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ABSTRACT 

This work has as primary goal to study the influence of friction modeling on the 

dynamic behavior of mechanical systems. 

In this sense, an extensive literature review was conducted in order to present the 

main phenomena due to friction generated between two contacting surfaces. Further-

more, a comprehensive study of different friction modeling approaches was carried in 

order to explain the main characteristics of the most relevant static and dynamic friction 

models. 

The comparison between different methodologies of friction modelling is present-

ed in two distinct phases. The first consists in a simple system with one degree of free-

dom where friction plays a major role in the behavior of the system. The second phase 

involves more complex three-dimensional mechanical systems, where just a small part 

of the presented models is employed. In the latter phase, it is analyzed a kinematic 

translational joint with friction, where the friction force is implicitly calculated in the 

resolution of the equations of motion, and a spatial revolute joint with axial and radial 

clearance where friction is treated as an external force acting on the system. 

Due to the use of multibody systems in the mentioned examples, it was necessary 

to introduce the three-dimensional formulation for their dynamic analysis, which in this 

case is based on the Newton-Euler equations. Some methods for solving the equations 

of motion are also discussed, as well as their efficiency and accuracy. The dynamic 

simulations of multibody systems performed in the context of this work were carried out 

using MUBODYNA (Flores, 2012). 

The main conclusion of this study is that friction plays a key role in the behavior 

of multibody systems due to its energy dissipation properties. The main differences be-

tween the existing models are in the vicinity of zero relative velocity, thus the dispari-

ties occur during motion reversal. 
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RESUMO 

Este trabalho tem como objetivo principal estudar a influência da modelação do 

atrito no comportamento dinâmico de sistemas mecânicos com múltiplos corpos. 

Nesse sentido, uma vasta pesquisa bibliográfica foi efetuada, de modo a apresen-

tar quais os principais fenómenos produzidos devido ao atrito gerado entre duas superfí-

cies em contacto. Para além disso, um estudo abrangente sobre diferentes abordagens 

para o cálculo da força de atrito foi realizado de modo a explanar as características dos 

modelos de atrito mais importantes. 

A comparação entre as diferentes metodologias de modelação de atrito é apresen-

tada em duas fases distintas. A primeira consiste na utilização de um sistema simples 

com um grau de liberdade onde o atrito tem papel preponderante no comportamento 

sistema. A segunda fase considera sistemas mecânicos tridimensionais mais complexos, 

onde apenas é estudada uma pequena parte dos modelos apresentados. Nesta fase, anali-

sa-se uma junta cinemática de translação com atrito, onde o atrito é calculado implici-

tamente na resolução das equações do movimento, e uma junta de revolução com folga 

radial e axial onde o atrito é tratado como uma força externa que atua no sistema. 

Devido à utilização de sistemas multicorpo nos exemplos apresentados, foi neces-

sário introduzir a formulação tridimensional para a sua análise dinâmica, que neste caso 

tem por base as equações Newton-Euler. Alguns métodos para a resolução das equações 

do movimento também são discutidos, bem como as suas eficiência e precisão. As si-

mulações dinâmicas realizadas no âmbito deste trabalho foram executadas usando o 

código MUBODYNA (Flores, 2012). 

A principal conclusão deste trabalho é de que o atrito tem um papel fundamental 

no comportamento de sistemas multicorpo devido às suas propriedades de dissipação de 

energia. As principais diferenças entre os modelos existentes encontram-se na vizinhan-

ça da velocidade relativa nula, posto isto, estas acontecem durante inversões de sentido. 
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“Live as if you were to die tomorrow. Learn as if you were to live forever.” 

Mahatma Gandhi 

 

1. INTRODUCTION 

The rapid development of computer power led to the introduction of new method-

ologies for design and validation of mechanical systems. Nowadays, the market compet-

itiveness demands the product optimization and cost saving which makes improper the 

utilization of trial and error procedures due to their money and time consuming. Moreo-

ver, more complex systems have been developed, and, therefore, difficulties of perform-

ing analytical analyzes arose. The Computer Aided Engineering (CAE) and Manufac-

turing (CAM) play an increasingly important role in the product development which 

requires that computational studies become more reliable. In order to have more realis-

tic simulations, it is necessary to take into account all the effects that have a significant 

impact in the final results. This line of thought is applied in any engineering field, in-

cluding multibody systems dynamics which is in the context of this work. This area 

involves the analysis of the motion and the forces generated in different mechanical 

systems. Bearing that in mind, this work intends to understand the influence of the fric-

tional phenomena in dynamic simulation of multibody systems. 

1.1 Motivation and Objectives 

The main objective of the current work is to study the influence of friction model-

ing on the dynamic behavior of mechanical systems. The friction forces can be found in 

all real mechanical systems that contain contacting surfaces with relative velocity. In 

most of the situations, these forces are not desired due to their dissipative effect and 
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wear production (Flores, 2009; Ylinen et al., 2014), while sometimes they are prepon-

derant to the correct operation of the system (Teixeira et al., 2015; Park and 

Gschwendtner, 2015). Both situations require a rigorous evaluation of friction forces in 

order to obtain an accurate dynamic response of the system. 

Several techniques are frequently employed to minimize the influence of friction 

forces, namely utilize a pair of materials with low friction coefficient, improve surface 

finishing, add fluid lubricant, or use intermediary elements as bearings. However, these 

procedures cannot completely eliminate the generation of friction forces and their ef-

fects during contact events. Thus, several researchers have been devoted to the study of 

friction phenomena and how to model the resultant behavior in the dynamic analysis of 

a mechanical system (Amontons, 1699; Coulomb, 1785). 

The advances on technology allowed the scientists to perform more sophisticated 

experiments which contributed to the identification of several issues associated with 

friction. The investigation on frictional effects led to the development of several math-

ematical methodologies to describe its behavior. Due to the high complexity of this 

phenomenon, the researchers aspire to provide a model that fully describes the friction 

characteristics and, at the same time, can be easily implemented for the simulation of 

mechanical systems without requiring significant extra effort. The techniques available 

in the literature present distinct degrees of complexity, and it is of paramount im-

portance to identify the most suitable approaches to use in the modelling of different 

systems. 

One of the most important characteristics of friction force consists on being pro-

portional to the normal contact forces. Since the collision between bodies generates high 

normal force levels, this feature reveals the importance of taking into account the fric-

tional effects in mechanical systems with impacts. In this sense, the correct prediction of 

frictional behavior is highly dependent of the accurate evaluation of the contact forces. 

Therefore, this work aims to include the analysis of mechanical systems with impacts 

which involves dealing with the contact detection and selection of contact law. 

To sum up, this work intents to deliver a general and comprehensive literature re-

view in the multibody dynamics formulation, contact problems and, mainly, friction 

modelling. The comparison between different methodologies to evaluate the friction 

force will be undergone with utilization of simple multibody systems. The application 

examples represent distinct situations in which friction has different influence. 
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1.2 Literature Review 

Multibody dynamics had a huge growth in the last century due to the advent of 

computational power. In that sense, several methodologies have been proposed to per-

form more efficient and accurate simulations. One of the most important issues in 

multibody dynamics is the interaction between the different bodies, therefore, the con-

tact problems has had special attention by this community. The evaluation of the gener-

ated forces has supreme relevance in the response of the system. Among the different 

types contact forces, friction plays a significant role since it is a complex phenomenon 

which origins energy dissipation.  

This section aim to provide a contextualization of these topics with a broad review 

of past work, including the most relevant landmarks in each field as well as a brief ex-

planation of different approaches. 

1.2.1 Multibody Dynamics 

The field of study of multibody systems has its primordial origin in the Ancient 

Greece. At that time, most of the studies was carried only by the static analysis of very 

simple systems. Throughout the following centuries, some advances were performed in 

the dynamic analysis of mechanical systems, several fundamental concepts were intro-

duced such as inertia, momentum, work of a force, among others. Although, these de-

velopments were mainly based on empirical knowledge of the researchers. 

The emergence of classical mechanics1 was a paramount breakthrough for this 

field of expertise. Newton (1686) introduced the law of universal gravitation and the 

laws of motion, which enabled the analytical study of the motion of a free particle that 

is the most basic element in a MBS. The equations of the dynamics of a rigid body were 

found by Euler (1776), who extended Newton’s work with rotational motion. 

A system of constrained rigid bodies was considered originally by d’Alembert 

(1743), who used the principle of the virtual work to present the concept of dynamic 

equilibrium. Thus, d’Alembert stated that the sum of the external forces acting on a sys-

tem and its inertial forces must be zero. A mathematical formulation based on energy 

analysis from the d’Alembert principle by Lagrange (1788). Hence, the Lagrange’s 

equations of the first and second kind emerged. The former represents a set of differen-

                                                 

1 Classical mechanics is often called Newtonian mechanics since most of studies developed in this 

field is based on the work of Isaac Newton (1642-1727). 
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tial algebraic equations (DAE) which treats the constraints explicitly, while the latter 

expresses a set of ordinary differential equations (ODE) with smaller number of equa-

tions. This formulation was developed by Hamilton with the principle of least action. 

In the subsequent years, several other researchers have been devoted to the study 

of the dynamic of multibody systems, although the computational limitations prevented 

a faster development of this area. The systems under study had to be widely simplified. 

The increase of computational power along with the need of creating models for 

more complex mechanical systems led to the development of computer algorithms 

based on the classical mechanics formulation. Since then, the multibody simulation field 

has two main goals. The first consists in the increase of simulation speed by developing 

more efficient methods to solve the equations of motion and using more adequate nu-

merical integrators. The second ambition is including more complex issues in order to 

have more realistic simulations, i.e., taking into account contacts, impacts, fluid interac-

tion, etc. 

In order to solve the equations of motion of a constrained multibody system, the 

standard Lagrange multipliers technique can be employed. However, during the integra-

tion process, this method cannot guarantee the fulfillment of constraints of positions and 

velocities. To overcome this problem several methodologies have been presented, their 

objectives are the elimination or stabilization of the violation of constraints, handling 

redundant constraints and dealing with singular positions. 

Baumgarte (1972) proposed a method to stabilize the constraints by adding feed-

back terms during the resolution of the equations of motion, which became the most 

used technique. From this approach, some other methodologies to stabilize the con-

straints appeared, as the work of Park and Chiou (1988) or Weijia et al. (2000). Bayo et 

al. (1988) presented two alternative formulations to stabilize the constraints, the penalty 

method and the augmented Lagrangian formulation. These two approaches are also 

based on the utilization of penalty terms to stabilize the constraints. However, these 

techniques have to solve a smaller number of equations, can handle redundant con-

straints and deal with singular configurations. 

The coordinate partitioning method (Wehage and Haug, 1982) is also a popular 

technique to eliminate the violation of the constraints. In this approach, only the inde-

pendent coordinates are integrated, since the dependent coordinates can be evaluated 

from them. 

Another typology of methods to deal with constraints violation is the direct cor-
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rection formulations, these approaches eliminate the violations after the integration pro-

cess by forcing the positions and velocities to fulfill their constraints. Some examples of 

these methods can be found in the literature (Yoon et al., 1994; Blajer, 1995; Yu and 

Chen, 2000; Flores, 2013). 

Another methodologies to solve the equations of motion which do not handle the 

violation of constraints have been proposed. García de Jalón and Bayo (1994) described 

a method based on the transformation matrix from the independent velocities to the 

generalized velocities. This approach requires to solve a small number of equations and, 

since it uses independent quantities, it is indicated for inverse dynamic analysis. Arabi-

an and Wu (1998) introduced a methodology to solve equations of motion with redun-

dant constraints or singular configurations. Recently, García de Jalón and Gutierrez-

Lopez (2013) studied some issues of the analysis of multibody systems in the presence 

of redundant constraints and singular mass matrix. 

The rapid growth of the multibody systems dynamic community generated the 

need of having the knowledge and information gathered. Thus, a set of textbooks had 

been published about this topic. The first textbook was written by Wittenburg (1977). 

Some years later, Roberson and Schwertassek (1988) presented the kinematic and dy-

namic analyzes of one and several rigid bodies. Nikravesh (1988) and Haug (1989) gave 

more emphasis to the computer aided analysis. Shabana (1989) studied flexible multi-

body systems, Huston (1990) also covered this topic. The numerical methods for multi-

body dynamics were treated by Amirouche (1992). García de Jalón and Bayo (1994) 

focused on efficient methods to achieve real time simulation. 

A considerable number of computational programs were developed deliberately 

for the kinematic and dynamic analyzes of MBS. Schiehlen (1990) gathered contribu-

tions on the most relevant software for multibody dynamics at the epoch. Nowadays, 

several computational programs capable of automatic generation and integration of the 

equations of motion have been developed are used to perform dynamic analysis of 

multibody systems, their main advantages are the easiness of implementing the system 

and its constraints, when compared with dedicated codes. Some examples of commer-

cial programs are Adams, SIMPACK, SimWise 4D, COMSOL, RecurDyn or NEW-

EUL. 

The kinematic and dynamic analyzes of multibody systems have a comprehensive 

scope. This area of expertise has extended its influence to a wide range of applications, 

such as railway vehicles (Pombo and Ambrósio, 2008), road vehicles (Ambrósio and 
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Verissimo, 2009), robotics (Ben Horin et al., 2006), mechanisms (Flores, 2011), space-

crafts (Xu et al., 2014) or biomechanics (Aoustin and Formalskii, 2013). 

1.2.2 Contact Problems 

During the dynamic analysis of a multibody system, it is frequent to deal with 

contacts or impacts between two or more bodies. The contact and impact modelling is a 

fundamental issue when studying MBS since the selected constitutive force laws affect 

significantly its motion. Impact is a complex phenomenon characterized by a very short 

duration, high force levels, rapid energy dissipation, and large changes in the velocity of 

the bodies. In turn, contact is a continuous process which occurs during a finite time. 

The contact mechanics problems are still an open field in several engineering areas, 

such as biomechanics (Machado, 2013), railway dynamics (Pombo and Ambrósio, 

2012), crashworthiness (Sousa et al., 2008) or mechanisms (Flores et al., 2010). 

The resolution of contact problems involve two main phases. The first is the con-

tact detection which can be a straightforward task and solved analytically if the collid-

ing geometries have a simple shape, as in the case of two spheres (Kim et al., 2005). 

However, in the general case, the contact detection is a very complex assignment due to 

the assumption of contact between arbitrary surfaces (Nassauer and Kuna, 2013). This 

type of contact evaluation can be divided into polygonal and non-polygonal models. In 

turn, the former divides in structured and Polygon soups, while the latter comprises con-

structive solid geometry, implicit surfaces and parametric surfaces (Lin and Gottschalk, 

1998). Further review of the geometric contact detection can be found in the work of 

Machado (2013). The second phase consists on the evaluation of the contact forces. 

This step depends on the selected approach to model the contact problem, the force law 

has a paramount influence in the dynamic response of a system and it is chosen based 

on the geometry, the kinematics of the bodies and their materials. 

A real collision between two bodies is a dissipative phenomenon, therefore, the 

kinetic energy immediately before and after the impact is not equal. In order to measure 

this effect, it is used the coefficient of restitution which gives the ratio of the relative 

normal velocity before and after collision (Seifried et al., 2010; Jackson et al., 2010). 

The value of this parameter is typically a real number bounded by 0 and 1, and it defines 

the type of collision. A null coefficient of restitution represents a fully plastic contact, 

while a coefficient of restitution equal to one denotes a perfectly elastic contact. 

During a contact event between two or more bodies, two main types of normal 
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forces can be generated, they are attractive or repulsive. The attractive forces have their 

origin in the adhesion of the contacting surfaces, they are modelled based on van der 

Waals forces (Hamaker, 1937) or surface energy approaches, such as JKR model (John-

son et al., 1971), DMT model (Derjaguin et al., 1975) or Maugis adhesion theories 

(Maugis, 1992). This type of contact problems is out of the scope of the present work, 

therefore, the attractive forces will not have any further mention. In turn, the repulsive 

forces aim to separate the contacting bodies, and they can be evaluated based on two 

approaches: nonsmooth dynamics and regularized contact models (Johnson, 1985; 

Pfeiffer, 2008; Flores, 2010). 

