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Abstract—Most embedded systems are bound to real-time
constraints. Two of the critical metrics presented in these systems
are determinism and latency. Due to growing in complexity of
embedded applications, real time operating systems (RTOS) are
needed, not only to hide the increasingly complex hardware,
but also to provide services to the system’s running tasks.
Unfortunately, this new layer on an embedded system puts more
pressure on the aforementioned metrics. One of the ways to cope
with this problem is to offload RTOS run-time services to the
hardware layer.

This paper presents a hybrid hardware/software implementa-
tion of this technique upon the well known FreeRTOS, improving
system’s latency and predictability, by migrating critical run-
time services to hardware. The developed hardware accelerators
were synthesized on a field-programmable gate array (FPGA),
exploiting the point-to-point bus Fast Simplex Link (FSL) to
interconnect to the Xilinx’s Microbaze soft-core processor.

Index Terms—Real-time Systems, Determinism, Latency,
FreeRTOS, Hardware Accelerators.

I. INTRODUCTION

Real-time systems are typically present in embedded devices
being designed to support time constrained tasks in meeting
their deadlines. Depending on the need to meet strict deadlines,
these systems can be classified in hard or soft real time
[1]. In hard real-time applications, determinism and latency
are a critical metrics, since missing deadlines may result
catastrophic for the purposes the system serves. In contrast,
for soft real-time systems, missing a deadline is normally not
as critical as in the hard real-time systems.

The presence of a real-time operating system (RTOS) in-
troduces new sources of latency and lack of determinism.
Latency is “wasted” time and its minimization means better
responsivity of the RTOS. This paper addresses a specific
source of software latency, the RTOS lists handling. Lack
of determinism is caused by response time variation (jitter),
another of the least desired characteristics of a RTOS. Most of
jitter sources comes from RTOS’ dynamic data structures and
their management and traversal. For example, the time taken
to select next task to run in the ready queue list of FreeRTOS
priority-based scheduler, depends on its position in the list.
The same reasoning can be applied to other RTOS list-like
structures, namely the timer or mutex wait lists.

In this paper we present a hybrid hardware/software RTOS
that takes advantage of hardware accelerators to improve these
critical metrics and, consequently, improve overall system
performance. Therefore, our approach demonstrates that co-
designed RTOS has a better performance and most importantly

maintains consistent response time and more predictability
compared to its purely software version.

The organization of the paper is as follows: Section II
presents related work. Section III explains the system ar-
chitecture, detailing the operating system, the soft-core pro-
cessor, the communication mechanism and are also outlined
the software parts that were migrate to hardware and the
reasoning behind that migration. Section IV describes the
hardware accelerators, how they work and implementation
details. Section V discusses the experimental results. Lastly,
conclusions and future work are presented in section VI.

II. RELATED WORK

RTOSs nowadays face requirements such as predictability
and low latency, not achieved with more computational power.
Migration to hardware of software tasks and services, ad-
dresses these issues leading to solutions able to cope with these
increasingly strict requirements. Migration of RTOS services,
such as scheduling, time management and task management,
to dedicated hardware modules, provides increased system per-
formance and allows the RTOS to meet metrics requirements
[2]. The well known concept of software thread, similar as
the POSIX model [3], can be applied and shift the paradigm
HW thread, providing a unified transparent model [3]. The
coexistence of a hybrid, software and hardware model in an
operating system environment, raises concerns namely regard-
ing an unified programming model, portability, legacy software
support, suitable interface and synchronization mechanisms,
communication overhead and resource optimization [4], [5],
[6], eventually exacerbated in resource constrained embedded
contexts. As an example of an unified hardware/software
thread programming model, [4], [5], show some of the benefis
of this methodology. Communication overhead on a shared
bus, and resource utilization are maintained low in both cases,
while still offering performance improvements. [5], [7] ,[6]
also argue on the importance of a hardware/software trans-
parent model and homogenous interfaces, in order to achieve
suitable HW abstraction and legacy-software reutilization.

