL y. This implies that xy = x and yx = y.

Let π : F̂A(LJ1) → F̂A(R ∩ LJ1) be the canonical projection, let x′, y′ ∈ F̂A(LJ1)
be such that π(x′) = x and π(y′) = y and let z = (x′y′)ωx′ and w = (y′x′)ω. Then,
Fact(z) = Fact(w) and D satisfies z = w. Moreover, K satisfies x′ = y′ because it
satisfies x = y. So, K satisfies z = w. It follows that LI satisfies z = w. Hence, by
Proposition 3.1, z = w, and therefore π(z) = π(w). On the other hand we have

π(z) = (π(x′)π(y′))ωπ(x′)
= (xy)ωx
= xωx since xy = x
= x since x is idempotent.

Analogously we have π(w) = y which shows that x = y.

We represent by [w,B] (∅ 6= B ⊆ A,w ∈ BN) the only idempotent in F̂A(R ∩ LJ1)
of content B and restriction w to K.

The following result presents some important properties of the idempotent implicit
operations on R ∩ LJ1.

Proposition 3.3 Let [w,B] and [w′, B′] be idempotents in F̂A(R ∩ LJ1) such that B ∩
B′ 6= ∅, let x ∈ F̂A(R ∩ LJ1)1 and let a ∈ B. Then

(1) [w,B]a = [w,B];

(2) a[w,B] = [aw,B];

(3) [w,B]x[w′, B′] = [w,B ∪ c(x) ∪B′].

Proof. Let us first prove that [w,B]a, a[w,B] and [w,B]x[w′, B′] are regular. By
Proposition 2.7, this is immediate for [w,B]a and a[w,B]. Let now y = [w,B]x[w′, B′]
and let b ∈ B∩B′. Again by Proposition 2.7, we have bω[w,B]L [w,B] and [w′, B′]bω =
[w′, B′] (since F̂A(R ∩ LJ1) isR-trivial). This implies that bωybω L y. Since F̂A(R ∩ LJ1)
is locally idempotent, the product bωybω is idempotent. Consequently y is regular.

As R ∩ LJ1 is a contained in DA, every regular element in F̂A(R ∩ LJ1) is idempo-
tent. So, it follows that [w,B]a, a[w,B] and [w,B]x[w′, B′] are idempotents. Now, to
conclude the proof, it suffices to apply Proposition 3.2.

Let x ∈ F̂A(R ∩ LJ1). We say that a factorization of x of the form

x = u0[x1, A1]u1 · · ·un−1[xn, An]un

is normal if



José Carlos Costa May 1999 9

• ui ∈ A∗ for all 0 ≤ i ≤ n, u0 6= 1 if x = u0;

• ∅ 6= Ai ⊆ A and xi ∈ ANi for all 1 ≤ i ≤ n;

• Ai ∩Aj = ∅ for i 6= j;

• for each 1 ≤ i ≤ n such that ui (resp. ui−1) is not the empty word, the first (resp.
last) letter of ui (resp. ui−1) does not lie in Ai.

As a consequence of Proposition 3.3 we have the following result.

Proposition 3.4 Every element x of F̂A(R ∩ LJ1) admits a normal factorization.

Proof. Let x ∈ F̂A(R ∩ LJ1) and let x = u0[x1, A1]u1 · · ·un−1[xn, An]un be a facto-
rization of x as a product of words ui and idempotents [xi, Ai]. The existence of such a
factorization is ensured by Proposition 2.7 since in F̂A(R ∩ LJ1) every regular element
is idempotent.

On the factorization of x we can apply the following three rules.

r.1) Suppose that the first letter of ui, say a, lies in Ai, for some 1 ≤ i ≤ n. Then
ui = au′i and [xi, Ai]a = [xi, Ai] by Proposition 3.3. In this case, we modify the
factorization of x by replacing ui by u′i.

r.2) Suppose that the last letter of ui−1, say a, lies in Ai, for some 1 ≤ i ≤ n. Then
ui−1 = u′i−1a and a[xi, Ai] = [axi, Ai], by Proposition 3.3. In this case, we replace
ui−1 by u′i−1 and [xi, Ai] by [axi, Ai].

r.3) If Ai ∩ Aj 6= ∅ for some 1 ≤ i < j ≤ n, then y = [xi, Ai]ui · · ·uj−1[xj , Aj ] is equal
to y′ = [xi, Ai ∪Ai+1 ∪ . . .∪Aj ∪ c(uiui+1 · · ·uj−1)], again by Proposition 3.3. We
again modify the factorization of x by replacing y by y′.

As these rules effectively reduce the length of the factorization of x, we may apply
them only a finite number of times, and so we obtain a factorization of x with the
announced properties.