The Linear Complementary Problem (LCP) is one of the most well-known ap-

proaches within the nonsmooth dynamics context (Pfeiffer and Glocker, 1996). This 

technique is built in the assumption that the contacting bodies are truly rigid and, there-

fore, local deformations cannot happen. Thus, this method uses unilateral constraints to 

solve the contact dynamics and determine the impulses that prevent the penetration of 

the surfaces. The Signorini’s condition (Signorini, 1933) was among the first contribu-

tions to the resolution of contact problems with LCP formulation. The main foundation 

of this approach is considering two quantities, the distance of the potential contact 

points and the normal contact force, which must be non-negative values in the sense that 

it cannot occur interpenetration and the forces are not attractive, respectively. Moreover, 

the product of these variables must always be zero, i.e., either the distance is zero or the 

normal force is zero. The employment of a LCP formulation in the modelling of con-

tact-impact events requires the adoption of different methods to solve the equations of 

motion during contact (Glocker and Studer, 2005). 

Alternatively to the nonsmooth approaches, the regularized contact models are al-

so a widely used technique to evaluate the contact forces for multibody dynamics for-

mulation (Koshy et al., 2013). These contact models allow the local deformation of the 

bodies and their interpretation. The magnitude of normal contact forces is calculated as 

a continuous function of the penetration depth. These approaches evaluate the contact 

loads as the bodies contain a spring-damper connection. The employment of regularized 

contact models in multibody dynamics simulation do not consider any kinematic con-

straint, instead, the contact forces are treated as external forces acting on the colliding 

bodies in opposite directions. The contact modeled by these continuous approaches 

comprehends two main phases, the compression and the restitution. The former corre-

sponds with the approximation of the bodies until the relative normal velocity is zero 
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and the indentation depth reaches its maximum. During the restitution phase, the bodies 

are separating and some of the energy absorbed in the compression phase is restored. 

An accurate identification of the instant of the impact has supreme importance to the 

correct evaluation of the contact forces, otherwise the initial contact force may be ex-

ceedingly large due to initial high penetration (Flores and Ambrósio, 2010). One of the 

main shortcomings of these techniques is the selection of parameters of each model, 

such as the stiffness or the degree of nonlinearity. The choice of these parameters can 

embrace different methodologies, for simple geometries, analytical expressions can be 

used, though, for an arbitrary shape, experimental or computational methods (as Finite 

Element Method) can be adopted (Brutti et al., 2011; Bai and Zhao, 2012). 

In the present work, only regularized contact force models will be further men-

tioned, since the author adopted this methodology to model the impacts in the upcoming 

chapters. 

The first main contribution for the study of dynamic contacts was made by Hertz 

(1881) who analyzed the contact stresses between two perfectly elastic bodies. Hertz’s 

law describe the normal contact force as a nonlinear function of indentation and can be 

stated as  

 N

nF K  (1.1) 

where δ expresses the relative penetration, K denotes the stiffness of the contact and n is 

an exponent that defines the degree of nonlinearity. This exponent is usually defined as 

1.5 for the case where there is a parabolic distribution of contact stresses, according 

Hertzian approach. The value of this parameter can adjusted for different materials or 

geometries in order to meet the experimental data. When this exponent is equal to one, 

it is said that is a Hookean relation due to the similarities with Hooke’s law. That is the 

case of Kelvin-Voigt approach which models the contact as a linear spring and a linear 

damper associated in parallel which have in consideration the energy loss during the 

impact. Although, this model contains some physical impossibilities, since, at the be-

ginning of the contact, the force is not continuous and, at the end of the restitution 

phase, the force is negative which implies the attraction of the bodies. 

The Hertz’s contact law was the basis for the development of the large set of im-

pact force models. However, this approach does not consider energy dissipation which 

plays an important role in contact impact events. In that sense, Hunt and Crossley 

(1975) proposed a more realistic contact force model that improves Hertz’s law with the 
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introduction of a nonlinear damping term which should be proportional to the power of 

the indentation. These contact force laws are known as viscoelastic, and can be distin-

guish from the elastic models by having different behavior during loading and unload-

ing phases, as it is represented in Figure 1.1. This methodology was an important break-

through in the impact of modelling, and for, a generic contact model, it can be expressed 

in the following form 

 N

n mF K     (1.2) 

where χ is the hysteresis damping factor,   represents the indentation velocity, m is an 

exponent that defines the behavior of the damping term, and the remaining parameters 

were already defined. The Hunt and Crossley (1975) model considers that n=m which 

means that the damping term is weighted by the elastic force. This characteristic was 

followed by several other contact laws (Herbert and McWhannell, 1977; Lee and Wang, 

1983; Lankarani and Nikravesh, 1990; Gonthier et al., 2004; Zhiying and Qishao, 2006; 

Flores et al., 2011a). The main difference between these approaches is the determination 

of the hysteresis damping factor. This parameter is usually calculated based on the ini-

tial impact velocity, the contact stiffness and the coefficient of restitution. The relation 

between the latter and the hyteresis damping factor is the major distinction among the 

contact models which can be divided in two main categories (Alves et al., 2015): (i) the 

energy based approaches, as it is the case of the methodologies presented by Hunt and 

Crossley (1975), Lankarani and Nikravesh (1990), and Flores et al. (2011a); and (ii) the 

direct inclusion of equation of motion, such as the approach of Helbert and McWhan-

nell (1977), Lee and Wang (1983), and Gonthier et al. (2004). 

  

Figure 1.1 - Differences between an elastic and a viscoelastic force models. 

Most of the abovementioned models are only valid for high coefficients of restitu-
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tion (larger than 0.7), since the hysteresis damping factor does not increase significantly 

with the decreasing of the coefficient of restitution. In turn, the approaches proposed by 

Gonthier et al. (2004) and Flores et al. (2011a) can be employed in the full range of the 

coefficient of restitution. 

Nearly all of the previous presented models were originally derived for contacts 

between spherical bodies, i.e., for ellipsoidal contact areas. However, several of these 

models are used in other types of geometries, such as in cylindrical contacts. Although, 

there are some contact laws specially developed to model the contact between two cyl-

inders (Radzimovsky, 1953; Goldsmith, 1960; Dubowsky and Freudenstein, 1971; 

ESDU-78035 Tribology Series, 1978; Johnson, 1985). Most of these approaches ex-

press the contact force as an implicit function of indentation, which, in the context of a 

forward dynamic analysis, it is necessary to apply an iterative method to evaluate the 

contact force. More detailed explanation on the cylinder contact force models can be 

found in the work of Pereira et al. (2011). 

The contact force models discussed earlier do not consider any permanent defor-

mation, ergo they are only accurate for low impact velocities since, in this case, the en-

ergy dissipation is related to internal damping or heat. Thus, these models are only valid 

if the impact velocity is lower than 10-5(E/ρ)1/2 and, therefore, negligible when com-

pared with the propagation speed of deformation waves across the bodies. For high im-

pact velocities, the main mechanism for energy dissipation is the plastic deformation of 

the surfaces. Goldschmidt (1960) proposed an alternative contact law based on Hertz’s 

approach that includes permanent indentation. Lankarani and Nikravesh (1994) also 

studied this methodology and the identification of the parameters. 

The selection of the contact law to evaluate the normal force has paramount im-

portance, since it highly affects the dynamic response of the system (Flores et al., 

2006a). Further description and explanation of the contact force models can be found in 

the review papers of Gilardi and Sharf (2002), Machado et al. (2012), and Alves et al. 

(2015). 

1.2.3 Frictional Contacts 

Friction is generally related to the resistance to the relative motion between differ-

ent surfaces in contact. There are different phenomena associated with friction, such as 

the dry friction and the lubricated friction. Friction is a highly complex phenomenon, 

which occurs in all mechanical systems. In some cases the presence of friction is desira-
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ble, e.g. while walking or braking a car. However, friction has in general provided re-

sistance and could have negative effects. 

Due to its importance, friction has been studied over the centuries. One of the first 

works appeared in the 16th century resulting from Leonardo da Vinci’s work, who stat-

ed that the friction force is proportional to normal load, opposes to the motion, and is 

independent of the contact area. Later, Amontons (1699) corroborated with da Vinci. 

Coulomb (1785) stated that friction was independent of velocity magnitude, and devel-

oped the first friction model. 

Coulomb friction law was the predecessor for all of the friction models. This ap-

proach is very simple and only needs one parameter to be implemented, the coefficient 

of friction. However, it fails on describing most of the frictional effects, and presents a 

discontinuity for the friction force at zero velocity since the force is dependent on the 

direction of the relative velocity. This discontinuity is an important issue for dynamic 

simulations because it introduces numerical instability in the system. 

Further researches on frictional behavior suggested the existence of higher friction 

forces at rest (Morin, 1833; Rabinowicz, 1951), which let to consider two different fric-

tion coefficients, one for static friction and another for kinetic friction. These differ-

ences on the friction force provoke the occurrence of the stick-slip phenomenon (Rab-

inowicz, 1956; Dieterich, 1978). Several researchers have experimentally verified the 

influence of this phenomenon on the mechanical systems response (Awrejcewicz and 

Olejnik, 2007; Chatelet et al., 2008; Berger and Mackin, 2014). 

Stribeck (1902) proposed a steady state curve for the friction force as a function of 

relative sliding velocity. The continuous decreasing of friction force from static to kinet-

ic friction is the main characteristic of the Stribeck effect. This dependence contradicts 

the Coulomb’s law which considers that friction force magnitude is not affected by 

changes of relative velocity. However, Coulomb friction is still widely used due to its 

simplicity, and, for that reason, several friction models were developed based on modi-

fications of Coulomb’s approach (Threlfall, 1978; Ambrósio, 2003; Andersson et al.; 

2007). Most of these models aim to eliminate the discontinuity at zero velocity. 

The primal friction models were very simple, although the complexity associated 

to frictional effects introduced the need to develop models more robust. These models 

seek to capture several phenomena, such as viscous friction, stick-slip, frictional lag, 

among others (Berger, 2002). 

A significant number of friction models can be found in the literature. In order to 
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perform a comparative analysis, they are usually classified. This division can be done 

by complexity or chronology, although the most utilized criterion consists on the sepa-

ration between static and dynamic models (Olsson et al., 1998; Iurian et al., 2005; An-

dersson et al., 2007; Marques et al., 2015). On the one hand, the static models usually 

describe the steady state behavior of the friction force, and are, in general, simpler. On 

the other hand, the dynamic models aim to describe friction more realistically due to the 

introduction of extra state variables. 

Since Coulomb friction model is not capable of describing most of friction charac-

teristics, other static models have been suggested. Several researchers proposed differ-

ent mathematical expressions to describe the Stribeck curve (Tustin, 1947; Hess and 

Soom, 1990; Popp and Stelter, 1990; Armstrong-Hélouvry, 1991; Makkar et al., 2005), 

although the exponential approximation presented by Bo and Pavelescu (1982) showed 

greater acceptance. Karnopp (1985) suggested an approach in which the friction force is 

evaluated as the relative velocity is null within a velocity range. This model eliminates 

the discontinuity at zero velocity, and it is capable to capture stick-slip motion. In order 

to overcome some numerical instability of Karnopp model, Leine et al. (1998) proposed 

the switch model. Armstrong-Hélouvry et al. (1994) presented a survey on friction 

models, and introduced the seven parameter model which is constituted by two state 

equations, one for sliding and another for sticking. More recently, Wojewoda et al. 

(2008) proposed a model which describes the hysteretic behavior of friction, and 

Awrejcewicz et al. (2008) modelled the friction force as a function of the external tan-

gential force for low velocities. 

The dynamic models emerged along with the need of capturing some friction 

characteristics that the static models were not able to describe. Dahl (1968, 1976) intro-

duced the first dynamic model based on the stress-strain curve to model the frictional 

behavior of bearing balls. Comparing to Coulomb friction law, both models do not cap-

ture stick-slip motion, but it was shown Dahl model presents better results (Pennestrì et 

al., 2007; Ksentini et al., 2012), since this model is capable to describe the pre-sliding 

displacement. 

Most of the dynamic friction models are based on the physical interaction between 

the surfaces asperities, such as the bristle model (Haessig and Friedland, 1991), the reset 

integrator (Haessig and Friedland, 1991), the LuGre (Canudas de Wit et al., 1995), the 

Elasto-Plastic (Dupont et al., 2000), among others (Swevers et al., 2000; Lampaert et 

al., 2003; Al-Bender et al., 2004; Gonthier et al., 2004; De Moerlooze et al., 2010; 
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Oleksowicz and Mruk, 2011; Liang et al., 2012). Generally, these approaches consider 

an extra state variable related to the bristles deflection. Haessig and Friedland (1991) 

proposed a bristle model that considers several simultaneous contacts between bristles 

which introduces a random behavior. The same authors had presented the reset integra-

tor model which models the friction force as a function of the average bristle deflection. 

Later, Canudas de Wit et al. (1995) developed the LuGre model based on the work of 

Dahl (1968) and Haessig and Friedland (1991). Swevers et al. (2000) introduced Leu-

ven model which consists on a modification of LuGre with the inclusion of pre-sliding 

hysteresis. The same authors (Lampaert et al., 2003; Al-Bender et al., 2005) proposed 

the generalized Maxwell slip (GMS) model which similarly to the bristle model consid-

ers more than one contacting element. Dupont et al (2000) presented the elasto-plastic 

friction model as an improvement of LuGre, since its capacity of capturing stiction is 

enhanced. Gonthier et al. (2004) also introduced a modification of LuGre model by con-

sidering dwell-time dependence. Liang et al. (2012) proposed a three-dimensional bris-

tle model which is an extension of the reset integrator. 

Bliman and Sorine (1995) presented a family of friction models based on Dahl 

model. Harnoy and Friedland (1994) studied the frictional behavior of lubricated journal 

bearings, and proposed a dynamic model to estimate the friction force taking into ac-

count the hydrodynamics effects. 

There are several studies providing the comparison between different friction 

models with the objective of deciding which is more suitable for a certain application. 

Hensen et al. (2003) showed that LuGre and switch model present a similar behavior. 

Hassan and Rogers (2005) investigated different friction models to simulate the contact 

between a preloaded tube and its support. Garcia (2008) compared several models on 

the simulation of a control valve. A two state elasto-plastic model was presented by 

Ruderman and Bertram (2013) and its behavior was compared with LuGre and GMS 

model. 

One of the most important reasons in the choice of the model to adopt, it is the 

easiness to establish the parameters to be used on the simulation and its quantity. Dahl 

(1977) proposed an experimental methodology to determine the parameters of his model 

(Dahl, 1968). The selection of the static and kinetic friction coefficients was addressed 

by Borsotto et al. (2009). The parameters for Karnopp friction model have been also 

studied (Liu et al., 2009; Bicakci et al., 2014). Wu et al. (2011) introduced an experi-

mental procedure to the identification of the parameters of LuGre model to simulate tire 
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friction. Piatkowski (2014a) studied parameters selection for Dahl and LuGre, and con-

cluded that a certain set of parameters is only valid for a normal external force range. 

The experimental validation of friction modelling is of paramount importance to 

ensure the proficiency to model the several phenomena associated with friction. Lampa-

ert et al. (2002) provide a comparison between a static model with Stribeck curve, Dahl, 

LuGre and Leuven, they showed that Leuven model has a better agreement with exper-

imental results. Tjahjowidodo et al. (2005) used a DC motor to provide a comparison 

between Coulomb, Stribeck static friction, LuGre and GMS approaches, and the results 

present a better fit for GMS model. They also saw that for high velocities the Coulomb 

and Stribeck models also provide good results. Liang et al. (2012) used two experi-

mental test rigs to validate the friction model proposed. More recently, Liu et al. (2015) 

performed a study where the behavior modelled by Coulomb, Stribeck, Dahl, LuGre 

and Elasto-Plastic approaches has been compared with the experimental measurements, 

and the results showed that LuGre presents a more similar behavior. 

