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Abstract This paper proposes a generalized descent directions-guided multiobjective algo-
rithm (DDMOA2). DDMOA2 uses the scalarizing fitness assignment in its parent and
environmental selection procedures. The population consists of leader and non-leader indi-
viduals. Each individual in the population is represented by a tuple containing its genotype
as well as the set of strategy parameters. The main novelty and the primary strength of
our algorithm is its reproduction operator, which combines the traditional local search
and stochastic search techniques. To improve efficiency, when the number of objective
is increased, descent directions are found only for two randomly chosen objectives. Fur-
thermore, in order to increase the search pressure in high-dimensional objective space, we
impose an additional condition for the acceptance of descent directions found for leaders
during local search. The performance of the proposed approach is compared with those pro-
duced by representative state-of-the-art multiobjective evolutionary algorithms on a set of
problems with up to 8 objectives. The experimental results reveal that our algorithm is able
to produce highly competitive results with well-established multiobjective optimizers on all
tested problems. Moreover, due to its hybrid reproduction operator, DDMOA2 demonstrates
superior performance on multimodal problems.
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1 Introduction

Many real-world optimization problems involve the simultaneous optimization of several
conflicting objectives. These problems are called multiobjective optimization problems.
Assuming minimization, a multiobjective optimization problem with m objectives and n

decision variables can be formulated mathematically as follows:

minimize: f (x) = (f1(x), . . . , fm(x))
T

subject to: x ∈ �
(1)

where x is the decision vector defined in the feasible decision space � ⊆ R
n and

� = {x ∈ R
n | l ≤ x ≤ u}, l and u are the lower and upper bounds of the decision vari-

ables, respectively, and f (x) is the objective vector defined in the objective space R
m. The

goal of multiobjective optimization is to find a set of well-distributed compromise solutions
representing the different trade-offs with respect to the given objective functions. This set
is known as the set of Pareto optimal solutions.

Classical methods for solving multiobjective optimization problems mostly rely on
scalarization that means converting the problem into a single-objective optimization prob-
lem with a real valued objective function, which depends on some parameters and is termed
the scalarizing function. Repeated runs with different parameter settings are used to find
multiple Pareto optimal solutions [20]. However, there are a few classical methods which
attempt to find multiple Pareto optimal solutions in a single simulation run [22].

On the other hand, evolutionary algorithms (EAs) have emerged as a powerful alternative
for solving multiobjective optimization problems. Evolutionary algorithms are particularly
suitable for this task because they deal simultaneously with a set of possible solutions,
called population, which allows to find several members of the Pareto optimal set in a single
run of the algorithm, instead of having to perform series of separate runs. A number of
multiobjective evolutionary algorithms have been proposed during the last two decades and
successfully applied to solve a large number of multiobjective optimization problems [4, 6].

The current research in evolutionary multiobjective optimization (EMO) mainly focuses
on the fitness assignment and selection of fittest individuals in multiobjective search. How-
ever, recombination operators are crucial to the performance of evolutionary algorithms.
Moreover, combinations of EAs and local search methods often outperforms traditional evo-
lutionary algorithms in single-objective optimization [5]. Although a few hybrid approaches
for multiobjective optimization have been developed [17], hybrid multiobjective evolution-
ary algorithms remain to be an under-explored research area in multiobjective optimization.

A hybrid multiobjective evolutionary algorithm (DDMOA) was proposed in [9], and
further studied in [11]. DDMOA showed highly competitive results when compared with
representative state-of-the-art multiobjective algorithms. However, several issues were iden-
tified as potential weaknesses of DDMOA. In particular, in DDMOA the population consists
only of nondominated solutions that can cause only a few or even one solution being
presented in the population. In turn, that can severely deteriorate the performance of the
algorithm on multi-modal problems. Another weakness is that the original DDMOA is not
applicable to many-objective problems due to its selection operator. Moreover, with increas-
ing number of objectives, finding descent directions for all objectives using local search
may be computationally expensive.

In [10], an improved algorithm, called DDMOA2, was proposed in order to overcome
the aforementioned drawbacks. DDMOA2 demonstrated the superior performance on a set
of problems with different characteristics comparing with its predecessor [10]. In this paper,
we extend DDMOA2 to deal with problems having more then three objectives. In order to
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increase the search pressure in high-dimensional objective space we impose an additional
condition for the acceptance of descent directions calculated for leaders in local search
procedure. The performance of the algorithm is studied on a set of scalable test problems
and results are compared with representative state-of-the-art EMO algorithms.