Aiming to promote the exploitation of FPGA-based embed-
ded systems performance, [8] presents the foundations for an
HW accelerated RTOS with run-time partial reconfiguration.
Regardless targeting high-end embedded systems, i.e. not
resource constrained, “hthreads” Real time Kernel [9], and
ReconOS [10], are examples of this approach. These systems
can meet requirements otherwise very difficult to achieve on
a software-only RTOS, providing llow latency, low jitter, in a



Fig. 1: System Architecture Overview

true parallell system that scales independently of the number
of system tasks.

III. ARCHITECTURE

A. Overview

Figure 1 depicts the architecture of the hybrid FreeRTOS.
It consists in three main hardware components synthesized
in the FPGA fabric: (i) the soft-core processor (MicroBlaze)
where the FreeRTOS and its application runs, above the
hardware abstraction layer (HAL); (ii) the developed hardware
accelerators intended to improve the predictability and latency
of FreeRTOS; and (iii) the FSL buses, used to interconnect the
hardware accelerators to the MicroBlaze soft-core.

Moreover, there are other hardware components synthesized
in the FPGA in order to support the RTOS system tick, which
includes a interrupt controller and a timer, both provided by
Xilinx’s IP library. The connection between these two IP’s and
the soft-core processor is done by PLB bus, which implements
a master/slave communication model.

B. Operating System and Soft-core Processor

1) FreeRTOS: FreeRTOS [11], [12] is a real-time operating
system targeting low-end embedded systems with limited re-
sources supporting thirty-four different architectures. Besides,
its source code architecture is designed in order to enhance its
portability, being mainly composed by two layers, an hardware
independent layer and a portable layer.

The RTOS kernel can be tailored to the application being
built through a configuration file called FreeRTOSConfig.h,
where it is possible to adjust clock speed, heap size, mutual
exclusion objects, API subsets, etc. Moreover, being a open-
source RTOS with a small and straightforward kernel, makes
it possible to a effortless internal redesign. These set of
advantages and features justified the use of FreeRTOS as the
target RTOS for this work.

2) MicroBlaze: MicroBlaze is a soft-core embedded pro-
cessor designed and optimized for implementation in Xilinx
FPGAs [13]. This soft-core processor is supported by the
most recent Xilinx FPGAs in particular Virtex-7, Kintex-
7, Artix-7 and the Xilinx Zynq-7000. MicroBlaze core is
organized as a 32-bit Harvard load/store architecture with

separated bus interface units for data and instruction accesses.
It provides four different memory interfaces: (i) Local Mem-
ory Bus (LMB) to access on-chip local-memory; (ii) IBM
Processor Local Bus (PLB) or the AMBA AXI4 (AXI4) to
connect on-chip and off-chip peripherals and memory; (iii)
Xilinx CacheLink (XCL) to interface with high performance
specialized external memory controllers; and (iv) Fast Simplex
Link (FSL) or AXI4-Stream interface to provide a fast non-
arbitrated streaming communication mechanism.

Finally, the MicroBlaze is highly configurable, providing
selective enabling of additional functionality, namely in terms
of cache size, pipeline depth, integrated peripherals, MMU and
bus-interfaces.

3) Fast Simplex Link Bus: The Fast Simplex Link (FSL)
bus is a fast communication mechanism between two design
elements [14] and is structured with a unidirectional point-to-
point FIFO-based communication, which can be configured
as master or slave. With a maximum transfer speed of 300
million words/sec, the coprocessors connected to the master
ports of the FSL bus pushes data and control signals onto the
FIFO. In contrast, the slave ports of the FSL bus reads and
pops from the FIFO buffer. The internal clock of this buffer
has the same frequency of the processor system clock.

MicroBlaze offers 16 parallel FSL channels, equally dis-
tributed between masters and slaves ports. In this paper, the
FSL bus was chosen to interconnect the hardware accelerators
to the soft-core, since it provides, as previously mentioned,
point-to-point dedicated channels, which each accelerator can
take advantage of, overcoming the traditional problem of
concurrent access and avoiding latency problems, regarding
other buses (e.g. PLB bus).

C. Selection of the dedicated hardware accelerators

The FreeRTOS components that have been migrated from
the software layer to the hardware layer were the scheduler and
the kernel software timers. These two components represent
the services available on FreeRTOS that are the major sources
of jitter and overhead.

