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Abstract 

 RNA interference (RNAi) has been found to be an important biological strategy 

for gene silencing. This pathway can be used as a gene therapy approach by using 

synthetic short interfering RNA (siRNA) molecules to promote the silencing of 

undesirable target genes. However, the delivery of nucleic acids into the cells is a very 

inefficient process due to several extracellular and intracellular barriers. Several 

physical, chemical and biological strategies have been developed to promote the 

delivery of nucleic acids into cells. Although viral vectors have been reported to be the 

most efficient nucleic acid delivery systems, they trigger the immune system and 

promote high levels of toxicity.  

 Non-viral vectors, though not as efficient as their viral counterparts, appeared 

as a safer method for therapeutic gene delivery. In this field, cationic liposomes 

emerged as one of the most promising and widely used non-viral gene carriers. Recent 

studies from our group have established a novel liposomal formulation for siRNA 

delivery, based on the cationic lipid dioctadecyldimethylammonium bromide (DODAB) 

and the helper lipid monoolein (MO). This liposome formulation has promoted 

efficient gene silencing in a human non-small cell lung carcinoma cell line (H1299). 

 In this project, we aimed to improve the silencing efficiency of DODAB:MO (2:1) 

liposomes, by promoting the co-encapsulation of siRNA with additional anionic 

components. Poly-L-glutamic acid (PG1 or PG2) or non-coding plasmid DNA (pDNA) 

were added to siRNA suspension and encapsulated within DODAB:MO (2:1) liposomes. 

The systems obtained were compared with lipoplexes containing only siRNA. 

Lipoplexes were characterized in order to understand the differences caused by 

addition of the anionic components. The results obtained during this project suggest 

that the addition of either pDNA or PG molecules to siRNA/DODAB:MO lipoplexes 

results in systems with similar physicochemical properties, namely size and surface 

charge. Nevertheless, some improvements in the siRNA encapsulation efficiency, 

cellular internalization and cytotoxicity were obtained when compared to siRNA 

lipoplexes. Additionally, lipoplexes co-encapsulating siRNA and pDNA or PG have 

promoted higher EGFP gene silencing efficiency, suggesting that co-encapsulation of 

siRNA with an additional anionic cargo can improve silencing efficiency of our 

liposomal formulation. 
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Resumo 

 Desde a sua descoberta, o RNA de interferência (RNAi) tornou-se uma 

estratégia biológica importante para o silenciamento de genes. Esta via pode ser usada 

como uma abordagem de terapia genética, utilizando short interfering RNA (siRNA) 

para promover o silenciamento de genes indesejáveis. No entanto, a entrega de siRNA 

em células é um processo muito ineficiente devido a várias barreiras extracelulares e 

intracelulares. Várias estratégias físicas, químicas e biológicas têm sido desenvolvidas 

para promover a transferência de ácidos nucleicos para as células. Vários estudos 

mostram que, vetores virais são sistemas de entrega eficazes, contudo, desencadeiam 

resposta imunitária e promovem níveis elevados de toxicidade. 

 Os vetores não virais, embora não tão eficientes como os seus homólogos 

virais, aparecem como um método mais seguro para a entrega de siRNA. Neste campo, 

os lipossomas catiónicos tornaram-se num dos vetores não virais mais promissores e 

amplamente utilizados. Estudos recentes do nosso grupo estabeleceram uma nova 

formulação lipossomal para a entrega de siRNA, com base no lípido catiónico brometo 

de dioctadecildimetilamónio (DODAB) e o lípido adjuvante monooleína (MO). Esta 

formulação de lipossomas foi capaz de promover o silenciamento genético de forma 

eficiente numa linha celular humana de células não-pequenas de carcinoma pulmonar 

(H1299). 

 Neste projeto, procuramos melhorar a eficiência de silenciamento de liposomas 

DODAB:MO (2:1), através da promoção da co-encapsulação de siRNA com 

componentes aniónicos adicionais. Poli-glutamato (PG1 ou PG2) ou DNA plasmídico 

não codificante (pDNA) foram adicionados à suspensão de siRNA e encapsulados em 

liposomas DODAB:MO (2:1), e os sistemas obtidos foram comparados com lipoplexos 

contendo apenas siRNA. Os lipoplexos foram caracterizados de modo a compreender 

as diferenças causadas pela adição dos componentes aniónicos. Os resultados obtidos 

durante este projeto sugerem que a adição de moléculas de pDNA ou PG a lipoplexos 

compostos por siRNA e lipossomas DODAB:MO (2:1) resulta em sistemas com 

propriedades físico-químicas semelhantes, mais especificamente, o tamanho (Z-

average) e a carga superficial (ζ-potential). No entanto, foram obtidos algumas 

melhorias na eficiência de encapsulação de siRNA, internalização celular e 

citotoxicidade destes sistemas, quando comparado com lipoplexos com apenas siRNA. 
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Além disso, lipoplexos onde o siRNA é co-encapsulado com pDNA ou PG, promoveram 

maior eficiência de silenciamento do gene EGFP em linhas celulares 293T/GFP-puro, 

sugerindo que a co-encapsulação de siRNA com uma carga aniónica adicional pode 

melhorar a eficiência de silenciamento da nossa formulação lipossomal. 
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LUV   Large unilamellar vesicles 

GUV   Giant unilamellar vesicles 

MLV   Multilamellar vesicles 

MVV   Multivesicular vesicles 

P   Packing parameter 

DOPE   Dioleoylphosphatidylethanolamine 

DOPC   Dioleoylphosphatidylcholine 

CHO   Cholesterol 

MO   Monoolein 

PEG   Polyethylene glycol 

CR   Charge ratio 

DODAB  Dioctadecyldimethylammonium bromide 

DODAC  Dioctadecyldimethylammonium chloride 

Tm          Phase transition temperature 

CVC   Critical vesicle concentration 

ILAs   Inter-lamellar attachments 



viii 
 

PG   Poly-L-glutamic acid 
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GFP   Green fluorescence protein 
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I - Introduction 

1. Gene Therapy 

 The concept of gene therapy, first proposed in 1972 by Friedmann and Roblin 

[1], can be defined as the attempt to correct genetic disorders by adding exogenous 

nucleic acids to the target cells, in order to enhance or repress the expression of 

specific nucleotide sequences [2], [3]. 

1.1 Gene Silencing therapy 

 Gene silencing is a type of gene therapy defined as the interruption, or 

suppression, of the expression of a gene at the transcriptional or translational levels. In 

the mid 80's a post-transcriptional method was reported and defined as antisense 

therapy. The antisense technology uses homologous RNA, DNA or chemically altered 

nucleic acid sequences that hybridize with target mRNA transcripts, inhibiting their 

expression. This technique finds its hurdle due to the high molecular weight of the 

antisense nucleic acids, which rises several problems in the delivery process of the 

therapeutic agents [4], [5].  

 In the early 90's, nucleic acid molecules with three-stranded, or triple-helical 

structure (triplex DNA) were used to directly target the transcriptional regulation of 

gene expression. Triplex formation occurs when DNA or RNA oligonucleotide binds to 

homopurine region of DNA, these triplex forming oligonucleotides can be used to block 

the transcription of specific genes, [4], [6]. However there are many obstacles to 

triplex DNA therapy, such as, low cellular uptake, complexity of triplex structures 

formation and difficulty to find long uninterrupted homopurine sequences to promote 

stable triplex binding [6]. In the late 90's a new gene silencing approach was 

discovered by Fire et al. [7]: the RNA interference (RNAi) mechanism. 

1.2 RNA interference mechanism 

 The RNA interference mechanism was first described in Caenorhabditis elegans 

in 1998 by Fire et al. [7], when the authors found that the introduction of RNA into 

cells could be used to interfere with the function of an endogenous gene. RNA (Fig.1) is 

a critical pathway naturally used by cells to control gene expression, and to provide 

protection against genetic damage induced by virus or mutations. In a simplified way, 

when a threat to the integrity of the genome occurs, a double-stranded RNA (dsRNA) is 
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broken into short pieces of 21 to 25 nucleotides, called short interfering RNA (siRNA), 

by the ribonuclease III enzime Dicer. This siRNA triggers the activation of an RNA-

induced silencing complex (RISC), that targets specifically the homologous messenger 

RNA (mRNA) for enzymatic degradation [4], [8]–[11]. The main components of the RISC 

complex are the Argonaute 2 proteins, responsible for mRNA degradation. The fact 

that siRNA molecules have perfect homology to the target mRNA sequences makes 

this mechanism specific and efficient, because, unlike antisense and triplex 

approaches, dsRNA activates a normal cellular process leading to a highly specific 

mRNA degradation. 

 

Figure 1 - Representative scheme of RNAi. Double stranded RNA (dsRNA) is processed into short interfering RNA 
(siRNA) by Dicer enzymes. siRNA molecules formed will attach to a multiprotein complexed known as RISC, which 
after activation will bind to target mRNA. mRNA is cleaved and degraded by cellular nucleases [12]. 

 

 The application of dsRNA longer than 30 nucleotides has been associated with 

the activation of interferon (IFN) response genes, and also to a non-specific inhibition 
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of protein synthesis, constraining the use of dsRNA in gene therapy [12]–[14]. Only in 

2001 a novel solution to this obstacle was found, when studies carried  out by Tuschl et 

al. [11] and Caplen et al. [15] described that successful gene silencing could be 

achieved by the delivery of siRNAs (21-22 bp long) into mammalian cells [12]–[14]. 

 Until now, two main strategies were tested using the RNAi pathway for genetic 

therapy purposes, based on either generation or administration of these short dsRNAs. 

The first approach is based on short hairpin RNAs (shRNAs), single-stranded molecules 

of 50–70 nucleotides in length, that form stem–loop structures [13]. It is an 

endogenous approach, since it allows the stable intracellular expression of shRNAs, 

which are then processed into active siRNAs by the host cell [13]. The control of siRNA 

levels and the inability to switch off the production of siRNAs are the main 

disadvantages of using shRNA. The second strategy consists in the exogenous 

application of synthetic siRNAs. As gene silencing induced by synthetic siRNA is limited 

by the number of RNA molecules present in the cell, the treatment can be stopped 

when it's no longer necessary. The use of siRNA for gene silencing has become the 

prime method for mammalian cell genetic analysis. This method presents potential for 

therapeutic treatment of a wide variety of diseases [16]. 

1.3 Molecular targets for gene silencing 

 Several therapeutic treatments using the RNA interference pathway have been 

developed, these treatments have different molecular targets. Targets important for 

gene therapy in cancer are mainly tumour suppressor genes, cell-cycle modulators, 

and growth factors [17]. Table 1 presents some of the targeted genes for a variety of 

cancer treatments in animal models [18].  
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Table 1 - List of common target genes of gene silencing for cancer therapy in a variety of animal models [18]. 

Animal Models Targeted Genes 

Liver metastasis mouse model Bcl-2 

Prostate cancer xenograft Raf-1; CD31; Bcl-2 

Gastric cancer xenograft VEGF 

Breast cancer xenograft  c-raf; Her-2; RhoA 

Ovarian cancer xenograft EphA2; FAK; ADRB2; IL-8 

Lung cancer xenograft EGFR 

Orthotopic glioblastoma PTN 

 

1.3.1 Epidermal Growth Factor Receptor (EGFR) 

 One recognized target for gene silencing is the epidermal growth factor 

receptor (EGFR). This 170-kd glycoprotein consists in an extracellular binding domain, a 

transmembrane lipophilic region, and an intracellular domain with tyrosine kinase 

activity. After the binding of a ligand, such as the epidermal growth factor (EGF) or 

transforming growth factor (TGF-α), EG R d me  ze  and, act vate  the  nt  n  c p ote n 

tyrosine kinase, leading to a cascade of downstream signalling events that influence 

the behaviour of epithelial cells and tumours of epithelial cell origin [19], [20]. EGFR is 

overexpressed in many tumours (colorectal, head and neck, lung, ovarian, breast and 

renal cancer), and its signalling pathway is involved in cell differentiation, proliferation, 

migration, development of angiogenesis, and apoptosis inhibition [19], [21]. EGFR is a 

good target for cancer therapy since it has proven to be involved in the initiation, 

growth and metastasis of many human tumours. The main strategies for targeting 

EGFR are based on monoclonal antibodies directed against the extracellular receptor 

domain, which interferes with ligand binding, small-molecule compounds that target 

intracellular domain, inhibiting the activation of the tyrosine kinase activity and siRNA 

molecules which interfere with production of the EGFR protein at the mRNA level [19]. 

Gene silencing therapeutic approach has been reported to successfully reduce EGFR 

expression using a variety of vectors to transport siRNA into tumour cells, which makes 

this approach extremely promising [17], [21]–[23]. 
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2. Vectors for Gene therapy 

 A successful gene therapy approach depends on the efficient delivery of nucleic 

acid molecules into cells. Actually, this represents the main problem in gene therapy, 

since the application of naked nucleic acid molecules is very inefficient due to several 

obstacles in the delivery process. Due to their small size, naked siRNAs are eliminated 

by kidney filtration, resulting in a short half-life when applied in vivo. Also, the nucleic 

acid molecules are prone to degradation due to the presence of nucleases in biological 

fluids and cells [24]. Moreover, nucleic acids are negatively charged due to the 

phosphodiester present in their backbone, which creates an electrostatic repulsion 

between nucleic acid molecules and the anionic headgroups of cell membrane 

phospholipids. This electrostatic repulsion hinders the passive diffusion of nucleic acids 

into the cells [12]. Therefore, high amounts of naked siRNA are required in order to 

achieve in vivo efficient silencing. Nevertheless, an elevated dose of siRNA is 

associated with non-specific effects on non-targeted genes, triggering immune 

responses and anti-angiogenic effects independent of the siRNA sequence [16]. 

 In order to overcome the limitations in the nucleic acid delivery process and to 

enhance the transfection efficiency, a wide variety of physical and chemical methods 

have been developed. The use of delivery systems has commonly two main 

approaches: biological (viral vectors) and chemical (cationic lipids or polymers). The 

biological approach has been the most common approach, and is based on the use of 

viral vectors [25], while the chemical approach is based on the use of synthetic non-

viral vectors [26]. 

