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Abstract

Mathematical Program with Complementarity Constraints (MPCC) finds applica-
tion in many fields. As the complementarity constraints fail the standard Linear In-
dependence Constraint Qualification (LICQ) or the Mangasarian-Fromovitz constraint
qualification (MFCQ), at any feasible point, the nonlinear programming theory may
not be directly applied to MPCC. However, the MPCC can be reformulated as NLP
problem and solved by nonlinear programming techniques. One of them, the Inexact
Restoration (IR) approach, performs two independent phases in each iteration - the
feasibility and the optimality phases.

This work presents two versions of an IR algorithm to solve MPCC. In the feasibility
phase two strategies were implemented, depending on the constraints features. One
gives more importance to the complementarity constraints, while the other considers
the priority of equality and inequality constraints neglecting the complementarity ones.
The optimality phase uses the same approach for both algorithm versions.

The algorithms were implemented in MATLAB and the test problems are from
MACMPEC collection.

Key words: Mathematical Problem with Complementarity Constraints, Inexact Restora-
tion, NonLinear Programming
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1 Introduction

Mathematical Program with Complementarity Constraints is an exciting new application
of nonlinear programming techniques. The main application areas are Engineering, Fco-
nomics and Ecology. In Engineering, problems dealing with contact, obstacle and friction,
process modeling and traffic congestion are treated. MPCC problems arise in game theory
models like Nash and Stackelberg equilibrium, in finances and taxes problems and in mar-
kets competition issues, all related with Economics. There is a growing collection of test
problems [13] and Ralph [1] presents some MPCC applications like toll design in traffic net-
works or communication networks. An important reason why complementarity optimization
problems are so pervasive in Engineering and Economics is because the concept of comple-
mentarity is tantamount with the notion of system equilibrium. They are very difficult to
solve as the usual constraint qualifications, necessary to guarantee the algorithms conver-
gence, fail in all feasible points. This complexity is caused by the disjunctive constraints
which lead to some challenging issues that typically are the main concern in the design of
efficient solution algorithms. It has been recently shown that MPCC can be efficiently and
reliably solved as a nonlinear program (NLP). However this reformulation still continues to
violate at any feasible point the same constraint qualifications (MFCQ), ie, has no feasible
point that strictly satisfies the inequalities. Recent studies of Scheel and Scholthes [2] have
proved that the strong stationarity of an MPCC equals the first order optimality conditions
of the NLP equivalent. This fact motivates the scientific community to use NLP approaches
to deal with MPCC [3].

The point of view of IR approach is that feasibility is an important feature of the
problem that must be controlled independently of optimality. Therefore, the methods based
on IR consider feasibility and optimality at different phases of a single iteration. A well
known drawback of feasible methods is their inability to follow very curved domains, which
causes that very short steps might be computed far from the solution. IR methodology
tries to avoid this inconvenient using procedures that automatically decrease the tolerance
of infeasibility as the solution is approximated [7]. In this way, large steps on an enlarged
feasible region are computed at the beginning of the process.

These methods are related to classical restoration algorithms like gradient projection
methods, sequential gradient restoration algorithms (SGRA) and generalized reduced gradi-
ent (GRG) method but also have singular differences. They generate a sequence of generally
infeasible iterates with intermediate iterations that consist of inexactly restored points. The
main difference between the different classical methods is the way in which restoration is
performed. The convergence theory allows the use of arbitrary algorithms for performing
the restoration.

An essential feature of the IR methodology is that one is free to choose different algo-
rithms both for the feasibility and for the optimality phase, so that problem characteristics
can be exploited. MPCC has a different type of constraints, the complementarity ones, that
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must have a special treatment in the feasibility phase of the IR philosophy.

This paper is organized as follows. Next section presents some topics of IR state of art.
Section 3 defines the MPCC problem. Two versions of the IR algorithm are presented in
Section 4. Some preliminar conclusions are reported.

2 IR state of art

Feasible methods are very important in many real life situations, feasible nonoptimal points
have a meaning and useful whereas nonfeasible points have no meaning. In [6] is presented
an algorithm in which in each iteration demands, first reducing the norm of the constraints
and after the reduction of the Lagrangian function. The new point is calculated by means
of a merit function that combines feasibility and optimality. Modern Inexact Restoration
methods for Nonlinear Programming begin with the algorithm of Martinez and Pillota [4].
In the feasibility phase, given the current iterate z¥, an intermediate more feasible point
y* is computed using an arbitrary procedure, which is chosen according to the problem
characteristics. The trial point z is computed on ”tangent set” that passes through 3* in
such way that an optimality measure improves in z with respect to y* . If the point z
is acceptable for a criterion that combines feasibility and optimality, one defines the new
iterate 71 = 2. Otherwise, the trial point is chosen in a smaller trust region around y*.
The convergence theory of IR methods [8] is related with the convergence theory of SQP
algorithms, the main analogies between IR and SQP method presented in [5] are: both
are trust-region methods; every iteration is composed by two phases, the first related to
feasibility and the second to optimality; the optimal phase seeks a “more optimal” point in
a “tangent approximation” to the constraints.

However, there exist very important differences, in both methods in the restoration and
optimality phase IR deals with the true function and constraints, while SQP deals with a
model of both; the trust region in SQP is centered in the current point, instead in IR is
centered in the restored point. Because of these differences, which allow one to relate IR to
the classical feasible methods.