The heart of an operating system is the scheduler. It se-
lects the ready task to execute next, based on its scheduling
algorithm. In a complex and heavy system, where there are
dozens of tasks ready to execute, the scheduler can introduce
undesired response jitter and a lot of overhead. Taking this
into account, the FreeRTOS scheduler was off-loaded into the
FPGA fabric.

Delaying tasks is also typically needed in an embedded
system. FreeRTOS achieves this by providing for each task a
dedicated software-based counter, that is decremented at each
system tick. In a complex system, where it is likely to exist
several delayed tasks, this procedure could represent a huge
source of jitter. Therefore, it is advantageous to free the kernel
of these software-based counters by migrating them to the
hardware layer.

The FreeRTOS API was maintained intact eliminating the
porting effort for legacy applications. Therefore, migration of
FreeRTOS run-time services to the hardware involved changes



Fig. 2: Hardware scheduler overview

to the body of several functions in hardware abstraction layer
(HAL) by calling the respective hardware modules.

Migration of the aforementioned FreeRTOS services into
the hardware layer are responsible for the reduction of jitter
and system overhead, increasing the RTOS determinism and
predictability, which will be presented later in this paper.

IV. IMPLEMENTATION

A. Hardware Scheduler

As previously mentioned, the RTOS scheduler is a large
time consuming mechanism and one of the sources of jitter.
Hence, the overhead introduced, can lead to the miss of
deadlines, which in the case of hard real-time systems could
have catastrophic consequences. One of the solutions to reduce
such overhead is accomplished by migrating it to hardware.

The implemented hardware scheduler is depicted in Figure
2 and has the following relevant features: (i) the selection
algorithm is based on a fixed-priority pre-emptive scheduling;
(ii) the data structure architecture is based on a binary tree
structure; (iii) the number of supported tasks is parametrized
in a factor of 2n; (iv) the information about the tasks in kept on
an on-chip register bank; (v) the implementation is based on
combinational logic, which enables the scheduler to provide
the highest priority task in a single clock cycle; (vi) and finally,
the communication between this hardware accelerator and the
CPU is performed by the FSL bus, through a data packet of
32-bits width.

As said, the core data structure is a binary tree. The base
HDL module (TreeNode2) of the binary tree (for N=1) is
composed by a node with the combinational logic expression
to find the most priority task between two tasks. The other
modules will be composed always by a TreeNode2 and
another two modules equal to the tree node for the factor N-
1. This means, for example, that the module for N=2 will be
composed by three base modules (two N-1 TreeNode2’s plus
another TreeNode2). Since all the modules are built using
combinational logic, the time needed to find the most priority
task is equal to the propagation time of the signals, which is a
huge improvement in contrast with the software counterpart.

In Figure 2 is presented the hardware task tree and the data
contained in each register representing a task in hardware. The
three most significant bits represent the current state of the task
(“b”: blocked, “w”: suspended or “f”: finished respectively);
“priority” corresponds, as the name implies, to the priority
level of the task; “run” and “ready” are also used to define

Fig. 3: Hardware Kernel Timers overview

the tasks state; the “pxTCB” field contains the pointer to the
address of the software TCB; “ID” identifies the task in this
register bank; and finally, “command” represent the operation
to be performed (e.g. read the most priority task or write the
task into the register bank).

The FSL wrapper implements a simple protocol, containing
two messages, “read” and “write”. When a read message is
received in the module, this acknowledges sending the most
priority task. When a write message is received, it is followed
by the data to be inserted in the respective register.

B. Hardware Kernel Timers

FreeRTOS provides services to block a task for a given
number of ticks. If one of these services is called, the RTOS
has a dedicated software timer, which is related to each
delayed task. At each system tick, the software timer is
decremented and verified if it has expired, and if this is the
case, the task is unblocked. This type of operation injects jitter
in the system and consequently non-determinism, because the
time to update each counter depends on the number of the
delayed tasks present in the system. In a hardware approach,
and due to the parallel nature of the hardware, it is possible
to reduce and even eliminate this source of non-determinism
present in the operating system.

Figure 3 depicts the internal block diagram of the hardware
kernel timers’ IP. It has a bank of n timers, where the n is the
number of tasks accepted by the scheduler. Each timer, as in
the software-based version, is related to a task.