2.1 Viral vectors versus non-viral vectors 

 Viruses are highly evolved organisms that have developed a very efficient 

mechanism to internalize their genome into host cells and exploit cellular machinery to 

facilitate replication [27]. By erasing part or the whole viral coding region, as well as 

promoting the insertion of siRNA or pDNA into the virus capsid, viruses can be used as 

vectors for gene therapy. Although the use of viral vectors results in relatively high 

transfection efficiencies, several drawbacks are associated with this method. A limited 

loading capacity, the complexity of vector production, and particularly the safety 

concerns such as the possibility of immunogenic/inflammatory responses and risk of 

mutations, are important disadvantages associated with this treatment [28], [29]. 
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Actually, clinical trials using viral vectors have already caused the death of a patient 

when, in 1999, the injection of an adenovirus vector induced systemic inflammatory 

response syndrome that resulted in intravascular coagulation, acute respiratory 

disorder and multi organ failure [27]. 

 Non-viral vectors were developed to overcome the safety concerns associated 

with viral vectors. Non-viral vectors are normally composed of synthetic  cationic lipids 

(lipoplexes) or polymers (polyplexes)[30], although dendrimers[31], chitosan[32], and 

peptides[33] have also been studied for the delivery of nucleic acids. Unlike viral 

vectors, these carriers do not trigger specific recognition by the immune system, 

resulting in lower chance of immune responses. Also they have the potential to 

transport larger genetic cargos, are much easier to assemble, and may be tuned to 

enhance specificity [34], [35]. However, the transfection efficiency of non-viral vectors 

is still relatively low when compared to viral vectors, which is caused by the inability of 

the vector to surpass the cellular barriers to deliver the genetic cargo. 

2.2. Barriers faced by non-viral vectors in gene delivery 

 In order to obtain successful in vivo delivery of nucleic acids using a non-viral 

vector, it must be able to overcome a variety of extracellular and intracellular barriers 

(Fig.2). 
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Figure 2 -Extracellular and intracellular barriers to gene therapy. Non-viral vectors such as liposomes were 
developed to deliver a variety of nucleic acids such as DNA, mRNA, short interfering RNA (siRNA) or microRNA 
(mRNA) to cells. For efficient delivery, non-viral vectors must be able to overcome extracellular and intracellular 
barriers. Extracellularly, vectors must be able to prevent degradation of the genetic cargo by serum endonucleases, 
avoid immune detection, nonspecific interactions and renal clearance from the blood. The vector used must also be 
able to promote cell entry in target tissues and subsequent endosomal escape. After endosomal escape, DNA must 
be transported into the nucleus, siRNA and miRNA must bind to the RNA-induced silencing complex (RISC) and 
miRNA must bind to translational machinery [35]. 

  

2.2.1 Extracellular Barriers 

 As mentioned before, the half-life of nucleic acids in physiological fluids and 

extracellular space is very short, so the vector selected must be able to protect its 

cargo in order to improve circulation time. In order to overcome these problems, the 

vector chosen needs to have colloidal stability, and reduced interaction with blood 

components such as proteins and cells, which may promote cargo release and particle 

aggregation. Protein binding can also trigger immune detection, leading to the 
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clearance of the vector by circulating macrophages before reaching the desired tissues. 

After evading immune detection and renal clearance the vector needs to extravasate 

from the bloodstream to the desired tissues and reach the target cells [35]. 

2.2.2 Intracellular Trafficking 

 After the vector reaches the desired tissues several obstacles arise, and the 

ability to promote efficient entry into the cell and induce endosomal escape are critical 

steps to obtain high transfection efficiencies. The cellular internalization process of 

non-viral vectors is not yet completely understood, since some studies have shown 

that the cellular uptake occurs mainly by endocytosis, but others have demonstrated 

that internalization by fusion with the plasmatic membrane can also occur for certain 

vectors such as liposomes [29]. The internalization efficiency of the vector is 

dependent on its size and hydrophilic nature. After cell uptake, the internalized 

particles become entrapped in the intracellular vesicles (endosomes) that fuse with 

lysosomes, where particle degradation occurs. Therefore, endosomal escape is an 

essential step for efficient delivery of the genetic cargo, as well as its dissociation from 

the vector after endosomal escape [2], [35], [36]. Cationic lipid based vectors (cationic 

liposomes) may fuse with endosomal membranes, facilitating endosomal escape and 

cargo release [35]. After dissociation from the vector, DNA molecules have to be 

further transported to the nucleus and RNA molecules must bind to Argonaute2 (aug2) 

protein, to form the RNA induced silencing complex (RISC) (siRNA and miRNA), or to 

the translational machinery (mRNA) [2], [35]. 

2.3. Liposomes as non-viral vectors 

 In 1965 Alec Bangham [37] first reported that, when in aqueous system, 

phospholipids self-assemble into closed bilayer structures forming lipid vesicles. Lipids 

are amphiphilic molecules, which means they are composed by a hydrophilic polar 

head group and hydrophobic tails. When in aqueous solution, lipids tend to organize in 

order to reduce entropically unfavourable interactions between the hydrophobic acyl 

chains and surrounding aqueous medium. The entropically favourable structure is 

obtained when the bilayer membrane formed by the lipids curves on itself, forming a 

closed vesicle, where the hydrophilic headgroups tend to face the aqueous phase [38]. 
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 The bilayer structure of liposomes is relatively easy to manipulate and can be 

formed in a diverse range of morphologies. Vesicle size and number of bilayers are 

important parameters to determine the ability of liposomes to encapsulate 

pharmaceutical compounds and their half-life time in circulation [39]. The most 

common morphologies of the vesicles are unilamellar, multilamellar and 

multivesicular, depending on the preparation methodology (Fig. 3).  

 

 

Figure 3 - Common vesicle size and lamellarity. Small unilamellar vesicles (SUV), large unilamellar vesicles (LUV), 
giant unilamellar vesicles (GUV), Multilamellar vesicles (MLV) and multivesicular vesicles (MVV). 

  Unilamellar vesicles are composed by a single bilayer membrane and present 

different size diameters. The size of small unilamellar vesicles (SUVs) ranges from 20 to 

100 nm, while large unilamellar vesicles (LUVs) can vary from 100 nm to 1 µm. For 

sizes bigger than 1 µm, liposomes are described as giant unilamellar vesicles (GUVs). 

Multilamellar vesicles (MLVs) are formed by multiple concentric bilayers and have a 

diameter that can vary from 500 nm to over 1 µm.  Multivesicular vesicles (MVVs) 

present roughly the same diameter of MLVs, but are formed by several smaller 

unilamellar vesicles inside a wider one [38]–[40]. Since larger liposomes are rapidly 

removed from blood circulation, smaller vesicle diameter are more favourable for drug 

or acid nucleic delivery [41]. Therefore, different methods for liposome preparation 

were developed in order to shape the lipid vesicles, and each method will produce 

different types of liposomes. The most common methods are lipid film hydration, 

ethanol injection, sonication and extrusion. 

 In addition to the size and number of lamellae, different liquid-crystalline lipid 

phases may exist, depending on the lipid molecules used in the system. The type of 

structure can be predicted by the packing parameter (P) of the lipid. The packing 
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parameter is the ratio between the area occupied by the hydrophobic region and the 

area occupied by the hydrophilic region, as defined by Equation 1. 

  
 

    
 Equation (1) 

 where (v) is the volume of the hydrocarbon, (a) is the effective area of the head 

group, and (lc) is the length of the lipid tail. As depicted in Fig. 4, different packing 

parameter values will lead to different lipid structures: lipids with P < 1/3 tend to form 

 phe  cal m celle ; l p d  w th 1/3 ≤   < 1/   o m cyl nd  cal m celle ; l p d  w th 1/  ≤   

< 1 form flexible bilayers or vesicles; when P=1 planar bilayers are formed; and when P 

> 1 inverted micelles are formed. When P exceeds 1, the area occupied by the 

hydrocarbon chains is much larger than the area of the head group, and the lipid tends 

to adopt a bilayer destabilizing structure called inverted micelle or inverted hexagonal 

phase. These structures seem to improve the transfection efficiency of liposomes [38], 

[42]. The lipid phase behaviour can also be modulated by changes in several 

parameters such as hydration, state of ionization (pH and ionic strength) and 

temperature [41]. 
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Figure 4 Liposome structures assumed by lipids according to their packing parameter. Lipid structure, 
when in an aqueous medium, is greatly influenced by the lipid packing parameter. Structures such as 
spherical micelles, flexible bilayers, vesicles, planar bilayers and inverted micelles can be obtained 
depending on the ration between hidrophobic and hidrophilic area [38]. 

 

2.3.1 Cationic Liposomes 

Cationic liposomes are spherical-shaped colloidal structures, formed by the self-

assembly of cationic lipid molecules in aqueous solution, composed by one or more 

concentric lipidic bilayers entrapping an aqueous compartment [39]. Liposomes 

present several interesting properties such as biocompatibility, biodegradability as well 

as the ability to entrap and protect either water-insoluble (hidrophobic) 

pharmaceutical agents into the hydrocarbon chain core of the bilayer, or water soluble 

molecules (hydrophilic) in the internal water compartment [40]. Due to these 
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attractive characteristics, cationic liposomes have been extensively studied as non-viral 

vectors for medical applications and for several other fields such as chemical and 

biochemical analytics, diagnostics, cosmetics, long lasting immune contraception, food 

and chemical industry [38], [39].  

In the late 80's a study developed by Felgner and colleagues [43] reported, for the first 

time, the ability of cationic liposomes to efficiently form complexes with DNA and 

transfect the COS-7 cell line. This study helped to understand the potential of 

liposomes for gene therapy. Since then several cationic lipids have been used to 

deliver nucleic acids to the cells [38], [44] (Fig. 5) 

 

Figure 5 Cationic lipids used in gene therapy. (A) representative structures of glycerol based cationic lipids; (B) 
cationic lipids not based on glycerol; (C) cholesterol-based cationic lipids. 
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2.3.2. Optimization of the liposome structure/composition 

 The use of cationic liposomes for delivery of nucleic acids present some 

drawbacks, such as fast elimination from blood [40], some cytotoxicity due to their 

positive charge, and the fact that they may also trigger non-specific interactions with 

cell components, serum proteins and enzymes [2]. In order to overcome these 

obstacles, several modifications can be done to improve their properties. The size, 

charge and surface characteristics of liposomes can easily be altered through the 

inclusion of specific compounds (helper lipids, stimuli-sensitive lipids) in the liposome 

formulation, or by surface modification.  

 Different cationic lipid mixtures can be prepared in order to obtain the most 

favourable structure for gene transfection. For instance helper or neutral lipids, such as 

dioleoylphosphatidylethanolamine (DOPE), dioleoylphosphatidylcholine (DOPC), 

cholesterol (CHO) and monoolein (MO), are often included in the formulation to 

improve the characteristics of liposomes. These lipids have the ability to convert the 

liposome lamellar phase into a non-lamellar phase [42].  The structural organization 

induced by this lipids is able to promote fusion with endosomal membranes and 

destabilization of lipoplexes during transfection. Several studies have shown that the 

presence of a helper lipid improved the transfection efficiency of the liposomes when 

compared to the cationic lipids alone, as well as decreased the cytotoxicity associated 

with the high positive charge of the liposomes [38], [45]–[47]. 

 One of the limitations for in vivo application of liposomes as non-viral vectors is 

their circulation half-life, which decreases the possibility of liposomes to reach their 

site of action. The optimization of liposomes as non-viral vectors has been made not 

only by changing the liposome composition, but also by the inclusion of molecules at 

the liposomes surface. A common method to obtain liposomes with increased half-life 

involves its surface modification with inert and biocompatible polymers, such as 

polyethylene glycol (PEG). PEG can be used to coat the liposome surface, reducing the 

peripheral liposome charge, and therefore the binding of proteins. As a consequence, 

the liposome recognition by opsonins decreases, avoiding liposome clearance, 

increasing circulation time and reducing toxicity [40], [48]. The specificity of liposomes 

can also be improved by adding molecules such as folate or immunoglobulins, that will 
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be covalently coupled to the liposome surface and will allow the targeting to specific 

cells [41].  

2.3.3 Formation of cationic lipoplexes 

 Cationic liposomes can be used as non-viral vectors for gene therapy due to 

their ability to easily promote complexation with nucleic acids, forming lipoplexes that 

are capable of transporting these nucleic acids into cells. The electrostatic interaction 

between negatively charged phosphate groups of the nucleic acid molecules, and the 

positively charged liposomes, drives the spontaneous formation of lipoplexes [49]. This 

interaction will lead to nucleic acid charge neutralization, followed by a disruption of 

liposomes and intermediate condensation of nucleic acid molecules into lipoplexes. 

Finally, relaxation and rearrangement into a more ordered states occurs [50]. Efficient 

complexation is dependent on the charge ratio (CR+/-), which is the ratio between 

positive charges from liposomes and negative charges from nucleic acids. In order to 

completely neutralize the negative charges, an excess of cationic lipid is added to the 

nucleic acids, resulting in positively charged lipoplexes that promote electrostatic 

interactions with cell membrane.  Since siRNA are much smaller than pDNA molecules, 

the siRNA and pDNA complexation process presents some differences, and siRNA 

nanocarriers require less negative charges and form smaller sized nanoparticles. 

However, siRNA lipoplexes are less stable than pDNA lipoplexes, as pDNA promotes a 

stronger polycation-mediated electrostatic collapse into small compact particles [51]. 

Due to their different characteristics, siRNA and pDNA transfection mechanisms will be 

significantly different [52].  

2.4. The system DODAB:MO for nucleic acid delivery 

 In recent years a novel liposome formulation for nucleic acid delivery was 

proposed, based on the helper lipid monoolein (MO) and cationic lipids from 

dioctadecyldimethyl family (DODAX) [45], [49], [53]–[59]. Liposomes composed by 

DODAB/DODAC and MO were extensively studied as pDNA and siRNA carriers, and 

have proved to be a very promising transfection agent. 
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2.4.1 DODAB 

 The long-chained cationic surfactant dioctadecyldimethylammonium bromide 

(DODAB) is a synthetic lipid that tends to assemble into closed bilayers. DODAB 

resembles membrane phospholipids since it is composed by two saturated alkyl chains 

linked to hydrophilic group [60] (Fig. 7A). In an aqueous medium and above the phase 

transition temperature (Tm= 45 ˚C) [58], [61], [62], DODAB tends to form large  

unilamellar vesicles [49], [53]. This lipid presents a small critical vesicle concentration 

(CVC), which allows the formation of vesicles at very low concentrations [45]. When 

applied in vivo, DODAB presents strong rigid lamellar phase due to its elevated Tm that 

becomes a limiting step for gene delivery since rigid structures do not favour 

membrane fusion. Therefore, the combination with other lipids has been tested to 

improve the transfection efficiency of DODAB-based liposomes [58], [61], [62]. 

