
On the Automatic Construction of

Indistinguishable Operations

M. Barbosa1� and D. Page2

1 Departamento de Informática, Universidade do Minho,
Campus de Gualtar, 4710-057 Braga, Portugal.

mbb@di.uminho.pt
2 Department of Computer Science, University of Bristol,

Merchant Venturers Building, Woodland Road,
Bristol, BS8 1UB, United Kingdom.

page@cs.bris.ac.uk

Abstract. An increasingly important design constraint for software run-
ning on ubiquitous computing devices is security, particularly against
physical methods such as side-channel attack. One well studied meth-
odology for defending against such attacks is the concept of indistin-
guishable functions which leak no information about program control
flow since all execution paths are computationally identical. However,
constructing such functions by hand becomes laborious and error prone
as their complexity increases. We investigate techniques for automating
this process and find that effective solutions can be constructed with
only minor amounts of computational effort.

Keywords. Side-channel Cryptanalysis, Simple Power Analysis, Coun-
termeasures, Indistinguishable Operations.

1 Introduction

As computing devices become increasingly ubiquitous, the task of writing soft-
ware for them has presented programmers with a number of problems. Firstly,
devices like smart-cards are highly constrained in both their computational and
storage capacity; due to their low unit cost and small size, such devices are sig-
nificantly less powerful than PDA or desktop class computers. This demands
selection and implementation of algorithms which are sensitive to the demands
of the platform. Coupled with these issues of efficiency, which are also prevalent
in normal software development, constrained devices present new problems for
the programmer. For example, one typically needs to consider the power charac-
teristics and communication frequency of any operation since both eat into the
valuable battery life of the device.

Perhaps the most challenging aspect of writing software for ubiquitous com-
puters is the issue of security. Performing computation in a hostile, adversarial
� Funded by scholarship SFRH/BPD/20528/2004, awarded by the Fundação para a

Ciência e Tecnologia, Ministério da Ciência e do Ensino Superior, Portugal.

environment demands that software is robust enough to repel attackers who
hope to retrieve data stored on the device. Although cryptography provides a
number of tools to aid in protecting the data, the advent of physical attacks such
as side-channel analysis and fault injection mean one needs to consider security
of the software implementation as well as the mathematics it implements. By
passive monitoring of execution features such as timing variations [15], power
consumption [16] or electromagnetic emission [1, 2] attackers can remotely re-
cover secret information from a device with little fear of detection. Typically
attacks consist of a collection phase which provides the attacker with profiles
of execution, and an analysis phase which recovers the secret information from
the profiles. Considering power consumption as the collection medium from here
on, attack methods can be split into two main classes. Simple power analysis
(SPA) is where the attacker is given only one profile and is required to recover
the secret information by focusing mainly on the operation being executed. In
contrast, differential power analysis (DPA) uses statistical methods to form a
correlation between a number of profiles and the secret information by focusing
mainly on the data items being processed.

As attack methods have become better understood, so have the related de-
fence methods. Although new vulnerabilities are regularly uncovered, one can
now deploy techniques in hardware and software which will vastly reduce the
effectiveness of most side-channel attacks and do so with fairly minor overhead.
Very roughly, defence methods fall into one of two main categories:

Randomisation One method of reducing the chance of leaking secret informa-
tion is to introduce a confusion or randomisation element into the algorithm
being executed. This is particularly effective in defending against DPA-style
attacks but may also be useful in the SPA-style case. Essentially, randomisa-
tion ensures the execution sequence and intermediate results are different for
every invocation and hence reduces the correlation of a given profile with the
secret information. This method exists in many different forms, for example
the addition of blinding factors to exponents; dynamically randomising the
parameters or control flow in exponentiation algorithms; and using redund-
ant representations.

Indistinguishability To prevent leakage of secret information to an SPA-style
attack by revealing the algorithm control flow, this approach aims to modify
operations sequences so that every execution path is uniform. Again, there
are several ways in which this can be achieved. One way is to work dir-
ectly on the mathematical formulae that define the operations and modify
them so that the resulting implementations have identical structure. Another
method is to work directly on the code, rearranging it and inserting dummy
operations, to obtain the same effect.

