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Abstract: The Birnbaum-Saunders (BS) model is a life distribution that has recently been
largely studied and applied. A random variable following the BS distribution can be defined
through a simple transformation of a standard normal. The BS model can thus be general-
ized by switching the standard normal distribution of the basis random variable, allowing
the construction of more general classes of models. Among those models, we mention the
extreme value Birnbaum-Saunders (EVBS) models, recently introduced in the literature, and
based on results from extreme value theory. A real application to athletics data will be used
to illustrate the methodology and to provide the way this model and related models can link
with traditional extreme value analysis methods.
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1 Introduction and preliminaries

The Birnbaum-Saunders (BS) model is a life distribution, introduced and studied in Birn-
baum and Saunders (1969), that has been largely applied in recent decades. BS and standard
normal random variables (RVs), now denoted respectively by T and Z, are related by the
formula

T = δ
(
αZ/2 +

√
{αZ/2}2 + 1

)2
, i.e. Z =

(√
T/δ −

√
δ/T

)
/α, (1)

with α > 0 and δ > 0 shape and scale parameters, respectively. Consider the usual nota-
tions φ and Φ for the standard normal probability density function (PDF) and cumulative
distribution function (CDF), respectively, and let

at =
(√

t/δ −
√
δ/t
)
/α, so that a′t = d a(t)/dt =

(√
t/δ +

√
δ/t
)
/(2αt). (2)

Then, the PDF and the CDF of T , in (1), are respectively fT (t) = a′t φ
(
at
)

and FT (t) =
Φ(at), t > 0.

The assumption of a normally distributed Z can be obviously relaxed, assuming that Z
follows any other distribution with PDF fZ . We then obtain a general BS type (BST) RV,
denoted by T ∼ BST(δ, α; fZ ), with a PDF fT (t) = a′t fZ (at), for t > 0, and at and a′t
as given in (2). Among those models, we mention the extreme value Birnbaum-Saunders
(EVBS) case, recently introduced in Ferreira et al. (2012) and further considered in Gomes
et al. (2012) and Ferreira (2013). These models are essentially based on results from extreme
value theory (EVT).

In this article, after sketching the main limiting result on EVT, we introduce the EVBS
models and make some comments on their importance. Finally, we provide an application
to athletics data, showing the way some of these models can link with a traditional extreme
value analysis (EVA) method, like the block maxima method.



2 The main limiting result in EVT and associated parametric
model in statistics of univariate extremes

The main limiting results in EVT date back to the papers by Fréchet (1927), Fisher and
Tippett (1928), von Mises (1936) and Gnedenko (1943), who fully characterized the possi-
ble non-degenerate limit laws, as n → ∞, of the sequence of maximum values, Xn:n :=
max(X1, . . . , Xn), suitably normalized, with X1, . . . , Xn independent, identically (IID)
RVs from an underlying CDF F . More specifically, if there are normalizing constants
an > 0, bn ∈ R and some non-degenerate CDF, G, such that, for all x ∈ C(G), the set
of continuity points of G, limn→∞ P

{
(Xn:n − bn)/an ≤ x

}
= G(x), we can redefine the

constants in such a way that

G(x) ≡ Gγ(x) :=
{

exp
(
−(1 + γx)−1/γ

)
, 1 + γx > 0, if γ 6= 0,

exp(− exp(−x)), x ∈ R, if γ = 0,
(3)

the so-called (general) extreme value distribution (EVD), given here in the von Mises-
Jenkinson form (von Mises, 1936; Jenkinson, 1955), and denoted by EVM ≡ EVM(γ).
We then say that F is in the max-domain of attraction (MDA) of Gγ , in (3), and use the no-
tation F ∈ DM (Gγ). The limiting CDFs, G, are then max-stable (MS), i.e., they are indeed
the unique laws S such that the functional equation Sn(αnx+ δn) = S(x), for n ≥ 1, holds
for some αn > 0 and δn ∈ R. The EVD reduces indeed to the Fréchet (γ > 0), Weibull
(γ < 0) and Gumbel (γ = 0) CDFs, respectively. In fact, we often work with one of the
three following types:

Type I (Gumbel) : Λ(x) = exp(− exp(−x)), x ∈ R (γ = 0),
Type II (Fréchet) : Φα(x) = exp(−x−α), x ≥ 0 (γ = 1/α),
Type III (max-Weibull) : Ψα(x) = exp(−(−x)α), x ≤ 0 (γ = −1/α).

(4)

The real parameter γ in (3), the primary parameter of interest in EVA, is the so-called extreme
value index (EVI). The EVI rules the behaviour of the right-tail of F . If γ < 0, we have
light right-tails, with a finite right endpoint, all in the so-called Weibull MDA. In addition,
γ = 0 corresponds to the Gumbel MDA (exponential right-tails). And if γ > 0, we have
the Fréchet MDA corresponding to heavy right-tails (polynomial tail decay, with an infinite
right endpoint).

