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Abstract: Biotextile structures from silk fibroin have demon-
strated to be particularly interesting for tissue engineering
(TE) applications due to their high mechanical strength, inter-
connectivity, porosity, and ability to degrade under physio-
logical conditions. In this work, we described several surface
treatments of knitted silk fibroin (SF) scaffolds, namely
sodium hydroxide (NaOH) solution, ultraviolet radiation
exposure in an ozone atmosphere (UV/O3) and oxygen (O,)
plasma treatment followed by acrylic acid (AAc), vinyl phos-
phonic acid (VPA), and vinyl sulfonic acid (VSA) immersion.
The effect of these treatments on the mechanical properties
of the textile constructs was evaluated by tensile tests in dry
and hydrated states. Surface properties such as morphology,

topography, wettability and elemental composition were also
affected by the applied treatments. The in vitro biological
behavior of L929 fibroblasts revealed that cells were able to
adhere and spread both on the untreated and surface-
modified textile constructs. The applied treatments had differ-
ent effects on the scaffolds’ surface properties, confirming
that these modifications can be considered as useful techni-
ques to modulate the surface of biomaterials according to
the targeted application. © 2015 Wiley Periodicals, Inc. J Biomed
Mater Res Part B: Appl Biomater 00B: 000-000, 2015.
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INTRODUCTION
The field of tissue engineering involves the use of scaffold mate-
rials that are ideally able to contribute to the necessary microen-
vironment for stimulating neo tissue morphogenesis.”* The
combination of chemical, biological, and mechanical properties
of the scaffold must provide instructive cues for cells to develop
into a functional tissue in vivo.>> Three-dimensional (3D) poly-
meric structures are the main scaffolding materials in various
tissue engineering approaches because of their versatility and
the possibility of tailoring their properties.

Several strategies have been proposed to prepare
polymeric porous 3D biodegradable scaffolds for tissue

engineering (TE)."® Among these, fiber-based structures
have demonstrated to be particularly interesting as they
present higher porosity, interconnectivity and surface area,
which can facilitate cellular attachment and consequently
improve scaffold cell colonization and new tissue forma-
tion.””'* Textile technologies constitute an attractive route
to develop fiber-based matrices. These technologies allow
for the production at an industrial scale and they can offer
a superior control over the material design (size, shape,
porosity, and fiber orientation) and the manufacturing proc-
essing conferring a high degree of reproducibility without
involving the use of toxic solvents.'*'* In particular
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knitting-based technologies are known to exhibit better
extensibility or compliance as compared to other woven
substrates, with an enhanced porosity/volume, although
with limited thickness."> In the literature, a few knitted
structures from synthetic or natural materials have been
already proposed, either alone'® or in a synergistic combi-
nation with other types of biomaterials/structures for the
construction of functional 3D scaffolds, applicable in the
repair/replacement and regeneration of tissues or organs
such as blood vessels and heart valves,”'19 tendons and lig-
aments,”'zo'25 cartilage,Z6‘28 and skin.?’ As this is a new
field of application for knitting technologies, most of these
devices are still in exploratory stages. In this work, we have
applied a knitting technology to fabricate highly reproduci-
ble biodegradable porous architectures using silk fibers.*°

Silk fibroin (SF) is a natural protein that is spun into
fibers by a variety of species including silkworms and spi-
ders.>"*? This naturally occurring polymer has been clini-
cally used as sutures for centuries. Long standing FDA
regulatory approval of silk-based sutures, its abundance as
raw fiber material and controlled proteolytic degradability
in vitro and in vivo have established silk fibroin as a widely
applied biomaterial. Moreover, silk-based biomaterials have
been proposed for a range of tissue engineering applica-
tions, including bone3°**** cartilage,*>*® tendon/liga-
ment,>”"*° and skin**? regeneration. In all of these
approaches, the use of silk fibroin is associated with tar-
geted functional microenvironments supporting tissue
morphogenesis.