A key difference between issues of efficiency and security is that the program-
mer is assisted by a compiler in the former case but not in the later. That is,
the programmer is entirely responsible for constructing defence methods against
side-channel analysis. Although the general technique of creating indistinguish-
able functions to foil SPA style attack is well understood; the general barrier

2

Algorithm 1 The double-and-add method for ECC point multiplication.
Input: point P , integer d
Output: point Q = d · P
1: Q← O
2: for i = |d| − 1 downto 0 do
3: Q← 2 ·Q
4: if di = 1 then
5: Q← Q + P
6: end if
7: end for
8: return Q

to implementation is how labour intensive and error prone the process is. This
is especially true when operation sequences in the functions are more complex
than in the stock example of elliptic curve cryptography (ECC), for example
systems like XTR or hyperelliptic curve cryptography (HECC). However, the
task is ideally suited to automation; to this end our focus in this paper is the
realisation of such automation to assist the development of secure software. In
the rest of this Section we introduce the concept and use of indistinguishable
functions in more detail and present an overview of related work. Then, in Sec-
tion 2 we describe the construction of such functions as an optimisation problem
and offer an algorithm to produce solutions in Section 3. Finally, we present
some example results in Section 4 and concluding remarks in Section 5.

1.1 Using Indistinguishable Functions

One of the most basic forms of side-channel attack is that of simple power
analysis (SPA): the attacker is presented with a single profile from the collection
phase and tasked with recovering the secret information. Such an attack can suc-
ceed if one can reconstruct the program control flow by observing the operations
performed in an algorithm. If decisions in the control flow are based on secret
information, it is leaked to the attacker. We focus here on point multiplication
as used in ECC [4] and described by Algorithm 1.

Restricting ourselves to working over the field K = Fp, where p is a large
prime, our elliptic curve is defined by:

E(K) : y2 = x3 + Ax + B

for some parameters A and B. The set of rational points P = (x, y) on this curve,
together with the identity element O, form an additive group. ECC based public
key cryptography typically derives security by presenting an intractable discrete
logarithm problem over this curve group. That is, one constructs a secret integer
d and performs the operation Q = d ·P for some public point P . Since reversing
this operation is believed to be hard, one can then transmit Q without revealing
the value of d.

3

Point addition and doubling on an elliptic curve and often distinguishable
from each other as one is composed from a different sequence of operations than
the other. Denoting addition by A and doubling by D, the collection phase of
a power based side-channel attack presents the attacker with a profile detailing
the operations performed during execution of the algorithm. For example, by
monitoring execution of using the multiplier d = 10012 = 910, one obtains the
profile:

DADDDA

Given this single profile, the analysis phase can recover the secret value of d
simply by spotting where the point additions occur. If the sequence DA occurs
we have that di = 1 whereas if the sequence D occurs then di = 0.

One way to avoid this problem is to employ a double-and-add-always method,
due to Coron [8], whereby a dummy addition is executed if the real one is not.
Although the cases where di = 0 and di = 1 are now indistinguishable, this
method significantly reduces the performance of the algorithm since many more
additions are performed.

However, the ECC group law is very flexible in terms of how the point addi-
tion and doubling operations can be implemented through different curve para-
meterisations, point representations and so on. We can utilise this flexibility to
force indistinguishability by manipulating the functions for point addition and
doubling so that they are no longer different. This is generally achieved by split-
ting the more expensive point addition into two parts, each of which is identical
in terms of the operations it performs to a point doubling. Put more simply, in-
stead of recovering the profile above from the SPA collection phase, an attacker
gets:

DDDDDDDD

from which they can get no useful information. Note that although we present
the use of indistinguishable functions solely for point multiplication or exponen-
tiation, the technique is more generally useful and can be applied in many other
contexts.

1.2 Related Work

Gebotys and Gebotys [12] analyse the SPA resistance of a DSP-based implement-
ation of ECC point multiplication using projective coordinates on curves over
Fp. They show that by hand-modifying the doubling and adding implementation
code, simply by inserting dummy operations, it is possible to obtain significant
improvements. Likewise, Trichina and Bellezza [21] analyse the overhead asso-
ciated with the same approach using mixed coordinates on curves over F2n ,
and again find an efficient hand-constructed solution. Brier and Joye [6] present
unified addition and doubling functions by observing that operations for calcu-
lating slope can be shared between the two cases. Joye and Quisquater [14] and
Liardet and Smart [18] take a different approach by finding different curve para-
meterisations that offer naturally indistinguishable formula; they utilise Hessian

4

and Jacobi form elliptic curves respectively. In other contexts than ECC, Page
and Stam [20] present hand-constructed indistinguishable operations for XTR.