Remark 1. All results developed for maxima can easily be reformulated for minima since
X1:n := min{X1, . . . , Xn} = −max{−X1, . . . ,−Xn}. If we are interested in left-tails, we
have, for the linearly normalised sequence of minimum values, a limiting CDF, G∗γ∗(x) =
1−Gγ∗(−x), often referred to as a EVm ≡ EVm(γ∗) models, i.e.,

G∗γ∗(x) =
{

1− exp(−(1− γ∗x)−1/γ), 1− γ∗x > 0, if γ∗ 6= 0,
1− exp(− exp(x)), x ∈ R, if γ∗ = 0.

(5)

The parameter γ∗, in (5), determines the left-tail behavior of F , such as the parameter γ, in
(3), determines the right-tail behavior of F , being so both crucial parameters in EVT.

From a statistical point of view, let us assume we have access to a sample (X1, . . . , Xn)
of n IID or possibly stationary weakly dependent RVs from an underlying CDF, F . More-
over, let us use the notation (X1:n ≤ X2:n ≤ · · · ≤ Xn:n) for the sample of associated as-
cending order statistics. Statistics of univariate extremes (SUE) help us to learn from disas-
trous or almost disatrous events, always of high relevance in society and with a high social



impact. Its domains of application are thus quite diversified. We mention the fields of hy-
drology, meteorology, insurance, finance, telecommunications, athletics and biostatistics,
among others (see, e.g., Reiss and Thomas, 2001, 2007). Although it is possible to find
some historical papers with applications related to extreme events, the field dates back to
Gumbel, in papers from 1935 on, summarized in his book (Gumbel, 1958). He developed
statistical procedures essentially based on the aforementioned Gnedenko’s limiting resullts.
Indeed, parametric inference on the right-tail of F , usually unknown, is done on the basis of
the approximation P (Xn:n ≤ x) = Fn(x) ≈ Gγ ((x− λn)/δn) , with (λn, δn) ∈ (R,R+)
a vector of unknown location and scale parameters. The limiting result given before for the
normalized sequence of maximum values validates such an approximation, and was used by
Gumbel, to give approximations of this type but for any of the models in (4). He suggested
the first model in statistics of extremes, usually called the block maxima model. Under this
model, the sample of size n is divided into k sub-samples of size r (usually associated with
k years, for n = r × k, and r reasonably large). Next, the maximum of the r observations
in each of the k sub-samples is considered, and one of the extremal models in (4), obviously
with extra unknown location and scale parameters, is fitted to the sample of those k maxi-
mum values. Nowadays, whenever using this approach, still quite popular in environmental
sciences, it is more common to fit to the data a univariate EVD, Gγ((x− λr)/δr), with Gγ
given in (3), (λr, δr, γr) ∈ (R,R+,R) unknown location, scale and ‘shape’ parameters. As
mentioned above, we shall use the self-explanatory notation, EVM(λ, δ, γ), for such a type
of models. We can analogously consider EVm(λ, δ, γ) models, whenever dealing with min-
imum values. All statistical inference is then related to the above mentioned models. Recent
surveys on SUE can be found in Gomes et al. (2008), Beirlant et al. (2012) and McDonald
and Scarrot (2012).

3 Some details on EVBS distributions

The EVBSM (and EVBSm) distributions, based on limiting EV models for maxima, EVM,
(and for minima, EVm), have been introduced in Ferreira et al. (2012). Specifically, consider
that Z follows the EV distribution for maxima, in (3), i.e., Z ∼ EVM(γ). Then, we use
the notation EVBSM(δ, α, γ) for the CDF of the RV T , in (1). Analogously, if we consider
that Z follows the EV distribution for minima, in (5), denoted by Z ∼ EVm(γ∗), and the
same expression for T , i.e., that given in (1), we use the notation T ∼ EVBSm(δ, α, γ).
Obviously, and if needed, we can further introduce a location λ, and work more generally
with the RV λ + T , with λ ∈ R. We shall then use the notations EVBSM(λ, δ, α, γ) and
EVBSm(λ, δ, α, γ).

The EVBS models are very flexible, with extremely diversified left and right-tails. More-
over, the EVBSM and EVBSm hazard rate (HR) functions present several different shapes
going through all possible HR shape classes, and this contrarily to the EVM and EVm HRs
(see Ferreira et al., 2012). These are very strong points in favour of EVBSM and EVBSm

models, as they become quite rich and interesting for modeling purposes (see Ferreira et al.,
2012, and Gomes et al., 2012).

