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Abstract. A vacuum circuit breaker is a device that allows the cutting of electrical
power. This device consists essentially of two electrodes, one of them being mobile and is
subject to a mechanical force produced by a spring, giving rise to the contact between the
two electrodes. The current passing between two electrodes is determined by the extension
of the contact zone. Moreover, the passage of current generated Laplace forces in areas
bordering the contact, but not yet in contact. Due to the curved geometry of the electrodes,
these Laplace forces are opposite and therefore cause the repulsion of the electrodes. This
means that for a given power we have to evaluate the electric potential, the magnetic field
corresponding to the contact zone. bbm
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1 INTRODUCTION

A vacuum circuit breaker is a device that allows the cutting of electrical power. We refer
figure 1 to showing the main parts of a typical vacuum interrupter. The apparatus core is
essentially constituted of two electrodes, one of them being fixed (1) and the other one is
mobile (3) and subject to a mechanical force produced by a spring, maintaining the contact
between the two electrodes (2). The current passing between two electrodes is determined
by the extension of the contact zone and generated Laplace forces in areas bordering the
contact, but not yet in contact. Due to the curved geometry of the electrodes, Laplace
forces are opposite and cause the repulsion of the electrodes. When the intensity reach
a critical value, the forces separate the two electrodes and the circuit is breaking. For a
given intensity and a contact length, we wish evaluate the repulsive Laplace force deriving
from the electric and magnetic fields.
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Figure 1: The circuit-breaker [1]

2 THE ELECTRICAL PROBLEM

2.1 Domain definition

At initial stage domain Ω = Ωa ∪ Ωb corresponds to the initial situation where no force
acts. Applying the gravity and the spring we get a displacement u over Ω and a new
configuration characterized by an effective contact area A between the two subdomains.
Due to the displacement u, domain Ω is mapped into a new domain denoted �Ω = �Ω(u) =
�Ωa(u) ∪ �Ωb(u) depending on the displacement field. In the same way, on has domains
�Ωℓ, �Γℓ

L,
�Γℓ
C , ℓ = a, b as well as �ΓB and �ΓU . For the sake of simplicity, we shall use the
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same notations n, t to denote the outward normal vector and the tangential vector on
the boundary. Notice that A = �Γa

C ∩ �Γb
C .

When the circuit breaker is close (the electrodes are in contact with a common area A),
the current flows across the interface governing by two main principles: conservation of
the normal density current and a null potential jump across the interface, as represented
at Figure 2 (a). Moreover, the electric current generate a Laplace force ( as represented
at Figure 2 (b) ), repulsive at contact zone, which plays the fundamental role of a circuit
breaker mechanism. When current increases, the Laplace force increases and the geomet-
rical design of the apparatus results to a reduction of the contact surface till we reach a
complete separation. The present chapter is dedicated to the construction of the electrical
model where one computes the electric and the magnetic field in function of the contact
surface.

(a) The initial configu-
ration

(b) The normal density
current jump across the
interface

(c) Global defined
Laplace force

Figure 2: Electric-Magnetic problem outline

2.2 Mathematical modelling

A medium voltage circuit breaker is designed to work with continuous or low frequency
current (for instance 50 Hz). It results that a common approach use the low frequency
approximation (see Rappaz and Touzani [2]) where we neglect the displacement current
and the induction effect. Consequently, we use the standard scalar potential formulation
and denote by φ the scalar electrical potential while E = −∇φ stands for the electric field
and j = σE represents the current density with σ > 0 the conductivity we suppose to be
constant for the sake of simplicity. When necessary, we shall use the notations φℓ, Eℓ,
jℓ, ℓ = a, b to characterise the quantities associated to domain �Ωℓ respectively. Moreover
component of the global vector writes j =

�
ja, jb

�
=

�
(ja1 , j

a
2 , ) ,

�
jb1, j

b
2,
��
, E =

�
Ea,Eb

�
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and φ =
�
φa,φb

�
.