In order to prove uniqueness of the normal factorization of the implicit operations
on R ∩ LJ1, we need some test semigroups to separate distinct factorizations. We will
use the transition semigroups of suitable automata.

For n ≥ 0, let u0, . . . , un ∈ A∗ and ∅ 6= A1, . . . , An ⊆ A be such that ui 6= 1
(0 < i < n), u0 · · ·un 6= 1, Ai ∩Aj = ∅ for i 6= j and the first letter (if it exists) of each
ui (0 < i ≤ n) does not lie in Ai. Let A = A(u0, A1, u1, . . . , An, un) be the following
automaton

q0��
��

q1��
���
A1

q2��
���
A2

-
u0 -

u1 qn��
���
An

qn+1��
��
-

un. . .

The condition on the first letter of the words ui guarantees that A is a deterministic
automaton, meaning that each letter (and, consequently, each word) defines a partial
transformation of the set Q of states.
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Lemma 3.5 Let µ : A+ → SA be the transition homomorphism of the automaton A.
The transition semigroup SA lies in R ∩ LJ1.

Moreover, if w ∈ A+, k > |u0 · · ·un|+ n and µ(wk) is not the empty tranformation,
then there is some unique i ∈ {1, . . . , n} such that w ∈ A+

i , and such that µ(wk) has
range {qi} and contains qi in its domain.

Proof. Let us first assume that µ(wk) is not the empty tranformation. By the
assumption on k it is clear that qi ·w = qi for some i ∈ {1, . . . , n}. Now, we have clearly
w ∈ A+

i and the claim that i is unique follows from the assumption that Ai ∩ Aj = ∅
for i 6= j. So, the domain of µ(wk) contains qi. The assumption that the first letter of
ui does not belong to Ai implies that the range of µ(wk) is {qi}.

Let x, y, z ∈ A+. To prove that SA belongs to R ∩ LJ1, it suffices to prove that
µ((xy)kx) = µ((xy)k), µ(xkyxkyxk) = µ(xkyxk) and µ(xkyxkzxk) = µ(xkzxkyxk).

As we proved above, µ((xy)k) is not the empty transformation if and only if xy ∈ A+
i

for some unique i ∈ {1, . . . , n}. In that case, the range of µ((xy)k) is {qi} and, as one
can easily verify µ((xy)kx) has the same domain and range as µ((xy)k). Since the range
is a singleton set we deduce that µ((xy)k) = µ((xy)kx).

Similarly, one can show that µ(xkyxkyxk) and µ(xkyxk) are the same transformation,
by simple analysis of their domain (which is not empty if and only if x, y ∈ A+

i for some
unique i ∈ {1, . . . , n}) and range. The third equality can be proved by an entirely
analogous process.

Now we are able to prove that each implicit operation x on R ∩ LJ1 admits only
one normal factorization (which we will call, from now on, the canonical factorization
of x).

Theorem 3.6 Let x, y ∈ F̂A(R ∩ LJ1) and let x = u0[x1, A1]u1 · · · [xn, An]un and y =
v0[y1, B1]v1 · · · [ym, Bm]vm be factorizations in normal form. Then x = y if and only if
n = m, ui = vi, xi = yi and Ai = Bi for all i.

Proof. Let us fix r > |vi| (1 ≤ i ≤ m), let A be the following automaton

q0��
��

q1��
���
A1

q2��
���
A2

-
u0pr(x1) -

u1pr(x2)
qn��

���
An

qn+1��
��
-

un. . .

and let µ : A+ → S be its transition homomorphism. By Lemma 3.5, S ∈ R ∩ LJ1. So,
let µ̂ : F̂A(R ∩ LJ1)→ S be the unique continuous homomorphic extension of µ and let
k > max{|u0 . . . un|+ (r + 1)n, |v0 . . . vm|+ (r + 1)m}.

For each 1 ≤ i ≤ n, let x′i ∈ ANi be such that xi = pr(xi)x
′
i so that [xi, Ai] =

pr(xi)[x
′
i, Ai]. Since [x′i, Ai] is idempotent, its image in S, µ̂([x′i, Ai]) is idempotent.

By density of A+ in F̂A(R ∩ LJ1), there is a word wi such that c(wi) = Ai and
µ̂([x′i, Ai]) = µ(wk

i ). Now, it is immediate that µ(wk
i ) is a partial function whose

domain includes qi and whose range is {qi}, by Lemma 3.5. Then, we have clearly
q0 · u0pr(x1)wk

1u1pr(x2) · · ·wk
nun = qn+1 and µ̂(x) = µ(u0pr(x1)w

k
1u1pr(x2) · · ·wk

nun).
Consider now words y′i ∈ BNi (1 ≤ i ≤ m) such that yi = pr(yi)y

′
i so that [yi, Bi] =

pr(yi)[y
′
i, Bi]. Consider also words w′i such that c(w′i) = Bi and µ̂([y′i, Bi]) = µ(w′i

k).
Again by Lemma 3.5, µ(w′i

k) is a partial function with range either the empty set, or
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the set {qj} if there is some j ∈ {1, . . . , n} (unique since Al ∩ Aj = ∅ for l 6= j) such
that Bi ⊆ Aj . Note that, in this case we have Bi ∩Al = ∅ for l 6= j.