Chevallier-Mames et al. [7] propose a generalised formulation for construct-
ing indistinguishable functions and apply it to processor-level sequences of in-
structions. SPA attacks typically exploit conditional instructions that depend on
secret information: the solution is to make the sequences of instructions (pro-
cesses) associated with both branches indistinguishable. The authors introduce
the concept of side channel atomicity: all processes are transformed, simply by
padding them with dummy operations, so that they execute as a repetition of a
small instruction sequence (a pattern) called a side-channel atomic block. This
idea is closely related to our work and in some ways more powerful: one can hope
to get better results from side-channel atomicity since it allows the instructions
from one function to be mixed with those from another. This offers the potential
for short patterns and hence efficient solutions to indestinguishability.

2 Indistinguishable Functions

In this section we enunciate the problem of building indistinguishable functions
as an optimisation problem. We begin by defining a problem instance.

Definition 1. Let F be a list of N functions F = F1, F2, ..., FN where each
function Fi is itself a list of instructions from a finite instruction set L:

Fi = Fi[1], Fi[2], ..., Fi[|Fi|]
where |Fi| denotes the length of function Fi, and Fi[j] ∈ L denotes instruction
j of function Fi, with 1 ≤ j ≤ |Fi|. Also, let Fi[k..j] denote instructions k to j
in function Fi, with 1 ≤ k ≤ j ≤ |Fi|.
For concreteness one should think of the simple case of two functions F1 and F2

as performing ECC point addition and doubling. Further, the instruction set L
is formed from three-address style operations [19] on elements in the base field,
for example addition and multiplication, and the functions are straight-line in
that they contain no internal control flow structure.

We aim to manipulate the original functions into new versions F ′
i such that

the execution trace of all of them is some multiple of the execution trace of a
shorter sequence. We term this shorted sequence Π , the fixed pattern of opera-
tions which is repeated to compose the larger functions. Clearly we might need
to add some dummy instructions to the original functions as well as reorder-
ing their instructions so that the pattern is followed. To allow for instruction
reordering, we extend our problem definition to include information about the
data dependencies between instructions within each function. We represent these
dependencies as directed graphs.

Definition 2. Given a set F as in Definition 1, let P be the list of pairs

P = (F1, G1), (F2, G2), ..., (FN , GN)

5

where Gi = (Vi, Ei) is a directed graph in which Vi and Ei are the associated
sets of nodes and edges, respectively. Let |Vi| = |Fi| and, to each instruction
Fi[j], associate node vj ∈ Vi. Let Ei contain an edge from node vj to node vk

if and only if executing instruction Fi[j] before instruction Fi[k] disrupts the
normal data flow inside the function. We say that instruction Fi[j] depends on
instruction Fi[k].

In general terms, given a straight-line function Fi described using three-address
operations from our instruction set L, the pair of function and graph (Fi,Gi)
can be constructed as follows:

1. Add |Fi| nodes to Vi so that each instruction in the function is represented
by a node in the graph.

2. For every instruction Fi[j] add an edge (vj , vk) to Ei if and only if Fi[j] uses
a result directly modified by some instruction Fi[k]. Note that we assume
that symbols for intermediate results are not reused; that is the function is
in single-static-assignment (SSA) form [19]. If reuse is permitted, additional
edges must be inserted in the dependency graph to prevent overwriting in-
termediate results.

3. Calculate (Vi, E
′
i), the transitive closure of the graph (Vi, Ei), and take Gi =

(Vi, E
′
i).

We use the dependency graphs in Definition 2 to guarantee that the transforma-
tions we perform on the functions Fi are sound. That is, as long as we respect the
dependencies, the program is functionally correct even though the instructions
are reordered. Definition 3 captures this notion.

Definition 3. A function F ′
i is a valid transformation of a function Fi (written

F ′
i � Fi) if given the dependency graph Gi, F ′

i can be generated by modifying Fi

as follows:

1. Reorder the instructions in Fi, respecting the dependency graph Gi i.e. if
there is an edge (vj , vk) ∈ Ei then instruction Fi[j] must occur after instruc-
tion Fi[k] in F ′

i .
2. Insert a finite number of dummy instructions.