SF is mainly composed by glycine and alanine and also
contains significant quantities of serine, threonine, aspartic
and glutamic acid, and tyrosine.** The biomedical applica-
tions of SF can be broadened by chemical modifications,
allowing for further biofunctionalization such as immobiliza-
tion of growth factors or cell binding domains able to mod-
ulate cell behavior>*** There are several examples of SF
matrices successfully modified by various surface treat-
ments for advanced biological and therapeutic applica-
tions.*>>° Nonetheless, from those none involved a knitting
processing technique combined with surface treatments.
The main advantage of a surface modification is the possi-
bility to alter the surface properties that indirectly dictate
cell response, and at the same time preserve the bulk mate-
rial features, such as, the mechanical properties and/or bio-
degradation. Polymeric scaffolds modified by radiofrequency
(RF) argon plasma treatments have shown enhanced cell
attachment, spreading and proliferation.*>*® Surface modifi-
cations of SF by plasma treatment using different working
gases (SO, NH3, and O;) have demonstrated to increase the
antithrombogenicity and the cellular activity of human epi-
dermal keratinocytes and fibroblasts, suggesting that these
structures might be potentially used as blood-contacting
biomaterials or as novel extracellular matrices for other tis-
sue engineering applications.*”*® Sulfonic acid is another
compound recently used to tailor the surface chemistry of
SE*?°0 As a result of the introduced changes, SF decorated
with sulfonated moieties could mimic the natural ECM envi-
ronment and lead to further immobilization of biomolecules.
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In the present study we explore several treatments to
tailor the surface of SF knitted scaffolds: (i) wet chemical
etching using NaOH (a method largely applied at the indus-
trial scale, although not only surface confined); (ii) physical
etching/oxidation (treatment with UV ozonator), which is
better restricted to the surface; and (iii) the grafting of func-
tional moieties after preactivation by plasma—this modifica-
tion method is commonly applied for further
biofunctionalization. We have chosen plasma among the
possibilities for activation as it is very effective and the
most surface confined modification method (few angstroms
in depth). Additional, air plasma can be easily scaled-up;
this versatile method can be used to easily decorate 3D
scaffolds with various functional groups including sulfonic,
phosphonic and carboxylic ones. This preliminary work
reports on the effectiveness of the treatments and evaluates
the effect of surface properties changes over early cell
behavior. This study is a first step toward the development
of surfaces that are able to easily bind to biomolecules that
can stimulate ECM formation.

MATERIALS AND METHODS

Production of the textile constructs and membranes

Silk derived from silkworm Bombyxmori was used in the
form of cocoons and yarns supplied by the Portuguese Asso-
ciation of Parents and Friends of Mentally Disable Citizens
(APPA-CDM, Portugal). Plain 3D Jersey constructs were pro-
duced through weft knitting using the raw silk fibers (Tri-
colab machine, Sodemat, SA, Germany). The diameters of
the fibers were measured and the average of five fibers cal-
culated as 9.1 = 2.2 um. The measured thickness of the silk
textile matrix was ~0.8 mm. A detailed analysis of the 3D
morphology of the textile constructs was previously per-
formed through microcomputed tomography (uCT).3° The
calculated average porosity, mean wall thickness, and mean
pore size were 68.4 = 3.7%, 37.8 = 14.9 um, and 54.5 = 9.4
Wm, respectively.

Textile constructs were washed in a 0.15% (w/v) natu-
ral soap aqueous solution for 2 h and then rinsed with dis-
tilled water. Silk structures underwent a subsequent
purification process since Bombyxmori silkworm fibers are
composed by a core protein called fibroin that is naturally
coated by sericin, which is known to present cytotoxicity.>!
Thus, SF textiles were consecutively boiled for 60 min in a
0.03 M sodium carbonate (Na;CO3) solution and rinsed with
distilled water to ensure the full extraction of the sericin.

Because some of the used characterization techniques
[e.g., atomic force microscopy (AFM), contact angle] are bet-
ter applied to 2D plan surfaces, SF membranes were also
prepared and modified using the same procedures as the
ones used for the textile constructs. SF membranes were cast
from a water-based silk fibroin solution prepared as previ-
ously described by Yan et al.3® Briefly, the cocoons were con-
secutively boiled in an aqueous solution of 0.02 M sodium
carbonate for 60 min and in a 0.01 M sodium carbonate for
30 min. The extracted SF was washed with distilled water.
After drying at 60°C, SF (20% w/v) was dissolved in 9.3 M
LiBr solution at 70°C for 1 h. This solution was dialysed for
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3 days. The SF membranes were obtained by casting the
solution in 24-well culture plates (BD Biosciences) and slow
dried at room temperature. In order to induce (-sheet con-
formation the membranes were immersed in methanol/water
solutions with increasing concentration of methanol, up to
100% to preserve the structural integrity during the drying
process. Ideally it would be preferable to produce a mem-
brane through self-assembly processes as a way to recreate
the natural process of SF fiber formation and mimic the natu-
ral silk structure. However, these processes remain poorly
understood which makes the reconstitution of silk solutions
into materials with properties comparable to the native state
problematic.52 Therefore, we decided to induce beta-sheet
through methanol treatment in order to achieve reproducible
surfaces that could be comparable to those found in the
native SF fibers.

Mechanical properties

The mechanical properties of the produced SF textile con-
structs were determined by performing quasi-static tensile
tests (Instron 4505 Universal Machine). The tensile modu-
lus, ultimate tensile strength and strain at maximum load
were measured using a load cell of 1 kN at crosshead speed
5 mm/min. The tensile modulus was determined in the
most linear region of the stress/strain curve using the
secant method. Both dry and hydrated samples were tested.
The tests with dry samples were conducted at 25°C and
50% of humidity. Hydrated samples were prepared by
immersion in a phosphate-buffer saline solution (PBS) at pH
of 7.4 for 3 days. Five samples with dimensions of 15 X
40 mm? were analyzed per condition.

