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2tail dependene is the so alled tail dependene oe�ient (TDC), a oneptintrodued by Sibuya ([18℄, 1960), whih is de�ned as follows:
λ = lim

t↓0
P (F2(X2) > 1− t|F1(X1) > 1− t), (1)where F1 and F2 are the distribution funtions (d.f.'s) of the random variables(r.v.'s) X1 and X2, respetively, whih are onsidered ontinuous. Observe thatthe TDC an also be formulated through the opula funtion introdued bySklar ([19℄, 1959). A opula funtion C is a d.f. whose marginals are standarduniform, i.e., if C is the opula funtion of (X1, X2), having joint d.f. F , then

F (x1, x2) = P (F1(X1) ≤ F1(x1), F2(X2) ≤ F2(x2)) = C(F1(x1), F2(x2))and thus
λ = 2− lim

t↓0

1− C(1 − t, 1− t)

t
. (2)If 0 < λ ≤ 1, the r.v.'s X1 e X2 are said to be tail dependent whose degreeof dependene is measured through λ (λ = 1 means total dependene in thetail). The ase λ = 0, orresponds to asymptoti independene in the tail.However, as notied in Ledford and Tawn ([12, 13℄, 1996/1997), it may our aresidual tail dependene aptured through the onvergene rate of P (F1(X1) >

1− t, F2(X2) > 1− t) towards zero, as t ↓ 0. More preisely, onsidering
P (F1(X1) > 1− t, F2(X2) > 1− t) = t1/ηL(t), (3)where L is a slow varying funtion at 0, i.e., L(tx)/L(t) → 1, as t ↓ 0 and x > 0.The parameter η ∈ (0, 1], known as Ledford and Tawn oe�ient, measures theresidual tail dependene and the funtion L the relative strength of dependenegiven a partiular value of η. Observe that η = 1 and L(t) onverging tosome positive onstant orresponds to tail dependene (λ > 0), whilst η < 1means tail independene. If η = 1/2 we have (almost) perfet independene(perfet if L(t) = 1), and for 0 < η < 1/2 or 1/2 < η < 1 we have assoiation,respetively, negative (i.e., P (F1(X1) > 1 − t, F2(X2) > 1 − t) < P (F1(X1) >

1− t)P (F2(X2) > 1− t)) or positive (i.e., P (F1(X1) > 1− t, F2(X2) > 1− t) >
P (F1(X1) > 1− t)P (F2(X2) > 1− t)).Relation (3) also means that the funtion q(t) = P (F1(X1) > 1−t, F2(X2) >
1− t) is regularly varying (of �rst order) with index 1/η. In Draisma et al. ([4℄,2004), it is onsidered a re�nement of this relation under a seond order regularlyvarying ondition. More preisely, it is assumed that the limit
lim
t↓0

(
P (F1(X1) > 1− tx, F2(X2) > 1− ty)

q(t)
− c(x, y)

)
/q1(t) = c1(x, y) (4)exists, for all x, y ≥ 0 and x+ y > 0, with q1(t) → 0, as t ↓ 0, being a regularlyvarying funtion of index τ ≥ 0 and c1 a non-onstant funtion and non-multipleof c. It is also assumed that the onvergene is uniform in {(x, y) ∈ [0,∞[2:

x2+y2 = 1}, that l = limt↓0 q(t)/t exists and, without loss of generality, c(1, 1) =
1. In addition, the funtion c is homogeneous of order 1/η, i.e., c(tx, ty) =
t1/ηc(x, y).



3Now observe that,
P (F1(X1) > 1− t, F2(X2) > 1− t) = P

(
W1 >

1

t
,W2 >

1

t

)
,with Wj = (1− Fj(Xj))

−1, j = 1, 2, and hene we an write
P (W1 > t,W2 > t) = t−1/ηL(t−1). (5)Therefore, η orresponds to the tail index of

T = min (W1,W2) , (6)and thus it an be estimated as so. This will be addressed in Setion 2.An alternative measure for the residual tail dependene was introdued inColes et al. ([3℄, 1999). By onsidering
P (F1(X1) > 1−t, F2(X2) > 1−t) = [P (F1(X1) > 1− t)P (F2(X2) > 1− t)]1/(2η) ,and applying logarithms to both members, we derive