The IR approach has been the subject of interest to researchers in very different areas
[12], [11], is a strategy that can be easily combined with other techniques [10]. Recently [9]
presented a new general scheme for IR methods for nonlinear programming, this differs from
previous methods, in which the tangent phase needs both line search based on the objective
function and a confirmation based on a penalty function or a filter decision scheme.
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3 MPCC definition

We consider Mathematical Program with Complementarity Constraints (MPCC):

min  f(x)
st. ¢(x)=0,i€kFE, (1)
CZ(:E) > 03 (S [7

0<z Lzg >0,

where f and ¢ are the nonlinear objective function and the constraint functions, respectively,
assumed to be twice continuously differentiable. E and I are two disjoined finite index sets
with cardinality p and m, respectively. A decomposition x = (g, 21, x2) of the variables is
used where 2¢ € R"™ (control variables) and (1, x2) € R? (state variables). The expressions
0 <z Lay>0:R* — RYI are the ¢ complementarity constraints, whose set is denoted
by @. The notation z; L z9 means that x1;z9; = 0, for i € Q, ie, the complementarity
condition owns the disjunctive nature - 1, = 0 or x9; = 0, for i € ). This formulation
doesn’t exclude complementarity constraints like 0 < G(z) L H(z) > 0. With this kind
of complementarity constraints, the problem can be reformulated, by introducing the slack
variables 21 and x9. Grouping all the equality constraints in ¢;(x) = 0, the complementarity
constraints have the form 0 < 2y L x5 > 0 and the problem presents the formulation (1). In
this formulation all the properties like constraint qualifications or second order conditions
are preserved. This formulation makes easy the properties theoretical study.

One attractive way of solving (1) is to replace the complementarity constraints by a set
of nonlinear inequalities, such as x1; x9; < 0,4 € @, and then solve the equivalent nonlinear
program (NLP):

st.  c¢(x)=0,i€E,
ci(r) >0,iel, (2)
1wy < 0,4 € Q,
r1 >0, x9 > 0.

4 Inexact Restoration approach

In the IR approach, two independent phases are performed in each iteration - the feasibility
and optimality phases. The first one, given a point z¥, finds an intermediate point y* with
less constraints violation. The goal is to compute a search direction towards a region more
feasible. The optimality phase, starts from 3* and it aims to optimize the objective function
f(z) into the satisfied constraints space finding a "more optimal ” point z**1,

The IR philosophy is described in the high level fluxograma.
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High level IR fluxograma
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4.1 Application to MPCC

The feasibility phase aims to minimize the sum of the constraints violation in the feasible
set. The IR philosophy allows to exploit the specificity of the MPCC constraints. In these
context, two versions of the feasibility phase are implemented, denoted by Al and A2.

A1 version gives priority to the complementarity constraints. The idea is to minimize
the violation of the linearized complementarity constraints, satisfying the constraints that
are already satisfied, solving the following linear problem:

mkm Z Afdfeak
dfeq ER™ i€Qu

s.t. Afdfea + cf =0,1€F (3)
Abdpeg +cF>0,i€el
Afdgeq +cf <0, i€ Qs

where A* = Ve(2F)T represents the constraints Jacobian matrix, @, and @, are the sets of
the violated and satisfied complementarity constraints, respectively.

A2 version enforces the violation decrease of the equality and inequality constraints.
Complementarity constraints violation is not prioritized. The following linear problem is
solved:

min > Adged
dfea” €R ic{E,Ul,}
4
s.t. Abdpeq +cF =0, i € By (4)

Afdfea —&—cf >0,1€lg
Afdfea +cf <0, i€Q

where E,, Es, I,, and I are the sets of violated and satisfied equality constraints, and
violated and satisfied inequality constraints, respectively. The search direction d feak is the
solution for the linear problems (3) and (4) - these problems are solved using the linprog
routine from the MATLAB Optimization toolbox. The point 3* = 2* + ad feak is obtained
by a line search procedure.

The optimality phase starts from y”, solves a quadratic optimization problem whose ob-
jective function is a quadratic approximation of f(z) and linear approximations of the
constraints:
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min %(doptk)TWkdoptk + (doptk)T.gk
doptk cRn”

s.t. Ai-“dfea + cf =0,1€ F (5)
Abdpeg +cF>0,i€1
A?dfea —i—ciC <0,7€Q

were g¥ = Vf(y*) is the gradient of the objective function, A¥ = Ve(y*)T is the Jacobian
matrix of the constraints and W* = V2L(y*) is the Hessian matrix of the Lagrangian
function. The solution of the quadratic problem (5) is the search direction dgy". This
search direction will determine the new point 2**1. To solve this quadratic subproblem the
quadprog routine from the MATLAB Optimization toolbox is used.

The algorithms were implemented in MATLAB. Numerical experiences using a set of
AMPL test problems from MacMPEC [13] are ongoing.

5 Conclusions

Two versions of an iterative algorithm using the IR philosophy were implemented in MAT-
LAB to solve MPCC. The differences between the versions are only in the feasibility phase
- the first one gives priority to the complementarity constraints while the second version
considers the equality and inequality constraints more important. The preliminar ongoing
numerical results show that the first version performs better than the second one. The
algorithms are still in an improvement phase and more numerical experiments with larger
dimension problems will be performed.
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