2.4.2 Monoolein (MO)  

 1-monooleoyl-rac-glycerol (MO) is an amphiphilic neutral lipid of natural origin, 

composed of a single hydrocarbon chain, attached to a glycerol backbone by an ester 

bond (Fig. 6B). The remaining two hydroxyl groups of the glycerol moiety confer polar 

characteristics to the polar head of the molecule [63]. A concise summary of phase 

propensity at different temperatures and water content has been established for MO 

(Fig.6). This phase diagram shows that, even in excess of water, MO presents two 

inverted bicontinuous cubic phases, this liquid crystalline phases consisting in a pair of 

interpenetrating, but non contacting, aqueous channels, separated by a single 

continuous lipid bilayer [64].  



16 
 

 

Figure 6 -  Temperature-composition phase diagram of monoolein. In small amounts of water monoolein can form 
a lamellar crystalline phase (Lc) or a similar fluid isotropic phase (FI) depending on the temperature. As the amount 
of water is increased, a l qu d c y tall ne (Lα), and two inverted bicontinuous cubic phases (la3d,Pn3m) are adopted. 
Schematic representations of the various phases is included, in which colored zones represent water [65]. 

 

 The phase behaviour of MO presents interesting characteristics. The ability to 

form non-lamellar phases has been explored in many different fields such as 

pharmaceutics, cosmetics, agriculture, protein crystallization and drug delivery [63]. 

Furthermore, due to the richness of MO phase diagram, the addition of this neutral 

lipid has been proposed in the development of lipoplexes for gene transfection [49].  

 

Figure 7 - Molecular structure of DODAB and MO. A - molecular structure of DODAB, B- molecular structure of MO  
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2.4.3 The mixture DODAB:MO 

 Nucleic acid complexation with DODAB:MO liposomes has been intensively 

studied during the past few years [49], [54]–[58] . It was demonstrated that the 

addition of MO to lipid mixture has a strong influence in liposome/lipoplex 

morphology and consequent transfection efficiency performance.  

The liposomal mixed system composed by MO and DODAB was studied by phase 

scanning imaging in order to characterize the phase behaviour and aggregate 

morphology of DODAB:MO liposomes at different molar ratios and temperatures. This 

study showed that the morphology obtained is strongly dependent on DODAB/MO 

molar ratio. When the liposomal formulation is of equimolar composition, or when 

DODAB is in excess, the structures assembled are mostly bilayers; whereas 

formulations presenting higher amount of MO tend to promote densely packed cubic 

oriented particles (Fig.8). Additionally, it was found that increasing the temperature of 

the formulations has a similar influence on the vesicles morphology as the increase of 

MO concentration [53]. 

 

Figure 8 Phase scanning imaging of different DODAB:MO mixtures                    C. Lα is the lamellar liquid 
crystalline phase, L the isotropic phase, cub the isotropic cubic phase and cr, hydrated crystals [53] 

 The addition of a helper lipid such as MO to DODAB, that presents a very low 

Tm, can effectively lower the Tm of the final lipid mixture. This has implications on the 



18 
 

liposomal membrane fluidity and lipid organization, which are important parameters 

influencing nucleic acid encapsulation efficiency and transfection efficiency of the 

lipoplexes [54]. Additionally, studies regarding the nucleic acids complexation 

efficiency of DODAB:MO showed that the MO tendency to form inverted non-lamellar 

structures promotes inter-lamellar attachments (ILAs) and packing defects, resulting in 

fluidization/destabilization of the lamellar arrangement of DODAB. These structures 

help in the release of nucleic acids from the lipoplex by membrane fusion, enhancing 

transfection efficiency [53], [57]. The fluidization promoted by the presence of MO also 

leads to a high encapsulation efficiency improving lipoplex resistance to biological 

conditions [29], [45], [49].  

 Transfection efficiency studies with DODAB:MO at different molar ratios were 

performed both for siRNA [54] and pDNA [55]–[58]. In both cases, lipoplexes with less 

MO presented better transfection efficiencies when compared with lipoplexes with 

higher MO contents. These results show that the use of MO as a helper lipid may be 

finely tuneable in order to improve lipoplexes transfection [66].  

2.4.4 Optimization of DODAB:MO for siRNA delivery: inclusion of anionic cargo  

 pDNA and siRNA molecules present substantial chemical and structural 

differences, such as molecular weight and molecular topography. These differences 

may lead to different complex formation when interacting with cationic lipids. Since 

different complexes are obtained, it is presumable that cell interaction, uptake and 

distribution will vary, resulting in different intracellular pathways. These differences 

will have a strong impact on the effectiveness of the gene delivery system.  

 Recent studies using different liposomal formulations and different cell lines 

have demonstrated that the addition of non-coding pDNA molecule to siRNA prior to 

complexation with liposomes results in lipoplexes with enhanced silencing efficiency 

both in vitro [9], [16] and in vivo [67], [68]. Similar results have been reported for 

simultaneous complexation of pDNA and non-coding pDNA in polyplexes [3]. The 

mechanism behind this effect is still not entirely understood. 

 Furthermore, no major difference between siRNA lipoplexes, DNA lipoplexes 

and siRNA/pDNA lipoplexes structures were detected [16]. Also, the administration of 

these lipoplexes did not translate into significant differences in the amount of 

transferred siRNA [9]. The differences observed, were associated with the lower 
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surface of the lipoplexes  formed due to  the less amount of cationic lipid necessary to 

efficiently encapsulate siRNA combined with pDNA. This is a benefit, because 

decreasing  the amount of lipid,  leads to a lower cytotoxic response and less off-target 

effects triggered by these lipoplexes [16]. Nevertheless, even though no relevant 

structural changes were detected, the confocal microscopy studies performed were 

able to confirm that the internalization pathways may differ for siRNA/pDNA 

lipoplexes, siRNA lipoplexes and pDNA lipoplexes, since the cellular localization was 

different for each lipoplex formulation [9]. It is important to realise that, even in a 

eukaryotic non-coding version, pDNA is not an inert molecule, and it might still lead to 

the undesirable expression of molecules. Moreover, studies have shown that when 

applied in high doses to culture cells, pDNA containing siRNA lipoplexes can be highly 

toxic [10]. Therefore, several anionic polymers have been studied to replace pDNA as 

the anionic cargo for simultaneous complexation with siRNA, and improve this way the 

safety profile of the system by reducing immunogenicity [10].  

 Addition of poly-glutamate to siRNA prior to lipoplex formation instead of 

pDNA has been recently reported [10], [69], [70]. Poly(L-glutamic acid) (PG) is a 

biodegradable, non-toxic synthetic polymer, composed by naturally occurring l-

glutamic acid molecules linked together through amide bonds. The free y-carboxyl 

group in each unit of l-glutamic acid is negatively charged at a neutral pH, and enables 

drug attachment. PG is widely applied in the fields of drug delivery, tissue engineering, 

and biomedical materials [71], [72].  

 Reports have shown that the inclusion of this polymer instead of pDNA also 

lead to the formation of lipoplexes with colloidal stability and improved gene silencing 

efficiency [70]. When siRNA/pDNA/cationic lipid and PG/pDNA/cationic lipid 

complexes where compared, lipoplexes containing pDNA promoted higher transfection 

efficiency than lipoplexes containing PG. However, a high cytotoxicity was also 

associated with the first systems. The substitution of pDNA by PG has lead to a 

significant decrease in cellular toxicity at higher siRNA doses, while maintaining some 

improvement in gene silencing efficiency. Thus, the addition of polymers such as poly-

glutamate appears to have better potential than plasmid DNA for the development of 

a safe and effective siRNA delivery system [10], [69]. 
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3. Objective 

 Since the discovery of RNAi as a valuable tool for gene therapy, a lot of effort 

has been put into developing suitable carriers for siRNA delivery into cells, as naked 

therapeutic siRNA molecules show very poor biodistribution and pharmacokinetics in 

the body. The use of vectors based on cationic liposomes emerged as a promising 

delivery method, due to their relatively high transfection efficiency and low toxicity 

and immunogenicity, compared to their viral counterparts. A variety of modifications 

can still be made in liposomes structure in order to enhance their transfection 

efficiency. 

 In recent studies, our group has developed DODAB:MO liposome formulations 

capable of effectively encapsulate and deliver siRNA into cells, resulting in relatively 

high silencing efficiency. The main objective of this thesis was to develop and 

characterize novel systems for therapeutic siRNA delivery based on the addition of 

anionic cargo (pDNA or PG) to the previously tested DODAB:MO (2:1)/siRNA 

lipoplexes. The aim is to study the differences in encapsulation, cellular uptake, 

cytotoxicity and silencing efficiency between the previously established system and the 

newly developed formulations. Moreover, the differences between the anionic cargo 

(pDNA, PG with low mol. wt. and PG with high mol. wt.) were to be assessed, to 

understand which one would be more suitable for co-encapsulation with siRNA. 
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II - Materials and Methods 

i - Materials 

 Dioctadecyldimethylammonium bromide (DODAB) was purchased from Tokyo 

Kasei (Tokyo, Japan). 1-monooleoyl-rac-glycerol (MO), Poly-L-glutamic acid sodium salt 

(PG) (3000-15000 and 15000-50000 mol wt), 4-(2-Hydroxyethyl)piperazine-1-

ethanesulfonic acid (HEPES), Thiazolyl Blue Tetrazolium Bromide (MTT), Dimethyl 

sulfoxide solution (DMSO), GenEluteTM Plasmid Miniprep Kit, Puromycin 

dihydrochloride and Hoechst Stain solution were obtained from Sigma-Aldrich (St. 

Louis (Mo.), USA). 293T and MDA-MB-468 cell lines were purchased from American 

Type Culture Collection (ATCC) (Manassas (Va.), USA) and 293T/GFP-puro cell line from 

Cell Biolabs (San Diego (CA), USA). Dulbecco's modified Eagle's Medium (DMEM), Fetal 

Bovine Serum (FBS), L-glutamine, Penicillin/Streptomycin and Trypsine-EDTA were 

purchased from Biochrom (Berlin, Germany). The  Sc  pt™ Reve  e T an c  pt on 

Supe m    o  q  R and the  Taq™ Un ve  al SY R® Green Supermix kits were obtained 

from BIO-RAD (Hercules (CA), USA). SV Total RNA Isolation System kit was obtained 

from Promega (Madison (WS), USA), Quant- T™ R boG een® RN     ay K t and 

Lipofectamine® RNAiMAX Transfection Reagent from Life Technologies (Eugene (OR), 

USA) and Hank's Balanced Salt Solution (HBSS) from Lonza (Basel, Switzerland). 

Absolute ethanol was purchased from Merck Milipore (Berlin, Germany), 1,2-dioleoyl-

sn-glycero-3-phosphatidylethanolamine-7-nitrobenzofurazan (NBD- E) (λe c = 46  nm; 

λem =  3  nm)   om  vant   ola  L p d  ( laba te ,  L, US ), and pGL4.20 plasmid DNA 

was kindly given by Cristina Carvalho, Ph.D. student. siRNA targeting the enhanced 

green fluorescent protein (siEGFP) (5'CAAGCUGACCCUGAAGUUdTdT3'), a siRNA 

negative control (sicontrol) (5'UGCGCUACGAUCGACGAUdTdT3'), siRNA targeting the 

EGFR protein (siEGFR) (5'UGAGCUUGUUACUCGUGC3') and a scrambled anti-BCR-ABL 

sequence (siSCRAMB) ( ′GU U   GUUUU GGG  GdTdT3′) were purchased from 

Integrated DNA Technologies (Iowa, USA). The siRNA were diluted in DEPC-treated 

water and stored at -20 °C until used. 
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ii - Methods 

1. Preparation of DODAB:MO liposomes 

 Stock solutions of dioctadecyldimethylammonium bromide (DODAB) and 1-

monooleoyl-rac-glycerol (MO) were prepared in ethanol, at 20 mM. The liposome 

formulation was prepared by mixing the appropriate volume of DODAB and MO in 

order to obtain a molar ratio of 2:1 (mol:mol), after which one of the methods 

described below was performed to obtain the liposomes. 

1.1 Methods for liposome preparation 

 Various methods for the preparation of liposomes were tested, and the 

produced liposome suspension evaluated by Dynamic Light Scattering (DLS) in order to 

understand which method produced liposomes with more suitable characteristics for 

transfection in mammalian cells. Sonication, extrusion and ethanol injection methods 

where used to shape the liposomes.  

1.1.1 Sonication 

 Sonication is a commonly used method for the preparation of liposomes. The 

acoustic sound produced by the sonicator induces pressure on lipid suspensions, 

breaking up the larger, multilamellar vesicles into smaller ones, that may be 

unilamellar or multilamellar [73]. The size of the particle can be shaped by controlling 

the time of exposure, as well as the amplitude (A) applied. This method has the 

advantage of being less time-consuming than other methods, but the liposome size 

obtained after sonication are not as reproducible as in methods like extrusion [74]. 

 For the preparation of DODAB:MO (2:1) by the sonication method, appropriate 

volumes of DODAB and MO were added to 5 mL of HEPES buffer (25 mM, pH 7.4), to 

form liposomes at a concentration of 3 mM. Afterwards, the liposome formulation was 

subjected to sonication in a Qsonica Misomix S-4000 Sonicator, with the ultrasonic 

frequency fixed at 20 kHz. Sonication was performed by ultrasonic bath at different 

amplitudes (60, 70, 80 and 90 % A) and time of exposure (5,10 and 20 min).  
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1.1.2 Extrusion 

 Extrusion is one of the most common methods used for controlling the size of 

liposome suspensions. The lipid suspension is forced through a polycarbonate 

membrane with a well defined pore size, resulting in monodisperse unilamellar 

liposomes with diameter similar to the pore size [75]. The primary advantages of this 

method are the formation of a monodisperse population of liposomes and 

reproducibility [74]. The retention of lipid by the membrane filter is the main 

disadvantage, as well as the time consumed in the process. 