1

2η
=

logP (F1(X1) > 1− t, F2(X2) > 1− t)

logP (F1(X1) > 1− t) + logP (F2(X2) > 1− t)
,or

χ = 2η − 1 =
2 log t

logC(1− t, 1− t)
− 1, (7)with χ ∈ [−1, 1] and C orresponding to the survival opula, i.e.,

F (x1, x2) = P (F1(X1) > F1(x1), F2(X2) > F2(x2)) = C(F1(x1), F2(x2)).Observe that χ < 1 means tail independene (λ = 0) and if χ = 1, we have taildependene (λ > 0). We also have positive and negative assoiation whenever
χ > 0 and χ < 0, respetively, with χ = 0 orresponding to (almost) exatindependene. Estimators for λ and χ based on the expressions (2) and (7),respetively, will be also presented in Setion 2.The behavior of events within the lass of asymptoti dependene is quitedi�erent from the one deteted in the lass of asymptoti independene. Bothforms allow dependene between moderately large values of eah variable, butonly when the variables exhibit tail dependene the very largest values fromeah variable an our together. If we wrongly infer tail dependene, an over-estimation of the extreme value dependene takes plae and onsequently ofthe risk. This over-estimation is related to the degree of residual dependenewhih is measured through η or χ. Therefore, it is important to assess whereasa data set presents tail dependene or independene and to quantify the degreeof dependene for the appropriate dependene lass. This an be done throughthe estimation of λ and of η (or χ) together with tests for tail independene.These topis an be found in many referenes suh as Huang ([9℄, 1992), Joe([10℄, 1997), Coles et al. ([3℄, 1999), Frahm et al. ([7℄, 2005) and Shmidt and



4Stadtmüller ([17℄, 2006) for the TDC estimation, Ledford and Tawn ([12, 13℄,1996/1997) and Peng ([15℄, 1999) onerning the estimation of η and Coles etal. ([3℄, 1999) for the χ estimation. The tail independene tests an be seen in,e.g., Poon et al. ([16℄, 2004) and Draisma et al. ([4℄, 2004).Most of the non parametri estimation of extremal parameters requires thehoie of the number k of upper order statistis to be used in it. A paradigmatiexample is the univariate tail index estimation of regularly varying distributions(for a survey, see Beirlant et al. [1℄ 2012 and referenes therein). A similarproblem exists for tail dependene estimation. In pratie, we have to deal witha trade-o� between variane and bias, sine small values of k orrespond to largervariane whilst large values of k inrease the bias of the estimators. Figure 1illustrates this issue. Observe that the true value (horizontal line) an be inferredfrom a kind of �rst stability region within the sample path of estimators. Inorder to overome this problem, Frahm et al. ([7℄, 2005) developed a heuristiproedure where k is estimated based on a simple plateau-�nding algorithmafter smoothing the latter plot by some box kernel. They proposed some valuesfor the bandwidth but no study was arried out in order to evaluate possiblehoies. In this paper we address this issue through a simulation study, byapplying the heuristi proedure to nonparametri estimators of the TDC. Inaddition, we also analyze the performane of the proedure when applied tothe estimation of η and χ, as well as, within the ontext of the referred tailindependene tests (Setion 3). An illustration with �nanial data is presentedin Setion 4. We end with some �nal remarks (Setion 5).2 Inferene on the extremal (in)dependeneConsider (X(1)
1 , X

(1)
2 ), . . . , (X

(n)
1 , X

(n)
2 ) independent and identially distributed(i.i.d.) opies of the random pair (X1, X2). From (2), it is possible to deduethe estimator (Joe et al., [11℄ 1992):

λ̂SEC = 2− 1− Ĉ(1− k/n, 1− k/n)

k/n
, 1 ≤ k < n. (8)By using log(1 − t) ∼ −t, with t ≈ 0, it an be derived the estimator (Coles etal. 1999):

λ̂LOG = 2− log Ĉ(1− k/n, 1− k/n)

log (1− k/n)
, 1 ≤ k < n, (9)where Ĉ denotes the empirial opula given by

Ĉ(1 − k/n, 1− k/n) =
1

n

n∑

i=1

1
{F1(X

(i)
1 )≤1− k

n ,F2(X
(i)
2 )≤1− k

n }
, 1 ≤ k < n, (10)with 1 denoting the indiator funtion. If the marginal d.f.'s Fj , j = 1, 2, areunknown, we an replae them by the empirial d.f.'s F̂j , j = 1, 2, respetively.For more aurate estimates, it is onsidered