Assuming that no electrical charge are present in the domain, the density current conser-
vation writes

∇ · j = 0, in �Ω (1)

and deduce the scalar electrical potential formulation

−∇ · (σ∇φ) = 0, in �Ω (2)

We equipped the equation with the following boundary conditions: φ = 0 on the basement
�ΓB, a uniform distribution on the upper side

j · n =
I0

|�ΓU |
(3)

with I0 the intensity current while we prescribe an homogeneous Neumann condition for
the rest of the boundary to model that fact that no current crosses the boundary which
are in contact with the vacuum.

2.3 The two domains formulation

From a practical point of view, the electrical problem will be seen as the coupling of two
subproblems defined in each subdomain. Here classical Sobolev spaces are used to obtain
a variational formulation. We rewrite equation (2) in the following way: find φa and φb

such that
−∇ · (σ∇φℓ) = 0, in �Ωℓ (4)

with φb = 0 on the basement �ΓB, ja ·na =
I0

|�ΓU |
while we assume homogeneous Neumann

condition condition for the vacuum boundary. To complete the new model, we prescribe
continuity for the normal current and potential across the contact zone:

ja · na + jb · nb = 0, φa = φb, on A. (5)

Indeed, assume that φ ∈ H1(�Ω)∩C0(�Ω) is a solution of the one domain problem then from

the continuity we deduce φa = φb on A. On the other hand, let ψ ∈ H1
0 (
�Ω), integration

by part yields

0 =

�

�Ω
σ∇φ∇ψ dx =

�

�Ωa

σ∇φ∇ψ dx+

�

�Ωb

σ∇φ∇ψ dx

Now, integration by parts on each subdomains provide

0 =

�

�Ωa

−∇ · (σ∇φ)ψ dx+

�

�Ωb

−∇ · (σ∇φ)ψ dx+

�

A
σ(ja · na + jb · nb)ψds.
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Relation (4) yields that for any ψ ∈ H1
0 (�Ω) we have

�

A
σ(ja · na + jb · nb)ψds = 0

which implies
ja · na + jb · nb = 0

.

3 THE MAGNETICAL FIELD

With E in hand, we deduce the current density j and we aim to compute the associated
electrical field to at last deduce the Laplace force. To this end, let us by B the magnetic
induction field. For three-dimensional configuration, the Ampère-Maxwell law writes

∇×B = µ0j, in R3 (6)

with µ0 the magnetic permeability in the vacuum or non-ferromagnetic material.
Assuming invariance following the z direction and that the magnetic field only depend on
x and y, we deduce that the only non-vanishing component is B(x1.x2) = Bz(x1, x2) and
the Ampère-Maxwell equation writes

∂2B = µ0j1, −∂1B = µ0j2, in R2

where j is a given function on R2 with compact support.
Dealing with the rotational operator ∇× in R2, we deduce that B is also the solution
of problem µ0∇ × j = ∇ × ∇ × B = −ΔB (see [2]) with the asymptotic behaviour
B(x) = O(|x|−1) when |x| → ∞.
Another alternative is to introduce the potential magnetic vector A such that B = ∇×A
where A is the solution of problem

∇× (∇×A) = −ΔA = µ0j, in R2

with the asymptotic behaviour |A(x)| = O
�
ln(|x|)

�
.

However this relationship is not useful for magnetic field computation since the function
is defined in the whole domain R2 while we just need to determine B on domain �Ω. An
alternative approach consists to use the integral representation, namely the Biot-Savart
formula. For two-dimensional geometries �Ω ⊂ R2 (see [3]). The vector potential magnetic
field and the magnetic field at a point x are given by

A(x) = −µ0

2π

�

�Ω
j(y) ln(|x− y|)dy (7)

B(x) = ∇x ×A = −µ0

2π

�

�Ω
j(y)×∇x ln(|x− y|)dy, (8)
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for a current j flowing in the direction of e1 and e2 where × represents the external
product between two vectors. After some algebraic manipulation, equation (8) writes

B (x) =
µ0

2π

�

�Ω

det[j(y), (x− y)]

|x− y|2 dy. (9)

At least, the Laplace force is given by

f = j×B,

and in our specific case with B = Be3, the force writes
�

f1
f2

�
= B

�
j2

−j1

�
. (10)