As x = y, µ̂(x) = µ̂(y) and so q0 ·v0pr(y1)w′1kv1pr(y2) · · ·w′mkvm = qn+1. Therefore,
q0 · v0pr(y1)w′1k = qj for some unique j ∈ {1, . . . , n}. This implies that u0pr(x1) is

a prefix of v0pr(y1)w
′
1
k. Hence, since r > |v0|, pr(x1) and pr(y1)w

′
1
k must have some

common factor, which means that A1∩B1 6= ∅. It follows that j = 1. Therefore B1 ⊆ A1

and, by symmetry, we have A1 = B1. Now, since the last letter (if it exists) of u0 does
not belong to A1, we have that u0 is a prefix of v0. Again by symmetry, it follows that
u0 = v0 and consequently pr(x1) = pr(y1). Hence, since this holds for any r arbitrarily
large we conclude that x1 = y1.

Iterating the above argument, we deduce that n = m, ui = vi, xi = yi and Ai = Bi

for all i, which concludes the proof.

By the last proof we may deduce that the transition semigroups of the automata A
suffice to separate two distinct implicit operations on R ∩ LJ1. So, as a consequence of
Reiterman’s Theorem we have the following.

Corollary 3.7 The pseudovariety R ∩ LJ1 is generated by the transition semigroups of
the automata A = A(u0, A1, u1, . . . , An, un) where u0, . . . , un ∈ A∗ and ∅ 6= A1, . . . , An ⊆
A are such that ui 6= 1 (0 < i < n), u0 · · ·un 6= 1, Ai ∩ Aj = ∅ for i 6= j and the first
letter (if it exists) of each ui (0 < i ≤ n) does not lie in Ai.

Naturally all that we have done for R ∩ LJ1 can be done for L ∩ LJ1. In particular
each idempotent x of F̂A(L ∩ LJ1) is determined by its content and by its restriction to
D. We denote x = [B,w] where B = c(x) and w ∈ NB is the restriction of x to D.

Theorem 3.8 Each element x of F̂A(L ∩ LJ1) can be written as a product

x = u0[A1, x1]u1 · · ·un−1[An, xn]un

where

• ui ∈ A∗ for all 0 ≤ i ≤ n, u0 6= 1 if x = u0;

• ∅ 6= Ai ⊆ A and xi ∈ NAi for all 1 ≤ i ≤ n;

• Ai ∩Aj = ∅ for i 6= j;

• for each 1 ≤ i ≤ n such that ui (resp. ui−1) is not the empty word, the first (resp.
last) letter of ui (resp. ui−1) does not lie in Ai.

Moreover this factorization is canonical, i.e., if x = u0[A1, x1]u1 · · ·un−1[An, xn]un and
y = v0[B1, y1]v1 · · · vm−1[Bm, ym]vm are factorizations of this type, then x = y if and
only if n = m, ui = vi, xi = yi and Ai = Bi for all i.

Implicit operations on DA ∩ LJ1 We now turn to the implicit operations on
DA ∩ LJ1. By application of the results of the preceding section we describe canonical
factorizations for them. We start by characterizing the idempotents.

Proposition 3.9 Let A be an alphabet and let x and y be idempotents in F̂A(DA ∩ LJ1).
Then, x = y if and only if c(x) = c(y) and LI |= x = y.
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Proof. Suppose that x = y. Since J1 and LI are contained in DA ∩ LJ1, we conclude
immediately that c(x) = c(y) and that LI satisfies x = y.

Suppose now that c(x) = c(y) and that LI satisfies x = y. Since DA ∩ LJ1 is a
subpseudovariety of DS containing J1, xJ y by Proposition 2.7. Then, xy and yx are
idempotent since, in DA, regular D-classes are idempotent subsemigroups.

Let π : F̂A(LJ1)→ F̂A(DA ∩ LJ1) be the canonical projection, let x′, y′ ∈ F̂A(LJ1)
be such that π(x′) = x and π(y′) = y and let z = (x′y′)ωx′ and w = (y′x′)ωy′. Then,
Fact(z) = Fact(w) and, since LI satisfies x′ = y′ (because it satisfies x = y), LI satisfies
z = w. Hence, by Proposition 3.1, z = w, and therefore π(z) = π(w). On the other
hand we have

π(z) = (π(x′)π(y′))ωπ(x′)
= (xy)ωx
= xyx since xy is idempotent

= x since xyxH x and F̂A(DA ∩ LJ1) is H-trivial.