The goal is to find Π and matching F ′
i whose processing overhead compared

to the original programs is minimised. Hence, our problem definition must also
include the concept of computational cost. For the sake of generality, we assign
to each basic instruction in set L an integer weight value that provides a relative
measure of it’s computational weight.

Definition 4. Let ω : L → N be a weight function that, for each basic instruc-
tion l ∈ L, provides a relative value ω(l) for the computational load associated
with instruction l.

Given this cost function, we are now in a position to provide a formulation of
the problem of building indistinguishable functions as an optimisation problem.

6

Definition 5. Given a pair (P, ω) as in Definitions 1, 2 and 4, find a pattern
Π and a list of functions F ′ = F ′

1, F
′
2, ..., F

′
N such that

Π = Π [1], Π [2], ..., Π[|Π |] Π [k] ∈ L, 1 ≤ k ≤ |Π |
F ′

i � Fi 1 ≤ i ≤ N
|F ′

i | = 0 (mod |Π |) 1 ≤ i ≤ N
F ′

i [j] = Π [(j mod |Π |) + 1] 1 ≤ i ≤ N, 1 ≤ j ≤ |F ′
i |

and that

N∑
i=1

|F ′
i |∑

j=1

ω(F ′
i [j])

is minimal.

To reiterate, from this definition we have that each function must composed of
a number of instances of the pattern which constrains the type of each instruc-
tion. As a consequence, each instruction within each function matches the same
instruction, modulo the pattern size, of every other function. Two functions are
hence indistinguishable since one cannot identify their boundaries within a larger
sequence of such patterns. In context, the only leaked information is potentially
the Hamming weight and length of d: this is undesirable but unavoidable given
the scope of our work.

Intuition on the hardness of satisfying these constraints comes from noticing
similarities with well-known NP-complete optimisation problems such as the
Minimum Bin Packing, Longest Common Subsequence and Nearest Codeword
problems [9].

2.1 A Small Example

Recalling our definition of the elliptic curve E(K) in Section 1.1, Algorithm 2
details two functions for affine point addition and doubling on such a curve.
Denoting the addition and doubling as functions F1 and F2 respectively, we find
|F1| = 10 while |F2| = 13. From these functions, we also find our instruction
set is L = {x + y, x − y, x2, x × y, 1/x} with all operations over the base field
K = Fp. Thus, we setup our costs as ω(x + y) = 1, ω(x − y) = 1, ω(x2) = 10,
ω(x × y) = 20 and ω(1/x) = 100.

Notice the role of dependencies in the functions: operation three in F1 de-
pends on operation two but not on operation one. In fact, we can relocate oper-
ation one after operation three to form a valid function F ′

1 since it respects the
data dependencies that exist.

The graphs in Figure 1 represent the direct dependencies between the in-
structions in the addition method (top) and the doubling method (bottom).
Complete dependency graphs as specified in Definition 2 can be obtained by
calculating the transitive closure over the graphs in Figure 1.

7

Algorithm 2 Methods for ECC affine point addition (left) and doubling (right).
Input: P = (x1, y1), Q = (x2, y2)
Output: R = (x3, y3) = P + Q
1: λ1 ← y2 − y1

2: λ2 ← x2 − x1

3: λ3 ← λ−1
2

4: λ4 ← λ1 · λ3

5: λ5 ← λ2
4

6: λ6 ← λ5 − x1

7: x3 ← λ6 − x2

8: λ7 ← x1 − x3

9: λ8 ← λ4 · λ7

10: y3 ← λ8 − y1

Input: P = (x1, y1)
Output: R = (x3, y3) = 2 · P
1: λ1 ← x2

1

2: λ2 ← λ1 + λ1

3: λ3 ← λ2 + λ1

4: λ4 ← λ3 + A
5: λ5 ← y1 + y1

6: λ6 ← λ−1
5

7: λ7 ← λ4 · λ6

8: λ8 ← λ2
7

9: λ9 ← x1 + x1

10: x3 ← λ8 − λ9

11: λ10 ← x1 − x3

12: λ11 ← λ10 · λ7

13: y3 ← λ11 − y1

Algorithm 3 shows a solution for this instance of the optimisation problem.
The cost of the solution is 12 since we add an extra square and two extra addi-
tions both denoted by the use of λd as their arguments. It is easy to see that it
is actually an absolute minimal value. To clarify the criteria specified in Defini-
tion 5, let us see how they apply to this case.