1.3 Structure of the Dissertation 

This work aims to deliver a comprehensive study on the analysis of frictional con-

tacts in multibody systems dynamics. Bearing that in mind, the most important issues 

about multibody dynamics, contact problems and friction modelling have to be ad-

dressed. For that purpose, this dissertation was divided in five chapters that will be ex-

plained hereinafter. 

In Chapter One, an overview of the entire dissertation is provided, and a broad re-

view of literature is presented to recognize the scope of the current work.  

Chapter Two introduces the most basic concepts for the dynamic analysis of 

multibody systems, and presents the Newton-Euler formulation to build the equations of 

motion for constrained multibody systems. Several methodologies can be employed to 

solve the equations of motion, some of those techniques are described in this chapter as 

well as their aptitude to deal with the violation of constraints or redundant constraints. 

Finally, a spatial slider-crank mechanism is utilized to compare the accuracy and effi-

ciency of different methods in a forward dynamic analysis. 

Chapter Three focuses on the friction modelling and the associated issues. Since 

friction is a complex phenomenon, its main characteristics should be correctly de-

scribed, in that sense, stick-slip motion, viscous friction, frictional lag, pre-sliding dis-
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placement and break-away force are explained. The friction force models are divided in 

two groups, and the most relevant static and dynamic friction models are presented. In 

order to compare these models, the well-known example of a single degree of freedom 

mass-spring model is employed. 

In Chapter Four, some examples are performed to study the influence of different 

friction models in the dynamic response of a multibody system. The first situation con-

sists on the inclusion of friction to a kinematic translational joint. The second example 

deals with a spatial revolute joint with clearance which introduces impact problems. The 

third, and last, involves the introduction of friction modelling in the previous case. 

Finally, Chapter Five summarizes the most relevant conclusion of this work and 

presents some perspectives for future work. 

1.4 Contributions 

A general overview of spatial multibody systems formulation was introduced. The 

most relevant methods for solving the equations of motion were described and com-

pared through the dynamic analysis of a mechanism. 

This work provides a comprehensive review of the literature about friction model-

ling in multibody systems. In this sense, it is presented a detailed description of the most 

relevant friction force models. A fair comparison between the different friction models 

is delivered recurring, at first, to a simple system with one-dimensional motion and, 

then, to a spatial slider-crank mechanism. 

Furthermore, a new methodology to deal with spatial revolute joints with both ax-

ial and radial clearance has been proposed. The contact detection technique and the con-

tact forces evaluation were presented, and this model is used to study the influence of 

friction. 
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“Laziness is the mother of progress. 

If man had not been too lazy to walk, he would not have invented the wheel.” 

Mário Quintana 

2. SPATIAL MULTIBODY DYNAMICS 

Multibody system dynamics relies on the study of a set of different bodies which 

are interconnected by kinematic joints and undergone to the action of force elements. 

The multibody systems analysis dates back to Newton (1687), who derived the equa-

tions of motion for a free particle. However, with the increase in computational power 

during the past decades, several researchers have been devoted to this subject due to the 

wide range of applications on the science and engineering fields. They developed a new 

branch of computer programs, extended the number of existing formulations, and aug-

mented the range of influence of this field of knowledge. 

In this chapter, the main formulations for MBS will be discussed. The equations 

of motion for a constrained multibody system will be defined, and several methods to 

solve them will be considered. Then, a 3D slider-crank mechanism will be used as an 

illustrative example for the comparison of the presented methods. 

2.1 Concepts and Formulations of Multibody Systems 

The bodies that constitute the multibody system represent mechanical compo-

nents, and they generally can describe large translational and rotational displacements. 

These bodies can be considered either rigid either flexible. All bodies present a finite 

deformation when they are on duty, although, in some situations, that deformation can 

be negligible compared to the global motion of the system. In those cases, it is fair con-

sidering the assumption of a rigid body, which can be fully described by six coordinates 
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since it cannot change its shape. In turn, flexible bodies have an elastic structure, and 

beyond the same six coordinates, to be fully described, they need one extra coordinate 

per degree of freedom of deformation.  For a large number of applications, it is fair to 

assume a system with rigid bodies, which makes the problem simpler and faster to 

solve. In the scope of the present work, it will only be considered rigid bodies. 

The joints are responsible for connect different bodies in a multibody system. 

There are several types of joints, being spherical, revolute or translational joints, which 

are, in practice, represented by mechanical components such as bearings, sliders, 

wheels, among others. The joints can be treated as perfect or imperfect joints. For one 

hand, the perfect or ideal joints are defined by kinematic constraint equations which 

introduce restrictions on the kinematical degrees of freedom. For the other hand, imper-

fect joints take into account some physical phenomena, such as clearance, friction or 

lubrication, which produces an analysis with more similarities with its real behavior. In 

this case, the joints are, in general, defined by force constraints instead of kinematic 

constraints. 

Taking into account force elements is what distinguish a dynamic analysis from a 

kinematic. There are several types of force elements which can be classified according 

to their source, such as contact-impact forces, gravitational forces, spring-damper-

actuator forces, among others. 

Bodies, joints and forces are the three main elements of a multibody system, as it 

is presented in the abstract representation in Figure 2.1. 

 

Figure 2.1 - Abstract representation of a multibody system. 
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One of first steps in the study of a multibody system is the determination of the 

number of degrees of freedom (DoF), which is the minimum number of variables neces-

sary to fully describe the system configuration. If the constraint relations are not taking 

into account, each body has six degrees of freedom. However, the introduction of kine-

matic joint will restrict number of DoF, which will depend on the type of the joint. For a 

general multibody system, the number of DoF can be calculated by 

 
DoF 6 bn n m   (2.1) 

where nb denotes the number of bodies that constitute the system and m is number of 

independent constraints. When the number of DoF is null or negative, the system is a 

structure. 

Regardless of the used formulation, the equations of motion express the relation 

between motion and forces. Hence, they can be solved for each of them. Using the forc-

es as an input information, it is possible perform a direct analysis of the system in order 

to calculate its motion. Nevertheless, if it is known the motion of the system, the force 

elements acting on the bodies can be determined solving equations of motion, called 

inverse analysis. In the scope of this work, only direct dynamic analysis will be per-

formed. 

Before performing a dynamic analysis of a multibody system, it is of paramount 

importance to choose the formulation to be implemented, which is deeply associated 

with the type of coordinates adopted. 

A straightforward approach is considering a system as a group of connected free 

bodies using Newton-Euler method (Nikravesh, 1988). There are introduced three equa-

tions for translational accelerations and three equations for the rotational accelerations. 

The kinematic joints are included by adding an additional set of algebraic constraint 

equations, which is used along the Lagrange multipliers technique to find the reaction 

forces. This method will have a more detailed explanation later on this chapter. This 

approach is based on body-coordinate formulation (absolute coordinates), and it is easy 

to implement. However, it involves the construction of a large set of equations which 

leads to computational inefficiency. This drawback makes it more suitable for systems 

with a small number of bodies. 

Alternatively, it can be used a point-coordinate formulation (natural coordinates) 

which considers each body as collection of points and vector. In this case, most of the 

constraints do not arise from the kinematic joints, but rather from the bodies. As the 
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previous formulation, point-coordinate formulation also yields a large set of equations 

(Nikravesh, 2004). 

Beyond the aforementioned formulations, there is the joint-coordinate formulation 

(relative coordinates), which uses the Lagrange method based on the principle of virtual 

power (Shabana, 1989). This formulation is not straightforward, yet it involves a small-

er number of equations that is related to the number of degrees of freedom which makes 

it much efficient. To understand this method, let introduce the concept of the Lagrangi-

an of mechanism which is the difference between its kinetic and potential energy (L=T-

V). The Hamilton’s principle states that the motion of mechanism has to lead that the 

integral of the Lagrangian over time is minimal. With this principle, and some mathe-

matical manipulation, it can be written 

 d L L

dt

  
  

  
g

q q
 (2.2) 

where L is the Lagrangian, q is the vector of generalized coordinates, and g denotes the 

vector of generalized forces acting on the system. Eq. (2.2) is commonly referred as the 

Lagrange’s equation. Kane developed equations of motion using Lagrange’s equation 

combined with d’Alembert’s principle2, also known as Kane’s method (Kane and Lev-

inson, 1985). 

Basically, there are three main methodologies to derive the equations of motion, 

namely, Newton-Euler’s method, Lagrange’s method, and Kane’s method. 

The body-coordinate formulation along with the Newton-Euler equations was 

adopted for this work. The reason for this choice concerns its simplicity, and the analy-

sis of systems with a small number of bodies. 

2.2 Equations of Motion for Constrained Systems 

The configuration of a multibody system can be described by a set n of variables 

called generalized coordinates, which are gathered in a vector  1 2, , ,
T

nq q qq . There 

are necessary six coordinates to fully describe the position and orientation of each body 

in space, as it has six degrees of freedom. They can be divided into three coordinates to 

specify the body’s position, and three extra coordinates to establish its angular orienta-

                                                 

2 The d’Alembert’s principle states that the sum of the forces applied on a system and its inertial 

forces is zero. 
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tion. Nevertheless, in this work, the angular orientation of a body is defined using Euler 

parameters, which uses four coordinates. This is an alternative formulation for angular 

representation based on Euler’s theorem on finite rotation, which states that a rotation in 

the three-dimensional space can always be described by a rotation along a certain axis 

over a certain angle. 

 

Figure 2.2 - Representation of the Euler parameters. 

Normally, the angular orientation can be described by a technique as Euler angles 

or Bryant angles, however, these formulations present singularities for some configura-

tions of the bodies. Hence, the vector of generalized coordinates for a body i can be de-

fined as follows 

 
i

i

i

 
  
 

r
q

p
 (2.3) 

where ri denotes the vector of the translational coordinates of body i in global coordi-

nates and pi is the vector of Euler parameters for body i. The vector ri is defined in Car-

tesian coordinates 

 
i

i i

i

x

y

z

 
 

  
 
 

r  (2.4) 

The Euler parameters are fully defined by an angle   and a unit vector ue which 

represents the unique axis that if the body is rotated about an angle   its reference 

frame would be parallel to the global reference frame, as it is shown in Figure 2.2. Thus, 

the vector of Euler parameters is given by 

 
 0 1 2 3 ecos sin

2 2

T
T

e e e e
  

   
 

p u  (2.5) 

Therefore, the number of generalized coordinates for each body becomes seven. 
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For sake of simplicity, the generalized velocities and generalized accelerations are not 

defined as the time derivative of Eq. (2.3). Thus, applying the concept of angular veloci-

ty (Nikravesh, 1988), the velocity vector can be written as 

 
i

i

i

 
  
 

r
v

ω
 (2.6) 

where ωi denotes the vector angular velocities of body i, and is defined as 

 
x

i y

z







 
 

  
 
 

ω  (2.7) 

Hence, the vector of the generalized accelerations can be obtained yielding the 

time derivative of Eq. (2.6) and written as follows 

 
i

i

i

 
  
 

r
v

ω
 (2.8) 

Since the velocities vector does not yield the time of Eq. (2.3), it must be defined 

the transformation between the time derivative of the Euler parameters and the angular 

velocities which can be expressed as 

 2ω = Gp  (2.9) 

where the matrix G is defined as 

 
1 0 3 2

2 3 0 1

3 2 1 0

e e e e

e e e e

e e e e

  
 

  
 
   

G  (2.10) 

The inverse transformation is given by 

 1

2

T
p = G ω  (2.11) 

The generalized coordinates of the system are usually divided into the independ-

ent (can vary arbitrarily) and dependent (have to satisfy the equations of constraints) 

coordinates. The set of constraint equations is denoted by Φ, and represents the kine-

matic relations between different coordinates of the system. 

Each kinematic constraint introduces a different number of equations, this number 

will depend on the amount of degrees of freedom that are restricted, i.e., a revolute joint 

involves five equations while a spherical joint only implies three equations. 

Beyond the number of independent constraints, the kinematic constraints can have 

different classifications. They can be derived from geometric constraints and, in that 
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case, be integrable into a form involving only coordinate, and, in that sense, called ho-

lonomic constraints. Contrarily, nonholonomic constraints cannot be integrable. For 

instance, Figure 2.3 shows a wheel rolling over a plane in which the constraints set that 

the relative velocity in the contact point is null, since it is a constraint at velocity level, 

it is not possible to be written in coordinate form. The constraints can also be distin-

guished for being or not an explicit function of time, called rheonomic or scleronomic 

constraints, respectively. 

  

(a) (b) 

Figure 2.3 - (a) Holonomic constraint (revolute joint); (b) Nonholonomic constraint (wheel rolling over a 

plane). 

In the scope of this work, it will be treated only holonomic and scleronomic con-

straints. Thus, the kinematic constraints considered are geometrical restriction, and do 

not depend explicitly of time. 

 

Figure 2.4 - Four-bar mechanism with redundant constraints. 

As it was aforementioned, the number of equations associated with a kinematic 

joint is equal to the number of degrees of freedom restricted by the same joint. Typical-

ly, a constrained multibody system with m constraint equations, and nb bodies, should 


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have 6 bn m  DoF as it is expressed in Eq. (2.1). However, this hypothesis is not al-

ways true due to the possibility of having a system with redundant constraints. This 

problem appears when some of the constraint equations are not independent, which 

means there is more than one equation imposing the same constraint. To better under-

stand this issue, it should be considered the example from Fig. 2.4 which shows a planar 

four-bar linkage with three moving bodies and four revolute joints. Each revolute joint 

involves five constraint equations. Thus, according to the previous expression to calcu-

late the degrees of freedom, the system should have -2 DoF (nDoF= 6 4 4 5 6 2      ). 

Nevertheless, it is well-known that this mechanism has one DoF which denotes the ex-

istence of three redundant constraints. It will be shown later on this chapter the conse-

quences of having redundant constraints. 

Hereupon, considering a constrained multibody system, the set of kinematic con-

straint equations can be written in the following form 

   Φ Φ q 0  (2.12) 

where q is the vector of the generalized coordinates of the whole system. These equa-

tions can also be a function of time or the generalized velocities of the bodies, although 

this work will only focus on scleronomic and holonomic constraints. 

Yielding the first time derivative of Eq. (2.12), it is possible to obtain the equa-

tions of constraints at the velocity level as follows 

  Φ Dv 0  (2.13) 

where D denotes the Jacobian matrix of the constraint equations in order to the general-

ized coordinates, and v is the vector of generalized velocities which is described in Eq. 

(2.6). It must be highlighted that the right-hand side of Eq. (2.13) is only null for sclero-

nomic constraints, due to inexistence of time variable explicitly. 

The Jacobian matrix generally has dimensions k×n where k is the total number of 

constraints, however if the system has no redundant constraints k = m, and the matrix 

can be written as 
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 
 
 
   
    

D  (2.14) 
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Proceeding with the second time derivative of Eq. (2.12), the acceleration con-

straints can be written as 

   Φ Dv Dv 0  (2.15) 

where v  is the vector of generalized accelerations that is defined by Eq. (2.8). The pre-

vious expression is commonly rewritten in the following form 

 Dv γ  (2.16) 

in which 

  γ Dv  (2.17) 

where γ  is the right-hand side of the acceleration kinematic equations. Thus, Eq. (2.16) 

shows that it is possible to write these constraints as a system of linear equations. 