F̂j(u) =
1

n+ 1

n∑

i=1

1
{X

(i)
j ≤u}

, j = 1, 2. (11)



5See Beirlant et al. ([2℄, 2004; Setion 9.4.1) for more details. Note that bothestimators depend on the parameter k, the number of upper order statistisinvolved in the estimation. The hoie of k is of major di�ulty within theseestimators beause of the ompromise between variane and bias explained inthe introdution. To ensure properties as asymptoti normality and onsistenyit is neessary to assume that k ≡ kn is an intermediate sequene, i.e.,
k → ∞ and k/n → 0, as n → ∞(see Huang [9℄ 1992 and Shmidt and Stadtmüller [17℄ 2006).
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k/nFigure 1: Sample path of estimator λ̂LOG (left) and estimator λ̂SEC (right), plottedagainst k/n, 1 ≤ k < n, onsidering n = 1000 realizations of a bivariate Student-t. The horizontal lines orrespond to the true values.We have already seen that, by onsidering (5), oe�ient η orrespondsto the tail index of the r.v. T de�ned in (6). The tail index estimation hasbeen largely exploited in literature and a survey on this topi an be seen in,e.g., Beirlant et al. ([2℄, 2004). The most used estimator within positive tailindexes is the Hill estimator (Hill [8℄ 1975). More preisely, onsidering in (6)the respetive empirial ounterparts, we have
T

(n)
i = min

(
Ŵ1,i, Ŵ2,i

)
, i = 1, . . . , n (12)with Ŵj,i = (1 − F̂j(Xj,i))

−1 and F̂j given in (11), j = 1, 2, i = 1, . . . , n.Thus, onsidering the order statistis, T (n)
n:n ≥ T

(n)
n:n−1 ≥ . . . ≥ T

(n)
n:n−k, the Hillestimator for oe�ient η is given by

η̂ =
1

k

k∑

i=1

log
T

(n)
n:n−i+1

T
(n)
n:n−k

, 1 ≤ k < n. (13)Observe that η̂ is also a funtion of the parameter k, under the same onditionsdesribed above and thus, su�ering from the same problem involving the biasand variane.



6 Observe that, from the �rst equality in (7), we an derive the estimator
χ̃ = 2η̂ − 1,with η̂ given in (13). From the seond equality in (7), it is obtained the estimator(Coles et al. 1999)

χ̂ =
2 log(k/n)

log Ĉ(1− k/n, 1− k/n)
− 1, 1 ≤ k < n, (14)where Ĉ denotes the empirial survival opula,

Ĉ(1 − k/n, 1− k/n) =
1

n

n∑

i=1

1
{F1(X

(i)
1 )>1− k

n ,F2(X
(i)
2 )>1− k

n }
, 1 ≤ k < n. (15)In ase the margins are unknown, we an replae Fj by F̂j , j = 1, 2, given in(11). One again, we have dependeny on the parameter k.In most of the ases, the TDC estimators do not behave well under asymp-toti independene, i.e., whenever λ = 0 (see, e.g., Frahm et al. [7℄ 2005 andFerreira [6℄ 2013). A possible way to deal with this problem is to onsiderpreliminar tests for tail independene. Poon et al. [16℄ (2002) suggest to test

H0 : η = 1 versus H1 : η < 1, that is, dependene versus independene, basedon estimator η̂ in (13). Considering k ≡ kn an intermediate sequene and un-der some quite general additional onditions, we have √k(η− η̂) approximately
N(0, η2), as n → ∞. Thus, we rejet H0 in favor of H1, at the signi�ane level
α, if

η̂ + z1−α
η̂√
k
< 1 (16)where z1−α denotes the (1− α)-quantile of N(0, 1).An analogous test was developed in Draisma et al. ([4℄, 2004), based onrelation (4). More preisely, assuming that (4) holds for a funtion c with �rstderivatives cx = ∂c(x, y)/∂x and cy = ∂c(x, y)/∂y, and onsidering k ≡ knan intermediate sequene suh that √

kq1(q
−1(k/n)) → 0, with n → ∞, then√

k(η̂ − η) is asymptotially Normal with null mean value and variane
σ2 = η2(1 − l)(1− 2lcx(1, 1)cy(1, 1)).Consider

l̂ = k
nT

(n)
n:n−k, ĉx(1, 1) =

k̂5/4

n

(
T

(n,k̂5/4)
n:n−k − T

(n)
n:n−k

)with k̂ = k/l̂ and T
(n,u)
n:i , i = 1, . . . , n, the ordinal statistis of

T
(n,u)
i = min

(
Ŵ1,i(1 + u), Ŵ2,i

)
, i = 1, . . . , n.De�ning similarly ĉy(1, 1), if (4) holds under the above mentioned onditions,then l̂