The remainder of this paper is organized as follows. In Section 2, we give a detailed
description of DDMOA2. In Section 3, we present the methodology used to validate our
approach and report on the obtained experimental results. In Section 4, we conclude and
discuss some possible future work.

2 DDMOA2

The main loop of DDMOA2 is given by Algorithm 1. It is a hybrid evolutionary algo-
rithm with (μ+ λ) selection scheme, where in each generation, the selection of leaders and
the adaptation of the strategy parameters of all population members are followed by the
successive application of parent selection, mutation, and environmental selection.

Algorithm 1 DDMOA2

1: g ← 0;
2: initialization: P (g), W = {w1, . . . ,wμ};
3: repeat
4: P (g) ← leaderSelection(P (g));
5: P (g) ← updateSearchMatrix(P (g));
6: P (g) ← updateStepSize(P (g));
7: P (g) ← parentSelection(P (g));
8: P (g) ← mutation(P (g));
9: P (g+1) ← environmentalSelection(P (g));

10: g ← g + 1;
11: until the stopping criterion is met
12: output: P (g);

In DDMOA2, an individual ai (i ∈ {1, . . . , μ}) in the current population P (g) in gener-
ation g is a tuple of the form [xi , δi ,Si , σi], where xi ∈ R

n is the decision vector, δi > 0
is the step size used for local search, Si ∈ R

n×2 is the search matrix, and σi > 0 is the step
size used for reproduction.

In the following, the components of DDMOA2 are discussed in more detail.

2.1 Initialization Procedure

The algorithm starts by generating a set of weight vectors W = {w1, . . . ,wμ} and initializ-
ing the population of size μ using Latin hypercube sampling [19]. The strategy parameters
of each population member are initialized taking default values. The search matrix S(0) is
initialized by simply generating a zero matrix of size n× 2.

2.2 Leader Selection Procedure

Each generation of DDMOA2 is started by selecting leaders of the current population. A
leader is a population member that performs the best on at least one weight vector. Thus,
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leaders are selected as follows. First, the objective values of all individuals in the population
are normalized:

f i =
fi − fmin

i

fmax
i − fmin

i

, ∀i ∈ {1, . . . ,m} (2)

where fmin
i and fmax

i are the minimum and maximum values of the i-th objective in the
current population, respectively, and f i ∈ [0, 1],∀i ∈ {1, . . . ,m} is the normalized objec-
tive value. For each weight vector, the fitness of each population member is calculated on
a given weight vector using the weighted Chebyshev method, which after normalization of
objectives can be defined as:

ffitness = max
1≤i≤m

{wi f i(x) } (3)

where ffitness is the fitness of the population member x on the weight vector w. An individ-
ual having the best fitness on a given weight vector is a leader. It should be noted that one
leader can have the best fitness value on several weight vectors.

2.3 Update Search Matrix Procedure

Each generation of DDMOA2 is started by updating the search matrices of all individuals in
the current population invoking updateSearchMatrix procedure. In DDMOA2, inde-
pendently on the dimensionality of the objective space descent directions are found only
for two randomly chosen objectives. Thus, the search matrix of each population member
contains two columns that store descent directions for these randomly chosen objectives.
The motivation behind the finding descend directions only for two instead of all objectives
is that with an increasing number of objectives to find descend direction for all objectives
using local search may become expensive.

In the beginning of updateSearchMatrix procedure two objectives are chosen at
random, and only leaders of the current population are considered while all the other
individuals are temporarily discarded.

Thereafter, for the first chosen objective, the resulting population is sorted in ascending
order and partitioned into α equal parts. Thus, α subpopulations are defined in order to pro-
mote different reference points for the computation of descent directions. It follows that in
each subpopulation, representative individual ar is selected. A representative of the subpop-
ulation is a solution with the smallest value of the corresponding objective function among
other solutions in the subpopulation and δ > δtol. Thus, if the solution with the smallest
value of the corresponding objective has δ ≤ δtol then solution with the second smallest
value is selected as representative and so on. After that, descent direction for corresponding
objective function is computed for representative using coordinate search [23]. During coor-
dinate search, step size δ of representative is reduced if no decrease in the objective function
value is found. Each time, a trial solution is calculated and this solution is compared with
the current population. If this trial solution has a smaller value for at least one objective
compared with each member of the current population then it is added to the population,
assuming the default values of strategy parameters.