 For the preparation of liposomes by extrusion, suitable amounts of DODAB and 

MO (20 µM stock solution in ethanol) were added to a round bottom flask, together 

with 3 mL of ethanol, to obtain a homogeneous film. The solvent was then evaporated 

in a rotary evaporator at 60 ˚C, under vacuum, for 15 min. After evaporation, the lipid 

film formed was hydrated with 5 mL HEPES buffer (25 mM, pH7.4). The rotation 

process was maintained for 15 min at 60 ˚C, and a 3 mM suspension of DODAB MO 

(2:1) liposomes was obtained. After the lipid film hydration, the liposome preparation 

was subject to a process of extrusion, in order to obtain liposomes with acceptable size 

characteristics. Using a Northern Lipids Lipex Extruder with polycarbonate filters 

(Whatman, USA), the liposome preparation was forced to pass through a 400 nm pore 

sized filter once, and four times through a 100 nm pore sized filter. The process was 

conducted at 60 ˚C, the temperature above the phase transition temperature of the 

lipids, which facilitates the passage through the filters and diminishes the lipid 

retention. 

1.1.3 Ethanol Injection  

 Ethanol injection is a fast and simple process for the preparation of liposomes. 

The process is based on the injection of an ethanol solution of lipids, with a thin needle 

or pipette tip, into an aqueous solution, while stirring. The lipids instantaneously self-

assemble into liposomes. The size and shape of the liposomes depend on several 

parameters and can be tuned to form the more suitable liposomes for a certain 

application. Parameters such as temperature, type of lipid, lipid concentration, type of 

buffer, and even the stirring speed, can greatly influence the size and shape of the 

produced liposomes. This method has the disadvantage of producing more 
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polydisperse liposome suspensions, as well as less reproducible results than the 

extrusion method [76][77]. 

 For the production of DODAB:MO (2:1) liposomes by the ethanol injection 

method, DODAB and MO were mixed at the appropriate ratio, and immersed into a 

bath above the lipid transition phase temperature (60 ˚C). The lipids were then quickly 

pipetted drop by drop into 2.5 mL HEPES buffer (25 mM, pH 7.4), under strong vortex 

for 15 s, alternating with 25 s in the a water bath at 60 °C, in order to maintain the 

temperature. During the process, the organic solvent evaporates due to the high 

temperature, resulting in an aqueous solution of DODAB:MO (2:1) with a final 

concentration of 3 mM.  

2. Plasmid DNA 

2.1 pGL4.20 

 The pGL4.20 [luc2/Puro] vector represented in Fig. 9 is responsible for the 

encoding of luciferase reporter gene luc2 (Photinus pyralis), a synthetic reporter gene, 

which has been codon optimized for mammalian expression. It also contains a 

mammalian selectable marker for puromycin resistance. Since this vector does not 

contain a promoter, it contains multiple cloning regions to allow the cloning of a 

promoter. Thus, it can be used as a non-coding plasmid DNA (pDNA), which makes it 

suitable for this work. 

 

Figure 9 - Schematic representation of pGL4.20 [luc2/Puro] vector 
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2.2 Transformation of competent cells  

  Escherichia coli Xl1-Blue competent cells were transformed by the heat shock 

transformation method [78]. Briefly, a sample of the plasmid pGL4.20 was added to 

200 µL competent cells, which were then kept on ice for 30 min. Afterwards, the cells 

were put in a water bath at 42 ˚C for 30 seconds and then transferred to ice for 10 min. 

This variation of temperature leads to a heat shock that will enhance the membrane 

permeability of the competent cells, allowing a more efficient internalization of the 

plasmid. 800 µL of SOC Medium (2 % tryptone peptone, 0.5 % yeast extract, 2.5 mM 

KCl, 10 mM NaCl , 10 mM MgSO4, 10 mM MgCl2, 20 mM glucose) were then added to 

the cells, which were incubated for 1 h  one hour at 37 ˚C and 200 rpm. After 

incubation, the cells were centrifuged at maximum rotation per minute for a few 

seconds. The pellet obtained was re-suspended in 50 µL supernatant and then spread 

in a petri dish with LB Medium (1 % tryptone peptone, 0.5 % yeast extract, 1 % NaCl, 2 

% agar) with 100 µg/µL ampicillin. The petri dish was left for incubation overnight at 37 

˚C, along with a petri dish with the same competent cells without the transformation 

process, as a control. The resistance acquired by the transformed cells allowed them to 

form colonies, while the non-transformed cells showed no formation of colonies due 

to their susceptibility to ampicillin. One of the colonies was then selected and 

transferred into approximately 200 mL LB medium, and grown overnight at 37 ˚C and 

200 rpm. 

2.3 Purification of plasmid DNA  

 After the amplification of the plasmid DNA (pDNA) by the transformed bacterial 

cells, the plasmid must be isolated. The isolation and purification was made using the 

GenEluteTM Plasmid Miniprep Kit (Sigma-Aldrich, USA), according to the 

manu actu e ’  p otocol. The isolated pDNA was re-suspended in ultra-pure water and 

analysed in the NanoDrop ND 1000 Spectrophotometer, to determine the nucleic acids 

concentration and confirm the purity of the sample, by measuring the absorbance 

ratio at 260/280 nm. 
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3. Preparation of DODAB:MO (2:1) lipoplexes 

 Different types of lipoplexes were prepared in this work for the study of their 

physical characteristics and determine possible advantages in processes such as 

cellular internalization, cytotoxic effects and silencing efficiency. All the lipoplexes 

were formed with the same liposome formulation - DODAB:MO (2:1), with siRNA 

alone, or combinations of siRNA with pDNA, siRNA with poly-L-glutamic acid 1 (PG1, 

with 3000 to 1500 mol. wt.) and siRNA with poly-L-glutamic acid 2 (PG2 with 1500 to 

5000 mol. wt.). The physical characteristics of lipoplexes with pDNA alone and PGA 

alone were also analysed by dynamic light scattering.  A list of the different lipoplexes 

prepared is presented in Table 2. 

 

Table 2- Different lipoplex conditions prepared throughout this work. 

Lipoplexes 
DODAB:MO (2:1) + siRNA 
DODAB:MO (2:1) + pDNA 
DODAB:MO (2:1) + PG1 
DODAB:MO (2:1) + PG2 

DODAB:MO (2:1) + siRNA and pDNA 
DODAB:MO (2:1) + siRNA and PG1 
DODAB:MO (2:1) + siRNA and PG2 

  

 siRNA and pDNA are composed by nucleotide bases, each containing a 

negatively charged phosphate group. The L-glutamic acid units in PG are also 

negatively charged due to a free y-carboxyl group. siRNA, pDNA and both PG polymers 

where prepared in HEPES buffer (25 mM, pH 7.4), to have the same negative charge 

concentration. As for all the experiments the concentration of siRNA, pDNA and both 

PG was maintained in all solutions, lipoplexes containing combinations of siRNA with 

pDNA, PG1 or PG2 present twice the amount of negative charges when compared to 

solutions containing only siRNA, pDNA, PG1 or PG2. This means that lipoplexes with 

siRNA+pDNA, siRNA+PG1 and siRNA+PG2 where prepared with twice the amount of 

lipid, in order to obtain the same charge ratio (+/-).  

 The ammonium groups present in DODAB confer a positive charge to this 

molecule, which will strongly interact with DNA, siRNA and PG due to their negatively 
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charged molecules. The balance between charges of the lipoplexes formed is given by 

the charge ratio (+/-):  

 

                   
                            

                           
    Equation (2) 

 

 For the preparation of the lipoplexes, DODAB:MO (2:1) liposomes prepared by 

ethanol injection were added to the siRNA, siRNA+pDNA and siRNA+PG1/2 solutions, 

followed by an incubation period of 20 min, at room temperature (RT), with occasional 

agitation. Lipoplexes with different charge ratios were obtained. 

4. Dynamic Light Scattering (DLS) 

4.1 Size measurements 

 The mean size diameter (z-average) and polydispersity index (PDI) of the 

lipoplexes prepared were measured by Dynamic Light Scattering (DLS). Particles 

suspended in a liquid are never stationary, because their collision with solvent 

molecules leads to a constant movement. This movement is known as Brownian 

motion. Using a Malvern Zetasizer Nano SZ particle analyzer (Malvern Instruments), 

the Brownian motion of the nanoparticles can be analysed, as well as the homogeneity 

of the sample. A laser beam illuminates the sample and analyses the intensity 

fluctuations in the scattered light due to nanoparticle movement. The speed of the 

Brownian motion is different for different particle sizes: smaller particles move faster 

than large particles, which changes the fluctuation intensity. The relationship between 

the particles speed and diameter is explained by the Stokes-Einstein equation 

(Equation 3): 

  
   

    
  Equation (3) 

where (D) is the particle diffusion coefficient, (kB) Boltzmann constant (1.38 × 10-23 

m
2
.kg.s

-2
.K

-1), (T) is the temperature, (r) the radius of the particle and (η) the medium 

viscosity [79]. 

 The polydispersity index (PDI) refers to the size distribution of the liposomes, 

high PDI values (PDI>0.5) indicate that the sample has a very broad size distribution, 

while low values (PDI<0.5) are associated with monodisperse samples. When samples 
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present a high polydispersity (PDI>0,5), the Z-average value is not reliable and a 

distribution analysis data should be used instead, to determine the mean size of the 

nanoparticles [80]. 

4.2 ζ-Potential measurements 

 The ζ-Potential measurements were performed in a Malvern ZetaSizer Nano ZS 

particle analyzer. Particles in suspension acquire an electrical charge on at their surface 

that is divided in two layers: the inner layer (stern layer) is formed by ions strongly 

bond, while the outer layer has ions linked by a weak interaction (Fig.6). In this outer 

layer, the ions and particles form a stable entity, so when the particle moves, only the 

ions forming this stable entity move with it. The potential of these ions is known as ζ-

potential, and can be determined by applying an electric field to the sample. This will 

give the charged particles an electrophoretic mobility that can be measured by Laser 

Dopller Velocimetry (LDV), by pointing a laser beam to the sample and detecting the 

fluctuations on the scattered light that is proportional to the velocity of the particles. 

The relation between the electrophoretic motion and the particle's ζ-Potential is 

obta ned by the appl cat on o  the Hen y’  equat on (Equation 4): 

 

   
          

  
   Equation (4) 

 

where (Ue) is the electrophoretic mobility,     is the dielectric constant,     the zeta 

potential, ( ) is the viscosity of the medium and f(Ka) is the Hen y’   unct on, wh ch 

generally presents two different values, either 1.5 or 1 [80]. 
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Figure 10 - Representation of the electrical double layer surrounding particles dispersed in a aqueous solution. 
The boundary that divides the strongly bond inner region (stern Layer) and the diffuse outer region has a potential 
known as ζ-Potential [80]. 

4.3 Liposomes and lipoplexes Z-average and ζ-Potential 

 The mean size and surface charge of the liposomes prepared by the different 

methods described were analysed by DLS, in order to determine which liposome 

preparation method promotes more suitable characteristics for siRNA delivery into 

cells. In order to analyse the mean size, 200 µL of liposomes were pipetted into 

disposable polystyrene cuvettes, and diluted with 800 µL HEPES buffer (25 mM, pH 

 .4) be o e mea u ement at      C. Z-average, polydispersity index (PDI) and error 

values were taken in consideration. After the size analysis, 800 µL of the samples were 

pipetted into universal dip cells (Malvern Instruments) for ζ-Potential determination at 

     C. The Malvern Dispersion Technology Software (DTS) was used for data 

processing, and the ζ-Potential average and error values were taken into 

consideration. 

5. Dynamics of siRNA encapsulation by DODAB:MO (2:1) liposomes   

 Lipoplexes described before, were prepared with different charge ratios (+/-) 

and analysed by DLS and RiboGreen® assay to characterize the dynamics of siRNA 

complexation rate by DODAB:MO (2:1) liposome formulation. 
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5.1 Dynamic Light Scattering 

 Lipoplexes were prepared by adding growing amounts of DODAB:MO (2:1) 

liposomes to siRNA, pDNA, PG1, PG2, siRNA+pDNA, siRNA+PG1 and siRNA+PG2 

solutions, in order to form different charge ratios (+/-). The siRNA used for DLS and ζ-

potential measurements was a single stranded scrambled siRNA (siSCRAMB) 

containing 22 nucleotide bases, at a concentration of 4 µM. After a 20 min incubation 

period at RT, 200 µL of lipoplexes were diluted with 800 µL HEPES buffer (25 mM, pH 

7.4), and the Z-average, PDI and ζ-Potential were measured by DLS, using a Malvern 

Zetasizer Nano ZS.  

5.2 RiboGreen assay 

 Although the RNA concentration in solution can be determined by absorbance 

at 260 nm, there are important disadvantages associated with this commonly used 

technique, like poor sensitivity and interference from contaminating components such 

as nucleotides, proteins and salts in the RNA solution. To make a more accurate siRNA 

quantification, the RiboGreen assay, based on an ultra-sensitive fluorescent nucleic 

acid stain, was used. RiboGreen alone exhibits a poor fluorescence, but when it bounds 

to nucleic acids, the dye fluoresces with several orders of magnitude greater than the 

unbound form. This allows for a rapid and simple procedure for measuring RNA 

concentration in solution [81], [82]. If siRNA is encapsulated within the liposome, 

RiboGreen will exhibit a low fluorescence signal, since there are no free siRNA 

molecules to attach to. 