P→ l, where P→ denotes onvergene in probability. Moreover, if η = 1,then
ĉx(1, 1)

P→ cx(1, 1), ĉy(1, 1)
P→ cy(1, 1) and σ̂

P→σ,



7where
σ̂2 = η̂ 2(1− l̂ )(1− 2l̂ ĉx(1, 1)ĉy(1, 1)). (17)with η̂ orresponding to the Hill estimator of η, given in (13). Therefore, forthe same test hypotheses, we rejet H0 if

η̂ + z1−α
η̂√
k

√
(1 − l̂ )(1 − 2l̂ ĉx(1, 1)ĉy(1, 1)) < 1. (18)Observe that the variane in test (18) inludes a orretness fator whenompared with the one in (16). This will render its value slightly smaller, mak-ing the test more aurate under tail independene, as shall be seen in thesimulations afterwards.3 SimulationsIn this setion we analyze the �plateau-�nding" heuristi proedure presented inFrahm et al. ([7℄, 2005). A stability on the sample path of the graph (k, λ̂(k)),

1 ≤ k < n, for high thresholds (small values of k) is observed one the diagonalsetion of the opula is expeted to be smooth in the neighborhood of 1 and the�rst derivative approximately onstant. However, in order to derease variane,
k annot be too small. The algorithm proposed in Frahm et al. ([7℄, 2005)aims to identify the plateau, i.e., the stability region whih is indued by thehomogeneity. More preisely, �rst we smooth the graph (k, λ̂(k)) by a box kernelwith bandwidth w = ⌊bn⌋ ∈ N onsisting of the means of 2w + 1 suessivepoints of λ̂(i), i = 1, . . . , n. Now, in the smoothed moving average values,
λ̂(1), . . . , λ̂(n − 2w), the plateaus with length m = ⌊

√
n− 2w⌋ are de�ned as

pk = (λ̂(k), . . . , λ̂(k +m− 1)), k = 1, . . . , n− 2w −m+ 1. The algorithm stopsat the �rst plateau ful�lling the riterium
k+m−1∑

i=k+1

∣∣∣λ̂(i)− λ̂(k)
∣∣∣ ≤ 2σ,with σ orresponding to the standard deviation of λ̂(1), . . . , λ̂(n− 2w), and theTDC estimate orresponds to

λ̂ =
1

m

m∑

i=1

λ̂(k + i− 1).If no plateau ful�lls the stopping ondition, the TDC is estimated as zero.Observe that, if the diagonal setion of the opula follows a power law, thehomogeneity of λ̂LOG still holds for larger k and larger bandwidths may be hosenin order to redue the variane.We simulate 1000 independent random samples of sizes n = 250, 1000, 2500,from the models:



8
• bivariate Normal with ρ = 0.5 and ρ = 0.85 (λ = 0; η = 0.75, 0.925,respetively);
• bivariate Student-t with ρ = 0.5, ν = 1.5 and ρ = 0, ν = 2 (λ =
0.4406, 0.2254, respetively; η = 1);

• Logisti with dependene parameter r = 1/1.56 (λ = 0.4406; η = 1)(Ledford and Tawn [12, 13℄, 1996/1997) ;
• Asymmetri Logisti with dependene parameter r = 1/2.78 and asym-metry parameters t1 = 0.5 and t2 = 0.9 (λ = 0.4406; η = 1) (Ledford andTawn [12, 13℄, 1996/1997);
• Morgenstern with dependene parameter r = 0.75 (λ = 0; η = 0.5) (Led-ford and Tawn [12, 13℄, 1996/1997);We apply the algorithm desribed above to the tail dependene oe�ientsestimated by λ̂SEC, λ̂LOG, η̂ and χ̂, de�ned in, respetively, (8), (9), (13) and(14), as well as, to the tail independene tests (16) and (18). In the sequel wedenote (16) as test 1 and (18) as test 2. The varianes within test 1 and test 2,respetively, σ̂2