In order to increase the search pressure, descent direction sr for representative xr is
accepted during coordinate search if trial solution xr + sr is not worse in all objectives than
xr, and direction sr leads to the decrease of the corresponding objective (objective for which
descent direction is calculated). To better understand this procedure consider an example
illustrated in Fig. 1. Where a subpopulation is presented and coordinate search is used to find
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Fig. 1 Computation of descent directions

descent directions with respect to f1. Simply calculating descent direction sr for subpopu-
lation representative xr, a descent direction which shown in Fig. 1a can be found. Although
this direction leads to a decrease with respect to f1, it does not lead to the promising region
of the search. Imposing the condition that trial solution xr + sr cannot be worse in all objec-
tives and it must be better than xr in f1, we exclude the possibility of obtaining a descent
direction shown in Fig. 1a. An example of a descent direction that satisfies such condition
is presented in Fig. 1b.

When descent direction sr for subpopulation representative is found, descent directions
for all other subpopulation members are computed as follows:

si = xr − xi + sr, (4)

where si is the descent direction for the i-th subpopulation member, xi is the decision
vector of the i-th subpopulation member, xr is the subpopulation representative, and sr is
the descent direction for the representative. As an example, descent directions computed for
other individuals in the subpopulation are shown by dashed arrows in Fig. 1c. The calculated
descent directions are stored in the first column of the search matrices of the corresponding
individuals. Thereafter, the same procedure for finding descent directions is performed for
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the second chosen objective and the results are stored in the second column of the search
matrices.

After the search matrices of leaders of the current population are updated, the search
matrices of all other population members need to be updated. To do this, we use a simple
stochastic procedure as follows. For each non-leader individual, a leader is randomly chosen
and this leader shares its search matrix, i.e., non-leader individual’s search matrix is equal
to the selected leader’s search matrix. This way, at the end of the updateSearchMatrix
procedure, the search matrices of all population members are updated. Usually, after this
procedure the population size is greater than μ as some promising solutions satisfying the
aforementioned conditions are added to the population during coordinate search.

2.4 Update Step Size Procedure

Before generating offspring, the step size of each population member needs to be updated.
However, there is no common rule to update the step size σ , but it must be done carefully
to ensure convergence to the Pareto set, starting from a larger value at the beginning and
gradually reducing it during the generations. DDMOA2 uses the following rule for updating
the step size of each population member:

σ = max{exp(τN(0, 1)) σ

(
1− 3 funEval

maxEval

)

0 , δtol} (5)

where τ is the learning parameter (τ = 1/
√

2n), N(0, 1) is a random number sampled
from the normal distribution with mean 0 and standard deviation 1, σ0 is the initial value of
the step size, f unEval is the current number of function evaluations, and maxEval is the
maximum number of function evaluations. The idea here is to exponentially reduce the step
size depending on the current number of function evaluations and multiply it by a scaling
factor (adapted from evolution strategies [1]), thereby obtaining different step size values
among the population members.

2.5 Parent Selection Procedure

In each generation, λ offspring individuals are generated by mutating the correspondent
parent. The decision on how many offspring are produced from each population mem-
ber is made in parentSelection procedure. At the beginning, it is assumed that none
offspring is generated by each individual. Then, binary tournament selection based on
scalarizing fitness is performed to identify which population members will be mutated in
order to produce offspring. This selection process is based on the idea proposed in [15] and
fosters promising individuals to produce more offspring.