The pattern Π is given by the operation sequence of the doubling method,
and we have |Π | = 13. To ensure both |F ′

1| = 0 (mod |Π |) and |F ′
2| = 0

(mod |Π |) we need to add three dummy instructions to F1. The solution presents
no mismatches between the instruction sequences of either function and the pat-
tern Π , so the restriction F ′

i [j] = Π [(j mod |Π |) + 1] holds for all valid i and
j values. Finally, it is easy to see that both F ′

i are valid transformations of the
original Fi. Instruction reordering occurs only once in F ′

1 (instructions 3 and 5),
and these are independent in F1. F ′

2 is identical to F2.

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10 11 12 13

Fig. 1. Dependency graphs for the methods in Algorithm 2.

8

Algorithm 3 Indistinguishable versions of the methods in Algorithm 2.
Input: P = (x1, y1), Q = (x2, y2)
Output: R = (x3, y3) = P + Q
1: λd ← λ2

d

2: λd ← λd + λd

3: λ2 ← x2 − x1

4: λd ← λd + λd

5: λ1 ← y2 − y1

6: λ3 ← λ−1
2

7: λ4 ← λ1 · λ3

8: λ5 ← λ2
4

9: λ6 ← λ5 − x1

10: x3 ← λ6 − x2

11: λ7 ← x1 − x3

12: λ8 ← λ4 · λ7

13: y3 ← λ8 − y1

Input: P = (x1, y1)
Output: R = (x3, y3) = 2 · P
1: λ1 ← x2

1

2: λ2 ← λ1 + λ1

3: λ3 ← λ2 + λ1

4: λ4 ← λ3 + A
5: λ5 ← y1 + y1

6: λ6 ← λ−1
5

7: λ7 ← λ4 · λ6

8: λ8 ← λ2
7

9: λ9 ← x1 + x1

10: x3 ← λ8 − λ9

11: λ10 ← x1 − x3

12: λ11 ← λ10 · λ7

13: y3 ← λ11 − y1

3 An Optimisation Algorithm

Our approach to solving the problem as described above is detailed in Al-
gorithm 4. The algorithm represents an adaptation of Threshold Accepting [10],
a generic optimisation algorithm. Threshold Accepting is a close relative of sim-
ulated annealing, where candidate solutions are deterministically accepted or
rejected according to a predefined threshold schedule: a proposed solution is
accepted as long as it does not increase the current cost by more than the cur-
rent threshold value. Note that we are not aiming to find the optimal solution,
but to find a good enough approximation of it that can be used in practical
applications.

Algorithm 4 makes S attempts to find an optimal pattern size, which is
selected randomly in each s-iteration (line 2). In each of these attempts, the
original functions are taken as the starting solution, with the minor change that
they are padded with dummy instructions, so as to make their size multiple of
the pattern size (lines 3 to 6).

The inner loop (lines 10 to 18), which runs T times, uses a set of randomised
heuristics to obtain a neighbour solution. This solution is accepted if it does not
represent a relative cost increase greater than the current threshold value. The
threshold varies with t, starting at a larger value for low values of t and gradually
decreasing. The number of iterations S and T must be adjusted according to the
size of the problem.
The quality of a solution is measured using a cost function that operates as
follows:

– The complete set of instructions in a solution x is seen as a matrix with |Π |
columns and (

∑N
i=1 |F ′

i |)/|Π | rows (see Figure 2), in which each function
occupies |F ′

i |/|Π | consecutive rows.