Surface treatments
Etching with NaOH. SF structures were immersed in 0.5 M
NaOH solution for 60 min at 30°C.

UV/0;3 treatment. The UV /O3 treatment was performed in
a commercial UV/0O3 chamber (Jelight Company, Model 42)
using a standard fused quartz lamp that emits a continuous
radiation of 254 nm with an intensity of 28 mW/cm? Sam-
ples were placed on glass slides and subsequently inserted
into the UV/03 chamber at a distance of about 5 mm from
the UV source. The O3 gas employed during irradiation had
a purity of 99.995% (Linde, H. Ollriegelskreuth, Germany)
and a total pressure of 5 mbar. After exposure samples
were washed with distilled water for 48 h at 50°C and
dried for 10 min at 37°C.

Plasma grafting. The most attractive aspect of plasma-
based surface treatments is that several gases can be
employed to produce plasma and thus activate the surface
functionality of structures, without requiring high chemical
consumption. In this study, plasma treatment was per-
formed using a radio frequency (13.56 MHz) plasma reactor
(PlasmaPrep5, Gala Instruments, Germany). Samples were
exposed to O, plasma at 30 W of power for 15 min. During
the treatment, the gas flow was adjusted in order to keep a
constant pressure of 20 Pa inside the reactor. Immediately
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after plasma treatment, the activated surfaces were
immersed in three different solutions 5% (v/v) AAc,
100 mM VPA/2-propanol and 10% (v/v) VSA for 2 h at RT,
in order to induce carboxylic, sulfonic or phosphonic
groups’ formation. Solutions were previously degassed by
nitrogen (N;) bubbling to avoid the reaction between the
induced functional groups and the O, present in the solu-
tions. After each reaction, samples were washed with dis-
tilled water and then dehydrated by immersion in absolute
ethanol followed by over drying at 37°C for 24 h.

Scanning electron microscopy

The surface morphology of the produced SF textile con-
structs was analyzed before and after the different surface
treatments using a Leica Cambridge S-360 (United King-
dom) Scanning Electron Microscope.

After cultures, cell morphology and distribution on the
surface of the 2D membranes and 3D textile scaffolds were
also analyzed by scanning electron microscopy (SEM). After
each predefined time point, the cell-seeded structures were
washed with Phosphate Buffered Saline (PBS; Sigma) and
fixed with 2.5% glutaraldehyde (Sigma) solution in PBS.
Samples were again rinsed with PBS and dehydrated using
a series of ethanol solutions (30%, 50%, 60%, 70%, 80%,
90%, and 100%, v/v). Finally, the samples were treated
with hexamethylidisilazane (HMDS; Electron Microscopy Sci-
ences) and air dried overnight at RT. Prior observation all
samples were sputter-coated with gold (Fisons Instruments,
Sputter Coater SC502, United Kingdom) and the micro-
graphs were taken at an accelerating voltage of 15 kV at dif-
ferent magnifications.

Atomic force microscopy

The surface roughness of the samples was determined by
AFM. The analysis was performed for three regions per sam-
ple (5 X 5 pm?) using tapping mode (Veeco) connected to a
NanoScope III (Veeco) with noncontacting silicon nanoprobes
(ca. 300 kHz, set point 2-3 V) from Nanosensors (Switzer-
land). All images were fitted to a plan using the 3rd degrees
flatten procedure included in the NanoScope software version
4.43r8. The surface roughness was calculated as Ra (mean
absolute distance from mean flat surface). The values are
presented as mean * standard deviation.

Contact angle and surface energy

Understanding the surface behavior of a biomaterial in con-
tact with hydrated media is of great importance to predict
its interactions with cells, when applied in a particular bio-
medical application. The wettability of untreated and sur-
face modified silk fibroin was assessed by contact angle (0)
measurements. Unfortunately, the morphology (porous
irregular surface creating a capillary effect) of the present
samples/textiles did not allow direct determination of the
contact angle with enough precision. In fact, there are not
many characterization techniques with enough sensitivity to
allow surface analysis of such samples with complex shape.
Therefore, “models” have been prepared in the form of
membranes, trying to recapitulate some of the surface
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properties of the textiles. The contact angle depends on sev-
eral parameters such as surface chemistry, roughness and
crystallinity among others that can’t be controlled sepa-
rately. While the roughness of the membranes and the tex-
tiles is obviously different, the crystallinity and surface
chemistry can be reproduced using the same procedure.
Because of these differences between membranes and tex-
tiles the discussion will not be solely based on the contact
angle measurements; the results are complemented with the
other characterization techniques presented in this study.