 In the RiboGreen assay, lipoplexes were prepared by adding increasing 

amounts of DODAB:MO (2:1) liposomes to siRNA alone, siRNA+pDNA and siRNA+PG, in 

order to obtain lipoplex solutions with charge ratios (+/-) 1, 2, 3, 5, 10 and 15. The 

lipoplex dispersions were diluted fivefold with HEPES buffer (25 mM, pH 7.4), and 100 

μL of these mixtures were transferred into a 96 black well plate (Corning, USA). A 

sample containing only siRNA diluted in HEPES buffer (25 mM, pH 7.4)  was used as a 

negative control. Afterwards, 1   μL of a 200-fold diluted RiboGreen® was added to 

each well. After 5 min incubation in the dark, the fluorescence was assessed on a 

Fluoroskan Ascent FL (Thermo Scientific) microplate fluorometer and luminometer, 

w th an e c tat on/em    on   lte  pa   o  λex=4   nm, λem=538 nm. 
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6. Cell lines and culture conditions  

 Highly transfectable derivative of human embryonic kidney (293T cells) and 

Human breast carcinoma (MDA-MB-468) cell lines where cultured in Dulbecco's 

minimal essential medium (DMEM), supplemented with 10 % (v/v) heated inactivated 

fetal bovine serum (FBS), 1 % (v/v) penicillin-streptomycin, 1 % (v/v) L-glutamine and 1 

% (v/v) sodium piruvate. 293T/GFP-Puro (siEGP) Cell line was also cultured in the same 

medium, supplemented with 2 µg/mL puromicyn for selection. The cells were kept in 

25 or 75 cm2 tissue culture flasks, in an incubator with 5 % CO2 and at 3  ˚ . In o de  to 

maintain sub-confluence, all cell lines were subcultured regularly using 0.05 % Trypsin 

solution. All work with cell lines was performed in sterile conditions in a laminar flux 

chamber Bio II A (Telstar), to avoid contaminations.  

6.1 Lipoplexes cellular uptake 

 The lipoplexes cellular internalization was determined on the 293T and MDA-

MB-468 cell lines. Lipoplexes were prepared at charge ratios (+/-) 5 and 10, with 

liposomes labelled with NBD-PE (N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-1,2-

dipalmitoylsn-glycero-3-phosphoethanolamine), and sterilized by filtration with a 0.22 

µm pore sized filter before addition to the cells. The labelled liposomes (3 mM) were 

prepared by adding 2 % (mol:mol) NBD-PE to the lipid mixture prior to ethanol 

injection. NBD-PE is composed of a phospholipid (PE) labelled in the head group by a 

fluorophore (NBD). NBD-PE will be incorporated in the liposomes and therefore allow 

internalization measurements in the cells. 

 293T and MDA-MB-468 cell lines where seeded into 24-multiwell plates (TPP, 

Switzerland) at a cell density of       cells per well in complete cell culture medium. 

293T cells were incubated 24 h and MDA-MB-468 48 h in 5 % CO2 and 3  ˚ , and then 

 ept at 4    C for 30 min, before lipoplexes were added to synchronize cell's metabolism. 

Scrambled siRNA (siSCRAMB) was used to prepare the lipoplexes and the final siRNA 

concentration on each well was set to 25nM. Immediately before the addition of siRNA 

lipoplexes, siRNA/pDNA lipoplexes and siRNA/PG lipoplexes, the complete cell culture 

medium was replaced by HBSS (Hank's Balanced Salt Solution), in order to avoid 

interferences caused by the medium components on the fluorescence measurements. 

Lipoplexes were incubated for 6 h 
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6.1.1 Fluorescence Spectrophotometry 

 After the incubation period, medium was removed and cells washed twice with 

PBS to remove any non-internalized lipoplexes. PBS was removed, 500 μL Triton X-100 

(5 %) was added to the wells to lyse the cells, and 200 μL of each sample was added to 

a 96 black well plate (Corning, USA). A negative control was done by simply adding 

triton X-100 (5 %) to cells without lipoplexes. In order to quantify the amount of NBD-

PE internalized by the cells, a calibration curve was done by successively diluting the 

concentration of NBD-PE labelled DODAB:MO in Triton X-100 (5 %). Samples were 

analysed in a Synergy Mx Multi-Mode Plaque Reader with Gen5TM software (Bio-Tek 

In t ument , Inc., EU ), w th λex=480 nm and λem=530 nm. Uptake experiments were 

performed in triplicate and. The concentration of the lipid internalized was determined 

using the calibration curves. The percentage of cellular internalization was determined 

after subtracting the fluorescence intensity of the negative control, and considering 

the total amount of lipid added to each well as the total amount of fluorescence. 

6.1.2 Fluorescence microscopy 

 After incubation, HBSS was removed from the wells, and MDA-MB-468 cells 

were washed twice with PBS. Afterwards, cells were stained with Hoechst Stain 

solution, a fluorescent DNA stain with λex≈3   nm, λem≈46 nm [83]. After 15 minutes 

incubation, PBS was removed and cells were washed three times with an acidic buffer 

(0.2M glycine–0.15M NaCl, pH 3.0), to promote the removal of liposomes attached to 

the cell-surface. Samples were analyzed by fluorescence microscopy in an Olympus 

IX71 inverted microscope with Cell F software. Bright field micrographs and 

fluorescence micrographs (FITC filter, λex=49  nm, λem=520 nm and DAPI filter, λex=372 

nm, λem=456 nm.) were acquired with 40x objective for each sample.  

6.2 Cytotoxicity assay 

MTT (3,(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) is a 

tetrazolium salt permeable to the cell membrane. Once inside the cells, if they are 

viable, MTT tetrazolium salt is metabolized by mitochondrial dehydrogenase enzyme 

activity into insoluble formazan coloured crystals. This crystals absorb light at a wave 

length of 570 nm, which can be easily assessed by absorption measurements. This way,  

MTT is a rapid method to assess the cell viability, since cells with a compromised 

metabolism will not metabolize the salt, and present lower light absorption [84]. 
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Both 293T and MDA-MB-468 cell lines were used to evaluate the liposomes and 

lipoplexes cytotoxicity. DODAB:MO (2:1) liposomes were freshly prepared by ethanol 

injection and sterilized by filtration through a 0.22 µm pore sized filter. For 293T cell 

line, lipoplexes were prepared at charge ratios (+/-) 10, and the siRNA final 

concentration in the well was 25 nM and 50 nM. Liposomes, siRNA, pDNA and both PG 

molecules were also tested individually in this cell line to evaluate their toxicity. For 

MDA-MD-468 cell line, lipoplexes were prepared only with 25 nM siRNA, at charge 

ratio (+/-) 5 and 10.  

Cells were seeded into 24 well plates (TPP, Switzarland) at a cell density of 

     cells per well, and incubated for approximately 24 h at 5 % CO2 and 3 ˚ . After 

the incubation period, the cell culture medium was replaced by 400 µL fresh medium. 

Then, 100 µL of the different lipoplex suspensions were added to the wells, in 

duplicates. A cell viability control was done by adding 500 mL of fresh medium to the 

cells, while a cell death control was done with 30 % (v:v) DMSO. 

The lipoplexes were incubated for 48 h, after which 50 µL of MTT (5 mg/mL) 

was added to each well and left to incubate for 1 h at 5 % CO2 and 3 ˚ , for formation 

of the formazan crystals. The medium was then  emoved and     μL of a 

DMSO/Ethanol [1:1 (v/v)] solution was added to each well to dissolve the crystals. 200 

μL of each condition was transferred into a 96 well plate (Nunc, Thermo scientific, 

USA), and 200 µL of DMSO/Ethanol [1:1 (v/v)] was used as blank. The absorbance 

measurements were done in a SpectraMax Plus 384 absorbance Plate Reader 

(Molecular Devices), with the SOFT Max Pro software. 

6.3 Gene silencing assays 

 Different methods were used to analyse the lipoplex gene silencing efficiency in 

the two cell lines. 293T cells stably expressing the EGFP protein (293TeGFP) were used 

to evaluate DODAB:MO (2:1) silencing efficiency by the decrease in the EGFP 

fluorescence signal, using fluorescence microscopy. DODAB:MO (2:1) silencing 

efficiency on MDA-MB-468 cell line was analysed by knocking down the epidermal 

growth factor receptor (EGFR) expression, using quantitative Real Time PCR (qPCR). 
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6.3.1 Fluorescence microscopy  

 The green fluorescent protein (GFP) of the jellyfish Aequorea victoria is 

commonly used as a marker for gene expression and protein localization in a variety of 

organisms. This protein absorbs light with an excitation maximum of 395 nm, and 

fluoresces at an emission maxima of 508 nm, exhibiting bright green fluorescence [85]. 

In this work we used a siRNA anti EGFP (siEGFP) to evaluate the transfection efficiency 

of DODAB:MO (2:1) lipoplexes on 293TeGFP cells, by knocking down the EGFP 

expression. The decrease in green fluorescence was observed by fluorescence 

microscopy and measured using the Image J software. 

293TeGFP cells were seeded into 24 well plates (TPP, Switzerland), at a cell 

density of      cells per well, and left over-night at 5 % CO2 and 3 ˚  for adhesion. 

Liposomes were freshly prepared as described above and filtered through a 0.22 µm 

filter for sterilization. siRNA, siRNA+pDNA, siRNA+PG1 and siRNA+PG2 lipoplexes were 

prepared at charge ratios (+/-) 5 and 10, and the siRNA final concentration in the wells 

was set to 25 nM and 50 nM. After 20 min incubation, the cell culture medium was 

replaced by 400 µl of fresh medium, and 100 µL of each lipoplex formulation was 

added to the wells, in duplicates. Lipofectamine, a common lipofection reagent with 

relatively high transfection efficiency, was used as a positive control, whilst non 

encapsulated siRNA was added to the wells as a negative control.  

After a 48 h incubation period, cells were washed with PBS and analyzed by 

fluorescence microscopy in an Olympus IX71 inverted microscope with the Cell F 

software. Bright field micrographs and fluorescence micrographs (FITC filter, λex=490 

nm, λem=520 nm) were acquired with 10x objective for each sample, in duplicate. The 

exposure time was maintained in all fluorescence photographs taken. 

The Image J software image processing program was used to count the number 

of cells in bright field micrographs, and to determine the fluorescence intensity on FITC 

micrographs. Cell count was performed through the enhancement of the contrast 

between cells and extracellular medium, achieved by removing the background and 

adjusting image threshold, and by using Analyze Particles function, which counts the 

number of cell nuclei with sizes within a range of pre-established pixels. To quantify 

the fluorescence intensity, background fluorescence was removed and the 

fluorescence micrographs converted to multi-channel composite images in order to 
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split the channels. RGB pictures are composes of red, green and blue channels, and by 

splitting the channels, the red and blue interference can be removed. Fluorescence 

intensity was quantified using the function histogram. Finally,  for each condition, the 

fluorescence intensity was divided by the number of cells counted on the 

corresponding bright field micrographs, which gives the ratio of total fluorescence 

intensity per number of cells.  

6.3.2 Reverse transcription and quantitative real time PCR (qPCR) 

For qPCR, MDA-MB-468 cells were seeded into 12 well plates (TPP, switzerland) 

at a cell density of       cells per well, and left approximately 48 h in an atmosphere 

of 5 % CO2 and 3  ˚ . DODAB:MO (2:1) Liposomes were prepared as described above, 

filtered through a 0.22 µm pore sized filter for sterilization, and added to siRNA, 

siRNA+pDNA, siRNA+PG1 and siRNA+PG2 to form lipoplexes at C.R. (+/-) 5. siRNA anti 

EGFR protein (siEGFR) was used, and lipoplexes prepared in order to have a final siRNA 

concentration of 50 nM in the wells. After 20 min incubation for the formation of 

lipoplexes, cell culture medium was replaced by 900 µl fresh medium, and 100 µl of 

each lipoplex formulation was added to the wells. Cells without lipoplexes were used 

as a negative control, to have the normal expression of EGFR, while, Lipofectamine was 

used as a positive control. After a 24 h incubation period, EGFR down regulation was 

analyzed by qPCR, using GADPH as the reporter gene. 

6.3.2.1 RNA Isolation 

 PCR is often used for the quantification of miRNAs and other regulatory RNAs, 

cellular mRNA and mRNA splice variants [86]. In order to analyse changes in gene 

expression by real time polymerase chain reaction (RT-PCR), first it is necessary to 

extract the mRNA from the cells and convert it to complementary DNA (cDNA) by 

reverse transcriptase (RT). Since the mRNA obtained after extraction is extremely 

sensitive and prone to degradation, it is important to work under tightly controlled and 

well defined conditions to avoid mRNA degradation. RNA purity and integrity must also 

be analysed before reverse transcription, since impurities in RNA sample may lead to 

the inhibition of PCR reaction or to inaccuracies in gene expression evaluation. RNA 

quality can be assessed by various absorbance measurements such as NanoDrop [87].  
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 RNA isolation was performed using a SV Total RNA Isolation kit (Promega, USA) 

according to manufacturer's instructions. Briefly, DMEM medium was removed, cells 

were washed with PBS ice cold and collected in RNA Lysis Buffer into sterile tubes, to 

which RNA Dilution Buffer was added. After a heating step (70 ˚C for 3 min), the tubes 

were centrifuged (10 min at 12000 rpm) and the cleared lysate transferred into fresh 

tubes. 95 % ethanol was added, the mixture is transferred into a Spin Basket Assembly 

and centrifuged for 1 min at 12000 rpm. The eluates were discarded and the DNase 

incubation mix (Yellow Core Buffer solution, MnCL2 at 0.09 M and DNase I) was added 

to the membranes of the spin basket. After 15 min at RT, DNase Stop Solution was 

added to the membranes and a centrifugation of 1 min at 12000 rpm performed.  RNA 

Wash Solution was used to wash the membranes several times and, finally, RNA was 

eluted with Nuclease-Free Water. Isolated RNAs were quantified with the Nanodrop 

ND-1000 spectrophotometer. Absorbance ratios of 260/280 and 260/230 were 

determined to check the purity of the RNA samples 

6.3.2.2 Reverse Transcription 

 For reverse transcription a mixture containing dNTPs, random primers and 

RNase H must be prepared and added to the extracted RNA, so that the enzyme 

reverse transcriptase RNase H+ will promote the conversion of RNA to cDNA. The 

amount of siRNA must be equal for every sample in order to obtain reliable results.  

 Reverse transcription was performed using the  Sc  pt™ Reve  e T an c  pt on 

Supermix for qPCR kit (BioRad, USA). This supermix contains all the necessary 

components for reverse transcription (reverse transcriptase, RNase inhibitor, dNTPs, 

oligo(dT), random primers, buffer, MgCl2 and stabilizers), except the RNA template. 