Analogously we have π(w) = y which shows that x = y.

If x is an idempotent of F̂A(DA ∩ LJ1) we denote it by x = [w,B, z] where B = c(x)
and (w, z) ∈ BN× NB is the restriction of x to LI. The following properties of the
idempotents of F̂A(DA ∩ LJ1), are proved as in Proposition 3.3.

Proposition 3.10 Let [w,B, z] and [w′, B′, z′] be idempotent elements of F̂A(DA ∩ LJ1)
such that B ∩B′ 6= ∅, let x ∈ F̂A(DA ∩ LJ1)1 and let a ∈ B. Then

(1) [w,B, z]a = [w,B, za];

(2) a[w,B, z] = [aw,B, z];

(3) [w,B, z]x[w′, B′, z′] = [w,B ∪ c(x) ∪B′, z′].

Now we can prove the main result of this section.

Theorem 3.11 Each element x of F̂A(DA ∩ LJ1) can be written as a product x =
u0[x1, A1, x

′
1]u1 · · ·un−1[xn, An, x

′
n]un where

• ui ∈ A∗ for all 0 ≤ i ≤ n, u0 6= 1 if x = u0;

• ∅ 6= Ai ⊆ A, xi ∈ ANi and x′i ∈ NAi for all 1 ≤ i ≤ n;

• Ai ∩Aj = ∅ for i 6= j;

• for each 1 ≤ i ≤ n such that ui (resp. ui−1) is not the empty word, the first (resp.
last) letter of ui (resp. ui−1) does not lie in Ai.

Moreover this factorization is canonical, i.e., if x = u0[x1, A1, x
′
1] · · · [xn, An, x

′
n]un and

y = v0[y1, B1, y
′
1] · · · [ym, Bm, y

′
m]vm are factorizations of this type, then x = y if and

only if n = m, ui = vi, xi = yi, Ai = Bi and x′i = y′i for all i.

Proof. We can prove as in Proposition 3.4 that a factorization of the required form
exists. For the proof of uniqueness let us assume that

x = u0[x1, A1, x
′
1]u1 · · ·un−1[xn, An, x

′
n]un
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and
y = v0[y1, B1, y

′
1]v1 · · · vm−1[ym, Bm, y

′
m]vm

are factorizations of this form and that x = y. Let

ρ : F̂A(DA ∩ LJ1)→ F̂A(R ∩ LJ1)

and
λ : F̂A(DA ∩ LJ1)→ F̂A(L ∩ LJ1)

be the canonical projections. Since the image by ρ (resp. λ) of an idempotent is an
idempotent, it is immediate that, if e = [w,B, z] is an idempotent in F̂A(DA ∩ LJ1),
then ρ(e) = [w,B] and λ(e) = [B, z]. Therefore we have

ρ(x) = u0[x1, A1]u1 · · · [xn, An]un

and
ρ(y) = v0[y1, B1]v1 · · · [ym, Bm]vm

and these factorizations are in canonical form. Thus, as ρ(x) = ρ(y), it follows from
Theorem 3.6 that n = m, ui = vi, xi = yi and Ai = Bi for all i. Furthermore,

λ(x) = u0[A1, x
′
1]u1 · · · [An, x

′
n]un

and
λ(y) = v0[B1, y

′
1]v1 · · · [Bm, y

′
m]vm

are canonical factorizations by Theorem 3.8. So, since λ(x) = λ(y), we conclude that
x′i = y′i for all i, which concludes the proof.

Corollary 3.12 (R ∩ LJ1) ∨ (L ∩ LJ1) = (R ∨ L) ∩ LJ1 = DA ∩ LJ1.

Proof. Let x, y ∈ F̂A(DA ∩ LJ1). It is clear, by the proof of the preceding propo-
sition, that x = y if and only if ρ(x) = ρ(y) and λ(x) = λ(y). Thus, by Reiterman’s
Theorem, DA ∩ LJ1 = (R ∩ LJ1) ∨ (L ∩ LJ1). Moreover, we have

(R ∩ LJ1) ∨ (L ∩ LJ1) ⊆ (R ∨ L) ∩ LJ1

⊆ DA ∩ LJ1

which implies that (R ∨ L) ∩ LJ1 = DA ∩ LJ1.

Implicit operations on J ∩ LJ1 In this section we describe the semigroups of im-
plicit operations on J ∩ LJ1 using the same method applied for R ∩ LJ1. We remark
that this result was obtained earlier by Selmi [15] using other techniques.

Proposition 3.13 Let A be an alphabet and let x and y be idempotents in F̂A(J ∩ LJ1).
Then, x = y if and only if c(x) = c(y).