A kinematic analysis of a multibody system can be performed recurring to the 

previous equations. This analysis involves studying the motion of the system without 

considering the force elements acting on it. For that purpose, it is normally prescribed 

the time history of position of one or more bodies which are the driving elements, and, 

in that sense, overcome the existence of degrees of freedom. Then, the time histories of 

positions, velocities and accelerations of the remaining bodies can be determine by solv-

ing Eq. (2.12), Eq. (2.13) and Eq. (2.16), respectively. 

When the system experiences a finite displacement caused by the change of posi-

tion of driving elements, it is necessary to find the new set of generalized coordinates q 

that satisfies the Eq. (2.12). For this case, it is normally implemented a nonlinear solver 

as the Newton-Raphson method which convergence relies in a good initial approxima-

tion (García de Jalón and Bayo, 1994). To find the velocities and accelerations, Eq. 

(2.13) and Eq. (2.16) can be solved using a standard method to solve linear algebraic 

equation. For a large multibody system, the Jacobian matrix can have a sparse structure, 

bearing that in mind, it can be used a method to deal with this type of matrices. When 

the multibody system contains redundant constraints, the problem becomes more com-

plex, and the user has to implement additional techniques to solve kinematic equations. 

In the present work, several types of kinematic constraints will be considered for 

computational simulation, such as revolute joints, spherical joints, universal joints or 

translational joints. The derivation of the kinematic constraint equations, as well as the 

Jacobian matrix and the right-hand side of the acceleration constraint equations is not in 

the scope of this text. Nevertheless, the formulation for these types of joints can be 

found in the literature (Nikravesh, 1988). 
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As it was aforementioned, the formulation used in this work to compute the equa-

tions of motion is the Newton-Euler’s approach. This formulation is straightforward in 

term of assembling the equations of motion. 

This approach considers the Newton’s first law of motion to describe the transla-

tional motion of each body as a free particle (Newton, 1687) and can be written as 

 
bm r f  (2.18) 

where mb denotes the mass of the body, r  denotes the acceleration vector of the center 

of mass, and f represents the sum of all forces acting on the body. 

The Euler’s rotation equations (Euler, 1776) are used to describe the rotational 

motion of a rigid body as it follows 

 Jω+ωJω = n  (2.19) 

where J is the global inertia tensor, ω denotes the vector of global angular velocities, n 

is the sum of moments acting on the body, the second term on the left hand-side repre-

sents the gyroscopic moments, and ω  denotes the skew-symmetric matrix associated 

with the vector ω and it is written as 

 0

0

0

z y

z x

y x

 

 

 

 
 

  
  

ω  (2.20) 

Gathering the Eq. (2.18) and Eq. (2.19), the translational and rotational equations 

of motion, it results the Newton-Euler equations of motion for an unconstrained rigid 

body which can be expressed as 

 
bm     

    
     

I 0 r f

0 J ω n ωJω
 (2.21) 

or, alternatively, in a compact form, 

 
i i iM v g  (2.22) 

where 
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 (2.23) 

To construct the equations of motion for a multibody system with unconstrained 

bodies, it should be assembled Eq. (2.22) for each different body, and it can be written 

in the following form 

 Mv g  (2.24) 
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where 
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 (2.25) 

For constrained multibody systems, it has to be considered the reaction forces be-

tween the connected bodies that each kinematic joint introduces. Hence, Eq. (2.24) 

should be rewritten as  

 (c) Mv g g  (2.26) 

in which g(c) denotes the sum of all reaction forces. Thus, Eq. (2.12) and Eq. (2.26) con-

stitute the equations of motion for a constrained MBS. Moreover, g(c) can be written as 

function of the constraint equations. However, Eq. (2.12) is expressed in terms of the 

generalized coordinates, q, and Eq. (2.26) is expressed in terms of the generalized ve-

locities, v. For that purpose, it should be considered a vector of reactions forces which is 

consistent with the generalized coordinates denoted as g(*). 

Considering again m independent constraint equations which can be expressed as 

   Φ Φ q 0  (2.27) 

Assuming frictionless joints, there are no dissipative forces acting as reaction 

forces which guarantees that the work done by the constraint forces in a virtual dis-

placement δq is always zero as it follows 

 (*) δ 0T g q  (2.28) 

The constraints equations for the virtual displacement can be approximated by 

Taylor series expansion of Eq. (2.27) about q, 

    δ δ   Φ q q Φ q D q  (2.29) 

Since the constraints should be fulfilled for a system with a virtual displacement, 

it is considered 

  δ Φ q q 0  (2.30) 

Bearing that in mind, and neglecting the higher-order terms, the following equa-

tion can be expressed 

 δ D q 0  (2.31) 

In order to find the relation between the constraint equations and the constrained 

reaction forces, the vector of n the generalized coordinates q should be divided into a set 
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of m dependent coordinates u, and a set of n-m independent coordinates w, as it follows 

 T
T T   q u w  (2.32) 

In the same way, the vector of virtual displacements, the Jacobian matrix, and the 

vector of reaction forces should be partitioned in the following form 

 
δ δ δ

T
T T   q u w ,     u wD D D ,   (*) (*) (*)

T
T T   u wg g g  (2.33) 

Hence, considering these divisions, Eq. (2.28) can be rewritten as 

 (*) (*)δ δ 0T T u wg u g w  (2.34) 

or, alternatively, 

 (*) (*)δ δT T u wg u g w  (2.35) 

Equivalently, Eq. (2.31) can also be modified introducing the previous partitions 

which gives 

 δ δ u wD u D w  (2.36) 

Gathering Eq. (2.35) and Eq. (2.36), it results the following expression 

 (*) (*)

δ δ
T T   

    
   

u w

u w

g g
u w

D D
 (2.37) 

The matrix of the left hand side of Eq. (2.37) is a (m+1)×m matrix. Since the m 

constraints are independent, Du is an m×m nonsingular matrix. Thus, the first row of the 

(m+1)×m matrix can be rewritten as a linear combination of the others 

 (*) Tu ug D λ  (2.38) 

where λ is a vector of multipliers mostly called Lagrange multipliers. Eq. (2.38) can be 

introduced into Eq. (2.35) yielding 

 (*)δ δT T u wλ D u g w  (2.39) 

Moreover, Eq. (2.36) is employed into Eq. (2.39) which results in 

 (*)δ δT T  w wλ D w g w  (2.40) 

Vector δw is an arbitrary independent vector, since it contains independent com-

ponents of virtual displacements. To assure the consistency of the constraints for virtual 

displacements, Eq. (2.36) should be solved for δu which is dependent of δw. Hence, 

 (*)T Tw wλ D g  (2.41) 

which can be written in the following form 

 (*) Tw wg D λ  (2.42) 
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Assembling Eq. (2.38) and Eq. (2.42) yields 

 (*) Tg D λ  (2.43) 

Thus, it was shown the relation between the joint reaction forces and the con-

straint equations. Finally, the dynamic equations of motion for constrained multibody 

systems can be written as 

 T Mv D λ g  (2.44) 

The second term in Eq. (2.44) represents the vector of the sum of joints reaction 

forces consistent with the global coordinate system. Although, the Lagrange multipliers 

vector has m elements wherein each of them represent the reaction force of each differ-

ent constraint. 

In the following section, different methodologies of resolution of the equations of 

motion will be discussed. 

2.3 Methods to Solve Equations of Motion 

It was seen in the previous section how to use Newton-Euler formulation to obtain 

the dynamic equations of motion. In this sense, Eq. (2.44) was derived. Although, it is 

not possible to solve the motion of the system merely with this equation, since it repre-

sents n independent equations and has n+m unknowns to be determined (n generalized 

accelerations and m Lagrange multipliers). For this purpose, it should be also consid-

ered the second derivative of constraint equations which is given as 

 Dv γ  (2.45) 

Thus, Eq. (2.44) and Eq. (2.45) can be gathered and create a system of differential 

algebraic equations which can be solved for the accelerations vector, v , and the La-

grange multipliers vector, λ , and can be expressed as it follows 

 T     
    

    

v gM D

λ γD 0
 (2.46) 

The motion of the multibody system is determined recurring to the time integra-

tion process. In each step, Eq. (2.46) is solved and, the obtained accelerations vector is 

integrated together with the velocities vector in order to get the velocities and positions 

for the new time step. As the resolution of the equations of motion for multibody sys-

tems is an initial value problem, it becomes necessary to provide the initial positions 

and velocities of the system. The quality of the initial conditions has direct influence on 
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the accuracy of the dynamic simulation. 

There are several different methods to solve the equations of motion. The most 

straightforward approach is to apply a method to solve linear algebraic equations to 

solve Eq. (2.46). Due to the existence of null elements in the main matrix and the possi-

bility of ill-conditioned matrices, it is preferred methods using partial and full pivoting. 

However, the main matrix of Eq. (2.46) can be inverted analytically. To do so, it 

is assumed that the system does not contain any body with null mass and inertia so that 

the inverse of mass matrix M exists and, Eq. (2.44) can be rearranged to put accelera-

tions vector in evidence as it follows 

  1 T v M g D λ  (2.47) 

Thus, introducing Eq. (2.47) into Eq. (2.45) and, solving for the Lagrange multi-

pliers, it results in 

    
1 1

1 1 1T T
 

   λ DM D DM g DM D γ  (2.48) 

Since Eq. (2.48) represents an explicit expression to calculate the Lagrange multi-

pliers, it can be introduced into Eq. (2.47) and, the accelerations vector is given explicit-

ly by 
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Hence, Eq. (2.48) and Eq. (2.49) can be gathered and rewritten in a compact form 
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 (2.50) 

As it was aforementioned, the accelerations vector is integrated to obtain the posi-

tions and velocities for the next step. This method to solve the equations of motion is 

frequently called standard Lagrange multipliers method. The flowchart that represents 

the algorithm of resolution of the equations of motion is presented in Figure 2.5. To 

start a dynamic analysis of a multibody system, the initial conditions should be properly 

defined. In order to not start the analysis with constraints violation, the initial positions 

and velocities vectors, q0 and v0, respectively, cannot be defined arbitrarily. Bearing that 

in mind, the independent coordinates and velocities should be defined in first place and, 

the remaining coordinates and velocities must fulfill Eq. (2.12) and Eq. (2.13), respec-

tively. After introducing initial conditions, based on the system properties, it must be 

constructed the global mass matrix M, the Jacobian matrix D, the right-hand side of 
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accelerations constraints γ, and the external generalized forces vector g. The next step is 

to solve Eq. (2.46), which can be performed with the methodology previously present-

ed. Before proceeding to the integration process, it is necessary to create an auxiliary 

vector where the time derivative of Eq. (2.3) and the accelerations vector, q  and v , 

respectively, are gathered. To do so, Eq. (2.11) must be used to calculate the time deriv-

ative of the Euler parameters. The positions and velocities for the time step t+Δt are 

obtained through numerical integration of the auxiliary vector. This procedure must be 

repeated until reaching the final time of simulation. 

 

Figure 2.5 - Flowchart of dynamic analysis of multibody systems (Flores, 2012). 

The standard Lagrange multipliers method is the most simple and straightforward 

approach, however, it does not include explicitly in its formulation the equations for the 

positions and velocities kinematic constraints which are given by Eq. (2.12) and Eq. 

(2.13), respectively. Thus, for long simulations, the constraint equations tend to be vio-

lated due to the errors introduced by the integration process and by the inaccuracy of the 

initial conditions. 

In order to solve this problem, several techniques have been proposed to stabilize 

or even eliminate the constraints violation. Some of the most relevant methods will be 

presented throughout this section. 

Baumgarte (1972) introduced a method in which the errors in the positions and 
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velocities equations are kept under control. For that purpose, this approach suggests that 

Eq. (2.45) should be replaced by the following expression 

 22   Φ Φ Φ 0  (2.51) 

This approach allows the violation of the constraints before their correction. Con-

trary to the standard Langrange multipliers method, Baumgarte method is a closed-loop 

system which use the terms 2Φ  and 
2 Φ  as control terms to damp the accelerations 

constraints. In an open-loop system, if any perturbation occurs, Φ  and Φ  do not con-

verge to zero which makes the system unstable. Thus, with this technique the equations 

of motion can be replaced for the following system 

 

22

T

 

     
    

     

v gM D

λ γ Φ ΦD 0
 (2.52) 

The choice of the parameters α and β are of paramount importance for the stability 

of the method. The selection of positive constants normally ensures stability, however, 

depending on the parameters, the convergence of the constraints violation can be 

achieved with or without oscillations, and faster or slower. In order to choose correctly 

the parameters, it should be performed several numerical experiments, since this is an 

empirical process that most of times involves a trial and error procedure. Some tech-

niques for the selection of the parameters α and β have been studied and parametric 

analyses of their influence in the stability of constraints violation were presented (Flores 

et al., 2011b). 

Bayo, García de Jalón and Serna (1988) proposed the penalty method in which the 

accelerations, velocities and positions are used in the equations of motion as a penalty 

spring-damper-mass system. This approach considers that constraints reaction forces are 

replaced by forces proportional to violations at accelerations, velocities and positions as 

 
c c cm d k  λ Φ Φ Φ  (2.53) 

where mc, dc and kc are the mass, damping and stiffness coefficients. The previous equa-

tion can be rewritten as 

  22    λ Φ Φ Φ  (2.54) 

where 

 
cm  ,   2c

c

d

m
    and   

2c

c

k

m
  (2.55) 

For a system of constrained bodies the equations of motion are given by Eq. 
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(2.44), which is represented by the following equality 

 T Mv D λ g  (2.56) 

Introducing Eq. (2.54) into Eq. (2.56) yields 

  22T     Mv D Φ Φ Φ g  (2.57) 

Considering Eq. (2.15) and Eq. (2.17), and performing some algebraic manipula-

tion, Eq. (2.57) turns into 

    22T T        M D D v g D γ Φ Φ  (2.58) 

This equation should be solved in order to the generalized accelerations. Contrary 

to the previous presented approaches, the penalty method needs to solve a small number 

of equation, and can easily solve problems with redundant constraints and kinematic 

singularities. In order to use this method, three parameters should be defined, the penal-

ty factor, α, the damping ratio, μ, and the natural frequency of the penalty system, ω. 

For high penalty factors, this technique returns good results, it was seen that a factor 107 

times the largest term of the mass matrix is a suitable choice (García de Jalón and Bayo, 

1994). The coefficients μ and ω have a similar stabilization behavior to the coefficients 

α and β of the Baumgarte method presented above. 

In the same work, Bayo, García de Jalón and Serna (1988) presented the aug-

mented Lagrangian formulation whose main objective is overcome some drawbacks of 

the penalty method. The penalty formulation presents convergence for large penalty 

values, although that may lead to ill conditioning problems. It also needs a certain level 

of violation of constraints to ensure sufficiently large reaction forces to stabilize the 

constraints which indicates that the violation of the constraints is not completely van-

ished. 

The augmented Lagrangian formulation consists in a combination of the penalty 

formulation and the Lagrange multipliers technique which results in a iterative proce-

dure of solving the equations of motion. In this approach the penalty terms of Eq. (2.54) 

should be added to the Eq. (2.44) instead of replacing the original reaction forces. Thus, 

the equations of motion can be written in the following form 

  * 22T T      Mv D λ D Φ Φ Φ g  (2.59) 

where λ* is a vector of Lagrange multipliers which plays a role of corrective term. In 

order to make Eq. (2.59) having a similar configuration to Eq. (2.44), it can be written 

  2

1 2i i       λ λ Φ Φ Φ  (2.60) 
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in which i represents the iteration number. Thus, Eq. (2.59) results in 

 T

i i Mv D λ g  (2.61) 

For the first step (i=0), it is considered an unconstrained multibody system, i.e., 

λ0=0, in the forward steps, Eq. (2.60) should be used and the result may be introduced 

into Eq. (2.61) to solve for the generalized accelerations. For a given iteration step, if 

λi+1=λi, the constraint conditions are satisfied. However, the Eq. (2.60) cannot be solved 

directly, since the acceleration constraints depend on the generalized accelerations of 

the iteration i+1.Introducing Eq. (2.15) and Eq. (2.17) into Eq. (2.60) and replacing that 

into Eq. (2.61) is obtained the final expression for the iterative procedure 

    2

1 2T T

i i        M D D v Mv D γ Φ Φ  (2.62) 

For the first iteration, the unconstrained system can be considered and the acceler-

ations are given by solving this equation 

 
0 Mv g  (2.63) 

To stop the iterative procedure, the following criterion is widely used 

 
1i i   v v  (2.64) 

where ε is a specified tolerance. This method also allows dealing with redundant con-

straints and singular configurations. If the parameters for each method are equal, it is 

possible to conclude from the analysis of the presented equations that the penalty meth-

od will return the same results as the augmented Lagrangian formulation when just one 

iteration is performed. 