The  eact on wa  pe  o med acco d n  to manu actu e ’   n t uct on , and the RN  

concentration normalized to 1 µg for all the samples, using nuclease-free water to 

adjust the final reaction volume to 20 µl. The complete mixture was incubated in a 

T100  thermal cycler (Bio-Rad, USA) and the following protocol established: 5 min at 25 

°C to allow the binding of the primers, followed by 60 min at 42 °C to promote optimal 

conditions for reverse transcription, and finally 5 min at 85 °C to inactivate the reverse 

transcriptase. 
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6.3.2.3 qPCR 

 Quantitative Real-time PCR (qPCR) is a widely used technique to analyse and 

quantify differences in gene expression levels between samples. qPCR is performed on 

single or double-stranded DNA templates. For qPCR to occur, a mixture must be 

prepared containing: two oligonucleotide primers that attach to the DNA sequence 

and promote amplification; the four deoxynucleotide triphosphates dNTPs; DNA 

polymerase, which extends the primers by incorporating the dNTPs; magnesium ions; 

and a dye or dye-labelled probe that allows the miniaturization of the amplification 

and quantification of its products in real time. Asymmetric cyanine dyes such as SYBR 

Green I and BEBO are often used as reporters for qPCR [88]. The method is based on 

repeated heating and cooling cycles, where high temperature is applied in order to 

promote the separation of the DNA double strand, and temperature is lowered to 

allow the binding of the primers to the template. The last step involves the application 

of high temperatures (72 ˚C) which are ideal for polymerase function [86][88][89]. In 

qPCR experiments, various reference genes such as glyceraldehyde-3-phosphate 

dehyd o ena e (G   H), β-actin or rRNA are used as an internal standards, which are 

assumed to have constant expression between experimental conditions. This way, 

experimental data can be normalized to the reference gene in each sample [90]. A 

series of guidelines known as MIQE guidelines were written to establish par1ameters 

that should be met to publish acceptable results from qPCR experiments [91].   

 Real-Time PCR was performed using the iTaq Universal SYBR Green Supermix 

(Bio-Rad, USA). For each condition, 1 µl of EGFR primer forward at 10nM and EGFR 

primer reverse were added to the iTaq Universal SYBR Green Supermix containing the 

antibody-mediated hot-start iTaq polymerase, dNTPS, MgCl2, SYBR Green I dye, 

enhancers, and stabilizers. After the prepared mixture was loaded into a 96-well PCR 

plates (iCycler iQ, Bio-Rad), 1 µl cDNA template of each condition was added to each 

well, and the final reaction volume normalized with DNase free H2O. The mixture was 

prepared on ice, to avoid sample degradation and mixture components were carefully 

pipetted,  to avoid contaminations that would alter the results. The same protocol was 

followed using primers for the endogenous reference gene GADPH ( o wa d p  me   ′-

AGGTCGGTGTGAACGGATTTG-3′ and reverse primer  ′-
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TGTAGACCATGTAGTTGAGGTCA-3′), for normalization of the cDNA expression in each 

condition.  

 The qPCR reaction was performed in the CFX96 Touch Real-Time PCR Detection 

System (Bio-Rad), by applying one cycle of 5 min at 95 °C, followed by 40 cycles of PCR 

at 95 °C × 15 s and 60 °C × 30 s. A melting curve (1 cycle of 95 °C × 60 s and 

55 °C × 60 s, followed by an increase in temperature from 55 to 95 °C, with 0.5 °C 

increments in each step) was made immediately after the reaction, to demonstrate the 

specificity of the amplification. No template controls were evaluated for each target 

gene. Quantification cycle (Cq) values were generated automatically by the Bio-Rad 

CFX Manager 2.0 Software, and the relative gene expression values were determined 

according to Equation 4 [92]: 

      
       

         

    
       

     Equation (5) 

where Etarget is the real-time PCR efficiency of the EGFR transcript; Eref is the real-time 

PCR efficiency of the GADPH reference gene transcript; ∆Cqtarget = Cqcontrol - Cqsample of 

the target gene transcript; and ∆Cqref = Cqcontrol – Cqsample of the reference gene 

transcript. After a calibration curve was done for both genes, PCR efficiencies were 

calculated according to E =10(–1/slope), and found to be between 94 % and 112 %, with 

R2 > 0.99. 

7. Statistical analysis 

Prior to data analysis all assumptions were met testing for normality (Shapiro-

Wilk test) and homo ene ty o  va  ance  (Levene’  te t).  

To investigate the influence of different lipoplexes on GFP silencing of 

293T/GFP-Puro cell line, a three-level nested design ANOVA was conducted: 

composition: DODAB:MO (2:1) liposomes and siRNA-related systems; charge ratio (+/-

): 0, 5 and 10; concentration: 25 nM and 50 nM.  

ANOVA model [two factors: composition (five levels: siRNA lipoplexes, siRNA 

coupled with small mol weight poly-glutamate lipoplexes, siRNA coupled with large 

mol weight poly-glutamate lipoplexes, siRNA coupled with pDNA lipoplexes, and death 

control) and concentration (two levels: 25 nM and 50 nM)] was conducted to 

determine differences on metabolic activity of 293T cells, pre-exposed to the different 



39 
 

lipoplexes. In vitro cytotoxicity (MTT assay) of the lipoplexes single components was 

further investigated for this cell line, following the same statistical analysis: ANOVA 

model [two factors: type (seven levels: DNA, small mol weight poly-glutamate, large 

mol weight poly-glutamate, siRNA, siRNA liposomes, liposomes and death control) and 

concentration (two levels: 25 nM and 50 nM)]. The lipoplexes interference on 

metabolic activity of MDA-MB-468 human breast carcinoma cells was also investigated 

following, a two-level nested design ANOVA: composition: DODAB:MO (2:1) liposomes 

and siRNA lipoplexes, and charge ratio (+/-): 0, 5 and 10. To investigate differences on 

cellular metabolic activity among human cells of different origin, a two-level nested 

design ANOVA was considered: cell line: 293T cells and MDA-MB-468, and condition 

(25 nM; C.R. (+/-) 10): DODAB:MO (2:1) liposomes and siRNA lipoplexes. All data were 

tested for differences among replicates of different-time performed experiments using 

a MANOVA design. 

Post hoc comparisons were conducted using Student-Newman-Keuls. A P value 

of 0.05 was used for significance testing. Analyses were performed in STATISTICA 

(StatSoft v.7, US). 
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III - Results and Discussion 
In this study liposomes prepared by three different methods were analysed by DLS in 

order to select the most suitable method to develop a new siRNA delivery system 

based on DODAB:MO (2:1) liposomes. After choosing liposome preparation method, 

DODAB:MO (2:1) lipoplexes encapsulating siRNA, and co-encapsulating siRNA+pDNA, 

siRNA+PG1 and siRNA+PG2 were formed. Different parameters such as Z-average, ζ-

potential, siRNA encapsulation efficiency, cellular uptake, cytotoxicity and silencing 

efficiency were assessed for all lipoplex formulations, in order to understand if the 

addition the anionic cargo (pDNA or PG) to the lipoplexes could promote substantial 

differences in such parameters. 

1. Liposome Preparation Method 

 DODAB:MO (2:1) liposomes were prepared by three different methods: ethanol 

injection, sonication and extrusion after lipid film hydration. Liposomes obtained for 

each method were analysed by Dynamic and Electrophoretic Light Scattering (DLS) to 

understand how these methods affect their physicochemical properties, such as size 

and surface charge. 

1.1 Sonication 

 Sonication by ultrasonic bath was the first method tested, using different 

amplitudes and times of exposure. The size and polidispersity index (PDI) of the 

liposomes obtained were measured by DLS (Table 3). 

Table 3 - Liposome mean size diameter (nm) and PDI values obtained after different amplitudes (A) and times of 
exposure to sonication. 

A (%) Time (min) Size (nm) PDI 

60 5 268.5 0.498 
10 101.4 0.472 
20 94.23 0.434 

70 5 91.14 0.266 
10 81.72 0.282 
20 78.14 0.242 

80 5 126.9 0.432 
10 83.69 0.366 
20 62.24 0.262 

90 5 118.6 0.289 
10 79.11 0.289 
20 70.43 0.233 
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 Ultrasonic bath sonication leads to the formation of liposomes with a 

hydrodynamic diameter ranging from 70 to 270 nm. The results presented in Table 1 

show that increasing the amplitude and time of exposure during sonication resulted in 

smaller liposomes and lower PDI values. Despite the particle size obtained being 

suitable for application in gene therapy, the high PDI values obtained (0.25 to 0.5 for 

most liposome formulations) are not ideal. In addition to the high PDI value, liposomes 

prepared by this method presented very low stability, since only a few hours after 

preparation, it was possible to see the increase of turbidity in the samples, possibly 

due to aggregation, reorganization into multilamellar structures and precipitation of 

the liposomes. DLS measurements showed that smaller sized liposomes have 

aggregated into larger ones (data not shown), and this aggregation behavior can be 

linked to the inability of smaller liposomes to promote electrostatic repulsion with 

surrounding liposomes. Another hypothesis is that sonication method may promote 

hydrophobic defects in the liposomes which might be responsible for the aggregation 

observed [61]. Even though the mean size diameter of liposomes obtained by 

sonication was considered suitable for encapsulation and delivery of nucleic acids, this 

preparation method presents several disadvantages, such as the lack of reproducibility 

between batches, the lack of homogeneity between liposomes and the particle's 

aggregation behavior observed. Due to these disadvantages, no further studies were 

made with liposomes prepared by sonication. 

1.2 Extrusion and Ethanol injection 

 After excluding the sonication method, another two methods were tested, lipid 

film hydration followed by extrusion and ethanol injection. The mean size diameter 

and ζ-potential of liposomes obtained by these methods were analyzed by Dynamic 

and Electrophoretic Light Scattering (Fig.11A, B). 
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Figure 11 - DLS measurements of liposomes prepared by extrusion and injection methods. (A) shows the Z-
average (nm) and polidispersity (PDI) of liposomes prepared by extrusion and injection and (B) shows the ζ-potential 
values (mV) for both methods. 

 Fig. 11A shows the mean size (nm) and PDI of DODAB:MO (2:1) liposomes 

prepared by ethanol injection and lipid film hydration followed by extrusion. No 

significant size differences can be observed in liposomes obtained by either method: 

both liposomes present relatively small hydrodynamic diameter (around 160 nm). 

L po ome  p epa ed by e t u  on  howed lowe    I (≈ . ),  u  e t n  that th   

preparation method promotes a more uniform size distribution compared with 

ethanol inject on method, wh ch p e ent  a  elat vely h  h   I (≈ .  ) value. 

Liposomes prepared by ethanol injection present similar physicochemical 

characteristics as observed in previous work from our group [93]. As for extrusion, 

liposome sizes and mainly PDI values obtained were slightly higher than the ones 

previously reported for the same DODA:MO (2:1) formulation [54]. These differences 

might be associated with technical problems. 

 The superficial charge of the particles obtained is an important physicochemical 

property. Fig. 11B presents the ζ-potential of liposomes prepared by both methods. As 

expected, liposomes present a highly positive surface charge due to the presence of 

the cationic lipid DODAB. Liposomes prepared by extrusion present a slightly higher 

value of ζ-potential (≈6 .3 mV) than l po ome  p epa ed by ethanol  nject on (≈  .4 

mV). This additional superficial charge can be the result of conformational changes in 

the liposomes during extrusion, with MO relocating to the interior of the liposomes. 

The high ζ-potential values can improve the particle's ability to encapsulate nucleic 

acids and promote cell entry through electrostatic attraction. However, positively 



43 
 

charged particles also present higher cytotoxicity and are easily cleared when applied 

in vivo, due to the interaction of serum proteins which might  trigger the immune 

system  [35], [94], [95].  

 Liposomes prepared by both methods present roughly the same size and ζ-

potential, yet, extrusion is a more reproducible method to obtain stable and 

homogenous liposome formulations with appropriate and adjustable sizes. However, 

retention of lipid in the polyester filters during extrusion is a main disadvantage of this 

method. The retention of lipid can greatly influence DODAB:MO ratios as well as the 

concentration of liposomes in solution. These alterations, if not measured, interfere 

with all the following experiments. Therefore, ethanol injection was the chosen 

method to proceed with the rest of the experiments of this thesis.  

2. Dynamics of nucleic acid encapsulation 

 One of the main objectives of this work is to study how the addition of pDNA or 

of PG molecules to siRNA lipoplexes influences the final structure of lipoplexes. 

DODAB:MO (2:1) liposomes encapsulation rate of siRNA, with either pDNA, PG1 or 

PG2, was studied by DLS and Ribogreen assay. 

2.1 Dynamic Light Scattering 

 Lipoplexes with different C.R. (+/-) (1, 2, 3, 4, 5 and 10) were prepared for each 

condition, and Z-average and ζ-potential measurements were performed in order to 

characterize the different lipoplexes formed and to understand if the addition of 

anionic charges (pDNA and PG) to the mixture influences the complexation efficiency 

of DODAB:MO (2:1) liposomes. 
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Figure 12 - DLS measurements of different lipoplexes prepared at increasing C.R. (+/-). Z-average, polidispersity 
and ζ-potential measurements of siRNA lipoplexes,  siRNA+pDNA lipoplexes, siRNA+PG1 and siRNA+PG2 lipoplexes, 
prepared with 4µM siRNA in HEPES buffer, 25mM, pH 7.4.. 

 Fig. 12  shows the size measurements of lipoplexes prepared wih siRNA alone 

showed an increse in lipoplex mean size diameter and PDI up to C.R. (+/-) 3, and a 
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subsequent reduction of both parameters for higher C.R. (+/-). When pDNA or PG2 are 

added to the mixture, the increase in mean size diameter and PDI occurs at C.R. (+/-) ≤ 

2. For higher C.R.s (+/-), lipoplex mean diameter and size distribution is reduced and 

maintained. For lipoplexes with PG1 and siRNA, the mean size diameter reaches its 

peak at C.R. (+/-) 1 and is reduced until C.R. (+/-) 3. For higher charge ratios, no 

significant alteration is observed. The high PDI of siRNA+PG1 lipoplexes at C.R. (+/-) 4, 

5 and 10 can be related to a less homogenous DODAB:MO (2:1) liposome batch. 

 ζ-potential measurements of siRNA, siRNA+pDNA and siRNA+PG2 lipoplexes 

 howed ne at ve value  (≈-35 mV)  for C.R. (+/-) 1 and 2. For higher C.R.s (+/-), ζ-

potential becomes positive and stabilizes around +50 mV. siRNA+PG1 lipoplexes ζ-

potential measurements only present negative values for C.R. (+/-) 1. 