Proof. Naturally, we only need to prove the sufficient condition. So, suppose that
c(x) = c(y). By Proposition 2.7, xJ y. Hence, since F̂A(J ∩ LJ1) is J -trivial, we
conclude that x = y.
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If x is an idempotent of F̂A(J ∩ LJ1) we denote it by x = [B] where B = c(x).
Analogously to Proposition 3.3 we have the following properties of the idempotents of
F̂A(J ∩ LJ1).

Proposition 3.14 Let [B] and [B′] be idempotents in F̂A(J ∩ LJ1) such that B∩B′ 6= ∅,
let x ∈ F̂A(J ∩ LJ1)1 and let a ∈ B. Then

(1) [B]a = [B] = a[B];

(2) [B]x[B′] = [B ∪ c(x) ∪B′].

For n ≥ 0, let u0, . . . , un ∈ A∗ and ∅ 6= A1, . . . , An ⊆ A be such that Ai ∩Aj = ∅ for
i 6= j and, for each 1 ≤ i ≤ n such that ui (resp. ui−1) is not the empty word, the first
(resp. last) letter of ui (resp. ui−1) does not lie in Ai. Let B be the following automaton

q0��
��

q1��
��

q2��
���
A1

q3��
��

q4��
���
A2

-
u0 -

A1 -
u1 -

A2 q2n��
��

q2n+1��
���

An

-
un. . .

Selmi [15] proved the following lemma.

Lemma 3.15 Let µ : A+ → S be the transition homomorphism of the automaton B.
The transition semigroup S lies in J ∩ LJ1.

Moreover, if w ∈ A+, k > |u0 · · ·un|+ n and µ(wk) is not the empty tranformation,
then there is some unique i ∈ {1, . . . , n} such that w ∈ A+

i , µ(wk) has range {q2i} and
its domain is {q2i−1, q2i}.

Now we are able to give a new proof of the following result.

Theorem 3.16 ((Selmi)) Each element x of F̂A(J ∩ LJ1) can be written as a product
x = u0[A1]u1 · · · [An]un where

• ui ∈ A∗ for all 0 ≤ i ≤ n, u0 6= 1 if x = u0;

• ∅ 6= Ai ⊆ A for all 1 ≤ i ≤ n;

• Ai ∩Aj = ∅ for i 6= j;

• for each 1 ≤ i ≤ n such that ui (resp. ui−1) is not the empty word, the first (resp.
last) letter of ui (resp. ui−1) does not lie in Ai.

Moreover this factorization is canonical, that is, if x = u0[A1]u1 · · · [An]un and y =
v0[B1]v1 · · · [Bm]vm are factorizations of this type, then x = y if and only if n = m, ui =
vi and Ai = Bi for all i.

Proof. That a factorization of the required form exists can be proved as in Propo-
sition 3.4. Let now x = u0[A1]u1 · · · [An]un and y = v0[B1]v1 · · · [Bm]vm be factori-
zations of this type and suppose that x = y. Consider the automaton B above. Let
µ : A+ → S be its transition homomorphism. By Lemma 3.15, S ∈ J ∩ LJ1. Let
µ̂ : F̂A(J ∩ LJ1)→ S be the unique continuous homomorphic extension of µ.

Let k > max{|u0 . . . un|+n, |v0 . . . vm|+m} and for each 1 ≤ i ≤ n, let wi be a word
such that c(wi) = Ai and µ̂([Ai]) = µ(wk

i ). By Lemma 3.15, µ(wk
i ) is an idempotent
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partial function whose range is {q2i} and whose domain is {q2i−1, q2i}. Then, we have
q0 · u0wk

1u1 · · ·wk
nun = q2n+1 and µ̂(x) = µ(u0w

k
1u1 · · ·wk

nun).

Consider now words w′i (1 ≤ i ≤ m) such that c(w′i) = Bi and µ̂([Bi]) = µ(w′i
k).

Again by Lemma 3.15, µ(w′i
k) is a partial function whose domain and range are, if not

empty, {q2j−1, q2j} and{q2j}, respectively, where j ∈ {1, . . . , n} is the unique index such
that Bi ⊆ Aj .

As x = y, we have µ̂(x) = µ̂(y) and so q0 ·v0w′1kv1 · · ·w′mkvm = q2n+1. Therefore, for
each 1 ≤ i ≤ m there is some unique ji ∈ {1, . . . , n} such that q0 ·v0w′1kv1 · · ·w′ik = q2ji ,
whence Bi ⊆ Aji . By symmetry, we also have Aji ⊆ Bli for some li ∈ {1, . . . ,m}. Since,
by hypothesis, the Bi’s are pairwise disjoint, this implies li = i. Consequently, we have
Bi = Aji and we deduce that 1 ≤ j1 < j2 < · · · < jm ≤ n which shows that m ≤ n. By
symmetry it follows that n = m and, consequently, that ji = i for all i. In particular
we have Ai = Bi. Now, for each 0 ≤ i ≤ n, the condition on the extreme letters of the
words vi allows us to deduce that q0 · v0w′1kv1 · · ·w′ikvi = q2i+1 and that ui = vi, which
concludes the proof.