Estimation aspects and model checking for EVBS distributions have been dealt with
in Ferreira et al. (2012). The system of likelihood equations does not produce an explicit
solution so that a numerical procedure is necessary. To analyze data from EVBS models, an
R package named evbs is being developed, and its ‘in progress’ version is already available
through the authors. This package contains diverse indicators, as well as methodologies



useful for EVBS distributions, among which is the maximum likelihood (ML) estimation of
the unknown parameters.

Once the EVBS distribution parameters have been estimated, a natural question is check-
ing how good is the fit of the model to the data. In order to compare the EVBS distribu-
tions to other distributions, and just as in Ferreira et al. (2012) and Gomes et al. (2012),
among others, we have used the following model selection criteria based on loss of infor-
mation: Akaike (AIC), Schwarz’s Bayesian (BIC) and Hannan-Quinn (HQIC) information
criteria. These criteria are given by AIC = −2`(θ̂) + 2d, BIC = −2`(θ̂) + d log (n), and
HQIC = −2`(θ̂) + 2d log(log (n)), where `(θ̂) is the log-likelihood function for the pa-
rameter θ associated with the model evaluated at θ = θ̂, n is the sample size, and d is the
dimension of the parameter space. Generally, differences between two values of the afore-
mentioned information criteria are not very noticeable. In that case, a suitable function of
the Bayes factor (BF) B12, i.e. BF∗ := 2 log(B12), can be used to highlight such differences,
if they exist. If BF∗ < 0, evidence in favor of model M1 is negative and M2 should be
accepted. If BF∗ ∈ [0, 2), there is a week (W) evidence in favor of M1. Values of BF∗ in
[2, 6), [6, 10) or [10,∞) provide respectively positive (P), strong (S) or very strong (VS)
evidence in favor of M1 (see Vilca et al., 2011, for details). AIC, BIC and HQIC are based
on a penalization of the likelihood function as the model becomes more complex, i.e., with
more parameters (Sanhueza et al., 2008). Since models with more parameters should pro-
vide a better fit, AIC, BIC and HQIC allow us to compare models with different numbers of
parameters due to the penalization incorporated in such criteria.

4 An application to athletics

In this section, we shall be interested in an application of EVBSM and EVM models to the
best personal marks attained at a few athletic events, in a context similar to the one used
in Henriques-Rodrigues et al. (2011), among others. We shall pay special attention to the
estimation of γ, in (3). The data, already analysed in Henriques-Rodrigues et al. (2011), are
related to two jumping events, all for men, the high jump (HJ) and the pole vault (PV). The
sources were http://www.iaaf.org/statistics/toplists/index.htmx and http://hem.bredband.net/
athletics/athletics all-time best.htm. Data were collected until the end of 2007 and for any
athlete only the best mark was taken into account.

Due to the fact that the observed data considered are already maxima, possibly of a
small and dependent number of marks associated with any of the n athletes, but the EV
limiting law, in (3), is “robust” to changes of the IID assumption, we have tried the fitting,
through ML, of an extreme value model EVM(λ, δ, γ), comparatively with the fitting of
a EVBSM(λ, δ, α, γ). For the ML estimation of the unknown parameters (λ, δ, γ) in the
EVM(λ, δ, γ) model, we have used the EVIR package in the R-software. On the basis of the
aforementioned evbs R package, we have proceeded with the ML estimation of (λ, δ, α, γ),
in the EVBSM(λ, δ, α, γ) model. Table 1 presents the ML estimates of (λ, δ, γ) for the EV
model, and of (λ, δ, α, γ) for the EVBS models. In Table 2, we present the respective AIC,
BIC, HQIC and BF∗ indicators.

For the HJ and PV data sets, the smallest value of −` favours the EVSB model (see
Table 1). The same happens with the AIC, BIC and HQIC (see Table 2). Also, BF∗ provides
a strong evidence in favor of the EVBS model for the HJ data, and a very strong evidence
for the PV data. The quality of the fitting, i.e., the good coherence between empirical and
theoretical densities and distributions, can be visualised in Figure 1.



Table 1: ML estimates for the indicated models and data sets.

Model λ̂ δ̂ α̂ γ̂ −`
HJ EVBS 2.19271 0.04014 0.85953 -0.37179 -417.7767

EV 2.24045 0.03341 – -0.09084 -414.6809
PV EVBS 5.42133 0.16522 0.70185 -0.40329 -151.5884

EV 5.57959 0.09477 – -0.15096 -141.2343

Table 2: AIC, BIC, HQIC and BF∗ for the indicated models and data sets.

Model AIC BIC HQIC BF∗

HJ EVBS -827.5534 -814.2614 -822.1771 —
EV -827.3618 -813.3928 -819.3296 6.1916 (S)

PV EVBS -295.4686 -261.176 -289.8005 —
EV -274.468 -0.64999 -269.0923 20.7082 (VS)
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Figure 1: HJ Histogram (top, left) and CDF (top, right); PV Histogram (bottom, left) and
CDF (bottom, right).
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