4 MATRICIAL REPRESENTATION

4.1 Representation for Aa
eh

Using finite element methods we will introduce the matricial representation for this prob-
lem. We identify the new meshes of �Ωℓ by �T ℓ

h , ℓ = a, b, respectively, and To enforce the
Dirichlet condition we use a penalisation method which seems more adapted. Indeed,
the contact zone may change with respect to the elasticity problem hence to avoid a new
codification of the boundary and to reshape the matrix, we always use the same stiff
matrix and introduce the Dirichlet condition by multiplying the entries corresponding to
the nodes of Aa

η,h.

I

Figure 3: Discrete active zone definition

The rigid matrix writes

[Aa
e ] =

�
Aa

eh

�
φa
i ,φ

a
j

��
i,j=1,...,na

while the associated write-hand side is given by

[Θa]i =





0 ⇐ i ∈ {1, . . . , ña}
�
�ΓUh

I0
|�ΓUh

|ϕ
a
i ds, ⇐ i ∈ {ña + 1, . . . , na}
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Let denote by Ea
η,h the nodes which correspond to domain Aa

ηh
. Once we compute the

system matrices at each step, the Dirichlet condition correspondent to Aa
ηh

can be imposed
by substitution method.
Resolution of the elliptic problem turns to solve the simple matricial problem

[Aa
e ] [Φ

a] = [Θa]

where [Φa] are the unknowns on the nodes.

4.2 Representation for Ab
eh

Since the Dirichlet condition does not change with the iteration, we do not use a penal-
ization method for operator Ab

eh
and recall that Pi, i = 1, · · · , ñb, correspond to the nodes

of �Ωb except the node of boundary �ΓB. The rigid matrix then writes

�
Ab

e

�
=

�
Ab

eh

�
φb
i ,φ

b
j

��
i,j=1,...,ñb

Let ρbh be a given constant piecewise function on �Γa
Ch

characterized by vector [ρ] =�
ρ1 · · ·ωsbC

�T
. We introduce the Neumann conditions with vector

�
Θb ([ρ])

�
i
=

�

T⊂�Γb
Ch

�

T

ρbhφ
b
i ds,⇐ i ∈

�
1, . . . , nb

C

�
.

The elliptic problem consist in solving the matricial problem

�
Ab

e

� ��Φb
�
=

�
Θb

�

where
�
�Φb
�
are the unknowns on the nodes. We complete the vector setting

�
Φb

�
=

��
�Φb
�
, 0
�
taking into account the homogeneous boundary condition.

4.3 Current density and normal projection

Setting jℓh = ∇φℓ
h ∈ Xℓ

h, we obtain a constant piecewise vector over �Ωℓ
h which represents

the current density field. We shall represent the vector in two vectors depending on the
coordinates,

�
jℓ1
�

=
�
jℓ1,1 · · · jℓnℓ

K ,1

�T
and

�
jℓ2
�

=
�
ja1,2 · · · janℓ

K ,2

�T
.

that we gather in the matrix form

�
jℓ
�

=
� �

jℓ1
� �

jℓ2
� �T

.
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We report here the definition of the matricial expression of the projection following the

normal direction. We denote by
�
N

ℓ
�
∈ Rnℓ

C×2nℓ
C the matrix of the outwards normals over

Γℓ
C and set

�
N

ℓ
�

=




nℓ
h1,1 · · · 0 nℓ

h1,2 · · · 0
. . .

. . .

0 · · · nℓ
h nℓ

C ,1 0 · · · nℓ
h nℓ

C ,2




We introduce the global matricial representation of
�
N

ℓ
�
on Ωℓ

h:

�
N ℓ

�
=

� �
N

ℓ
�

000
�

with [Na] ∈ Rnℓ
C×(ña+na) and

�
N b

�
∈ Rnℓ

C×2ñb
.