The procedure starts by normalizing the objective values of all individuals in the popu-
lation as defined in (2). Then, the selection process is performed in two stages. In the first
stage, only leaders of the current population are considered. For each weight vector, two
individuals are randomly selected and the fitness of the corresponding individual is calcu-
lated as defined in (3). Individual having smaller fitness value is a winner and the number of
times it is mutated is augmented by one. Thereafter, all leaders are removed from the popu-
lation and for each weight vector binary tournament selection is performed on the resulting
population in the same way as it is done for leaders. It should be noted that some population
members might be mutated several times as a result of this procedure, while others will not
produce any offspring at all.
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2.6 Mutation Procedure

After identifying which population members have to be mutated, offspring are generated
in mutation procedure. For the corresponding individual, the mutation is performed as
follows:

x ′ = x + σS ν (6)

where σ is the step size, S is the search matrix and ν is a column vector of random numbers
sampled from the uniform distribution (∀i ∈ {1, 2} : νi ∼ U(0, 1)). In order to guarantee
that each new solution x ′ = (x ′1, . . . , x

′
n)

T belongs to �, projection is applied to each
component of the decision vector:

x′ = min{max{x ′, l},u}

After offspring x′ is repaired, it is evaluated and added to the population.

2.7 Environmental Selection Procedure

At the end of each generation, μ fittest individuals are selected in
environmentalSelection procedure from the enlarged population. DDMOA2 uses
the selection mechanism proposed in [14].

First, the objective values of all individuals are normalized as defined in (2). Next, the
following steps are performed:

1. matrix M is calculated, which stores metrics for each population member on each
weight vector (for each population member, a metric on a corresponding weight vector
is computed as defined in (3));

2. for each column (weight vector), the minimum and second smallest metric value are
found;

3. for each column, metric values are scaled by the minimum value found, except for the
row which gave the minimum value, this result is scaled by the second lowest value;

4. for each row (population member), the minimum scaled value is found, this value
represents individual’s fitness;

5. the resulting column vector is sorted, and μ individuals with the smallest fitness values
are selected.

Normalizing objective values allows to cope with differently scaled objectives, while the
weighted Chebyshev method can find optimal solutions in convex and nonconvex regions
of the Pareto front. When the stopping criterion is met, the algorithm returns its final
population.

3 Performance Assessment

In order to validate our algorithm, we compare its performance with that produced by
DDMOA [11] and four state-of-the-art EMO algorithms NSGA–II [7], IBEA [24] and
MOEA/D [18], and MSOPS2 [14] on the DTLZ test suite [8] with 30 decision variables
having between 2 and 8 objectives.
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3.1 Performance Indicators

To assess the outcomes produced by the algorithms we use the following quality indicators:

· The unary additive epsilon indicator [26]. This indicator is based on the concept of
additive ε-dominance and defined with respect to a reference set R as:

Iε = inf
ε∈R

{∀a′ ∈ R ∃a ∈ A : a �ε a′}. (7)

The epsilon indicator gives the minimum factor ε such that any objective vector in R is
ε-dominated by at least one objective vector in A. Smaller values of Iε are preferable.

· The hypervolume indicator [25]. It can be defined as the Lebesgue measure 
 of the
union of hypercuboids in the objective space:

IH = 


( ⋃
a∈A∧r∈R

{f1(a
′), . . . , fm(a′) : a ≺ a′ ≺ r}

)
(8)

where A = {a1, . . . , a|A|} is an approximation set, and R = {r1, . . . , r |R|} is an
appropriately chosen reference set. The higher value of IH , the more preferable an
approximation set is.

· Inverted generational distance (IGD) [3]. If the size of the discretized Pareto front
PF = {a′1, . . . , a′|PF |} is large enough to represent the true Pareto optimal front, this
indicator could measure both the diversity and convergence of an approximation set
A = {a1, . . . , a|A|} and is defined as:

IIGD =
∑

a′∈PF
d(a′, A)

|PF | (9)

where d(a′, A) is the minimum Euclidean distance between a′ and the points in an
approximation set A. Smaller values of IIGD are preferable.

To calculate the epsilon and IGD indicators, for all problems we generate 1,000 uni-
formly distributed points along the Pareto front. To calculate the hypervolume indicator, we
use the nadir point for the corresponding problem as a reference point. Thus, only those
members of the approximation set, which dominate the nadir point, are used for calcu-
lating the hypervolume. If there is no point in the approximation set that dominates the
nadir point, then the hypervolume is equal to zero. Further, solutions used to calculate
the hypervolume are normalized using the utopian and nadir points for the corresponding
problem. When the number of objectives is more than 6 the hypervolume is approximated
using 106 uniformly sampled points, otherwise the exact computation of the hypervolume is
used.