 The addition of DODAB:MO (2:1) liposomes to the nucleic acid solutions 

promotes an eletrostatic attraction between the positively charged ammonium groups 

of DODAB, and the negatively charged groups of either nucleic acids or polymers. This 

attraction will promote the formation of aggregates, responsible for the increase in 

mean size observed for lipoplexes with low C.R. (+/-). ζ-potential measurements for the 

same C.R. (+/-) present negative values, which implies the presence of either free 

siRNA, pDNA and PG, or adsorbtion of these molecules to the surface of the 

aggregates. With the increase of C.R. (+/-), the excess of liposomes promotes a 

neutralization of the negative charges from the nucleic acid/polymer backbone. This 

neutralization leads to the reorganization of the  aggregates, promoting the insertion 

of siRNA inside the liposome vesicles [54]. This reorganization step is responsible for 

the maximum mean size diameter and PDI observed. This reorganization also 

promotes the encapsulation of the negatively charged nucleic acids or polymers, 

resulting in the increase of ζ-potential values. Further increase in the charge ratio 

results in smaller mean size diameters and highly positive ζ-potential values. DLS 

measurements also showed slight differences between physicochemical properties of 

lipoplexes prepared with PG1 and PG2. This differences are probably caused by the 

mean size of PG molecules. PG2 has a higher mol. wt. and, therefore, resembles pDNA 

molecules, which might explain the similarities observed between these systems. 

siRNA+PG1 lipoplexes, due to the smaller molecule size of PG1, seems to promote 
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quicker compaction of siRNA, slightly reducing the amount of lipid necessary to 

promote the neutralization of the negative charges. 

 All lipoplex formulations prepared at C.R. (+/-) > 4 present roughly the same 

 mall   ze (≈1   nm) and h  hly po  t ve  u  ace cha  e (≈+ 1 mV). The ζ-potential 

values a e   m la  to the one  obta ned  o  l po ome  (≈+  .4 mV)  u  e t n  that mo t 

of the nucleic acid or polymer molecules in the solution were efficiently encapsulated. 

However, small changes can be observed in the encapsulation rate for C.R. (+/-) < 4. 

SiRNA+pDNA, siRNA+PG1 and siRNA+PG2 lipoplexes reach stable values of ζ-potential 

and Z-average at C.R. (+/-) 3 while siRNA lipoplexes only reach stability at C.R. (+/-) 4. 

Taken together, these results show that all formulations promote siRNA encapsulation, 

and the addition of pDNA or PG molecules can reduce the amount of lipid necessary to 

efficiently encapsulate siRNA. This might be the result of an increased eletrostactic 

interaction between negative and positive charges due to the addition of anionic cargo 

to the siRNA suspension. 

2.2 RiboGreen assay 

 siRNA encapsulation efficiency of each lipoplex formulation was determined 

using the RiboGreen assay. When this probe intercalates with nucleic acids, its 

fluorescence intensity is enhanced, allowing the quantification of nucleic acids in 

solution. Lipoplexes for each condition were prepared at increasing C.R. (+/-) and 

siRNA encapsulation efficiency was determined.  

 

Figure 13 - siRNA encapsulation efficiency for each lipoplex formulation prepared at increasing charge ratios (+/-) 
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 The RiboGreen assay (Fig. 13) shows that even though at C.R. (+/-) > 5 all 

l pople   o mulat on  p omote e   c ent   RN  encap ulat on (≈9  %), the rate of 

encapsulation is slightly different for the different lipoplexes. In accordance to DLS 

measurements, lipoplexes containing PG present slightly higher encapsulation 

efficiency, and reach maximum encapsulation at lower C.R. (+/-), suggesting that the 

additional anionic charges provided by the polymer enhance siRNA compaction inside 

DODAB:MO (2:1) liposomal formulation. The differences on PG molecular size do not 

seem to promote any differences in the liposomes encapsulation efficiency. Contrarily 

to what DLS measurements showed, siRNA+pDNA lipoplexes present a lower 

encapsulation efficiency than siRNA lipoplexes, for all C.R. (+/-). This lower 

encapsulation efficiency may be due to the binding of RiboGreen to both free siRNA 

and pDNA, enhancing fluorescence signal intensity.  

 Overall, DLS and fluorescence measurements allowed to understand that 

DODAB:MO (2:1) liposomes efficiently encapsulate siRNA at C.R. (+/-) 5 or higher, and 

that the addition of anionic cargos to lipoplexes can slightly improve the encapsulation 

efficiency by reducing the amount of lipid necessary. siRNA encapsulation efficiency 

was slightly higher for C.R. (+/-) 15, however, the excess of lipid can result in high 

cytotoxicity. Therefore, only lipoplexes prepared at C.R. (+/-) 5 and 10 were tested in 

vitro for cellular uptake, cytotoxicity and silencing efficiency. 

3. Cellular uptake 

 Lipoplexes cellular internalization was evaluated by adding liposomes and 

lipoplexes, labeled with the fluorescent NBD-PE probe, to 293T and MDA-MB-468 cell 

lines. Two different C.R. (+/-), 5 and 10, were used for a final siRNA concentration of 25 

nM. Internalization in 293T cell line was analyzed by fluorescence measurements, after 

6 h incubation with liposomes and lipoplexes. For MDA-MB-468, apart from the 

fluorescence measurements, also fluorescence microscopy was used to observe the 

cellular uptake of the different lipoplexes. Three independent experiments were 

performed for fluorescence measurements in both cell lines. 
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3.1 Fluorescence measurements for evaluation of cell uptake 

 To determine the cellular uptake of liposomes and lipoplexes in 293T and MDA-

MB-468 cell lines, calibration curves of the fluorescence emission spectrum area in 

function of the lipid concentration of all systems were constructed. This way it was 

possible to estimate the labeled lipid concentration internalized by the cells. Data was 

normalized for lipid concentration present in lipoplexes or liposomes used. 

 

Figure 14 - 293T and MDA-MD-468 cellular association with NBD-labeled liposomes and lipoplexes after 6 h 
incubation. Liposomes and siRNA, siRNA+pDNA, siRNA+PG, siRNA+PG2 lipoplexes were prepared at CR (+/-) 5 and 
10, incubated at a final siRNA concentration of 25 nM. Results were normalized in function of maximum lipid 
concentration added to cells.  

 Fluorescence measurements in 293T cell lines (Fig. 14) showed a very small 

l pople   nte nal zat on pe centa e (≈  %), and no    n   cant difference between 

conditions or C.R (+/-) were detected. Liposomes and lipoplexes internalization in 

MDA-MB-468 cells (Fig. 14) was equally low, although some differences in 

internalization efficiency were observed for different C.R.s: at C.R. (+/-) 5 

internalization efficiency was approximately 2 % for every condition, while the 

liposomes and lipoplexes at C.R. (+/-) 10 resulted in a slightly higher internalization 

e   c enc e  (≈3 %). Even thou h poo   nte nal zat on e   c ency wa  ob e ved,  t    

possible to understand that no significant differences were observed due to the 

addition of an anionic cargo to lipoplexes, suggesting that cellular internalization is not 

affected by the addition of these compounds. The low uptake efficiency observed 

might be linked with a loss of cells while washing the wells with PBS, inefficient cell 

lysis promoted by Triton-X, or quenching of the fluorescence by compaction or by 

dilution of the fluorescent lipid in the cellular membrane [16]. 
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 In order to confirm if these low internalization percentages obtained by 

fluorescence measurements were accurate, MDA-MB-468 cell lines internalization 

efficiency was also analyzed by fluorescence microscopy. 

3.2 Fluorescence Microscopy 

 MDA-MB-468 cells were treated with NBD-PE labeled liposomes and lipoplexes 

prepared at C.R. (+/-) 10. After a 6 h incubation period, cells were subjected to acidic 

wash to remove non internalized particles [96] and incubated with Hoechst for nucleus 

staining. Bright field and fluorescence (DAPI and FITC) micrographs were obtained for 

each test condition. Fig. 15 shows the merging of bright field, FITC and DAPI 

micrographs. 
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Figure 15 - Merged bright-field and fluorescence micrographs of internalized NBD-labeled liposomes and 
lipoplexes by MDA-MB-468 cells. Liposomes/lipoplexes were incubated with 293T cell line at charge ratio (+/-) 10 
and final siRNA concentration of 25 nM for 6 h. Untreated cells (A), liposomes (B), siRNA lipoplexes (C), siRNA+pDNA 
lipoplexes (D), siRNA+PG1 lipoplexes (E) and siRNA+PG2 lipoplexes (F). Objective 40x was used. Scale bar represents 
20 µm. 

  

 The green fluorescence observed by fluorescence microscopy represents the 

binding and/or internalization of NBD-labeled liposomes and lipoplexes by the cells, 

while blue fluorescence is the result of Hoechst binding to DNA, labeling the cell 

nucleus. Merged micrographs allow the visualization of internalization of liposomes 

and lipoplexes co-encapsulating siRNA with pDNA or PG. Although low internalization 

is seen for siRNA lipoplexes, this lipoplex formulation presents half the amount of lipid 
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than the other formulations, explaining the low internalization efficiency observed. In 

sum, by observing these micrographs, it becomes evident that systems interact with 

the cells, and are probably internalized. These micrographs suggest that a higher 

internalization efficiency has occurred when compared to the one reported by 

fluorescence measurements, reinforcing the need to optimize this method.  

 To better understand the cellular uptake of the systems, additional 

methodologies should be used, such as flow cytometry, which would allow for better 

quantification of cellular association, and confocal microscopy, a powerful imaging 

technique that would allow a better observation of lipid nanoparticles internalization. 

4. Cytotoxicity assay 

 One of the most important parameters to evaluate the biomedical applicability 

of liposome formulations is the toxicity levels induced by these systems when 

interacting with cells. Therefore, the cytotoxicity induced by liposomes and each 

lipoplex formulation was evaluated in 293T and MDA-MB-468 cell lines. MTT assay was 

used to determine the cell's metabolic activity after 48 h incubation with lipoplexes. 

The reduction in cell metabolic activity can be used to understand the level of 

cytotoxicity induced by lipoplexes. 

4.1 293T cell line 

 Cytotoxicity induced in 293T cell lines was evaluated using lipoplexes prepared 

at C.R. (+/-) 10, at two different siRNA concentrations, 25 and 50 nM. The cytotoxicity 

of siRNA, pDNA, PG1, PG2 and liposomes was also evaluated, for the same 

concentrations as the ones used for the preparation of the complexes. Since siRNA 

concentration is maintained, lipoplexes containing siRNA alone will present half the 

amount of lipid as the other lipoplex formulations. The results were presented as the 

mean values of three independent experiments. 



52 
 

 

Figure 16 - Cell viability evaluation by MTT assay of individual lipoplex components (A) and different liposome 
and lipoplex formulations (B). Lipoplexes were prepared at charge ratio (+/-) 10 with 25 and 50 nM of siRNA, and 
incubated for 48 h with the 293T cell line. Liposomes (siRNA) and Liposomes were repeated in (B) to allow for better 
comparison between lipoplex systems and the liposomes used to form them. 

 The results of metabolic activity for the single compounds of the lipoplexes (Fig. 

16 A) show that siRNA, pDNA, PG1, and PG2 alone promote a very little decay in cell 

viability for both 25 nM and 50 nM concentrations. Interestingly, the liposome 

concentration needed for the preparation of siRNA lipoplexes (Liposomes/siRNA), also 

did not promote a significant decrease in cell viability for neither concentration. 

However, the liposome concentration used for co-encapsulation of siRNA with pDNA 

or PG molecules, induced a significant decrease in metabolic activity for both 

concentrations. This was expected, since co-encapsulation requires twice the amount 

of lipid, which is the main responsible for the decrease in cell viability.  When analyzing 

the percentage of metabolic activity induced by the lipoplex single components, 

significant statistical differences were observed among groups (F(6,154)=4.307, 

P<0.05), where liposomes used for co-encapsulation induced higher cytotoxicity, a 

tendency significantly different from all the other conditions (SNK, data not shown).  

 Fig. 16B shows the decrease in cell viability induced by each lipoplex and 

liposomal formulation for 25 and 50 nM. It is possible to observe that, all lipoplex 

formulation promote roughly the same cell viability (65 and 55 for 25 and 50 nM, 

respectively). siRNA+pDNA, siRNA+PG1 and siRNA+PG2 lipoplexes cytotoxicity levels 

resemble the ones obtained for liposomes, suggesting that most of the cell viability 

reduction is caused by liposome concentration, and that the addition of anionic cargo 

to lipoplexes does not influence cytotoxicity. Even though only half the amount of 

liposomes was used to encapsulate siRNA alone, the same level of cytotoxicity was 
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observed for this lipoplex formulation. Contrarily to what happens for the other 

lipoplexes, encapsulation of siRNA alone appears to promote liposome cytotoxicity. 

Statistical analysis allowed us to confirm that an increase in siRNA concentration 

caused a significantly decrease in 293T cellular metabolic activity (F(1,154)=6.432, 

P<0.05), and that no statistical differences were observed for in vitro cytotoxicity of 

the different lipoplexes (see Table 4). Also, no differences among replicates or 

different experiences were found in any case (MANOVA, data not shown). 

 

Table 4 - Factorial ANOVA results on cellular metabolic activity of 293T cells after incubation with different lipid-
siRNA based nanoparticles for 48 h. 

Source of variation DF MS F P 

cellular metabolic activity 

    Composition 4 14870.482 68.435 <0.05 

Concentration 1 5385.627 24.785 <0.05 

composition*concentration 4 425.292 1.957 0.106 

Error 110 5.832 

   

4.2 MDA-MB-468 

 MDA-MB-468 metabolic activity 48 h after administration of each lipoplex 

formulation at C.R. (+/-) 5 and 10, was measured for a final siRNA concentration of 25 

nM. Lipoplexes were not prepared with 50 nM siRNA since it was expectable that 

these formulations would induce high levels of cytotoxicity. As in the previous 

experiment, siRNA concentration was maintained, therefore for the formation of 

siRNA lipoplexes half the amount of liposomes used in the other lipoplexes was 

required. The measurements presented were obtained in two independent 

experiments. 
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Figure 17 - MDA-MB-468 cell viability, evaluated by MTT assay, after incubation with different liposome and 
lipoplex formulations for 48 h. Lipoplexes were prepared at charge ratio (+/-) 5 and 10, with 25 nM final siRNA 
concentration. 