4 The corresponding varieties of languages

In this section we give combinatorial descriptions of the varieties of languages associated
with the pseudovarieties R ∩ LJ1, J ∩ LJ1 and DA ∩ LJ1. For each of these varieties
we describe a set of generators. This is done by simple translation, via Eilenberg’s
correspondence, of the results of the preceding section.

R-trivial and locally testable languages Let A be a finite alphabet. Denote
by LA(R ∩ LJ1) the class of all languages of the form u0A

∗
1u1 · · ·A∗nun where n ≥ 0,

ui ∈ A∗, ∅ 6= Ai ⊆ A and:

• ui 6= 1 for 0 < i < n, u0 · · ·un 6= 1;

• Ai ∩Aj = ∅ for i 6= j;

• the first letter (if it exists) of each ui (0 < i ≤ n) does not lie in Ai.

These are precisely the languages recognized by the automata A(u0, A1, . . . , An, un)
where the initial and terminal states are, respectively, q0 and qn+1. So, as a consequence
of Eilenberg’s correspondence we have the following reformulation of Corollary 3.7, which
gives a description of the class of (R ∩ LJ1)-recognizable languages of A+ (that is, the
class of languages that are both R-trivial and locally testable).

Theorem 4.1 For each finite alphabet A, the class of languages in A+ which are recog-
nized by semigroups in R ∩ LJ1 is the Boolean algebra generated by LA(R ∩ LJ1).

For the class of languages that are both L-trivial and locally testable we have a dual
description. Let LA(L ∩ LJ1) denote the class of all languages on a finite alphabet A of
the form u0A

∗
1u1 · · ·A∗nun where n ≥ 0, ui ∈ A∗, ∅ 6= Ai ⊆ A and:

• ui 6= 1 for 0 < i < n, u0 · · ·un 6= 1;

• Ai ∩Aj = ∅ for i 6= j;

• the last letter (if it exists) of each ui (0 ≤ i < n) does not lie in Ai+1.
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Then, just as above we have the following result.

Theorem 4.2 For each finite alphabet A, the class of languages in A+ which are recog-
nized by semigroups in L ∩ LJ1 is the Boolean algebra generated by LA(L ∩ LJ1).

Analogously for the case of the (J ∩ LJ1)-recognizable languages we have the fol-
lowing description which is a consequence of the proof of Theorem 3.16.

Theorem 4.3 ((Selmi)) For each finite alphabet A, the class of languages in A+ which
are recognized by semigroups in J ∩ LJ1 is the Boolean algebra generated by the languages
of the form u0A

+
1 u1 · · ·A+

n un where n ≥ 0, ui ∈ A∗, ∅ 6= Ai ⊆ A, Ai ∩ Aj = ∅ for i 6= j
and for each 1 ≤ i ≤ n such that ui (resp. ui−1) is not the empty word, the first (resp.
last) letter of ui (resp. ui−1) does not lie in Ai.

DA-recognizable and locally testable languages The description of the lan-
guages that are both DA-recognizable and locally testable is an easy consequence of
previous results.

Theorem 4.4 For each finite alphabet A, the class of languages in A+ which are recog-
nized by semigroups in DA ∩ LJ1 is the Boolean algebra generated by LA(R ∩ LJ1) ∪
LA(L ∩ LJ1).

Proof. Let us denote by V,V1 and V2 the pseudovarieties DA ∩ LJ1,R ∩ LJ1 and
L ∩ LJ1, respectively. For a set of languages L we will denote by B(L) the Boolean
algebra generated by L.

We know by Corollary 3.12 that V = V1 ∨V2. So, since A+V1 = B(LA(V1)) and
A+V2 = B(LA(V2)), we have A+V = B(LA(V1) ∪ LA(V2)).

Example 4.5 The language L = {a, b}+ac{c, d}∗ on the alphabet A = {a, b, c, d} is
neither R- nor L-recognizable. But it is (DA ∩ LJ1)-recognizable. Indeed

L = {a, b}+a{c, d}∗ ∩ {a, b}∗c{c, d}∗
= ({a, b}∗aa{c, d}∗ ∪ {a, b}∗ba{c, d}∗) ∩ {a, b}∗c{c, d}∗,

is clearly in the Boolean algebra generated by LA(R ∩ LJ1) ∪ LA(L ∩ LJ1).