1 = η̂2/k and σ̂2
2 = σ̂2/k with σ̂2 given in (17), are estimated byapplying the algorithm to the plots (k, σ̂2

i (k)), i = 1, 2, but we pik the plateauat the same loation of the one given by the respetive oe�ient estimation. Inall the ases we onsider the values b = 0.0025, 0.005, 0.01, 0.015. The boundaryases of a bivariate Normal with ρ = 0.85 (tail independent model but with
η = 0.925 ≈ 1), and a bivariate Student-t with ρ = 0 and ν = 2 (tail dependentmodel with a very low TDC of 0.2254) are inluded in simulations in order toassess the robustness of the method.Observe in Figures 2 and 3 that estimators λ̂LOG and λ̂SEC behave quite similar,although the former seems slightly better. The largest bias ourring for thesmallest sample size is around 0.1 but for the largest one it is lose to zero, whihindiates a good performane. The exeption relates to the Normal model, inpartiular the boundary ase of ρ = 0.85. In the Normal model with ρ = 0.5, thelargest bias is about 0.2. For small samples is preferably to hoose bandwidthswith b = 0.005 or b = 0.01. In all the other simulation results presented here,there are no signi�ant di�erenes between the onsidered bandwidths.In what onerns estimators η̂ and χ̂, the �rst one is learly better (Figures4 and 5). It is also robust within the boundary ases of Student-t(ρ = 0,ν = 2)and Normal(ρ = 0.85), for large sample sizes. Observe that the bias and theroot mean squared error results are very lose of the ones obtained in Draismaet al. ([4℄, 2004), where k was hosen in a range where the overall performaneseems best through an intensive simulation study. Estimator χ̂ only slightlyoutperforms η̂ in the Normal model for n = 250. The proportion of samples inwhih tail dependene (η = 1) is rejeted at a 5% signi�ane level is plottedin Figure 6. The heuristi proedure has an overall good performane in bothtests for large sample sizes. We an see that, under tail independene, test 2outperforms test 1 as expeted (see Setion 2), whereas in the tail dependentase, test 1 is slightly better. However, they do not seem to be robust given theresults within the above mentioned boundary ases, partiularly in the Normalase.



94 An appliation: dependene of large losses withinstok marketsWe onsider �ve years of negative daily log-returns (from 1996 to 2000) of Intel(INTC), Mirosoft (MSFT) and General Eletri (GE) stoks, whih amountsto a sample size n = 1262. These data were analyzed in MNeil et al. ([14℄,2005; Chapter 5). We aim to quantify the degree of a ontagious risk of largelosses within (INTC,MSFT), (INTC,GE) and (MSFT,GE), i.e., to investigate ifthe pairs (INTC,MSFT), (INTC,GE) and (MSFT,GE) present tail dependeneor independene and quantify the respetive degree of extremal dependene.As a preliminary step, we analyze the satter plots in Figure 7. Observe thatthe largest values for one variable orrespond to moderately large values of thesame sign for the other variable, insinuating the variables are asymptotiallyindependent but not perfetly. In Table 1 are the estimates of η̂, σ̂1, σ̂2, χ̂, λ̂SECand λ̂LOG. The results orrespond to b = 0.005, whih are very lose to the onesobtained with the other bandwidths (b = 0.0025, 0.01, 0.015) and thus omitted.Both tests rejet dependeny in (INTC,MSFT) and (INTC,GE). Observe thesmall values provided by the TDC estimators. In the ase (MSFT,GE), test 2rejets the dependene ondition and test 1 does not rejet it for very little. Thevalues of λ̂SEC and λ̂LOG are also small indiating that tail independene may bea more plausible onlusion. Therefore, we �nd that the ontagious risk of largelosses is residual, partiularly in the ase (INTC,GE).Table 1: Estimates of η̂, σ̂1, σ̂2, χ̂, λ̂SEC and λ̂LOG, for (INTC,MSFT), (INTC,GE)and (MSFT,GE), with b = 0.005.
η̂ σ̂1 σ̂2 χ̂ λ̂SEC λ̂LOG(INTC,MSFT) 0.7321 0.0224 0.0149 0.5741 0.2629 0.2489(INTC,GE) 0.5549 0.0065 0.0042 0.3040 0.0551 0.0372(MSFT,GE) 0.7300 0.0321 0.0241 0.3808 0.1762 0.16135 Final remarksIn this paper we address the tail dependene inferene problem sine it is im-portant to distinguish the type of tail dependene in order to orretly evaluatethe risk of simultaneous extreme events. Most of the non parametri estimatorshave to deal with the hoie of the number k of order statistis to onsider inthe prodution of an estimate. This is not an easy task sine it requires a trade-o� between variane and bias (small values of k ause large variane and largevalues of k inrease the bias). An optimal hoie of k that leads to the smallestmean squared error is di�ult to derive and in pratie, this is frequently solvedthrough intensive simulation studies (see, e.g., Draisma et al. [4℄, 2004). Thisis also a very ommon problem in the estimation of the tail index, a parame-ter of major importane within extreme value theory (see, e.g., Beirlant et al.[1℄ 2012 and referenes therein). Sine the non parametri estimators yield aharateristi plateau while plotting the estimates for suessive k, Frahm et al.