The coordinate partitioning method (Wehage and Haug, 1982) eliminates the er-

rors from the violation of the constraints at position and velocity levels. This approach 

consists in dividing the coordinates of the multibody system into two sets, independent 

and dependent coordinates. The equations of motion should be solved in order to deter-

mine the generalized accelerations of the system, for that it can be applied the standard 

Lagrange multipliers method presented earlier. Then, the independent accelerations and 

velocities are integrated in order to obtain the independent velocities and positions for 

the new step. The dependent quantities are obtained from the resolution of constraint 

equations as it will be shown. 

The division of the coordinates can be performed manually by the user, or auto-

matically with a matrix factorization technique, such as Gaussian elimination with full 

pivoting. Although, the automatic selection presents the inconvenient of changing the 



2. SPATIAL MULTIBODY DYNAMICS 35 

independent coordinates over the time due to motion of the mechanism. Considering a 

multibody system with k constraints and n coordinates, the Jacobian matrix will have 

k⨉n dimension, and it can be factorized in the following form 

 m n m

m

k m



 
    

A B
D

S T

 (2.65) 

where m is the number of independent constraints which means the Jacobian matrix has 

k-m redundant rows that remain in the bottom of the factorized matrix. In the top rows, 

the independent constraints are partitioned into the matrix A which is a non-singular 

m×m matrix related with the dependent coordinates, and matrix B which is a submatrix 

m×(n-m) associated with the independent coordinates. 

Considering that the multibody system has no redundant constraints, the Jacobian 

matrix will only include submatrices A and B, and it can be represented in the same 

form of Eq. (2.33), as 

   u wD D D  (2.66) 

Similarly to the Jacobian matrix, the positions vector can be also divided as it fol-

lows  

 T
T T   q u w  (2.67) 

The generalized velocities and accelerations have to be partitioned, yielding the 

following vectors 

 T
T T   u wv v v  and 

T
T T   u wv v v  (2.68) 

After dividing the coordinates, Eq. (2.46) should be solved in order to find the ac-

celerations vector, v . Resembling to the standard method, this technique needs to use 

an auxiliary vector for the integration process. However in this case the vector only con-

tains independent quantities, and it can expressed as 

 T
T T   w wy v v  (2.69) 

which is integrated and returns the following vector 

 T
T T   wy w v  (2.70) 

The dependent positions and velocities are determined using the respective con-

straints equations. The positions constraint equations are solved in order to calculate the 

dependent positions, Eq. (2.12) can be rewritten as 
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  , Φ u w 0  (2.71) 

Since Eq. (2.71) is generally a nonlinear set of equations, it must be applied a non-

linear solver, such as Newton-Raphson method. To ensure the convergence of the 

method, a suitable approximation for the dependent positions is needed to start the itera-

tive procedure. It was found a reliable estimation using information of the previous step, 

which is 

 1 1 1 20.5i i i it t      u uu u v v  (2.72) 

The dependent velocities are obtained introducing Eq. (2.66) and Eq. (2.68) into 

the velocities constraint equations, Eq. (2.13), which results in 

  u u w wD v D v 0  (2.73) 

Thus, Eq. (2.73) can be rewritten as  

  u u w wD v D v  (2.74) 

Since Du is a nonsingular matrix, the dependent velocities are determined solving 

the previous equation using a method to solve linear algebraic equations. 

A method based on the projection matrix R (García de Jalón and Bayo, 1994) is 

an alternative approach to solve the equations of motion of a constrained multibody 

system. From the analysis of Eq. (2.13), it can be concluded that the vector of the gen-

eralized velocities v belongs to the nullspace3 of the Jacobian matrix D. Since Eq. (2.13) 

is a linear system, the nullspace of Jacobian matrix is the subspace of allowable motions 

(García de Jalón and Bayo, 1994). This subspace considers every velocity vectors that 

are compatible to the constraint equations. The dimension of the subspace is equal to the 

number of DoF of the multibody system. 

The generalized velocities of the system are generally described by the vector v 

with n components. The objective of this approach is to define the velocities with a 

lower number of variables, in that sense they can be represented by the vector vw which 

contains only the independent velocities. 

Since the nullspace of D has dimension equal to the number of DoF, there are n-m 

independent vectors ri (i=1,2,…n-m) that constitute the nullspace basis. Any arbitrary 

vector of generalized velocities that fulfill the constraints equations is a linear combina-

tion of ri as follows 

                                                 

3 The nullspace of matrix A is the set of all vectors x that satisfy the equation Ax=0. 
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 1 2

,1 ,2 ,n m

n mv v v

   w w wv r r r  (2.75) 

Gathering the vectors ri in a matrix R n×(n-m), the Eq. (2.75) can be rewritten in 

the following form 

  wv Rv  (2.76) 

Matrix R is responsible for the transformation from independent velocities to the 

vector of generalized velocities of the multibody system. Since vectors ri are the com-

ponents of the nullspace of the Jacobian matrix, it can be written 

 i Dr 0     1,2, ,i n m   (2.77) 

hence, 

 DR 0  (2.78) 

Bearing in mind that the Jacobian matrix is position dependent, it can be conclud-

ed that in order to have Eq. (2.78) verified, matrix R must also depend on the positions 

of system. 

So far, this technique only affects the kinematics of the system. In order to be 

used to solve the equations of motion, Eq. (2.44) should be pre-multiplied by the trans-

posed of matrix R, as it follows 

 T T T T R Mv R D λ R g  (2.79) 

Thus, introducing Eq. (2.78) into Eq. (2.79), it can be reduced to 

 T TR Mv R g  (2.80) 

Gathering Eq. (2.16) and Eq. (2.80), the following system is obtained 

 

T T

   
   

   

D γ
v

R M R g
 (2.80) 

This system of equations can be easily solved for the generalized accelerations, 

since the leading matrix is nonsingular n×n. Then, the process is similar to the standard 

Lagrange multipliers method, as it is constructed an auxiliary vector to the integration 

process. This approach also does not include explicitly the constraint equations for posi-

tions and velocities. In that sense, for long simulations, it is necessary to apply a method 

for stabilization or elimination of the constraints violation. 

Arabyan and Wu (1998) improved a method to solve equations of motion which 

was originally used for systems of constrained particles (Kalaba and Udwadia, 1993). 

This method is based on the construction of a generalized inverse, and it is suitable to 

handle multibody systems with redundant constraints. 
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The equations of motion of an unconstrained multibody system are given by Eq. 

(2.24), which can be solved for the generalized accelerations, yielding 

 1

unc

v M g  (2.81) 

Considering Eq. (2.81), and performing some algebraic manipulation, Eq. (2.49) 

can be rewritten as 

    
1

1 1

unc unc

T T


   v v M D DM D γ Dv  (2.82) 

Since M is a diagonal matrix, its inverse can be decomposed in the following 

form M-1=M-1/2M-1/2, where M1/2 is also a diagonal matrix in which the coefficients are 

the square root of the coefficients of the mass matrix M. Thus, Eq. (2.82) is expressed 

as 

     
1

1/2 1/2 1/2 1/2

unc unc

T T


     v v M M D DM M D γ Dv  (2.83) 

It is defined an auxiliary matrix C=DM-1/2 which is introduced into Eq. (2.83), 

yielding 

    
1

1/2

unc unc

T T


  v v M C CC γ Dv  (2.84) 

The key point of this method is using the properties of Moore-Penrose generalized 

inverse for matrix C. Thus, it will be denoted by C+, and holds the following properties 

  CC C C  and 
  C CC C  (2.85) 

where C+C and CC+ are symmetric matrices. Hence, the following equality can be de-

rived 

      
1 T T

T T T


         C CC C C C C C C C CC C  (2.86) 

Thus, Eq. (2.86) should be used to simplify Eq. (2.84) which results in 

  1/2

unc unc

   v v M C γ Dv  (2.87) 

This approach consists in solving Eq. (2.87) in order to obtain the generalized ac-

celerations. Since all the bodies of the system have non-null masses and inertias, the 

solution of this equation always exists even when the leading matrix of Eq. (2.46) is not 

invertible. This means that Eq. (2.87) can be solved in the presence of redundant con-

straints or constraints that vanish instantaneously. There are different methods to com-

pute the generalized inverse, such as singular value decomposition and Gram-Schmidt 

Orthogonalization (Neto and Ambrósio, 2003). Similarly to other methods, this formu-

lation also presents some problems related to constraints violation, bearing that in mind 

it must be used along a method to prevent violation of the constraints. 
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A methodology for the direct correction of the constraints violations at positions 

and velocities levels was presented by Flores (2013). This approach does not consider 

the correction of the positions and velocities during the process of solving the equations 

of motion. Instead, the following technique corrects those quantities after the integration 

procedure which introduces numerical errors in the system. Bearing that in mind, this 

approach is applied after solving Eq. (2.16) and it starts by the correction of the posi-

tions vector as follows 

 δc u q q q  (2.88) 

where qc and qu represent the vectors of corrected and uncorrected coordinates, respec-

tively, and δq is the vector of corrections to eliminate the constraints violation. Thus, qc 

satisfies Eq. (2.12), and a corrective term must be added to qu in order to equally fulfill 

the constraints. Hence, Eq. (2.88) can be written in terms of constraints as 

     δc u  Φ q Φ q Φ 0  (2.89) 

in which δΦ represents the variation of the constraint equations, and it can be expanded 

to first-order derivatives in the following form 

 
1 2

1 2

δ δ δ δ δn

n

q q q
q q q

  
    
  

Φ Φ Φ
Φ D q  (2.90) 

Introducing Eq. (2.90) into Eq. (2.89), results in 

   δu  Φ q D q 0  (2.91) 

Thus, Eq. (2.91) can be rewritten to calculate the corrections of coordinates  

  1δ u q D Φ q  (2.92) 

In order to solve the previous equation, the inverse of the Jacobian matrix must be 

provided. Although, in the general case, the Jacobian matrix is not square, this means 

that it is not invertible. Thus, to provide a solution for Eq. (2.92), the properties of 

Moore-Penrose generalized inverse must be employed to the Jacobian matrix D. For this 

case, Eq. (2.85) and Eq. (2.86) remain valid. Hence, Eq. (2.92) is given by 

    
1

δ T T u


 q D DD Φ q  (2.93) 

The corrected coordinates can be calculated by introducing Eq. (2.93) into Eq. 

(2.88) which yields 

    
1

c u T T u


 q q D DD Φ q  (2.94) 

This equation must be used in each time step to correct the coordinates. Neverthe-
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less, the kinematic constraints equations are generally nonlinear which means that Eq. 

(2.94) should be solved iteratively. A tolerance value should be specified in order to 

define the stopping criterion for the iterative procedure as 

 T Φ Φ  (2.95) 

Similarly to Eq. (2.88), the generalized velocities must be correct as 

 δc u v v v  (2.96) 

where vc and vu denote the vectors of corrected and uncorrected generalized velocities, 

and δv expresses the vector of correction of velocities. Analogously to Eq. (2.89), the 

corrected velocities satisfy Eq. (2.13), and a corrective term must be summed to the 

uncorrected velocities to ensure that the velocities constraints are satisfied, i.e., 

    , , δc c c u  Φ q v Φ q v Φ 0  (2.97) 

The velocity constraints depend on both generalized positions and velocities of 

the system. Thus, the term of variation of velocity constraints is expanded in the follow-

ing form 

 
δ δ δ

 
 
 

Φ Φ
Φ q q

q q
 (2.98) 

The correction of the generalized velocities implies that the generalized coordi-

nates are previously corrected. In that case, the vector of positions is already corrected 

which means that δq=0. It should be noted that the derivative of the velocity constraints 

with respect to the velocity vector is the Jacobian matrix. Hence, Eq. (2.98) results in 

 δ δΦ D v  (2.99) 

Substituting Eq. (2.99) into Eq. (2.97) yields 

  , δc u  Φ q v D v 0  (2.100) 

Applying once more the definition of Moore-Penrose generalized inverse, Eq. 

(2.100) can be used to calculate the velocity variations as follows 

    
1

δ ,T T c u


 v D DD Φ q v  (2.101) 

Thus, replacing Eq. (2.101) into Eq. (2.96), the corrected velocities can be ex-

pressed as 

    
1

,c u T T c u


 v v D DD Φ q v  (2.102) 

Since the velocity constraints own a linear dependence to the generalized veloci-

ties, Eq. (102) must be solved once in each time step. 
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A brief overview about several methodologies to solve equations of motions was 

presented. Each of them shows different capabilities in what concerns to implementa-

tion complexity, constraints stabilization or handling redundant constraints. A brief 

comparison will be displayed in the following section. 

2.4 Example of Application 

After providing a brief explanation on the multibody system formulation and on 

the several methods to solve the equations of motion, it is presented a simple example 

of application. Bearing that in mind, it will be considered a spatial slider-crank mecha-

nism, as it shown in Figure 2.6. The general purpose of this section is to give a generic 

comprehension of the influence of using different methods to solve the equations of 

motion on the accuracy of the simulation and on the computational effort. 

 

Figure 2.6 - Spatial slider-crank mechanism. 

The spatial slider-crank mechanism is constituted by three different bodies, name-

ly the crank, the connecting rod and the slider. It has four different kinematic joints: one 

revolute joint connecting the ground and the crank (5 constraints), one spherical joint 

between the crank and the connecting rod (3 constraints), one universal joint gathering 

the connecting rod and the slider (4 constraints), and one translational joint between the 

slider and the ground (5 constraints). From the analysis of the configuration of the 

z

yx
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mechanism, it can be concluded that every constraints are independent. Thus, the num-

ber of degrees of freedom can be determined recurring to Eq. (2.1) which results in 1 

DoF (nDoF=6×3-(5+3+4+5)=1) 

In order to correctly describe the mechanism, the length and the inertial properties 

of each body are presented in Table 2.1. Moreover, to perform a multibody system sim-

ulation is of paramount importance to properly define the initial conditions, namely po-

sitions and velocities. The initial conditions should fulfill the constraint equations to 

minimize the constraints violation during the simulation. In this sense, the initial condi-

tions for this spatial slider-crank mechanism are displayed in Table 2.2. 

Table 2.1 - Dimensional and inertia properties of each body. 

Body Length [m] Mass [kg] 
Principal Moments of Inertia [kg m2] 

Iξξ Iηη Iζζ 

Crank 0.10 0.12 0.0001 0.0001 0.00001 

Rod 0.29 0.5 0.004 0.0004 0.004 

Slider - 0.5 0.0001 0.0001 0.0001 

 

Table 2.2 - Initial conditions for the dynamic analysis. 

Body 
Initial Positions 

x y z e0 e1 e2 e3 

Crank 0.0000 0.0000  0.0500 1.0000  0.0000 0.0000 0.0000 

Rod 0.0000 0.0735 -0.0250 0.8680 -0.4966 0.0000 0.0000 

Slider 0.0000 0.1470 -0.1500 1.0000  0.0000 0.0000 0.0000 

 
Initial Velocities 

vx vy vz ωx ωy ωz 

Crank -0.3142 0.0000 0.0000 0.0000 -6.2832  0.0000 

Rod -0.3142 0.0000 0.0000 0.0000 -1.5661 -1.6112 

Slider  0.0000 0.0000 0.0000 0.0000  0.0000  0.0000 

 

For these dynamic simulations, beyond the inertia and reaction forces, the weight 

of each body is the only external force considered, and it is applied in the negative di-

rection of z axis (g=9.81 m/s2). 