This component is connected to the MicroBlaze and to the
scheduler IP. The connection between the processor and this
peripheral is done only by the FSL master bus, because it is a
write-only peripheral. The output of this device is hard-wired
directly to the scheduler. Whenever a timer reaches zero, the
associated task must change from suspended state to ready
state. This is done, by sending a signal from the hardware
kernel timer to the scheduler.

In addition to the timer bank, this IP has also a module
in charge of decoding the data packet from the processor,
delivered through the FSL bus. This data packet is composed
by three fields. The lower twenty four bits, are the value of the
desired suspension time for the task identified in the next five



bits. The remaining bits out of the 32-bits data packet are not
defined, and could be used in further versions of this project.

Each timer is independent from the others, so the operations
executed on one of them does not interfere with the others.
Besides that, each is hard-wired with a specific task on the
scheduler, so even if all the timers expire at the same time,
the time needed to process the changes at the scheduler side
is always the same. Thereby, the jitter and non-determinism
caused by the process of transition between states (from
suspended to ready), introduced by software counterparts, are
also eliminated.

As in the hardware scheduler, an FSL wrapper was required
to establish the communication between this IP and the Mi-
croBlaze. In this case is only required to give support to the
write operation. When a write message is received with the
intended configuration, the counter is programmed and it will
start to decrement at each system tick.

C. Hardware Abstraction Layer

Leveraging accelerators offloading, requires re-factoring
of FreeRTOS hardware abstraction layer. The main
changes will target FreeRTOS functions related to
task control and management (i.e. vTaskCreate(),
vTaskSuspend(), vTaskResume(), vTaskDelay()
and vTaskDelete()).

Task creation (vTaskCreate()) needs to generate an ID,
which will identify the task in the hardware scheduler, and
send an FSL data packet to the hardware scheduler with all
needed information (ID, the pointer to the TCB and the task
priority). It should be noted that the aforementioned ID is a
new field added to the TCBs structure. When a task is deleted
(vTaskDelete()) a data packet is sent to the hardware
scheduler, changing only the finish bit in the corresponding
task TCB entry.

FreeRTOS allows the suspension of a task
(vTaskSuspend()), for an indefinite amount of time,
and after its resumption (TaskResume()). Besides
that, it is possible to suspend a task for a fixed period
(vTaskDelay()). Suspending a task in the context of
the hybrid FreeRTOS, is nothing more than sending a data
packet through the FSL bus to the hardware scheduler, where
the blocked bit is set and the others cleared. On the other
hand, resuming is also very straightforward, since it reverts
the previous settings. At last, to delay a task, instead of
communicating with the scheduler, a data packet is sent to
the hardware timers block, which is then responsible to signal
the changes to the hardware scheduler.

Finally, is also relevant to say that a complete redesign was
made to the FreeRTOS function responsible for context switch-
ing (vTaskSwitchContext()). This procedure consists in
reading the hardware scheduler through its FSL-based bus to
get the next ready task. The received data packet is decoded,
by performing a mask, to retrieve the pointer to the TCB of the
new task to execute. At last, the pxCurrentTCB is updated
to point to the new task’s TCB.

V. EXPERIMENTAL RESULTS

The presented system architecture was implemented on a
XUP Virtex-II Pro development platform under MicroBlaze
7.10d and FreeRTOS 7.4.0 versions, and the project was
developed and synthesized using the EDK 10.1 tools ecosys-
tem, provided by Xilinx. The implementation of the dedicated
hardware modules was done in Verilog.

In the following section are presented the results obtained
from measurements made on the hybrid RTOS, compared to
the software-based RTOS.

A. Evaluation

The hardware accelerators implemented to support FreeR-
TOS are directly related to the task switching mechanism. This
way, to infer the benefits obtained from the hardware approach,
the evaluation and validation was realized by measuring the
latency and jitter in the manipulation of the various kernel data
structures.

In order to access the improvements introduced by our ap-
proach, both the hybrid and the software-based versions were
instrumented through a specific hardware counter module,
built for this purpose. This hardware module does not interfere
with the system and takes advantage of an FSL interface.

void vTickISR( void *pvBaseAddress ){

CONFIG_COUNT();
START_COUNT();

#ifdef (Hybrid_FreeRTOS == 0)
vTaskIncrementTick();

#endif

STOP_COUNT();
READ_COUNT();
CLEAR_COUNT();

(...)