9

Algorithm 4 An optimisation algorithm for indistinguishable operations.
Input: (P, ω)
Output: (Π,F ′), a quasi-optimal solution to the problem in Definition 5
1: for s = 1 to S do
2: |Π | ← random pattern size
3: x← {Fi, 1 ≤ i ≤ N}
4: for all F ′

i ∈ x do
5: Append |Π | − (|F ′

i | (mod |Π |)) dummy instructions to F ′
i

6: end for
7: cost← cost(x)
8: result← x
9: best← cost

10: for t = 1 to T do
11: x′ ← neighbour(x)
12: thresh← threshold(t, T)
13: cost′ ← cost(x′)
14: if (cost′ − cost)/cost− 1 < thresh then
15: x← x′

16: cost← cost′

17: end if
18: end for
19: if cost < best then
20: result← x
21: best← cost
22: end if
23: end for
24: return result

– Throughout the algorithm, the pattern Π is adjusted to each solution by
taking Π [k] as the most common basic instruction in column k of the matrix.

– A dummy instruction is always taken to be of the same type as the pattern
instruction for its particular column, so dummy instructions are ignored
when adjusting Π to a particular solution.

– The overall cost of a solution has two components: c and d. The former
is the cost associated with deviations from the pattern and it is evaluated
as the sum, taken over all non-matching instructions in the matrix, of the
weight difference relative to the corresponding pattern instruction. The latter
is the cost associated with dummy operations and it is evaluated as the
accumulated weight of all the dummy instructions in the matrix.

– The relative importance of these components can be tuned to put more
or less emphasis on indistinguishability. This affects the trade-off between
indistinguishability and processing overhead.

Throughout its execution, the algorithm keeps track of the best solution it has
been able to reach (lines 19 to 22); this is returned when the algorithm terminates
(line 24).

10

Π [1] Π [2] ... Π [|Π | − 1] Π [|Π |]
2
666666666664

F ′
1[1] F ′

1[2] ... F ′
1[|Π | − 1] F ′

1[|Π |]
F ′

1[|Π |+ 1] F ′
1[2] ... F ′

1[2|Π | − 1] F ′
1[2|Π |]

...
...

...
...

...
F ′

1[|F ′
1| − |Π |+ 1] F ′

1[|F ′
1| − |Π |+ 2] ... F ′

1[|F ′
1| − 1] F ′

1[|F ′
1|]

F ′
2[1] F ′

2[2] ... F ′
2[|Π | − 1] F ′

2[|Π |]
...

...
...

...
...

F ′
N [|F ′

N | − |Π |+ 1] F ′
N [|F ′

N | − |Π |+ 2] ... F ′
N [|F ′

N | − 1] F ′
N [|F ′

N |]

3
777777777775

Fig. 2. A solution as a matrix of instructions.

A neighbour solution is derived from the current solution by randomly se-
lecting one of the following heuristics:

Tilt function left A function F ′
i is selected randomly, and its instructions are

all moved as far to the left as possible, filling spaces previously occupied by
dummy instructions or just freed by moving other instructions. The order of
the instructions is preserved, and an instruction is only moved if it matches
the pattern instruction for the target column.

Tilt function right Same as previous, only that instructions are shifted to the
right.

Move instruction left A function F ′
i is selected randomly, and an instruction

F ′
i [j] is randomly picked within it. This instruction is then moved as far to

the left as possible. An instruction is only moved if this does not violate
inter-instruction dependencies, and it matches the pattern instruction for
the target column.

Move instruction right Same as previous, only that the instruction is shifted
to the right.

After application of the selection heuristic, the neighbour solution is optimised
by removing rows or columns containing only dummy instructions. If the final
solution produced by Algorithm 4 includes deviations from the chosen pattern,
these can be eliminated in an optional post-processing phase. In this phase we
increase the pattern size to cover the mismatches and introduce extra dummy
operations to retain indestinguishability. If the number of mismatches is large,
this produces a degenerate solution which is discarded due to the high related
cost.

Our experimental results indicate the following rules of thumb that should
be considered when parameterising Algorithm 4:

– S should be at least half of the length of the longest function.
– T should be a small multiple of the total number of instructions.
– An overall cost function calculated as c2 + d leads to a good compromise

between indistinguishability and processing overhead.

11

– The threshold should decrease quadratically, starting at 70% for t = 0 and
reaching 10% when t = T − 1.

– The neighbour generation heuristics should be selected with equal probabil-
ity, or with a small bias favouring moving over tilting mutations.

4 Results

Using Algorithm 4 we have been able to produce results equivalent to various
hand-made solutions published in the literature for small sized problems, and
to construct indistinguishable versions of the much larger functions for point
addition and doubling in genus 2 hyper-elliptic curves over finite fields. To save
space, we refer to Appendices within the full version of this paper for a complete
set of results [3].