4.4 Representation for the mappings on contact zone

We recall the matricial representation
�
Cℓ,I

�
∈ RnI×nℓ

C and
�
CI,ℓ

�
=

�
Cℓ,I

�T ∈ Rnℓ
C×nI

for

operators Cℓ,I
h,η and CI,ℓ

η,h respectively

�
Cℓ,I

�
ki
=

�

I

µk(ξ)φ
ℓ
i(ξ)dξ, k = 1, · · · , nI , i = 1, · · · , nℓ

C .

In the same way, we represent operators Dℓ,I
h,η and DI,ℓ

η,h with
�
Dℓ,I

�
∈ RsI×sℓC and

�
DI,ℓ

�
=�

Dℓ,I
�T ∈ RsℓC×sI with

�
Dℓ,I

�
ki
=

�

I

λk(ξ)ϑ
ℓ
i(ξ)dξ, k = 1, · · · , sI , i = 1, · · · , sℓC .

4.5 The iterative problem within the matricial form

We now give the iterative procedure at the matricial level. Notice that the procedure
corresponds to the one one really implemented on computer thus the importance to define
completely all the step. The iterator index is r and we shall compute a sequence of vectors
[ν]r which shall converge.
Assume that vector [ν]r is known such that [ν]rk = 0 for the nodes Nk outside of Jη.
the procedure is given by the following substeps (we omit subscript k for the sake of
simplicity):

1. Compute vector [wa] =
�
DI,ℓ

�
[ν]r

2. Compute [Φa] solving problem

[Aa
e ] [Φ

a] = [Θa]

with penalization with respect to [ωa].
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3. Compute [ja] with ∇φa
h and compute [ρa] = [Na][ja].

4. Compute [τ ] =
�
Dℓ,I

�
[ρa] and [ρb] = −

�
Dℓ,I

�
[τ ]

5. Compute
�
Φb

�
=

��
�Φb
�
, 0
�
solving

�
Ab

e

� ��Φb
�
=

�
Θb

�

6. Extract [ωb] from
�
Φb

�
and compute [ν̃] =

�
Cℓ,I

�
[ωb] where we cancel the entries k

which correspond to the nodes Nk outside of Jη.

7. Compute the new vector [ν]r+1 = θ[ν]r + (1− θ)[ν̃]

We repeat the algorithm till we satisfy the convergence criterion.

5 NUMERICAL SIMULATION

5.1 One domain case

We begin by considering the case with one domain. Once the length of Jη is determined
we solve the discrete electric problem on the domain have the configuration of the two
electrodes in contact, Figure 4. We this domain we do not have to worry about the
potential continuity at the contact zone. More, these results will give us a benchmark for
the later results obtained with the domain decomposition technique and two domains.
For this case we consider m (Jη) = 0.0468 and I0 = 10kA.

(a) One domain mesh (b) Two domain meshes

Figure 4: Domain mesh

Figure 4 shows that with both strategies we obtain very similar results. This validates
the results and in particular our technique for passing information between the domains
at domain decomposition method.
At Figures 6 and 7 although the range of values are similar, the observed difference is
justified by the mesh difference, since the density is approximated numerically in the
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(a) One domain (b) Two domains

Figure 5: Potential scalar field

(a) One domain (b) Two domains

Figure 6: Current density field

barycentric coordinates in the element from the given potential at the nodes. Also in
these figures we can see the continuity of density at the the contact zone.
The magnetic induction (component following e3 ) is exactly the same Figure 8. About
Laplace force there is a reduction though the magnitude is equal and we have almost the
symmetry between the two domains Figure 9, where we recall again that the meshes are
not symmetrical and that the Laplace force are calculated is approximated numerically
in the barycentric coordinates in the element.
At this section we will analyse the numerical solutions produced at electro-magnetic state
when the electrodes are in contact through a determined active zone.
For each numerical problem we determine the volume repulsive force generated for a given
m (J) and intensity current I0, for two profiles cases: elliptic and circular.