We now give another simpler description of the languages recognized by semigroups
in DA ∩ LJ1. Let LA(DA ∩ LJ1) be the class of all languages of the form u0A

∗
1u1 · · ·A∗nun

where n ≥ 0, ui ∈ A∗, ∅ 6= Ai ⊆ A and:

• ui 6= 1 for 0 < i < n, u0 · · ·un 6= 1;

• Ai ∩Aj = ∅ for i 6= j.

We start by proving that every language of LA(DA ∩ LJ1) is (DA ∩ LJ1)-recogni-
zable.

Lemma 4.6 If L is a language of LA(DA ∩ LJ1) , then S(L) ∈ DA ∩ LJ1.
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Proof. Suppose that L = u0A
∗
1u1 · · ·A∗nun and let k > |u0 · · ·un| + n. By the as-

sumption on k it is clear that, for each x ∈ A+, if rxks ∈ L for some r, s ∈ A∗, then
x ∈ A+

i for some 1 ≤ i ≤ n. Furthermore, this i is unique since the Ai’s are pairwise
disjoint.

Let x, y, z ∈ A+. To prove that S(L) belongs to DA ∩ LJ1, it suffices to prove that
(xy)k(yx)k(xy)k ∼ (xy)k, xkyxkyxk ∼ xkyxk and xkyxkzxk ∼ xkzxkyxk, where ∼ is the
syntactic congruence of L.

Let r, s ∈ A∗ and suppose that r(xy)ks ∈ L. Then xy (and so also yx) lies in A+
i for

some unique 1 ≤ i ≤ n and r(xy)k(yx)k(xy)ks ∈ L. Analogously, r(xy)k(yx)k(xy)ks ∈ L
implies r(xy)ks ∈ L. Therefore (xy)k(yx)k(xy)k ∼ (xy)k.

Suppose now that rxkyxks ∈ L. Then, x ∈ A+
i for some unique 1 ≤ i ≤ n. The

choice of k and the uniqueness of i allow us to conclude that y also lies in A+
i , and that

rxkyxkyxks ∈ L. Analogously one can prove that rxkyxkyxks ∈ L implies rxkyxks ∈ L
which shows that xkyxk ∼ xkyxkyxk.

The proof that xkyxkzxk ∼ xkzxkyxk is absolutely similar, so we omit it.

As a consequence of the last lemma and of Theorem 4.4, and since all languages in
LA(R ∩ LJ1) ∪ LA(L ∩ LJ1) are in LA(DA ∩ LJ1), we deduce the announced result.

Theorem 4.7 For each finite alphabet A, the class of languages in A+ which are recog-
nized by semigroups in DA ∩ LJ1 is the Boolean algebra generated by LA(DA ∩ LJ1).

We can now deduce, more easily, that the language L = {a, b}+ac{c, d}∗ of Exam-
ple 4.5 is (DA ∩ LJ1)-recognizable. In fact, L = {a, b}∗aac{c, d}∗ ∪ {a, b}∗bac{c, d}∗ is
the union of two languages in LA(DA ∩ LJ1).

5 Another approach to (R ∩ LJ1)-recognizable languages

In this section we show that, for each alphabet A, the R-trivial and locally testable
languages of A+ can be described by certain congruences on A+.

First we recall the most used definition of a locally testable language. For every
integer k ≥ 1, let =k be the finite-index congruence defined on A+ by setting u =k v
if and only if u = v or u and v are words of length ≥ k, pk−1(u) = pk−1(v), sk−1(u) =
sk−1(v) and Fk(u) = Fk(v). We say that a language of A+ is k-testable if it is a union
of =k-classes. A language is locally testable if it is k-testable for some k.

Now, for every k ≥ 1, let ∼k be the finite-index equivalence on A+ defined by
u ∼k v if and only if u = v or u and v are words of length ≥ k, pk−1(u) = pk−1(v)
and Fk(u) = Fk(v). We note that this equivalence is not a congruence in general. For
instance, consider A = {a, b}, u = aba and v = abab. One has u ∼2 v, but ua 6∼2 va.
Indeed a2 is a factor of length 2 of ua but it is not a factor of va. We denote by ≡k the
congruence on A+ generated by ∼k. Observe that ≡k is a finite-index congruence since
it is coarser than ∼k. The rest of this paper is devoted to showing that the languages
that are a union of ≡k-classes for some k are exactly the R-trivial and locally testable
languages. This work is analogous to Selmi’s work [15] on J -trivial and locally testable
languages.

We will use the notion of locally testable semigroup introduced by McNaughton [11]
and Zalcstein [18], which we now describe. For a semigroup S we denote by S+ the set
of all finite sequences of elements of S.
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Definition 5.1 Let S be a finite semigroup and let k ≥ 1. We say that S is k-testable
if for each pair of elements (x1, . . . , xn), (y1, . . . , ym) of S+, with n,m ≥ k, having the
same prefix and suffix of length k − 1 and the same set of factors of length k, one has
x1 · · ·xn = y1 · · · ym. A semigroup is locally testable if it is k-testable for some k.