Since we are dealing with stochastic algorithms we want to provide the results with
statistical confidence. Therefore, we perform pairwise comparison of the algorithms with
respect to the quality indicators using a nonparametric Wilcoxon rank sum test [13]. All
tests are performed at significance level of α = 0.05.
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3.2 Experimental Setup

The MATLAB® implementations of DDMOA2, DDMOA, and MSOPS21 are used, IBEA
is used within the PISA [2] framework,2 whereas NSGA-II and MOEA/D are used within
the jMetal [12] framework.3 For each algorithm, 30 independent runs are performed on
each problem with a population size of μ = 200, running for 60,000 function evaluations.
All other parameters for the algorithms use the default settings. The default parameters
for DDMOA2 are: the initial step size for local search δ(0) = 0.4, the initial step size for
reproduction σ (0) = 5, the number of subpopulations α = 5, and the tolerance for step size
δtol = 10−3.

3.3 Experimental Results

Tables 1, 2, and 3 present the median values of the quality indicators and the statistical com-
parison of the algorithms with respect to the obtained indicator values. In Table 1, small
values of the epsilon indicator suggest that approximation sets produced by DDMOA2 are
relatively close to the true Pareto fronts. From Table 2, it can be seen that the hypervol-
ume indicator values calculated for the results produced by DDMOA2 are always greater
than zero. This suggests that approximations returned by DDMOA2 are within the bounds
of the Pareto fronts for the considered problems. Analyzing Table 3, conclusions consis-
tent with those based on the previous two indicators can be drawn from the IGD values.
DDMOA2 performs statistically better on DTLZ1,3 in all dimensions, providing a com-
petitive performance on the other problems and being statistically better than DDMOA
on the majority of problems having more than three objectives. Thus, the obtained indi-
cator values emphasize that DDMOA2 can provide adequate approximations in terms of
the proximity to the Pareto front as well as the diversity of the obtained solutions. From
the obtained results, we can conclude that DDMOA2 performs generally better on multi-
modal problems in all dimensions. This directly results from the DDMOA2 operator for
performing the search in the decision space. The strategy based on local search to find
descend directions for two randomly chosen objectives and using their linear combination
to generate offspring appears to be an effective to explore the search space. Further-
more, the introduced scalarizing fitness assignment allows to deal with problems having
more than three objectives. On the other hand, the performance of DDMOA becomes
increasingly poor when the number of objectives grows, due to the fact that it does not
possesses a proper selection operator. Since DDMOA uses local search for all objectives,
an extensive exploration of the search space is carried out, allowing to find a number of
solutions in the promising regions even without a proper selection operator for dealing
with high-dimensional problems. This results in a competitive performance on some four
and five-objective problems. However, this approach becomes inefficient in higher dimen-
sions, spending the whole computational budget during a small number of generations.
MOEA/D works better on the problems with degenerated Pareto fronts beyond three objec-
tives, whereas DDMOA2 is the second best concerning all the indicators on DTLZ6. IBEA
produces the best performance with respect to the epsilon and hypervolume indicators on
the DTLZ2,4, and 7 test problems having more than three objectives. It is not surprising,

1available at http://code.evanhughes.org
2available at http://www.tik.ee.ethz.ch/pisa
3available at http://jmetal.sourceforge.net

http://code.evanhughes.org
http://www.tik.ee.ethz.ch/pisa
http://jmetal.sourceforge.net
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Table 1 Median values of the epsilon indicator after 30 runs (the lower the better)

The superscripts 1, 2, 3, 4, 5, and 6 indicate whether the respective algorithm performs significantly better
than DDMOA2, DDMOA, NSGA–II, IBEA, MOEA/D, and MSOPS2 respectively
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Table 2 Median values of the hypervolume indicator after 30 runs (the higher the better)

The superscripts 1, 2, 3, 4, 5, and 6 indicate whether the respective algorithm performs significantly better
than DDMOA2, DDMOA, NSGA–II, IBEA, MOEA/D, and MSOPS2 respectively
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Table 3 Median values of the IGD indicator after 30 runs (the lower the better)