Static contact angle measurements of the untreated and
surface modified SF membranes were obtained by the ses-
sile drop method using a contact angle meter OCA15+ with
a high performance image processing system (DataPhysics
Instruments, Germany). Two different liquids were used:
ultrapure water (upH,0) and diiodomethane (CH,l; 1 pL,
HPLC grade), added by a motor-driven syringe at room tem-
perature. Two samples of each material were used and five
measurements were carried out for each sample. The sur-
face free energy (y) of the treated and untreated samples
was calculated using the Owens, Wendt, Rabel, and Kaelble
(OWRK) equation.”>>*

X-ray photoelectron spectroscopy

X-ray photoelectron spectroscopy (XPS) analysis was per-
formed to characterize the surface elemental composition of
the modified and unmodified samples using a Thermo Sci-
entific K-Alpha ESCA instrument. Monochromatic Al-Ka radi-
ation (hv=1486.6 eV) was used to perform the XPS
measurements and the photoelectrons were collected from
a take-off angle of 90° relative to the samples surface. The
spectrometer was operated in a constant analyser energy
(CAE) mode with 100 eV pass energy for the survey spectra
and 20 eV pass energy for the high-resolution spectra.
Charge referencing was adjusted by setting the lower bind-
ing energy of Cls peak at 285.0 eV. Overlapping peaks were
resolved into their individual components by using the
XPSPEAK 4.1 software.

Cell culture

A mouse fibroblast cell line (L929), acquired from the Euro-
pean Collection of Cell Cultures (ECACC, United Kingdom),
was used to assess the eventual cytotoxicity of the devel-
oped scaffolds. For that purpose, the 3D textile materials
were cut into 16 mm diameter discs, and immobilized into
the bottom of 24-well culture plates (BD Biosciences) using
CellCrown® inserts (Scaffdex, Finland). Cells were grown as
monolayer cultures in Dulbecco’s Modified Eagle’s Medium
(DMEM; Sigma Aldrich; Germany) supplemented with 10%
fetal bovine serum (FBS; Biochrom, Germany) and 1% anti-
biotic-antimycoticsolution (Gibco, United Kingdom). At con-
fluence cells were detached from the culture flasks using
trypsin (Sigma), centrifuged, resuspended in the cell-culture
medium, and seeded in the scaffolds at a density of 3 X 10*
cells/sample. The cell-seeded scaffolds were incubated at
37°C, 5% CO, and 95% humidity, for 1, 5, and 24 h. Tissue
culture polystyrene (TCPS; Sarstedt) coverslips and SF
membranes were used as control surfaces.
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DNA quantification assay

The L929 cell proliferation onto the developed 3D textile
constructs was assessed by using a fluorimetric double-
strand DNA quantification kit (PicoGreen, Molecular Probes,
Invitrogen Corporation) following manufacturer’s instruc-
tions. After each time point, scaffolds were rinsed with PBS
and transferred into 1.5 mL microtubes, containing 1 mL of
ultrapure water, to induce an osmotic shock. An additional
thermal shock was provoked by placing the scaffolds at
37°C for 1 h prior to —80°C freezing. Prior to dsDNA quan-
tification, samples were thawed and sonicated for 1 h. A
PicoGreen solution was mixed with the samples and the
standards (ranging from 0 to 2 mg/mL) in a 200:1 ratio
and placed into opaque 96-well plates. Each sample or
standard was made in triplicate. After 10 min of incubation
in the dark, the fluorescence was read into a microplate
enzyme-linked immunosorbent assay reader (BioTek) at
485/528 nm of excitation/emission. To exclude the materi-
als auto fluorescence, the same quantification assay was
performed for samples without cells but subjected to the
same culture conditions.

Statistical analysis

All the numerical results are presented as mean =* standard
deviation. Statistical tests were performed with GraphPad
Prism 5.0 (GraphPad Software). A one-way analysis of var-
iance (ANOVA) was used to evaluate the AFM and contact
angle results, using the Tukey’s method as a post hoc pair-
wise comparison test. Statistical significance of DNA quanti-
fication, obtained from three independent experiments, and
tensile tests results were determined with a two-way
ANOVA test followed by Bonferroni’s as multiple compara-
sion analysis method. The significance level was *p < 0.05,
*¥p <0.01, and ***p < 0.001.

RESULTS AND DISCUSSION

When developing biomaterials to be used in tissue engineer-
ing that intend to direct cellular behavior, the ability to tai-
lor their surface properties becomes an issue of great
importance. Slight changes in the surface topography and
chemistry can be responsible for significant changes on cell
behavior.