START_COUNT();

vTaskSwitchContext();

STOP_COUNT();
READ_COUNT();
CLEAR_COUNT();

}

Listing 1: Evaluation measure points

In the Listing 1, shows that the software-based ver-
sion measurements were taken in two points: (i) during a
scheduling point, specifically the switching between tasks
(vTaskSwitchContext()) and (ii) the increment of the
software timers (vTaskIncrementTick()) executed at
each system tick (vTickISR()). On the other hand, in
the case of the hybrid version, as the software timers were
migrated to hardware, so there is no software, measurements
were taken only during the scheduling point and the corre-
sponding new scheduled task (vTaskSwitchContext()).
Table I show the results at vTaskSwitchContext(), and
Table II shows the results at vTaskIncrementTick().



TABLE I: Measured latency during the execution of
vTaskContextSwitch().

5 Tasks 10 Tasks 15 Tasks
FreeRTOS

(Sw)
FreeRTOS

(Hw)
FreeRTOS

(Sw)
FreeRTOS

(Hw)
FreeRTOS

(Sw)
FreeRTOS

(Hw)
µ 86.51 46.00 89.31 46.00 89.90 46.00
σ 13.46 0.00 14.64 0.00 14.78 0.00

TABLE II: Measured latency during the execution of
vTaskIncrementTick().

5 Tasks 10 Tasks 15 Tasks
FreeRTOS

(Sw)
FreeRTOS

(Sw)
FreeRTOS

(Sw)
µ 305.97 359.87 375.90
σ 212.67 259.72 259.75

In Table I are presented the results taken from three different
application scenarios. All of them are based in the same con-
trol flow: a number of tasks (five, ten and fifteen) are created
before the start of the scheduler (vTaskStartScheduler)
and they have atomic priority levels; when the scheduler starts,
Task1 will be automatically dispatched and after this task will
suspend itself, leading to the dispatch of Task2, and so on.

As can be seen from the collected data, the mean latency
in the hybrid version of FreeRTOS is significant lower than
the value from the software-based version. More than that,
regardless the number of tasks within the system, this opera-
tion takes 46 system ticks. As a result, the standard deviation,
which by itself represents the presence of jitter, is reduced to
zero in the hybrid approach.

During the measurements, was possible to verify that the
increment of the counters associated with each task is a
costly and time consuming procedure, as well as one of
the biggest sources of jitter. Since, in our approach this
procedure was completely moved to hardware, the RTOS will
be entirely free of this jitter and latency. Table II depicts
the results obtained just from the software-based RTOS for
vTaskIncrementTick, due to previously mentioned fact
that for the hybrid RTOS these results will be zero.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented a hybrid real-time operating
system based on FreeRTOS to take advantage of the developed
hardware accelerators to improve system latency and determin-
ism. This approach led to a internally redesign of FreeRTOS
software, more specifically inside the hardware abstraction
layer, in terms of the functions responsible for the management
and synchronization of tasks.

The evaluation results showed convincing improvements
on the aimed levels: system latency and determinism. The
execution time to schedule a new task was reduced on av-
erage at least by 53.17%, 51.50% and 51.16% respectively
for each test-case, when compared with the software-based
version. More important, the execution time for managing
tasks is fixed, regardless the number of tasks, which proves
the improvement in system predictability. Also, the jitter and
latency present in FreeRTOS due to the software timers was

also removed with the introduction of the hardware kernel
timers in the system.

In short, in the era that embedded systems are rather com-
plex and continuously evolving, real-time operating systems,
such FreeRTOS, require a more deterministic and predictable
execution. Thereby, implementing software components in
hardware accelerators can improve system performance and
reduce response jitter, as ours experimental results proved.

Proposed as future work is the redesign of a full version
of FreeRTOS following our approach, aiming the complete
support and refactoring of all the remaining APIs. Moreover,
the hardware scheduler should be redesigned in order to
prevent the priority inversion scenarios that occurs when
tasks and interrupts coexist in the same system. Additionally,
considering that multiprocessing is becoming an emergent
trend on todays embedded market, future research will be also
focused on ways and possibilities to migrate our approach to
multi-core architectures.
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