The integration process is carried out with the fourth-order Runge-Kutta method 

with fixed time step. The choice of the integration scheme is directly connected to the 

error of the process and, the local error for this method is of order (Δt)5. Long time sim-
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ulations were performed to compare the accuracy and efficiency of different methods to 

solve the equations of motion. For this comparison, several approaches were consid-

ered, namely the standard multipliers technique, the Baumgarte stabilization method, 

the penalty method, the augmented Lagrangian formulation and the direct correction 

approach. The efficiency of these methods is analyzed through the evaluation of the 

constraints violation at position and velocity levels, additionally the computational time 

is also considered. The set of parameters necessary to apply each methodology to calcu-

late the motion of the system is shown in Table 2.3. 

Table 2.3 - Parameters used for the dynamic simulation. 

Parameter Value Parameter Value 

Time step 0.001 s Penalty/Augmented - ω 10 

Baumgarte - α 5 Penalty/Augmented - μ 1 

Baumgarte - β 5 Augmented - ε 1×10-10 

Penalty/Augmented - α 1×10-7 Direct Correction - ε 1×10-10 

 

The evolution of the constraints violation at position (
T

Φ Φ ) and velocity (
T

Φ Φ ) 

levels for the different methods are presented in Figures 2.7 and 2.8, respectively. The 

simulation time was 20 s, although the results are presented only for the first 5 s due to 

an easier interpretation. 

 

Figure 2.7 - Positions constraints violation (
T

Φ Φ ). 
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Through the analysis of Figures 2.7 and 2.8, it can be deduced that the standard 

method let the violation of the constraints grow open-endedly with time, either for posi-

tions or velocities. This behavior makes this approach inadequate for long time simula-

tion. However, the constraints violation can be kept under control with the utilization of 

stabilization methods, such as Baumgarte method, penalty method or augmented La-

grangian. These approaches allow a certain oscillation of the violation of the constraint 

equations as it is represented in Figures 2.7 and 2.8, the magnitude and frequency of this 

oscillation vary according the selected penalty factors. In turn, the direct correction ap-

proach completely eliminates the errors of the constraints, since the values of violation 

presented for that technique are not significant. 

 

Figure 2.8 - Velocities constraints violation (
T

Φ Φ ). 

Another manner to measure the accuracy of each method consists on the evalua-

tion of the mechanical energy. Since the only external force acting on the system is the 

weight of the bodies, the mechanical energy must remain constant. However, due to 

integration errors the energy of the system may suffer alterations. In Figure 2.9, it is 

represented the variation of the mechanical energy given as 

 0

M M ME E E    (2.103) 

where EM is the sum of kinetic and potential energy (EM=T+V), and 
0

ME  is the initial 

mechanical energy of the system. From the analysis of Figure 2.9, it can be concluded 

that the standard approach, the Baumgarte method and the augmented Lagrangian for-
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mulation make the energy increase. In turn, the penalty method and the direct correction 

approach cause a reduction of energy, wherein the latter is the method that provokes the 

largest energy variation. 

 

Figure 2.9 - Variation of mechanical energy. 

The computation time ratio for the five approaches considered is presented in Fig-

ure 2.10. As it was expected, the standard Lagrange multipliers method is the most effi-

cient, although it does not handle the constraints violation. The Baumgarte method, the 

penalty method and the augmented Lagrangian formulation present similar computation 

time, nevertheless the Baumgarte method is not able to handle redundant constraints. 

For this case, the direct correction approach showed to be the least efficient method. 

 

Figure 2.10 - Comparison of computation time for different methods. 
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2.5 Summary and Conclusions 

In this chapter, the basic concepts on multibody dynamics were introduced. A 

brief study of the available formulations to analyze multibody systems was presented. In 

the scope of this work, it was chosen to use a body coordinate formulation, and the 

Newton-Euler approach to construct the equations of motion. This selection concerns to 

its simplicity and easiness, and since the multibody systems here studied have a small 

number of bodies, this formulation appears more suitable. 

In order to build the equations of motion for spatial multibody systems, it was 

necessary to introduce the Euler parameters for the representation of rotational coordi-

nates. The kinematic constraint equations were characterized, although any particular 

case of a kinematic joint is presented in this text. In the wake of the study of the con-

straints equations it was presented procedure to perform a kinematic analysis of a multi-

body system. 

Then, the Newton-Euler equations for constrained multibody systems were de-

rived. The equations of motion of a free particle were the starting point, they were fol-

lowed by the rigid body and unconstrained multibody system formulations. The con-

straints were considered recurring to the Lagrange multipliers technique. Hence, the 

dynamic equations of a constrained multibody system were presented through Eq. 

(2.46). 

However, the process of solving the equations of motion can present some diffi-

culties, namely the system can hold redundant constraints or singular configurations. 

Moreover, the equations of motion do not consider the positions and velocities con-

straints explicitly which leads to the constraints violation. Several methods to solve the 

equations of motion were described. They have different characteristics and can handle 

different issues. Some of them were compared with respect to the constraints violation 

and computational efficiency. 

For the comparison of the different methods, it was used a simple example of a 

spatial slider-crank mechanism. The results showed that the Standard Lagrange multi-

pliers method is more efficient, although it allows the growth of the constraints viola-

tion indefinitely. It was verified that other approaches are capable of stabilize or elimi-

nate the errors of the constraints with just a small increase in computational effort. 
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“If you can't explain it simply, you don't understand it well enough.” 

Albert Einstein 

 

3. FRICTION MODELS FOR MULTIBODY DYNAMICS 

The dynamic simulation of multibody systems is increasingly requiring the accu-

racy of the results. Bearing that in mind, it is of paramount importance to use reliable 

techniques to evaluate the friction force in the contacts. 

The Coulomb friction law was the major precursor of the evolution of the friction 

force models. This model however shows a huge inability to capture different friction 

phenomena. These phenomena have a direct influence on the dynamic response of the 

system. To mitigate the differences between the reality and friction modelling, robust 

models have been proposed. 

This chapter aims to provide a comprehensive analysis of different friction models 

for multibody dynamics. In this context, a brief explanation of the main phenomena 

related to friction will be delivered. Then, the most relevant static and dynamic friction 

models are summarily described. In the sequel of this process, the main limitations and 

implications of each approach are highlighted. Finally, the dynamic response of a one 

degree of freedom mass-spring model is utilized to analyze and compare the various 

friction models. 

3.1 General Issues on Friction 

Friction is a very complex phenomenon. The attempts to describe correctly its be-

havior have distinct approaches. Their differences are close-banded to their ability to 

model different characteristics of friction. Preceding the description of the several fric-
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tion models, it is of paramount importance to detail the diverse phenomena associated 

therewith. 

Friction consists in the tangential force which opposes to the relative motion of 

two contacting surfaces. This force can have different outcomes depending on the rela-

tive velocity and displacement of the bodies. Moreover, contact geometry and topology, 

properties of the surface materials and presence of lubrication are also relevant factors. 

Thus, friction’s properties have been intensively studied (Olsson, 1998; Berger, 

2002) and several conclusions were made about its main characteristics and dependenc-

es. Throughout this section, there will be discussed some issues that must be considered 

when modelling friction, namely, stick-slip, viscous friction, frictional lag, pre-sliding 

displacement and break-away force. 

3.1.1 Stick-Slip 

When the relative velocity of two contacting surfaces is null, the friction force is 

known as stiction4. Several experiments proved that the friction force at rest is higher 

than the kinetic friction (Rabinowicz, 1951; Scieszka and Jankowski, 1996). Thus, it is 

usual to considered two different friction coefficients (Borsotto et al., 2009), one for 

zero velocity (static) and another when relative motion occurs (kinetic). 

Bearing that in mind, in case that the relative velocity between two surfaces drops, 

the friction force will increase which leads to the sticking thereof. This phenomenon is 

the so called stick-slip (Rabinowicz, 1956; Dieterich, 1978), and it is overcome since 

the external tangential force is larger than the static friction force, so the bodies start 

sliding. 

The stick-slip is a major problem during the modelling and simulation of mechan-

ical systems since is an unstable phenomenon which is not easy to predict. In this sense, 

it is important to choose a friction model capable of capturing its behavior. To do so, the 

model has to consider a different coefficient of friction for the static and kinetic cases, 

but most of all it should describe a correct transition between them. 

This transition was studied by Stribeck (1902) who showed experimentally that, 

for low velocities, friction decreases with the increase of the relative velocity. This ef-

fect implies a continuous drop of friction force which contradicts the discontinuous be-

havior of considering just two different coefficients of friction. This behavior is de-

                                                 

4 The term “stiction” results from the contraction of the expression “static friction”. 
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scribed by the Stribeck curve, which was named after him, and represents the steady-

state friction as a function of velocity. 

Rabinowicz (1951) studied the essence of the static and the kinetic coefficients of 

friction and their transition. The experimental results showed that the coefficient of fric-

tion is not only a function of the relative velocity, but also of the displacement. It was 

demonstrated that the maximum friction force is reached for low displacements. This 

behavior along with the Stribeck effect should be carefully implemented to lead to stick-

slip motion. 

3.1.2 Viscous Friction 

The existence of a fluid lubricant layer between two rubbing surfaces has a signif-

icant influence in the resultant friction force. Thus, there is the necessity to take that into 

account when using a friction model (Fréne and Cicone, 2001). 

To do so, it is generally employed a linear relation between the relative velocity 

and the viscous friction force, because most of fluid lubricants can be considered New-

tonian fluids5. However, sometimes nonlinear models can be also applied to describe 

this phenomenon. Normally, the component of friction force related with viscosity is 

simply summed to the regular friction model. 

3.1.3 Frictional Lag 

Frictional lag is the delay in change of friction force as a function of velocity. This 

characteristic behaves as the inertia to the change of friction state. As a consequence 

there is a hysteresis loop in the relationship between friction force and velocity. 

 

Figure 3.1 - The friction-velocity relation for a hysteresis loop. 

                                                 

5 A Newtonian fluid presents a linear relation between the applied shear stress and the resulting 

strain rate. Air, water and thin motor oil are some examples of Newtonian fluids. 

Tv

F
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Hess and Soom (1990) verified empirically that the friction force does not respond 

instantaneously to the variation of velocity. Thus, friction lag is a dynamical behavior 

which results in lower friction forces when velocity is decreasing and larger forces for 

increasing velocities (Dupont and Dunlap, 1993), as it is shown in Figure 3.1. This phe-

nomenon becomes more evident with larger accelerations and enhances the need to use 

dynamic friction models. 

3.1.4 Pre-sliding Displacement  

Some researches (Courtney-Pratt and Eisner, 1957; Hsieh and Pan, 2000) have 

been made in order to study the influence of displacement in friction forces. It was 

shown experimentally that when any external tangential force is applied between two 

contacting bodies, always occurs a displacement, which is given by an elastic spring 

behavior, as it is shown in Figure 3.2. 

  

Figure 3.2- Pre-sliding displacement behavior. 

This phenomenon of a small motion in elastic range when the applied force is less 

than the break-away force is often called pre-sliding displacement. The explanation for 

this small displacement relies on the elastic deformation of the asperities of the contact-

ing surfaces (Bowden and Leben, 1939). The adhesion theory states that in the presence 

of a normal load the asperities tend to adhere. So, when a tangential load is applied the 

bond tends to break. Before that happening, the asperities should have elastic and, then, 

plastic deformation which provokes the relative displacement of the contacting surfaces. 

Since the junctions of asperities are broken, the sticking regime ends and the bodies 

start sliding. 

Although the magnitude of the pre-sliding displacement is small, it should not be 

neglected. Firstly, it has a relevant impact in the friction force during velocity reversal. 

Secondly, this displacement can have a narrow importance locally, but if the analyzed 

x

F



3. FRICTION MODELS FOR MULTIBODY DYNAMICS 51 

mechanical system has substantial dimensions, it may result in meaningful displace-

ments on the global system. 

Furthermore, when the applied external force is diminished, the contacting surfac-

es will present the same behavior and it will result in a hysteresis loop, as it is repre-

sented in Figure 3.2 

3.1.5 Break-Away Force 

The necessary force to initiate the motion and surmount the static friction is called 

the brake-away force which is also the maximum friction force (Rabinowicz, 1951). 

Normally, the overcoming of this force defines the boundary between the sticking and 

sliding regimes. Before reaching the break-away force, there is only the aforementioned 

pre-sliding displacement. 

 

Figure 3.3 - Relation between rate of force and break-away force. 

Johannes et al. (1973) demonstrated that the break-away force depends on the rate 

of the external applied force. In Figure 3.3, it is shown that the increase of force rate 

leads to the reduction of the break-away force. 

3.2 Static Friction Models 

This section includes several “static” friction force models frequently used in the 

simulations of multibody mechanical systems. It must be stated that most of these mod-

els present a discontinuity of friction force when the relative velocity is zero, which can 

cause difficulties in describing friction realistically. In general, these models have some 

limitations as regards to reproducing the previously mentioned frictional phenomena. 

 

baF

dF

dt
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3.2.1 Coulomb Friction 

Coulomb (1785) presented the first friction model which states that the friction 

always opposes relative motion between contacting bodies and its magnitude is propor-

tional to the normal contact force. This model depends on the relative velocity direction, 

except for zero velocity where the friction force is a multivalued function of the external 

tangential force. This model can described as 

 
 

   
C T T

e C e T

sgn if 0

min , sgn if 0

F

F

 
 



v v
F

F F v
 (3.1) 

where 

 
C k NF  F  (3.2) 

in which FN is the normal force, FC is the magnitude of Coulomb friction, μk is the ki-

netic coefficient of friction, Fe is the external tangential force, and vT is the relative ve-

locity of the contacting bodies. This model presents a dependence on the velocity by the 

signum function, 

  
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T

if 0
sgn
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


 
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v
v

vv

0 v

 (3.3) 

where 0 is a null vector with the same dimensions as v. In Figure 3.4, it is represented 

the friction force as a function of the relative velocity for the 1D case. 

 

Figure 3.4 - Representation of Coulomb friction for 1D case. 

Although this model is straightforward, it presents some difficulties since it does 

not specify a friction force at zero velocity. Thus, this velocity dependence can originate 

perturbations in the dynamic simulations system’s response. Nevertheless, the Coulomb 

friction law is used quite often to simulate friction behavior for the sake of simplicity, 

F

Tv

CF

CF



3. FRICTION MODELS FOR MULTIBODY DYNAMICS 53 

and since it only requires one input parameter; i.e. the coefficient of friction. 

3.2.2 Coulomb Model with Stiction 

Since the friction force at zero velocity is higher than the kinetic friction, several 

studies have presented the necessity of introducing a friction model which includes two 

different friction coefficients. This modified Coulomb approach has a similar behavior 

to Coulomb’s except in the vicinity of zero velocity. It is also a multivalued function, 

but can reach a higher friction force, and can be described as follows 

 
 

   
C T T

e S e T

sgn if 0

min , sgn if 0

F

F

 
 



v v
F

F F v
 (3.4) 

where 

 
S s NF  F  (3.5) 

in which FS is the magnitude of static friction, and μs is the static coefficient of friction 

which is higher than the kinetic, μk. The variation of the friction force with the relative 

velocity is shown in Figure 3.5. 

 

Figure 3.5 - Representation of the Coulomb model with stiction for 1D case. 

Although this model considers stiction, since it hardly reach exact null velocity 

during a simulation. In practice, it provides similar behavior compared to Coulomb’s 

law, with an oscillatory force for low velocities. 