Mechanical properties

SF fibers are known for their extraordinary mechanical
properties that rival most of the high performance synthetic
fibers. This behavior results from their unique molecular
structure and protein conformation.”® In a previous study°
the mechanical properties of the produced knitted SF matri-
ces were measured in the longitudinal and transversal
direction confirming their anisotropic character. Anisotropy
is particularly interesting when considering that most tis-
sues present a high degree of anisotropy. Herein, the
mechanical properties of the untreated and surface modified
SF textile constructs were investigated by performing quasi-
static tensile tests in the longitudinal direction, as presented
in Figure 1.
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FIGURE 1. Effect of the different surface modifications on (a) maximum strength (MPa), (b) E-modulus (MPa), and (c) strain at maximum load
(%) obtained for SF textile matrices at dry (25 °C) and hydrated state (isotonic phosphate-buffer saline solution; 37 °C), in the longitudinal direc-

tion (* p<0.05; ** p<0.01, and *** p<0.001).

As expected, when comparing the untreated and the
surface-treated textile constructs in the dry state no rele-
vant changes were detected in terms of maximum strength
and elongation at break. Even though, when considering the
modulus, a slight increase was observed for UV/03, plasma/
AAc and plasma/VSA, indicating that these structures have
become stiffer.

By analysing the mechanical properties of the
untreated SF textiles in the dry and hydrated states it was
possible to see that while the changes on the maximum
strength and elongation at break were not significant, a
significant decrease (p <0.01) in the tensile modulus was
observed in the presence of PBS solution. Considering the
properties of the treated textile matrices, a significantly
lower maximum strength was observed for hydrated sam-
ples treated with NaOH (p < 0.05), UV/03 (p<0.01), and
plasma/AAc (p < 0.001). The hydration process induced an
even higher difference for the modulus, indicating that all
the surface treatments had impacted the mechanical per-
formance in the wet state. In opposition, strain at break
was significantly higher (p <0.05) for the plasma/VSA-
treated hydrated samples in comparison to the dried ones.
No significant differences were observed between the
hydrated and dried samples treated with the remaining
treatments. A decrease in the modulus was observed for
the hydrated samples treated with NaOH, UV/Os, and
plasma/AAc as compared with the untreated samples

while an increase in the maximum strain at break was
observed for the samples treated with UV/O3; and plasma/
AAc. The differences in mechanical properties of the SF
textile constructs when these are in the hydrated state are
related with the effect of water molecules incorporating
the structure of the fibers, as reported by Perez-Rigueiro
et al.°® B-sheet platelets in SF constitute around 50-60%
of the total volume of the fiber®! It is accepted that this
crystalline domain is not affected by water molecules.
Thus, the observed changes between the elastic modulus
of samples tested in air and in the buffered solution can
be attributed to alterations in the amorphous regions.
Immersion in water disrupts the hydrogen bonds between
chain segments in the amorphous phase, leaving van der
Waals bonds to dominate, thus reducing the initial modu-
lus. In this sense, it is expected that the surface treat-
ments in wet conditions might attack preferentially the
amorphous phase, corresponding to a general increase in
the ductility with more impact in case of the scaffolds
treated with plasma/AAc and UV/O3 treatments, as
observed by the general decrease in the modulus from the
dry to the wet state. In case of UV/Oj3 it is known that SF
has a high permeability to oxygen,”” which has favored
the modification of the fibers beyond the surface. In gen-
eral, it is possible to affirm that the impact of the treat-
ments in the final mechanical performance of the textile
constructs was not severe.
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FIGURE 2. Scanning electron micrographs of (a) side A and (b) side B of the SF knitted structure and magnifications of the fibers on the top side

(c) before and (d-h) after the different surface treatments.

Surface morphology and topography

The morphology of the surface of the scaffolds as well as of
the surface of the fibers that form the 3D structure were
analyzed by SEM. Figure 2 presents the scanning electron
micrographs of side A and B of the SF knitted structure and
magnifications of the fibers before and after the surface
treatments.

Scanning electron micrographs of the untreated SF fibers
revealed in general a smooth surface without pores or
defects [Figure 2(c)]. The SEM analysis of the treated fibers
reveals some surface irregularities especially in the case of
plasma/AAc and plasma/VSA treatments [Figure 2(fh)].
Nevertheless, it is difficult by using only SEM analysis to
clearly differentiate the surface treatments based on the
fiber morphology. In some cases it was possible to observe
areas with fibers exhibiting smooth surfaces and others
with fibers presenting more irregular surfaces in the same
sample, as for instances in case of untreated samples and
after treatment with plasma/VSA [Figure 2(ch)]. It is impor-
tant to state that degumming process can cause per se some
physical changes in the fibers [Figure 2(c)].