10([7℄, 2005) introdued a simple plateau-�nding algorithm after smoothing thelatter plot by some box kernel in order to �nd the optimal threshold k. Here wehave applied this heuristi proedure to estimators of the TDC in (1), as wellas estimators of the tail independene suh as the Ledford and Tawn oe�ient
η in (3) and oe�ient χ in (7), for several box kernel bandwidths. We havealso analyzed this methodology in two tests for tail independene given in (16)and (18). We onlude that the proedure has an overall good performane,speially for large samples. Some are must be given to the tests as they mightnot be robust, in partiular for boundary ases within the Normal model. Weall the attention for the very good performane of η estimation. We reall thatit is based on a tail index estimator (Hill estimator) whih may be an indiationthat this proedure an also work well within the tail index estimation. Thiswill be addressed in a future work.Referenes[1℄ Beirlant, J., Caeiro, F., Gomes, M.I. (2012). An overview and open re-searh topis in statistis of univariate extremes. RevStat 10(1), 1�31.[2℄ Beirlant, J., Goegebeur, Y., Segers, J., Teugels, J. (2004). Statistis ofExtremes: Theory and Appliation. New York: Wiley.[3℄ Coles, S., He�ernan, J., Tawn, J. (1999). Dependene measures for ex-treme value analysis. Extremes 2, 339�366.[4℄ Draisma, G., Drees, H., Ferreira, A., de Haan, L. (2004). Bivariate tailestimation: dependene in asymptoti independene. Bernoulli 10, 251�280.[5℄ Embrehts, P., MNeil, A., Straumann, D. (2002). Correlation and depen-dene in risk management: properties and pitfalls. In: Risk Management:Value at Risk and Beyond, ed. M.A.H. Dempster, Cambridge UniversityPress, Cambridge, 176�223.[6℄ Ferreira, M. (2013). Nonparametri estimation of the tail-dependene o-e�ient. RevStat 11(1), 1�16.[7℄ Frahm, G., Junker, M., Shmidt R. (2005). Estimating the tail-dependeneoe�ient: properties and pitfalls. Insurane: Mathematis & Eonomis37(1), 80�100.[8℄ Hill, B.M. (1975). A Simple General Approah to Inferene About the Tailof a Distribution. Ann. Stat. 3, 1163�1174.[9℄ Huang, X. (1992). Statistis of Bivariate Extreme Values. Ph. D. thesis,Tinbergen Institute Researh Series 22, Erasmus University Rotterdam.[10℄ Joe, H. (1997). Multivariate Models and Dependene Conepts. Chapmanand Hall, London.[11℄ Joe, H., Smith, R.L., Weissman, I. (1992). Bivariate threshold models forextremes. Journal of the Royal Statistial Soiety, Series B 54, 171-183.
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Figure 2: Absolute bias of estimator λ̂LOG (�rst olumn) and estimator λ̂SEC(seond olumn). The four values plotted in eah line orrespond to b =
0.0025, 0.005, 0.01, 0.015, respetively.
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Figure 3: Root mean squared error (rmse) of estimator λ̂LOG (�rst olumn) andestimator λ̂SEC (seond olumn). The four values plotted in eah line orrespondto b = 0.0025, 0.005, 0.01, 0.015, respetively.
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Figure 4: Absolute bias of estimator η̂ (�rst olumn) and estimator χ̂ (se-ond olumn). The four values plotted in eah line orrespond to b =
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