Appendix 1 contains the results produced by Algorithm 4 when fed with the
instruction sequences for vanilla EC affine point addition over Fp using projective
coordinates, as presented by Gebotys and Gebotys in (Figure 1,[12]). This result
has exactly the same overhead as the version presented in the same reference.
Appendix 2 contains the instruction sequences corresponding to formulae for
finite field arithmetic in a specific degree six extension as used in a number
of torus based constructions [13, 11], together with the results obtained using
Algorithm 4 for this problem instance.

Table 1 shows the number of dummy field operations added to each of the
functions in Appendix 2. Also shown in Table 1 is the estimated overhead for an
exponentiation. We assume the average case in which the number of squarings
is twice the number of multiplications. This is roughly equivalent to the best
hand-made solution that we were able to produce in reasonable time, even if the
number of dummy multiplications is slightly larger in the automated version.

Table 1. Overheads for the indistinguishable functions in Appendix 2.

Operations Square Multiply

Add 9 11

Multiply 4 2

Shift 0 12

Overhead

24%

19%

400%

Appendix 3 includes indistinguishable versions of hyper-elliptic curve point adding
and doubling functions. These implementations correspond to the general case of
the explicit formulae for genus 2 hyperelliptic curves over finite fields using affine
coordinates. provided by Lange in [17]. A pseudo-code implementation of these
formulae is also included in Appendix 3. In our analysis, we made no assump-
tions as to the values of curve parameters because our objective was to work
over a relatively large problem instance. Operations involving curve parameters
were treated as generic operations.

12

In this example, the group operations themselves contain branching instruc-
tions. To accommodate this, we had to first create indistinguishable versions
of the smaller branches inside the addition and doubling functions, separately.
The process was then applied globally to the two main branches of the addition
function and to the doubling function as a whole, which meant processing three
functions of considerable size, simultaneously.

Table 2 (left) shows the number of dummy field operations added to each of
the functions in Appendix 3. Note that functions Add2′ and Double′ correspond
to cases that are overwhelmingly more likely to occur. The overhead, in these
cases, is within reasonable limits. Also shown in Table 2 (right) is the estimated
overhead for a point multiplication. We assume the average case in which the
number of doublings is twice the number of additions, and consider only the
most likely execution sequences for these operations (Add2′ and Double′).

Table 2. Overheads for the indistinguishable functions in Appendix 3.

Operations Add1 Add2′ Add2′′ Double′ Double′′

Add 35 20 37 4 16

Multiply 28 14 27 5 16

Square 7 5 6 2 4

Invert 1 1 1 1 1

Overhead

19%

25%

60%

100%

5 Conclusion

Defence against side-channel attacks is a vital part of engineering software that
is to be executed on constrained devices. Since such devices are used within an
adversarial environment, sound and efficient techniques are of value even if they
are hard to implement. To this end we have investigated an automated approach
to constructing indistinguishable functions, a general method of defence against
certain classes of side-channel attack which are notoriously difficult to implement
as the functions grow more complex. Our results show that efficient versions of
such functions, which are competitive with hand-constructed versions, can be
generated with only minor computational effort.

This work is pitched in the context of cryptography-aware compilation: the
idea that programmers should be assisted in describing secure software just like
they are offered support to optimise software. We have embedded our algorithm
in such a compiler which can now automatically manipulate a source program so
the result is more secure. As such, interesting further work includes addressing
the relationship between register allocation and construction of indistinguishable
functions. Ideally, the number of registers used is minimised using, for example,
a graph colouring allocator. Manipulation of functions can alter the effective-
ness of this process, a fact that requires some further investigation. Equally,
the relationship between the presented work and side-channel atomicity might
provide an avenue for further work. One would expect a similar method to the

13

one presented here to be suitable for automatic construction of side-channel
atomic patterns, and that aggressive inlining within our compiler could present
the opportunity to deploy such a method.

Acknowledgements

The authors would like to thank Nigel Smart and Richard Noad for their in-
put during this work, and the anonymous reviewers whose comments helped to
improve it.

References

1. D. Agrawal, B. Archambeault, J.R. Rao and P. Rohatgi. The EM Side-Channel(s).
In Cryptographic Hardware and Embedded Systems (CHES), Springer-Verlag LNCS
2523, 29–45, 2002.