The characterization of the surface of the SF fibers and
the influence of the several surface modifications was done
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indirectly, through the analysis of SF membranes. Although
it was clear that the starting surface of the membranes
casted from regenerated SF can be different from the sur-
face fibers in terms of crystalinity, it is plausible to correlate
the effect of the proposed treatments in both scenarios.

Figure 3 presents the AFM images of the membrane
surfaces before and after different surface treatments. The
correspondent average roughness for each surface is pre-
sented in Figure 4.

The wet chemical treatment with NaOH resulted in a
smoother surface as compared to the untreated sample. In
contrast, the UV/O3 treatment significantly increased the
roughness of the surface. Regarding the modifications fol-
lowing plasma preactivation only the treatment with acrylic
acid was able to considerably smooth the surface. Neverthe-
less, etching processes are unavoidable when polymers are
exposed to plasma. In general, the surface nanotopography
and the average roughness were affected by the applied
treatments. It is well recognized that small changes in the
surface topography can affect cell behavior.>® However, it is
not possible to dissociate this physical modification from
those occurring in due to changes in the wettability and
chemical composition.
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FIGURE 3. AFM images of the SF surfaces (a) before and (b—f) after the different surface treatments. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]

Surface wettability and composition

The contribution of the dispersion and polar interactions to
the surface energy was calculated by considering that the
intermolecular attraction, which causes surface energy,
results from a variety of intermolecular forces. Most of
these forces are function of the specific chemical nature of a
particular material, and the surface energy can be compiled
as yp (polar interactions), taking into consideration that the
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FIGURE 4. Average roughness (R,) of the SF surfaces before and after
the different surface treatments (*p <0.05; ** p<0.01).
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dispersion forces (y4) are always present in all systems,
independently of their chemical nature. The water contact
angle values obtained for the untreated and surface-treated
SF membranes are plotted in Figure 5 and the respective
calculated surface energies are presented in Table I.

In Figure 5, it is possible to observe a general trend
toward an increase in the hydrophobicity of the treated
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FIGURE 5. Water contact angles obtained for the untreated and
treated SF surfaces. The significance level is *p <0.05, **p<0.01, and
**¥*p<0.001.


http://wileyonlinelibrary.com

TABLE I. Contact Angle Values (0) Measured for the Untreated and Treated Surfaces and Respective Calculated Surface Ener-

gies (ys)
Contact Angle (0)

Treatment H,0 CH,l, Surface Energy, 7s(3s® + 7sP) (mN/m) Ratio, 7s%/ysP
Untreated 57.34 £3.27 46.22 +=5.95 45.31 (25.66 + 19.66) = 0.04 1.30
NaOH 71.78 +£7.70 56.56 * 8.62 35.36 (20.44 + 14.92) = 0.06 1.37
UV/Os; 86.62 +7.14 48.5 + 4.99 32.39 (27.61 + 3.82) = 0.02 7.22
Plasma/AAc 83.34 +5.04 55.28 = 9.52 30.02 (24.36 + 5.72) = 0.02 4.26
Plasma/VPA 63.18 = 11.36 58.76 = 10.14 40.33 (24.00 + 16.33) = 0.07 1.47
Plasma/VSA 59.48 + 6.09 42.44 +7.91 45.92 (26.90 + 19.02) = 0.07 1.41

surfaces with significantly different values for NaOH etching,
UV/03 and plasma/AAc treatments. Consequently, a
decrease in the surface energy was registered due to a gen-
eral decrease in the polar component most significant for
UV/03 and plasma/AAc treatments (Table I). In the case of
NaOH treatment, the decrease in surface energy was also
due to a decrease in the dispersive component. Generally,
all treatments can result in simultaneous etching and modi-
fication that is expected to mainly affect the amorphous
phase in SE SF crystalline phase (-sheet) represents near
half of the total composition while the remaining amor-
phous phase is majorly composed of random coil, a-helix
and turn secondary structures.”’ An increase in the surface
crystallinity as a result of conformational change in the
amorphous domains to silk II and/or the exposure of the
crystalline phase due to an etching effect might be also con-
tributing to an increase in the surface hydrophobicity. Fur-
ther studies need to be conducted in order to confirm this
possibility.

The surface composition and atomic ratios of the
untreated and treated samples, investigated by XPS, are pre-
sented in Table II. The wet chemical treatment with NaOH
resulted in etching as confirmed by the surface analysis.
XPS results showed lower oxygen content on the NaOH-
treated surface (Table II). The obtained result might be
associated to the higher sensitivity of the oxygen containing
moieties (related with the amorphous domains) to degrada-
tion/hydrolysis processes, that is, the scission of the chains
that occur predominantly at the places where those func-
tionalities are. As expected, the lower oxygen content was
associated with higher water contact angle value (less
hydrophilic surface, Figure 4, Table I) and smoother surface
after the treatment.