3.2.3 Coulomb Model with Viscous Friction 

One of most common modification of Coulomb’s friction law deals with is the in-

troduction of viscous friction component. Considering a linear relationship between the 

relative velocity and the friction force related to the lubricants viscosity, the friction 
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model can be written as 
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 (3.6) 

where Fv is the viscous friction coefficient which is deeply related to the viscosity of the 

fluid. The behavior of this model is presented in Figure 3.6. 

 

Figure 3.6 - Representation of Coulomb model with linear viscous friction for 1D case. 

Although, sometimes it can be adopted a nonlinear relation with the velocity, be-

cause it could be a better fit with the experimental data, 

 
   

   

v

C T v T T T

e C e T

sgn sgn if 0

min , sgn if 0

F F

F

  
 



v v v v
F

F F v
 (3.7) 

where δv depends on the geometry of the contact. Notwithstanding, this type of approx-

imation is not commonly employed, since it requires an extra parameter. 

3.2.4 Model with Stribeck Effect 

In contrast with Coulomb model with stiction, the Stribeck effect (Stribeck, 1902) 

ensures that the decrease from static to kinetic friction is a continuous process. Thus, the 

friction force during relative motion is expressed as a continuous function of velocity as 
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where F(vT) is an arbitrary function that depends on the relative velocity. With this 

model the friction force diminishes when the relative motion is initiated, as it is repre-

sented in Figure 3.7. 

Several mathematical expressions have been proposed to describe that curve. Hess 

and Soom (1990) suggested 
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where vS is the Stribeck velocity. However, the most popular was introduced by Bo and 

Pavelescu (1982) which considers an exponential function as follows 
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in which δσ is a factor that relies on the geometry of the contacting surfaces, which is 

often considered 2 as suggested by Armstrong-Hélouvry (1991). 

 

Figure 3.7 - Representation of the Stribeck curve without viscous friction. 

This friction model takes into account the Coulomb, viscous, stiction and Stribeck 

friction effects. However, it presents the same problem as the previous approaches at 

zero velocity. 

3.2.5 Karnopp Model 

Since the aforementioned models are multivalued functions for zero velocity, their 

static behavior cannot be captured during a simulation. To overcome this difficulty, 

Karnopp (1985) proposed a model where the velocity is considered zero, for a specified 

range, as it is shown in Figure 3.8. Thus, when the velocities are within the interval, the 

system’s state can change and the model’s response will be the same as when the rela-

tive velocity is zero. 
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Figure 3.8 - Representation of Karnopp model with Coulomb friction for 1D case. 

Karnopp model is usually used along the Coulomb model and can be expressed as 
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where Dv is the tolerance for zero velocity and F(vT) is an arbitrary function for the fric-

tion force outside of the tolerance velocity. It is important to select a suitable range of 

the null velocity (Liu et al., 2009; Bicakci et al., 2014). Nevertheless, this zero velocity 

interval does not comply with the real behavior of the contact. 

3.2.6 Switch Model 

In order to reduce the numerical instability for the sticking phase, Leine et al. 

(1998) proposed a modification of Karnopp friction model. The main difference be-

tween both models occurs during the sticking phase when the external tangential force 

is lower than the maximum static friction force. In that case, for Karnopp model, the 

friction force equalizes the external tangential force, which means there is null accelera-

tion in the tangential direction. 

However, this sudden change of the acceleration will result in numerical instabil-

ity. To solve that problem Leine et al. suggested the direct determination of the accel-

eration instead of calculating the friction force, as it follows 

 
T

k

m
 a v  (3.12) 

where k is the stiffness of the external force, and m is the mass of the body. Thus, the 

acceleration is exactly zero only for null relative velocity. 
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3.2.7 Models with Finite Slope at Zero-Velocity 

In most of the static models described above, the friction force at zero velocity is 

multivalued, being evaluated as a function of the external tangential force. In order to 

simplify and ensure computational efficiency, several researchers have proposed alter-

native methods, which replace the discontinuity at zero velocity by a finite slope model. 

This strategy normally avoids computational instability due to the change of the direc-

tion of the velocity. 

In order to smooth the discontinuity of the Coulomb friction model at zero veloci-

ty, several modifications were proposed (Andersson et al., 2007). One approach consists 

in using linear friction velocity dependence for low velocities, which can be expressed 

by the following equation 

    C T Tmin ,1 sgnF kF v v  (3.13) 

where k is a is a coefficient that gives the slope for null velocity. In Figure 3.9, it is dis-

played this model for the 1D case. 

 

Figure 3.9 - Representation of Coulomb model with linear friction modification for 1D case. 

Another possibility resides in utilizing a hyperbolic tangent approximation, which 

is a more numerically stable model since it has a continuous derivative. The friction 

force is given by 

    C T Ttanh sgnF kF v v  (3.14) 

Threlfall (1978) also presented a model which softens the existing discontinuity in 

the Coulomb law. The curve that represents this model is displayed in Figure 3.10. This 

approach also does not pay attention to most of friction characteristics, and can be de-

scribed by the following expression 
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where v0 is a tolerance velocity. The resemblance with Coulomb friction law increases 

with the decreasing of this tolerance velocity. 

 

Figure 3.10 - Representation of Threlfall model for 1D case. 

The use of a finite slope at zero velocity has been also extended to models which 

take into account stiction. One of the most popular approaches consists in considering a 

peak of friction force for a given velocity, and performing a linear interpolation, as it is 

shown in Figure 3.11. The model can be expressed as 
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where v0 and v1 are the tolerances for the tangential velocity. 

Bengisu and Akay (1994) proposed a model capable of modelling the Stribeck ef-

fect, as it is represented in Figure 3.12. The model is constituted by two equations (one 

for the slope and another to describe the Stribeck effect) which are given as 
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in which ξ should be a positive parameter which represents the negative slope of the 

sliding state. 

 

Figure 3.11 - Representation of the linear model with stiction for 1D case. 

 

Figure 3.12 - Representation of the Bengisu and Akay model for 1D case. 

However, these models have some particularities. When the slope at zero velocity 

is too large, a small step size is needed to correctly capture friction for low velocities, 

which will slow down the simulation. In addition, for velocities close to zero, the fric-

tion force will always be low irrelevant of the displacement. 

3.2.8 Ambrósio Model 

The above mentioned limitations associated with friction force’s discontinuity led 

Ambrósio (2003) to propose a modified Coulomb’s friction law in which the friction 

force can be defined as 
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 (3.18) 

where v0 and v1 are the tolerances for the velocity. The main difference of this model is 

the null friction force for low velocities, as it is shown in Figure 3.13. 

 

Figure 3.13 - Representation of Ambrósio friction model for 1D case. 

This approach prevents the friction force from changing direction when the rela-

tive velocity is close to zero. However, it does not describe the stick-slip motion. 

3.2.9 The Seven Parameter Model 

This model is also known as Armstrong model (Armstrong-Hélouvry et al., 1994), 

and it includes several frictional effects as the pre-sliding displacement, Coulomb and 

viscous friction, Stribeck effect and frictional lag. It consists of two separate equations, 

one for sticking 

 0F x
 (3.19) 

and another for the sliding regime 
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where FC is the Coulomb friction force, Fv denotes the viscous friction coefficient, FS is 

the magnitude of static friction, FS,a represents the magnitude of static friction at the end 

of the previous sliding period, FS,∞ is the magnitude of static friction after a long time at 

rest, σ0 expresses the tangential stiffness of the contact, vS is the Stribeck velocity, τL 

denotes the time constant of frictional memory, γ is the temporal parameter of the rising 

static friction and td is the dwell time, i.e., the time at zero velocity. 

Although this approach seems to describe most of the characteristics of friction 

behaviour, it also presents some drawback. Firstly, to implement this model is necessary 

to define seven parameters, which is not an easy task since most of them have to be de-

termined experimentally. Secondly, the Armstrong model is constituted by two separate 

states, one for sticking and another for sliding, and there is no criterion defined to de-

termine when the switch must occur. Since it is not easy to predict when the transition 

has to happen, it must be defined an eighth parameter to evaluate if the model should 

switch between states. Moreover, every time the switch occurs, the model state varia-

bles must be properly initialized. 

3.2.10 Awrejcewicz et al. Model 

Awrejcewizc et al. (2008) proposed a static friction model for dry contact which is 

dependent of both tangential force and relative velocity. This model is governed by four 

different equations, one for sliding, two for the transition from stick to slip, and one for 

sticking, as follows 
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where v0 is a velocity tolerance, and F(vT) is an arbitrary friction function for sliding 

which depends on the velocity. The tolerance velocity defines the limit for sliding state. 

Below this tolerance, the friction force is also calculated as a function of the external 

tangential force. 
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Figure 3.14 - Representation of the Awrejcewicz et al. model for 1D case. 

In Figure 3.14, it is displayed a curve of friction force for a given external tangen-

tial force (Fe). There are also represented the curves for the minimum and maximum 

friction force. 

3.2.11 Wojewoda et al. Model 

In order to capture most of friction features, Wojewoda et al (2008) proposed a 

static friction model for dry contact of hysteretic type with a stochastic component. This 

model is divided into three different states, one for sticking, and two for sliding (accel-

eration and deceleration), and it can be expressed as 
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with 
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where Fst is the friction for the sticking phase, Fd+ and Fd- represent the friction force in 

acceleration and deceleration, respectively, kS is the contact stiffness, F0 denotes the 

initial value for sticking force, fR( T,x v ) is a stochastic function, and g( T T,v v ) expresses 

a function to model the Stribeck curve. The stochastic function intends to simulate ran-

dom features as variations of normal pressure force or inhomogeneous asperity of con-
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tacting surfaces. 

The researchers considered a variable static friction force during the acceleration 

phase, as it is shown in Eq. (3.25). They suggested the following expression 
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(3.27) 

where ΔFS represents the range of break-away force variation, and vS is the Stribeck 

velocity. 

3.3 Dynamic Friction Models 

This section includes some of the most relevant dynamic friction models. As de-

scribed earlier, in general, the static friction approaches have limitations in capturing 

some friction phenomena, such as pre-sliding displacement or frictional lag. Thus, bet-

ter alternatives should be discussed, namely the available dynamic friction models, also 

named state variable models. In a simple manner, the dynamic models introduce an ex-

tra state variable which is used together with the velocity to calculate the friction force. 

3.3.1 Dahl Model 

The Dahl friction model (Dahl, 1968, 1976) was developed with the aim of de-

scribing the friction behavior of ball bearings. The basis of this solution is an analogy 

with the classical stress-strain curve of materials. Dahl observed that in brittle materials, 

the difference between the stiction and Coulomb friction is difficult to capture. Ductile 

materials, however, are more probable of having the stiction behavior and then decrease 

the stress until Coulomb friction is reached. Moreover, it was shown that, the friction 

force is dependent on relative velocity and displacement. Dahl model states that when 

the contacting surfaces are subjected to stress, the friction force increases until rupture 

occurs. In this context, the stress-strain curve can be described by a differential equation 

as 
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where F denotes the friction force, x is the displacement, FC is the Coulomb friction, σ 

represents the stiffness coefficient and α is a parameter that defines the shape of the ma-

terial curve. This parameter depends on the material, and usually varies between 0 and 1 
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for brittle materials, and is higher than 1 for ductile materials. From the analysis of Eq. 

(3.28), when F tends to FC, the derivative tends to zero, so it can be concluded that the 

magnitude of the friction force does not exceed FC. 

Equation (3.28) can be modified to a time derivative, yielding 
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This formulation can be generalized for the 3D case. The most common value for 

 is 1, yielding the Dankowicz model (Dankowicz, 1999) as,  
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Introducing the state variable z, and assuming that F=σ0z, Eq. (3.30) can be re-

written as 
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It can be observed from Eq. (3.31) that when the system reaches the steady state, 

the friction force can be simplified as 

  C TsgnFF v  (3.32) 

which is in fact the Coulomb friction model. 

It must be highlighted that the Dahl model is not capable of capturing the Stribeck 

effect and stiction, since it is based on the dry Coulomb friction model with the intro-

duction of pre-sliding displacement through a new state variable, eliminating the dis-

continuity at zero velocity. 

3.3.2 The Bristle Model 

One type of friction models is the so called physics-motivated friction models. 

They can describe friction in one of three levels: atomic-molecular, asperity-scale and 

tectonic-plate level. The most common is the asperity-scale level and its most recog-

nized example is the bristle model. 

Haessig and Friedland (1991) presented a model which intends to simulate the 

randomness associated with frictional behavior of the contact between two surfaces with 

irregularities. 

This model considers that the friction force is originated by the deformation of the 

asperities. Each contact is modelled as a bond between a rigid bristle and a massless 
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bristle. The contact behaves as a spring, when relative motion happens, the strain in the 

bristle increases as well as the friction force. The total friction force is given by the 

summation of each spring force, 

  
1

N

i i i

i




 F x b  (3.33) 

where N denotes the number of bristles, σi represents the stiffness of the bristles, xi is 

the relative position of the bristles, and bi is the location where the connection was 

formed. When the strain at a certain bristle exceeds its limit (||xi-bi||>δi), the rupture of 

that bond occurs and a new bond is formed in a random location which is calculated 

from the previous one. 

The capacity of the bristle model to capture the random behavior highly depends 

on the number of bristles chosen. Instead of considering the real number of bonds, this 

approach only regards a much smaller number. The authors suggest less than 50. The 

higher the number of used bristles, the more complex the model becomes. This makes 

the model inefficient for computational simulation and, therefore, it is not usually em-

ployed. 

3.3.3 The Reset Integrator Model 

The same authors of the bristle model (Haessig and Friedland, 1991) proposed al-

so a more efficient and workable model, which is an evolution of the Dahl model. In 

this approach, the friction force is originated by the elastic and plastic deformations of 

the surface asperities. Each contact is modeled as a bond between two bristles. The reset 

integrator model does not allow for the bond to break, which means that when the strain 

of a connection increases until reaching the rupture point, the model ensures that it is 

kept constant. This model uses an extra state variable (z) to determine the strain in the 

bond and to account the stiction, as 
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Similar to other friction models, the reset integrator model is also composed of 

two state equations, one for sticking and another for sliding. The transition between 

those two phases occurs when the deflection reaches its maximum value z0. This friction 

force can then be defined as follows 
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where σ1dz/dt is the damping term that introduces some physical meaning by having 

damping oscillations and viscous friction effects, a denotes the coefficient pertaining to 

the stiction, and σ0(vT) is the contact stiffness. This friction force model has a disconti-

nuity when the analysis changes between sticking and sliding situations. 

3.3.4 Bliman-Sorine Model 

Bliman and Sorine (1991, 1993, 1995) developed a family of dynamic friction 

models based on the approach proposed by Dahl (1968). In this model, the magnitude of 

friction force only depends on the sign of relative velocity and the space variable s, 

which produces a variable transformation, 

  Tds v t dt  (3.36) 

or in the integral form 
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This space variable can be defined as the absolute relative displacement of the 

contacting bodies since the last velocity’s change. Hence, these models can be ex-

pressed as linear system, 
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 sF Cx
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where vs=sgn(vT). 

Bliman and Sorine introduced a family of models which have variable complexi-

ty. For the first-order model, the constants are given by 

 
11

,  and 1
ff

f
A B C     (3.40) 

Considering these values, the differential equation for the friction force can be 

written as 
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Thus, Eq. (3.41) is similar to Eq. (3.29) and consequently, to the Dahl model, if 

FC=f1, σ= f1/ϵf, and α=1. Bearing that in mind, this model is not capable of capturing 
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stiction or the Stribeck effect. Although the second-order model allows including that 

phenomena, considering the following constants 
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This model works as a parallel connection of a fast and a slow Dahl model. The 

force generated by the slow model should be subtracted from the fast model, which re-

sults in a stiction peak. 