The superscripts 1, 2, 3, 4, 5, and 6 indicate whether the respective algorithm performs significantly better
than DDMOA2, DDMOA, NSGA–II, IBEA, MOEA/D, and MSOPS2 respectively
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Table 4 Mean ranks achieved by the algorithms

Indicator DDMOA2 DDMOA NSGA–II IBEA MOEA/D MSOPS2

Epsilon 2.5918 3.2041 4.8367 2.6327 3.1224 4.6122

Hypervolume 2.4082 3.2143 4.7755 2.9082 3.7143 3.9796

IGD 2.4898 2.9388 4.7143 3.1429 3.3878 4.3265

since these problems do not present much difficulties in terms of the convergence and the
selection procedure in IBEA relies on the concept of ε-dominance. Although MSOPS2
produces a relatively poor performance in the performed experiments, it behaves the best
with respect to the IGD indicator on DTLZ2 with more than two objectives and provides
highly competitive performance on DTLZ5 with more than three objectives concerning all
the quality indicators. Although NSGA–II outperforms the other algorithms on four and
five-objective DTLZ7 in terms of IGD, its performance becomes increasingly poor when
the number of objectives is increased. Though an issue of the NSGA–II scalability was
discussed in several previous studies [16, 21], it is an established state-of-the-art EMO
algorithm and serves as an important reference.

To compare the overall performance of the algorithms on all the considered problems,
we rank the algorithms with respect to the quality indicators on each problem. It should be
noted that testing DTLZ problems in 7 different dimensions we have a total of 49 distinct
problems. Table 4 presents the mean rank calculated with respect to each quality indicator
for each algorithm. From this table, we can see that DDMOA2 has the best mean ranks
regarding all three indicators. Therefore, we can conclude that DDMOA2 produces a highly
competitive overall performance, despite it does not outperform the other algorithms on the
majority of problems.

Additionally, the approximation sets with the best values of IGD obtained by DDMOA2
on the two and three-objective problems are shown in Figs. 2 and 3. From the presented
plots we can see that DDMOA2 is capable to converge and provide an adequate distri-
bution of solutions along the Pareto front for all the two and three-objective DTLZ test
problems.

4 Conclusions

In this paper, we presented a generalized descent directions-guided multiobjective algo-
rithm. We extended the previous version of algorithm in order to deal with many-objective
problems. For this purpose, the scalarizing fitness assignment is incorporated into the par-
ent and environmental selection procedures. In order to select promising individuals in the
population for applying local search, we introduce the concept of population leaders. On
the other hand, in order to improve the efficiency of the algorithm, especially on problems
with a large number of objectives, local search procedure is used to find descent directions
only for two randomly chosen objectives. Furthermore, the condition to accept a descent
direction for a leader during the local search is defined to increase the search pressure in a
high-dimensional objective space.

The empirical evaluation of the proposed approach is carried out on problems with up to
8 dimensions. The obtained results showed that DDMOA2 produces a highly competitive
performance when compared with state-of-the-art multiobjective evolutionary algorithms.



J Math Model Algor

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

f
1

f 2

 

 
PF
DDMOA2

DTLZ1

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

f
1

f 2

 

 
PF
DDMOA2

DTLZ2

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

f
1

f 2

 

 
PF
DDMOA2

DTLZ3

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

f
1

f 2

 

 
PF
DDMOA2

DTLZ4

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

f
1

f 2

 

 
PF
DDMOA2

DTLZ5

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

f
1

f 2

 

 
PF
DDMOA2

DTLZ6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2

f
1

f 2

 

 
PF
DDMOA2

DTLZ7

a b

c d

e

g

f

Fig. 2 Performance of DDMOA2 on the two-objective DTLZ test suite
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Fig. 3 Performance of DDMOA2 on the three-objective DTLZ test suite
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In our experiments, DDMOA2 outperformed the other algorithms with respect to three qual-
ity indicators on multimodal problems in all dimensions. Thus, the proposed strategy to
perform the search in the decision space combined with a proper selection scheme appears
to be effective at solving many-objective optimization problems.

As future work, we intend to further study the adaptation of algorithm’s parame-
ters. In order to alleviate the computational burden endured computing descent directions
using local search, the information about last successful mutations can be used to reduce
the number of times local search is invoked. Furthermore, the recombination of indi-
viduals during the evolution can be introduced to improve global search ability of the
algorithm.
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