TABLE Il. Surface Composition and Atomic Ratios of Modi-
fied and Nonmodified SF Samples Determined by XPS

Modification (6] N C S P o/C
Untreated 19.6 14.9 63.5 - - 0.31
NaOH 15.3 11.9 72.6 - - 0.21
UVv/O3 25.1 11.9 59.0 - - 0.43
Plasma/AAc 21.3 15.2 61.5 - - 0.35
Plasma/VPA 28.4 11.0 49.8 - 2.7 0.57
Plasma/VSA 19.6 6.1 73.2 0.1 - 0.27
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The modification with UV/O3 resulted in higher oxygen
content in the XPS spectrum of the modified material (Table
II). This result is in agreement with previous reports for dif-
ferent polymers treated by UV/O3; and with the expected
ongoing oxidation induced by the ozone presence.’*~®! Sur-
prisingly, the water contact angle for the treated samples
was significantly higher when compared to the untreated
samples. The significant increase in roughness (Figure 4)
resulting from the surface etching can be a possible expla-
nation for the obtained results, most probably due the
Cassie-Baxter effect.®

AAc grafted surfaces presented a slight increase in the
oxygen to carbon rate content (Table II), together with a sig-
nificant smoothening of the surface [Figures 3(d) and 4].
This smoothening may indicate that upon grafting, acrylic
acid monomers started to fill the valleys similarly to the
phenomenon recently reported by Gupta et al.®® for the
grafting of AAc onto plasma-treated polycaprolactone mono-
filament surface. It is known that the etching by plasma
treatment can contribute per se to an increase in the hydro-
phobicity of silk surfaces,®* while the subsequent grafting
with acrylic acid monomers is expected to functionalize the
surface and increase its wettability. Thus, the measured sig-
nificant increase in the hydrophobicity was unexpected. It is
difficult to confirm the AAc grafting by XPS because all func-
tionalities characteristic for acrylic acid (CHCOO-, COO-) are
already present in the silk structure. However, the C;shigh
resolution spectra for plasma/AAc-treated surfaces is quite
different from the untreated ones, showing less intensive
peaks for -CO and -COO (Supporting Information Figure
S1). This result seems to confirm that most probably etch-
ing and not grafting is preferentially occurring on the sur-
face during plasma/AAc treatment. In case of VPA and VSA-
treated samples P and S, respectively, were detected in their
surfaces by XPS (Supporting Information Figure S2), con-
firming the successful grafting although with different effec-
tiveness. Lopez-Pérez et al.®® have reported higher grafting
efficiency for VPA-grafted surfaces that has resulted in
higher number of adherent cells (SaOs-2) and higher prolif-
eration rate. Here, it was not observed a significant change
on the surface wettability leading to the assumption that
the grafting yield was lower than expected. The equilibrium
degree of grafting is dependent on monomer concentration,
reaction temperature and the concentration of active regions
created upon plasma exposure, thus further optimization of
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FIGURE 6. Scanning electron micrographs showing the L929 cell morphology and adhesion at the surface of (a—c) 2D silk membranes, 3D silk
textile scaffolds (d-f) untreated and after the different surface modifications: (g—i) NaOH; (j-I) UV/O3; (m-o0) plasma/AAc; (p-r) plasma/VPA; (s-u)
plasma/VSA, for (a, d, g, j, m, p,and s) 1 h, (b, e, h,k, n,q,andt) 5 h, and (c, f, i, I, o, r, and u) 24 h of culture.

these parameters are necessary for increasing the grafting cells observed by SEM (Figure 6). After 1 h of cell culture,

yield in this particular reaction. extensive cell colonization can be observed for the studied
materials. However, the majority of the attached cells were
Cell morphology not spread [Figure 6(a,d,gj,m,p,s)]. After 5 h of culture, cells