5.2 Two domains case

We are interested to analysing the profiles of the potential contact zone: elliptic and
circular. From [4] we use two intensity values I = 10 kA , I = 20 kA, I = 40 kA and
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Figure 7: Zoom of current density field at contact zone

(a) One domain (b) Two domains

Figure 8: Magnetic induction (component following e3 )

(a) One domain (b) Two domains

Figure 9: Laplace force

I = 60 kA. We consider that a inicial spring force has applied, characterized by

F = κ× α (N) (11)

with

κ =
E × A

L
(12)

named the axial stiffness, where
E = 115 GPa = 115× 106N/m2, the copper elasticity modulus, [5],
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A, the contact zone area (in m2) and
L the circuit breaker height (in m).
The value α represents the vertical displacement, so here we will suppose α ≤ 0.2

5.3 Elliptic profile

Here we consider a contact with a elliptic profile with a contact zone lengthm (Jη) = 0.032,
corresponding to α = 0.1 .

Table 1: Repulsive force generated with an elliptic profile and large active zone and test for several values
of θ

intensity current (A) θ repulsive force generated (N)

1× 104 .125 44.53

1× 104 .25 44.53

1× 104 .5 44.53

2× 104 .125 178.13

2× 104 .25 178.13

2× 104 .5 178.13

4× 104 .125 712.53

4× 104 .25 712.53

4× 104 .5 712.53

6× 104 .125 1603.2

6× 104 .25 1603.2

6× 104 .5 1603.2

From the results explained at Table 1, we can expect a function of the kind

fR (I0) = a1I
2
0 . (13)
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Using least squares method we obtain

a1 = 44.53.

represented at Figure 10.
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Figure 10: Elliptic profile and large active zone: Repulsive force generated ”×” and least squares approx-
imation ”line”

Now we test a reduction of the contact zone, m (Jη) = 0.012, corresponding to α = 0.01.

Table 2: Repulsive force generated with an elliptic profile and small active zone

intensity current (A) repulsive force generated (N)

1× 104 51.1

2× 104 204.42

4× 104 817.69

6× 104 1839.82

From the results explained at Table 2, we can expect a function of the kind

fR (I0) = a2I
2
0 . (14)
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Using least squares method we obtain

a2 = 51.1.

represented at Figure 11.
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Figure 11: Elliptic profile and small active zone: Repulsive force generated ”×” and least squares ap-
proximation ”line”

6 Circular profile

Here we begin by consider a circular contact profile after deformation withm (Jη) = 0.045,
corresponding to α = 0.1.
From the results explained at Table 3, we can expect a function of the kind

fR (I0) = a3I
2
0 . (15)

Using least squares method we obtain

a3 = 186.71.

represented at Figure 12.
Like as above Consider now a small contact zone, m (Jη) = 0.016, corresponding to
α = 0.01.
From the results explained at Table 4, we can expect a function of the kind

fR (I0) = a4I
2
0 . (16)
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Table 3: Repulsive force generated with an circular profile and large active zone

intensity current (A) repulsive force generated (N)

1× 104 186.71

2× 104 746.85

4× 104 2987.42

6× 104 6721.69
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Repulsive force generated×

×
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Figure 12: Circular profile and large active zone: Repulsive force generated ”×” and least squares
approximation ”line”

Using least squares method we obtain

a4 = 200.35.

represented at Figure 13.
Observing figures we note that the repulsive force depends on the electrode profile being
more important in the case of a circular profile. It also appears that the repulsive force
increases as the extent of the active area decreases.
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Table 4: Repulsive force generated with an circular profile and small active zone

intensity current (A) repulsive force generated (N)

1× 104 200.34

2× 104 801.39

4× 104 3205.59

6× 104 7212.59
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Figure 13: Circular profile and small active zone: Repulsive force generated ”×” and least squares
approximation ”line”

7 CONCLUSION

From the results we have obtained can conclude that the proposed domain decomposi-
tion algorithm converges to a continuous solution of the scalar electrical potential field,
independently of parameter θ.
Comparing figures 10 - 12 and 11 - 13 we note that the repulsive force depends on the
electrode profile and being more important in the case of a circular profile.
With this tests, we can also observe that the repulsive force is inversely proportional to
the length of the active zone.
Only two-dimensional configurations have been considered in the present work but the
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real problem is three-dimensional and brings more difficulties. The contact zone is more
complex and the computational effort is larger.
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