 No significant differences in cell viability can be observed between each of the 

lipoplexes and liposome formulations prepared at C.R. (+/-)   (≈   %). The fact that all 

lipoplexes cause roughly the same cytotoxicity as the liposomes used to prepare them 

(Fig. 17), reinforces the idea that liposomes are the major parameter affecting cell 

metabolism. When lipoplexes were prepared at C.R. (+/-) 10, the increase in liposome 

concentration lead to slightly lower values of cell viability for every condition, except 

for siRNA liposomes. Cells treated with liposomes at the same concentration used to 

encapsulate siRNA plus an anionic cargo present the same cell viability values as 

l pople e  (≈  6 %) p epa ed at  .R. (+/-) 10, once again suggesting that most of the 

reduction in cell viability is caused by the lipid present in the lipoplexes. In accordance 

to what was observed with the 293T cell line, even though liposome concentration 

used to form siRNA lipoplexes presents no significant reduction in cell viability, siRNA 

lipoplexes application results in significant cell metabolism decrease, suggesting that 

the structural differences promoted by the presence of siRNA alone, result in more 

cytotoxic systems. The nested ANOVA results on metabolic activity of MDA-MB-468 

breast carcinoma line, exposed to the different lipoplex and liposome formulations, 

confirmed that a statistically significant increase in the cytotoxicity effect of siRNA 

lipoplex incubation (F(6,75)=7.889, P<0.01) occurred. Also, an increase in the charge 

ratio caused a significantly decrease in cellular metabolic activity of this line (one-way 

ANOVA, F(2,85)=1846.800, P<0.01). 
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 Both cell lines were treated with lipoplexes prepared at C.R. (+/-) 10 for a final 

siRNA concentration of 25 nM, therefore, cytotoxicity levels induced by these 

conditions can be compared between cell lines. When comparing the metabolic 

activity between the cells exposed to the different lipoplexes and liposome 

formulations, significant statistical differences were observed among groups 

(F(12,118)=83.527, P<0.01). The metabolic activity percentages of 293T cells were 

found to be lower than those of MDA-MB-468 breast carcinoma cell line (Fig. 18). The 

highest metabolic activity value was obtained for cells exposed to siRNA liposomes, a 

tendency that for 293T cell line, but not for MDA-MB-468 breast carcinoma line, is 

significantly different from all the other conditions (SNK, data not shown).  

 

 

Figure 18 Metabolic activity (MTT assay) of 293T and MDA-MB-468 cell lines exposed to liposomes and lipoplexes 
for 48 h. Lipoplexes were prepared at charge ratio C.R. (+/-) 10 with 25 nM final siRNA concentration. (*) indicate 
significant differences among treatments (P<0.05, nested design ANOVA). 

 

 Taken together, these results show that after a 48 h incubation period with 

liposomes and lipoplexes, 293T cells presented lower metabolic activity than MDA-MB-

468 cells for C.R. (+/-) 10, and 25 nM final siRNA concentration. For both cell lines the 

same tendency is maintained, with lipoplexes co-encapsulating siRNA with pDNA, PG1 

and PG2 promoting the same levels of cytotoxicity as siRNA lipoplexes, even though 

twice the amount of lipid was used to prepare the first formulations. No significant 

differences were observed between siRNA+PG lipoplexes and siRNA+pDNA lipoplexes 
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for these conditions. However, a previous study has reported that when the 

concentration is increased, siRNA lipoplexes with pDNA promote higher cytotoxicity 

when compared to siRNA lipoplexes with PG molecules, suggesting that in terms of 

cytotoxicity, addition of PG molecules to lipoplexes is preferable to the addition of 

pDNA [10], [69]. Also, the difference in PG molecular size does not seem to affect the 

cytotoxicity induced by the lipoplexes.    

5. Silencing efficiency 

 Silencing efficiency of siRNA lipoplexes was evaluated for two different cell 

lines, 293T/GFP-puro and MDA-MB-468. A different method was used to study the 

silencing efficiency of lipoplexes in each cell line. 293T/GFP-puro EGFP gene 

knockdown was assessed by fluorescence microscopy while EGFR gene silencing was 

measured in MDA-MB 468 cell line by qPCR. 

5.1 Fluorescence Microscopy 

293T/GFP-puro cells were treated with the different lipoplex formulations at 

C.R. (+/-) 5 and 10, and two different siRNA concentrations, 25 and 50 nM. However, 

cell measurements for CR (+/-) 10 and 50 nM were not performed since significant 

cytotoxicity was observed by microscopy. Fig. 19 shows representative brightfield and 

fluorescence micrographs of cells treated with the different lipoplex formulations.  
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Figure 19 - Fluorescence (1) and bright-field (2) micrographs of 293T/GFP-puro cells. cells were treated with  
liposomes and lipoplexes at charge ratio (+/-) 10 and siRNA concentration of 25nM for 48 h. Untreated cells (A), 
lipofectamine (B), siRNA lipoplexes (C), siRNA+pDNA lipoplexes (D), siRNA+PG1 lipoplexes (E) and siRNA+PG2 
lipoplexes (F). Objective 10x was used. Scale bar represents 100 µm. 

 

As expected, when compared to the control cells (A), it is visible that 

lipofectamine treatment (B) results in accentuated decrease in fluorescence intensity, 

which is the result of the EGFP protein silencing by siEGFP. A smaller decrease can be 

observed for lipoplexes where siRNA is co-encapsulated with pDNA or PG (D, E and F), 

whereas for siRNA lipoplexes (C) no significant decrease in fluorescence intensity can 

be observed. Fluorescence intensity values were measured using Image J software, and 

the results were statistically analyzed (Fig. 20). 

The nested design ANOVA results on EGFP silencing percentage of 293T/GFP-

Puro cells showed a significant interaction among the selected factors. For lipoplex 

formulations, significant statistical differences were observed among groups. 

siRNA+pDNA, siRNA+PG1 and siRNA+PG2 lipoplexes induced a higher percentage of 

EGFP silencing than siRNA lipoplexes (F(5,168)=13.815, P<0.05). No significant 

differences were observed between C.R. (+/-) and siRNA concentrations. 
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Figure 20 - EGFP silencing on 293T/GFP-Puro cell line, incubated with the different lipoplex formulations, for 48 h. 
Different letters indicate significant differences among treatments (P<0.05, nested design ANOVA). Untreated cells 
(cells), siRNA lipoplexes (SI), siRNA+pDNA lipoplexes (SI+D), siRNA+PG1 lipoplexes (SI+PG1), siRNA+PG2 (SI+PG2) 
and lipofectamine (LIPO). 

 

 The results on Fig. 20 show that siRNA lipoplexes did not promote a significant 

decrease in fluorescence intensity when compared to the non-treated cells. However, 

when pDNA, PG1 and PG2 were included in the lipoplex formulation, it was possible to 

observe a significant decrease in fluorescence intensity, even though the same amount 

of siRNA was used for each formulation. This suggests that less siRNA is needed to 

achieve EGFP silencing when pDNA or PG molecules are added to the formulation. One 

possible explanation is that the addition of the anionic cargo may lead to the 

formation of different lipoplex structures when compared to lipoplexes encapsulating 

siRNA alone. Addition of anionic cargo may result in less stable lipoplexes, which will 

facilitate endosomal escape and cargo release, resulting in higher siRNA delivery, and 

thus promoting higher levels of gene silencing for the same siRNA concentration. Also, 

the presence of pDNA or PG molecules could help the dissociation of the lipoplexes by 

interaction/competition with cell surface proteoglycans [16]. Since internalization 

efficiency studies showed that very little number of siRNA was successfully internalized 

by cells, it is also possible to observe that a small amount of siRNA is needed inside the 

cell to promote significant reduction in gene expression. 
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5.2 qPCR 

 Lipoplex ability to silence EGFR expression was tested in MDA-MB-468 cells. To 

avoid the significant toxicity observed in previous experiments with C.R. (+/-) 10, 

lipoplexes were prepared at C.R. (+/-) 5, at a final siRNA concentration of 50 nM per 

well. Two independent experiments were performed for the PCR assay.  

 

Figure 21 - EGFR silencing on MDA-MB-468 cell line as determined by qPCR, after treatment with the different 
lipoplexes prepared at charge ratio (+/-) 5 and final siRNA concentration of 50 nM for 24 h.  

 The results observed in Fig. 21 show that cells treated with lipofectamine 

presented the highest levels of EGFR gene silencing. siRNA+PG1 lipoplexes also 

promoted significant reduction in EGFR expression, while siRNA, siRNA+pDNA and 

siRNA+PG2 lipoplexes promoted overexpression of the gene. This overexpression 

might be associated with the formation of primer dimers (PD), leading to competition 

for PCR reagents, which may interfere with accurate gene expression quantification. 

Another hypothesis is that maybe GADPH was not the most suitable endogenous gene 

for this experiment. Studies have reported that GADPH is not the most adequate gene 

to quantify cellular normal expression due to its relatively large expression error [90]. 

This experiment was just a preliminary test, since only one time-point was analyzed. 

Besides, only two individual PCR experiments were performed without replicas, 

therefore, results with high standard deviation are unreliable. Additional experiments, 

with a different reference gene, should be performed in order to better evaluate the 

silencing efficiency of the systems. Also, protein expression studies such as western-

blot assays would help to further understand the silencing efficiency of these systems. 
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Nevertheless, results for siRNA+PG1 lipoplexes show some level of EGFR gene silencing 

for both experiments performed, which can be a good indication of the silencing 

potential of these systems. 
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IV - Conclusion and future work 
 In this work, liposomes obtained by sonication, ethanol injection and extrusion 

were analyzed by DLS. We were able the see that different methods of liposome 

preparation result in liposomes with distinct characteristics. Liposomes prepared by 

sonication can be tuned to present suitable sizes for siRNA delivery, however, the 

liposome suspensions obtained were very unstable. As for ethanol injection and 

extrusion, even though both methods resulted in liposomes with approximately the 

same relatively small hydrodynamic diameter (≈ 16  nm),   I value  o  l po ome  

obtained by extrusion were lower. From ELS measurements we have understood that 

extrusion promotes liposomes with more positively charged surface (≈ 6  mV) when 

compa ed to l po ome  obta ned by ethanol  nject on (≈    mV). Even thou h 

extrusion is a more reproducible method, the time consumed in the process and the 

retention of lipid in the membranes are important disadvantages for these technique. 

These studies led us to conclude that ethanol injection was the more suitable 

preparation method for our purposes. 

 DLS measurements of siRNA, siRNA+pDNA, siRNA+PG1 and siRNA+PG2 

lipoplexes, showed that the addition of pDNA, PG1 and PG2 promote the compaction 

of siRNA at lower C.R. (+/-). However, at C.R. (+/-) > 4, all lipoplex formulations present 

a   m la  mean d amete  (≈1   nm) and ζ-potential (≈+   mV), suggesting that the 

addition of an anionic cargo does not significantly affect the final siRNA complexation 

efficiency, with the different lipoplexes progressing towards structures with similar 

mean   ze  and ζ-potential. In what encapsulation efficiency was concerned, lipoplexes 

prepared with PG1 or PG2 seem to promote a slight increase in siRNA encapsulation 

for lower C.R. (+/-). As discussed before, the same behavior was not observed for 

siRNA+pDNA lipoplexes possibly due to the unspecific binding of RiboGreen to pDNA 

molecules. Therefore, no distinctions can be made between the different anionic 

cargos, as for C.R. (+/-) >   all l pople e  p e ent h  h encap ulat on e   c ency (≈9  %). 

These results are in accordance with DLS measurements, a fact that further attests  

that the presence of the different anionic components did not had a significant 

outcome in the siRNA encapsulation/complexation process. 

 Concerning lipoplexes cellular uptake, fluorescence measurements have shown 

poor internalization for all  y tem   n both  93T (≈  %) and    -MD-46  (≈3 %) cell 
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lines. However, fluorescence microscopy analysis seems to suggest a more efficient 

cellular uptake, mainly in systems where siRNA was co-encapsulated with PG and 

pDNA. 

 Metabolic activity of 293T cells after administration of the lipoplex compounds 

individually showed that, for the tested concentrations (25 and 50 nM of siRNA), the 

only compound that significantly reduced metabolic activity were the liposomes used 

to co-encapsulate siRNA with either pDNA or PG. This reduction in metabolic activity is 

similar to the effects obtained with all lipoplex formulations. Interestingly, lipoplexes 

co-encapsulating siRNA and pDNA or PG presented the same cytotoxicity levels as 

siRNA lipoplexes, even though these systems were prepared with twice the amount of 

lipid.  The same tendency was observed for the MDA-MB-468 cell line, reinforcing the 

idea that addition of anionic cargo does not enhance the cytotoxicity of the systems. 

 Finally, regarding gene silencing efficiency, the fluorescence microscopy assay 

has shown that no significant differences were observed between different lipoplex 

C.R. (+/-) or concentrations. More importantly, lipoplexes with pDNA, PG1 and PG2, 

clearly show an enhanced silencing efficiency of EGFP expression when compared to 

siRNA lipoplexes. The qPCR assay showed that siRNA lipoplexes prepared with PG1 

might be a promising system to promote knockdown of EGFR expression. However, as 

discussed before, the results obtained are preliminary, since more experiments should 

be performed at different time points and using a more suitable reporter gene. 

 In sum, the different lipoplexes prepared in this work were highly efficient in 

the encapsulation of siRNA, did not promote a significant cytotoxicity to 293T and 

MDA-MB-468 cells, and showed promising results in gene silencing. Moreover, the co-

encapsulation with the anionic compounds show some improvements on the 

siRNA/DODAB/MO base system. 

Several studies can be developed in the future in order to better understand 

the influence of an anionic cargo in siRNA lipoplexes. Methods such as calorimetry or 

cryo-TEM should be performed in order to understand the lipoplexes structural 

differences. The stability in physiologic fluids, such as serum, and membrane fusion 

assays might also be valuable methods to infer if the additional anionic components 

can enhance the system's ability to deliver siRNA. As referred before, flow cytometry, 

and confocal microscopy would allow for better assessment of the systems 
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internalization in cells. Additional qPCR and western-blot assays should be performed 

at different time-points to conclusively report the gene silencing ability of the systems. 
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