The effect of the applied surface treatments over initial cell — presented typical spindle-like fibroblast morphology, show-
adhesion was analyzed based on the morphology of L929 ing a higher degree of spreading with some extended
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lamellipodia over the surface of all modified materials [Fig-
ure 6(hkn,q,t)]. This effect was even more notorious after
24 h of culture [Figure 6(il,o,;u)]. The adhered cells pre-
sented an elongated morphology and a high degree of
spreading over the modified surfaces was observed, inter-
acting and integrating well with the fibers. In agreement
with these findings, Park et al.°® have reported that surfaces
of poly(glycolic acid), poly(r-lactic acid), and poly(lactic-co-
glycolic acid) chemically modified using air plasma treat-
ment followed by acrylic acid grafting, improved fibroblast-
like cells spreading over the nanofibrous surfaces, suggest-
ing that the carboxylic functional groups could be success-
fully immobilized at the scaffolds’ surface improving cell
attachment and proliferation in vitro. A different study using
human bone marrow-derived mesenchymal stem cells
(hMSCs) showed a similar cell behavior after 5 days of cul-
ture on SF films modified with sulfonic acid.*® Cells grew
across the surface, exhibiting spindle-like fibroblast mor-
phology, typical of wundifferentiated hMSCs. For the
untreated SF textile scaffolds, L929 cells clearly presented
their typical fibroblastic morphology, attaching and stretch-
ing over the scaffolds surface [Figure 6(e,f)]. This expected
cell behavior®® can be justified by the silk conformation at
the scaffolds’ surface as well as the presence of -COOH and
-OH polar groups that confer a more hydrophilic character
to the fibers, known to directly mediate and control cell
adhesion, cell-surface interactions, cytoskeleton organiza-
tion and cell shape.®”®® Cells were also able to adhere on
the SF membranes [Figure 6(a-c)] showing evident lamelli-
podia and filopodia over the surfaces [Figure 6(b,c)]. Never-
theless, higher cell-surface interactions were observed on
the untreated fibers, which can be eventually justified by
the high porosity and surface area of the fiber-based scaf-
folds that improve cell attachment and proliferation.” !

Cell adhesion

Cell adhesion rate was evaluated by quantifying the DNA
content along the culture time (Figure 7). The obtained
results showed that after 1 h, L929 cells adhered in signifi-
cantly higher numbers (p <0.001) to untreated scaffolds,
possibly indicating a cell adaptation to the induced surface
modifications. Moreover, no significant differences were
identified between the scaffolds treated under different con-
ditions. After 5 h of culture the number of cells adhered to
the untreated structures remained the same while a signifi-
cantly higher number (p <0.001, except for plasma/VPA:
p <0.01) in comparison to 1 h of culture, reaching a value
similar to the untreated condition, was quantified in the
treated scaffolds. Nonetheless, the DNA values obtained for
plasma/VPA-treated surfaces were significantly lower than
those reached for structures treated by NaOH (p < 0.01),
plasma/AAc (p < 0.001), plasma/VSA and UV/O3; (p <0.05).
After 24 h, plasma/VPA-treated surfaces also presented sig-
nificantly lower (p <0.05) DNA values compared to the
untreated and plasma/AAc structures. No further significant
changes were observed between the untreated and treated
conditions and between the treatments, revealing that the
unmodified SF presents per se properties of great interest
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FIGURE 7. DNA amount corresponding to the number of L929 cells
adhered on untreated and surface-treated 3D silk textile scaffolds after
1, 5 and 24 h of culture. Data are shown as mean =+ standard deviation
from at least n=5 (¥*p<0.05, **p<0.01, and ***p<0.001). x:
p<0.001 for all the treatments at the same culture period. y: p<0.001
for the same treatment after 5 and 24 h of culture. The exceptions are
represented in the graphic.

that can be used as a way to improve and facilitate cell
adhesion. A different study comparing different biodegrad-
able polymers with those chemically modified at the surface
by Plasma/AAc treatment, also reported that after 24 h of
culture, fibroblast cells adhesion rate on the surface-treated
scaffolds was similar to that on control conditions.® More-
over, the number of cells adhered to the untreated struc-
tures significantly increased after 24 h in comparison to 1 h
(p<0.01) and 5 h (p<0.05) of culture, which is not con-
sistent with the results obtained for SF membranes whose
adhesion rate did not vary after 5 h of culture (Data not
shown).

CONCLUSIONS

SF knitted matrices were successful modified using different
surface treatments, NaOH solution, UV/0O3 exposure and air
plasma treatment followed by AAc, VPA and VSA grafting.
The impact of the treatments on the final mechanical per-
formance of the textile constructs was not pronounced.
Nevertheless, an increase in the modulus in the dry state
was significant for UV/O3; plasma/AAc and plasma/VPA
treatments. This was followed by an increase in the maxi-
mum strength and elongation at break. It seems that these
surface treatments had a positive impact in the bulk proper-
ties of the fibers by increasing both the strength and ductil-
ity of the textile constructs. At the surface level, AFM and
XPS confirmed the modification and grafting of the surfaces,
although with different effectiveness, while a significant
increase in the hydrophobicity was detected for NaOH, UV/
03 and plasma/AAc treatments. This intriguing result is
presently under investigation. The in vitro preliminary bio-
logical studies showed that the number of adhered cells
increases for all the studied surfaces over the culture time.
However, the morphology of the adhered fibroblasts was
found to be considerably different in the case of fiber-based
constructs, since the cells tend to overspread both on the
untreated and surface-treated fibers. This study validates
the present treatments to be further investigated in a tissue
engineering context, where more sensitive cells (stem cells)
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are used and can react and be stimulated by small varia-
tions in the surface environment toward neo tissue genesis
and ECM formation.
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