The set of all locally testable semigroups is denoted by LT and LTk is the set of all k-
testable semigroups. Zalcstein [18] proved that LTk is a pseudovariety and corresponds
to the class of k-testable languages. It follows from Brzozowski and Simon [9] and
McNaughton [11], that LT =

⋃∞
k=1 LTk is the pseudovariety of locally idempotent

and locally commutative semigroups, that is LT = LJ1. Note that every k-testable
semigroup is also m-testable for all m ≥ k, so we have LT1 ⊆ LT2 ⊆ · · · ⊆ LTk ⊆ · · · .
As a result, we have R ∩ LJ1 =

⋃∞
k=1(R ∩ LTk).

Let us now return to the congruence ≡k and prove the following results.

Proposition 5.2 The semigroup A+/≡k lies in R ∩ LTk.

Proof. The congruence ≡k is coarser than the congruence =k. So, the semigroup
A+/≡k is a homomorphic image of the semigroup A+/=k which lies in LTk. Hence,
since LTk is a pseudovariety, A+/≡k lies in LTk. To prove that A+/≡k is R-trivial we
show that it satisfies the pseudoidentity (xy)ωx = (xy)ω which defines R.

Let u, v ∈ A+. It follows from the definition of ∼k that (uv)nu ∼k (uv)n for all
n ≥ k. So, (uv)nu ≡k (uv)n for all n ≥ k, and hence A+/≡k satisfies (xy)ωx = (xy)ω.

Proposition 5.3 The semigroup A+/≡k is the free object of R ∩ LTk on A.

Proof. Let π : A+ → A+/≡k be the natural morphism. We need to prove that, for
any semigroup S in R ∩ LTk and any morphism η : A+ → S, there exists a morphism
ϕ : A+/≡k→ S such that ϕ◦π = η. It suffices to prove that the morphism ϕ : A+/≡k→ S
given by ϕ(π(u)) = η(u) for any u ∈ A+ is well-defined, that is, to prove that u ≡k v
implies η(u) = η(v). By transitivity and multiplicativity, this in turn reduces to showing
that if u ∼k v, then η(u) = η(v).

If |u| < k or |v| < k, then u = v so that η(u) = η(v) trivially. Let us now suppose
that |u|, |v| ≥ k. By definition of ∼k we have pk−1(u) = pk−1(v) and Fk(u) = Fk(v).
Let s be the suffix of length k − 1 of u. Then s occurs in v, so that v = xsy for some
x, y ∈ A∗. Put w = uy. We claim that w =k v. Indeed pk−1(w) = pk−1(u) = pk−1(v).
Next, sk−1(w) = sk−1(uy) = sk−1(sy) = sk−1(v), since |sy| ≥ k − 1. Now, since
Fk(u) = Fk(v), each factor of length k of v is a factor of u and hence a factor of w.
Conversely, let z be a factor of length k of w. Then, z is either a factor of u, or a factor
of sy. In each case, it is also a factor of v, which proves the claim.

Let u = u1 · · ·ul, y = y1 · · · ym (supposing y 6= 1) and v = v1 · · · vn, where uh, yi, vj ∈
A for all h, i and j. Since uy =k v, the sequences of elements of S

(η(u1), . . . , η(ul), η(y1), . . . , η(ym)) and (η(v1), . . . , η(vn))

have the same prefix and suffix of length k − 1 and the same set of factors of length k.
But S ∈ LTk, so

η(u)η(y) = η(u1) · · · η(ul)η(y1) · · · η(ym)
= η(v1) · · · η(vn)
= η(v).

A dual argument would show that η(u)R η(v). But S is R-trivial, so that η(u) =
η(v).
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Proposition 5.4 A language L ⊆ A+ is recognized by a semigroup in R ∩ LTk if and
only if it is a union of ≡k-classes.

Proof. Let η : A+ → S(L) be the syntactic morphism of L and let π : A+ → A+/≡k

be the natural morphism. Suppose first that S(L) ∈ R ∩ LTk. Then, by Proposition 5.3,
there is a surjective morphism ϕ : A+/≡k→ S(L) such that ϕ ◦ π = η. So, L is a union
of ≡k-classes.

Conversely, suppose that L is a union of ≡k-classes. Then, L is recognized by the
natural morphism π. So, S(L) divides A+/ ≡k, whence, by Proposition 5.2, S(L) ∈
R ∩ LTk.

The announced result is now an immediate consequence of this last proposition and
of the equality R ∩ LJ1 =

⋃∞
k=1(R ∩ LTk).

Theorem 5.5 A language L ⊆ A+ is recognized by a semigroup in R ∩ LJ1 if and only
if it is a union of ≡k-classes for some k.
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Dep. Matemática
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