2. D. Agrawal, J.R. Rao and P. Rohatgi. Multi-channel Attacks. In Cryptographic
Hardware and Embedded Systems (CHES), Springer-Verlag LNCS 2779, 2–16,
2003.

3. M. Barbosa and D. Page. On the Automatic Construction of Indistinguishable
Operations. In Cryptology ePrint Archive, Report 2005/174, 2005.

4. I.F. Blake, G. Seroussi and N.P. Smart. Elliptic Curves in Cryptography. Cam-
bridge University Press, 1999.

5. I.F. Blake, G. Seroussi and N.P. Smart. Advances in Elliptic Curve Cryptography.
Cambridge University Press, 2004.

6. É. Brier and M. Joye. Weierstraß Elliptic Curves and Side-channel Attacks. In
Public Key Cryptography (PKC), Springer-Verlag LNCS 2274, 335–345, 2002.

7. B. Chevallier-Mames, M. Ciet and M. Joye. Low-Cost Solutions for Preventing
Simple Side-Channel Analysis: Side-Channel Atomicity. In IEEE Transactions on
Computers, 53(6), 760–768, 2004.

8. J-S. Coron. Resistance against Differential Power Analysis for Elliptic Curve
Cryptosystems. In Cryptographic Hardware and Embedded Systems (CHES),
Springer-Verlag LNCS 1717, 292–302, 1999.

9. P. Crescenzi and V. Kann. A Compendium of NP Optimization Problems. Avail-
able at: http://www.nada.kth.se/∼viggo/problemlist/.

10. G. Dueck and T. Scheuer. Threshold Accepting: A General Purpose Optimization
Algorithm Appearing Superior to Simulated Annealing. In Journal of Computa-
tional Physics, 90(1), 161–175, 1990.

11. M. van Dijk, R. Granger, D. Page, K. Rubin, A. Silverberg, M. Stam and D. Wood-
ruff. Practical Cryptography in High Dimensional Tori. Advances in Cryptology
(EUROCRYPT), Springer-Verlag LNCS 3494, 234–250, 2005.

12. C.H. Gebotys and R.J. Gebotys. Secure Elliptic Curve Implementations: An Ana-
lysis of Resistance to Power-Attacks in a DSP Processor. In Cryptographic Hard-
ware and Embedded Systems (CHES), Springer-Verlag LNCS 2523, 114–128, 2002.

13. R. Granger, D. Page and M. Stam. A Comparison of CEILIDH and XTR. In
Algorithmic Number Theory Symposium (ANTS), Springer-Verlag LNCS 3076,
235–249, 2004.

14. M. Joye and J-J. Quisquater. Hessian Elliptic Curves and Side-Channel Attacks. In
Cryptographic Hardware and Embedded Systems (CHES), Springer-Verlag LNCS
2162, 402–410, 2001.

14

15. P.C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems. In Advances in Cryptology (CRYPTO), Springer-Verlag LNCS
1109, 104–113, 1996.

16. P.C. Kocher, J. Jaffe and B. Jun. Differential Power Analysis. In Advances in
Cryptology (CRYPTO), Springer-Verlag LNCS 1666, 388–397, 1999.

17. T. Lange. Efficient Arithmetic on Genus 2 Hyperelliptic Curves over Finite Fields
via Explicit Formulae. In Cryptology ePrint Archive, Report 2002/121, 2002.

18. P-Y. Liardet and N.P. Smart. Preventing SPA/DPA in ECC Systems Using
the Jacobi Form. In Cryptographic Hardware and Embedded Systems (CHES),
Springer-Verlag LNCS 2162, 391–401, 2001.

19. S.S. Muchnick. Advanced Compiler Design and Implementation, Morgan
Kaufmann, 1997.

20. D. Page and M. Stam. On XTR and Side-Channel Analysis. In Selected Areas in
Cryptography (SAC), Springer-Verlag LNCS 3357, 54–68, 2004.

21. E. Trichina and A. Bellezza. Implementation of Elliptic Curve Cryptography with
Built-In Counter Measures against Side Channel Attacks. In Cryptographic Hard-
ware and Embedded Systems (CHES), Springer-Verlag LNCS 2523, 98–113, 2002.

15