3.3.5 Models for Lubricated Contact 

In the presence of very large normal load and relative velocity, it is not possible to 

design a system with a dry friction mechanism. In those cases, it is convenient to use a 

fluid lubricant, which is widely employed in several engineering applications. The lub-

ricants normally lead to the diminishing of the friction force and the temperature in the 

interface. 

Regardless the existence of some mechanisms of calculating the friction forces 

due to the presence of lubricants, it appeared the need of developing new friction mod-

els based on hydrodynamics. In that sense, Harnoy and Friedland (1994) proposed a 

new approach based on the hydrodynamics of a lubricated journal bearing. In this mod-

el, the friction force can be determined by Eq. (3.43) and the most relevant state variable 

is the eccentricity of the bearing ϵ, 

  
2

t
2

1 r
21

K
F K v 

  
(3.43) 

in which 
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The first term of Eq. (3.43) is related to the shearing of the contacts between as-

perities, and the second term concerns to the viscosity of lubricants. K1 and K2 are con-

stant coefficients for each type of force, ϵtr is the threshold eccentricity and Δ is a func-

tion which imposes that, for small eccentricities, there is no friction force due to asperi-

ties contacts. The eccentricity can be calculated by a fourth-order differential equation, 

which determines the pressure distribution in the lubricant. 
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3.3.6 LuGre Model 

The LuGre6 model was proposed by Canudas de Wit et al. (1995) and can be con-

sidered as a derivation from the Dahl model (Dahl, 1968). This model is capable of cap-

turing the Stribeck and stiction effects. In a simple way, this model considers friction as 

the result of the interactions of the surfaces bristles, it only regards to the average of the 

bristle deflection. When a force is applied, the bristles start to deform with spring be-

havior during the sticking phase. Then if the force is sufficiently large, the bodies start 

to slip. 

 

Figure 3.15 - Physical interpretation of LuGre model. 

To quantify the average bristle deflection, it is necessary to introduce an internal 

state variable z, as it is represented in Figure 3.15. Thus, the model follows as 
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where σ0 is the stiffness of the bristles, σ1(vT) is the damping of the bristles which can 

be set at constant, or can be a function of velocity, f (vT) is an arbitrary function that 

describes the viscous effect and g(vT) is an arbitrary function that accounts for the 

Stribeck effect as 
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where FC is the Coulomb friction, FS is the static friction and vS is the characteristic 

velocity of the Stribeck friction (Armstrong-Hélouvry, 1991). 

                                                 

6 The name “LuGre” arose from the cooperation between the universities of Lund and Grenoble. 
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For f (vT), typically a linear viscous friction is considered, that is 

  T 2 Tf v v  (3.48) 

The effect of this term is quite important when there is a fluid lubricant or when 

the relative velocity is high. 

The bristles damping is given as a function of relative velocity. In most cases, this 

parameter is set constant, however it is reasonable to let the damping decrease with the 

increasing of velocity. This happens due to the more amount of lubricant that is forced 

into the interface for high velocities. Thus, one possible approach to express the bristle 

damping is 
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where vd is a characteristic damping velocity. 

For a constant velocity, that is, when the system reaches the steady state (dz/dt=0), 

the expression to the friction force can be reduced to 

      T T Tsgng f F v v v  (3.50) 

Thus, considering the Eq. (3.47) and Eq. (3.48), it is possible to conclude that the 

steady-state values of the LuGre model agrees with the static model defined by Eq. 

(3.10).  

3.3.7 Elasto-Plastic Model 

The elasto-plastic model was developed by Dupont et al (2000, 2002), and it is 

based on the division of the body displacement x into two different components, the 

elastic and plastic displacement, z and w. When the bodies are sticking, the plastic dis-

placement remains constant, while during the sliding phase, the elastic displacement is 

constant. Figure 3.16 shows the physical meaning of each of these two types of dis-

placement, the elastic displacement represents the bristle deflection. 

 

Figure 3.16 - Physical interpretation of the elastic and plastic displacements. 

w
z

x
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The friction force can be calculated in a similar way as compared to the case of 

LuGre model (Canudas de Wit et al., 1995), 

 0 1 2 T
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z
F z v  (3.51) 

where σ0 is the contact stiffness, σ1 is the contact damping, and σ2 is viscosity coeffi-

cient. The velocity of bristle deflection is given by 
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in which the function α (z,vT) is used to capture stiction, since it just allows elastic dis-

placement until the system reaches the break-away force. This function is described as 
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 (3.54) 

where zmax is the maximum bristle deflection and zba is the break-away bristle deflec-

tion. The value of zmax can be determined based on the steady state friction, and the rela-

tion zba/zmax≈0.7 can be used to calculate zba (Dupont et al., 2000). The function g(v) 

describe the Stribeck curve and, similarly to LuGre is given by Eq. (3.47). 

3.3.8 Leuven Model 

This model was proposed by Swevers et al. (2000) as being an improvement of 

the LuGre model (Canudas de Wit et al., 1995). The Leuven model can capture the 

Stribeck effect, frictional lag, break-away force variation, stick-slip behavior and pre-

sliding hysteresis with nonlocal memory. The latter property is not modelled by the 

LuGre model. 

Leuven model considers also the average deflection of the asperities z, and it can 

be defined by 
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where n represents the coefficient that defines the shape of the transition curve, and 

g(vT) is an arbitrary function that models the steady state behavior of friction force, 

which is commonly described in a similar way to Eq. (3.47) by 

      S

T

C TS CT sgn
v

v

g v F F F e v




 
   
 
 

 (3.57) 

The hysteresis friction force is represented by Fh(z), and it is constituted by two 

components as follows 

    h b dF z F F z 
 

(3.58) 

where Fb is the hysteresis friction force at the beginning of a transition curve when there 

is a velocity reversal and Fd(z) represents the transition curve active at a certain time. 

The Leuven model presents a good characterization of friction phenomena, never-

theless it has also several implementation problems and a discontinuity in the friction 

force for some circumstances. 

Few years later, the same authors (Lampaert et al., 2002) proposed some modifi-

cations to the model. The discontinuity issue was overcome by changing the state equa-

tion to the following form 
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3.3.9 Generalized Maxwell Slip Model 

The generalized Maxwell slip model (Lampaert et al., 2003; Al-Bender et al., 

2005) is a development of Leuven model (Lampaert et al., 2002), and it considers a par-

allel connection of N single state friction models, as it shown in Figure 3.17. They are 

described by the same dynamical model, and have the same input displacement and ve-

locity, but with different sets of parameter values. Each single state friction model is 

evaluated separately to check whether it is sticking or sliding. 

Thus, if the element i is sticking, it is governed by the following equation 
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 T
idz

v
dt

  (3.60) 

which happens until zi=gi(vT), then, for sliding, the state equation is written as 
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and it is valid until the relative velocity passes through zero. From the previous equa-

tions, zi denotes the spring deflection, gi(vT) is the Stribeck curve for the deformation of 

element i, and Ci is the attraction parameter which determines how fast zi converges to 

gi(vT). 

 

Figure 3.17 - Representation of the generalized Maxwell slip model. 

To calculate the total friction force, it should be summed the contribution of each 

single state model, plus the viscous friction component, as it follows 

    f T

1

N
i

i i i

i

dz
F t k z f v

dt




 
   

 
  (3.62) 

where ki is the spring stiffness and σi is damping coefficient, and f(vT) is the viscous 

component which is normally set with a linear dependence of velocity as in Eq. (3.48). 

Hence, to implement this model, it is necessary to define three parameters per el-

ement beyond the Stribeck function which normally uses three more parameters. How-

ever, it can be introduced scale parameters, αi, which can be used to calculate the attrac-

tion parameter for each element based on a global value, i.e., Ci=αiC. The scaling pa-

rameters can also be applied for the Stribeck functions and the damping coefficients. 

Though, these parameters should guarantee the following relation 
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Thus, the model is reduced to two parameters per element, and six for the whole 

system. It was shown by Piatkowski (2014b) that using only four elements could pro-

vide good results. 

3.3.10 Gonthier et al. Model 

Gonthier et al. (2004) introduced a two-dimensional friction model based on Lu-

Gre approach (Canudas de Wit et al., 1995). The authors considered a force from the 

bending of the bristles, given by  

 br 0 1

d

dt
  

z
F z  (3.64) 

where σ0 is the stiffness and σ1 is the damping coefficient. To ensure a smooth transition 

between the stick-slip friction regimes, an auxiliary parameter is defined as, 
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(3.65) 

where vS is the Stribeck velocity. When the bodies are sticking, the deformation rate 

will be equal to the relative velocity, while for sliding, the resultant friction force will 

approach the Coulomb friction force, FC. 
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Coulomb friction has always the velocity direction and can be approximated by 

  C C Tdir ,F vF v  (3.67) 

where dirϵ(vT,vϵ) returns the unit vector with velocity direction, and it smooths the vec-

tor oscillations for velocities under a certain tolerance, vϵ, to diminish the discontinuities 

in velocity direction. This tolerance velocity is considered vϵ=0.01vS. 
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This approach includes a temporal lag associated with the dwell-time dependence. 

To capture that phenomenon, a new state variable is defined as 
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where τdw is the dwell-time dynamics time constant, and τbr=σ1/σ0 is the bristle dynamics 

time constant. The time constants should be set according to the desired time delay, a 

large one for sticking, and a small time delay for sliding. Thus, the maximum friction 

force can be defined as 

  max C S C dwF F F F s    (3.70) 

where FC and FS are the magnitude of Coulomb and static friction, respectively. Thus, 

the friction force can be expressed as 
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where σ2 is the viscous damping coefficient. The use of this model results in a set of 

ordinary differential equations that are very stiff at low relative velocities and cannot be 

solved using explicit ODE solvers.  

3.3.11 Liang et al. Bristle Model 

This bristle friction model (Liang et al., 2012) is an extension of the model pre-

sented by Heissig and Friedland (1991) to the 3D space. The average deflection of the 

bristles is represented by a linear spring, which can stretch and rotate, and it is con-

strained to the tangential plane of the contact. 

 

Figure 3.18 - Representation of the Liang et al. bristle model. 

An illustration of the tangential plane for a single contact is represented in Figure 

3.18. The central point P represents the contact point, where the normal and friction 

forces are applied. Thus, for each individual contact, the friction force can be calculated 

as 

 bkF z  (3.72) 

where kb is the bristle stiffness and z is the average bristle deflection and can be ex-
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pressed as 
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where t0 is the starting time of the contact, t is the current time and zmax is the maximum 

bristle deflection that can be defined as 
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where vd is a threshold velocity, which represents the numerical boundary between the 

sticking and sliding regimes. Thus, there is a maximum value for bristle deflection for 

sticking (zs max) and another for sliding (zk max), both parameters are represented in Fig-

ure 3.18. 

The major drawback of this model is related to the transition of the sticking re-

gime to the sliding regime. This is because it corresponds a sudden decrease of the max-

imum value of the average bristle deflection, which can result in an abrupt change of the 

friction force. To stabilize the friction force, the Eq. (3.72) can be modified through the 

introduction of a damping term; i.e., 

 b bk c F z z  (3.75) 

where cb is the bristle damping coefficient. When the model reaches the steady-state in 

the sliding mode, the friction force will be equal to Coulomb friction force. In the stick-

ing mode, the friction force will be higher, and equal to the static friction. 

3.4 Example of Application 

In this section, the classic 1-DOF spring-mass system is utilized as a numerical 

example of application, which allows the analysis and comparison of some of the previ-

ously presented friction models (see Figure 3.19). This system is widely used as bench-

mark for the validation of friction models (Rabinowicz, 1956; Heissig and Friedland, 

1991; Leine et al., 1998; Gonthier et al., 2004; Andersson et al., 2007; Do et al., 2007; 

Marques et al., 2015), and it consists of a block with mass m, which is positioned on a 

conveyor belt. The belt is moving with a constant velocity. The block is connected by a 

spring element with stiffness ks. The system dynamics is governed by the following dif-
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ferential equation 

 sF k x mx   (3.76) 

 

Figure 3.19 - Representation of the 1DoF spring-mass model. 

The simulation parameters for the spring-mass system are presented in Table 3.1. 

The specific parameters associated with each friction model were extracted from the 

literature and listed in Table 3.2. Initially, the block is located at the origin of the xy 

coordinate system, and its velocity being the same as the belt. 

Table 3.1 - Simulation parameters for the spring-mass model. 

Parameter Symbol Value Parameter Value 

Mass of the block m 1 kg Time step 0.00005 s 

Velocity of the belt vb 0.1 m/s Simulation time 20 s 

Spring stiffness ks 2 N/m Integrator scheme Runge-Kutta 4th order 

Table 3.2 - Parameters considered for the different friction models. 

Parameter S Value Parameter S Value 

Static coefficient of friction μs 0.15 Factor for curve shape ξ 50 s/m 

Kinetic coefficient  

of friction 
μk 0.1 Stiction coefficient a 0.5 

Coefficient of viscosity Fv 0.1 Ns/m Stiffness coefficient σ0 105 N/m 

Stribeck velocity vs 0.001 m/s Damping coefficient σ1 
510  Ns/m 

Geometry factor δσ 2 
Coefficient of  

viscosity 
σ2 0.1 Ns/m 

Tolerance velocity (Karnopp) Dv 0.001 m/s Dwell-time constant τdw 2 s 

Tolerance velocity (Threlfall, 

Bengisu and Akay, Awrejcewicz) 
v0 0.001 m/s Bristle stiffness kb 50000 N/m 

Tolerance velocity 
(Ambrósio) 

v0 0.0001 m/s Threshold velocity vd 0.001 m/s 

Tolerance velocity 
(Ambrósio) 

v1 0.001 m/s Bristle damping cb 80 Ns/m 
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Figures 3.20 to 3.22 show the main results produced from simulations with differ-

ent friction models. In order to keep the analysis simple, the friction approaches are 

grouped into three classes, namely static models without stiction, static models with 

stiction, and dynamic models. The behavior of the system is quantified by the plots of 

position, relative velocity and friction force values. The results are relative to 20 s of 

simulation. 

(a)

(b)

(c) 

Figure 3.20 - Results for static models without stiction. 
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(a)

(b)

(c) 
Figure 3.21 - Results for static models with stiction. 

Regarding the static models without stiction, they present a sticking phase related 

to the initial conditions, since the spring force magnitude is lower than the Coulomb 

friction force. The fact of having an exact zero relative velocity at the beginning of the 

simulation avoids any numerical instability for the models with a discontinuity at null 

velocity, as in the case of the Coulomb model and the Coulomb with viscous approach. 

Since these models have a constant Coulomb friction force or lower for velocities close 
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to zero, the block exhibits a spring-like behavior with a frequency equal to 1/2π Sk m . 

From the analysis of Figure 3.20, it can be observed that the results corresponding to 

Coulomb with viscous friction show a distinct behavior since the viscosity introduces a 

damping effect in the block oscillations. 

(a)

(b)

(c) 

Figure 3.22 - Results for dynamic models. 

For the static models with stiction, the differences are more evident. Both simula-
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tions with Coulomb with stiction and Stribeck friction present numerical instability can 

be observed in the friction force plot on Figure 3.21. This occurs due to the changes in 

the velocity direction. The Coulomb model with stiction is capable of reaching the static 

friction only at the first peak, and because of the initial velocity, it does not stick again. 

Karnopp and Awrejcewicz models have similar responses and present well-defined stick 

and slip phases. As the model with Stribeck friction is the only one with viscous friction 

component, it has faster cycles comparing with the other approaches. 

Analyzing the dynamic models, it is possible to observe that Dahl’s model is the 

only one that does not capture the stick-slip phenomenon. From Figure 3.22, the re-

maining models can be divided into two groups, the first includes LuGre, Elasto-Plastic 

and Gonthier, and the second one includes Reset Integrator and Liang. The difference in 

the dynamic corresponding to these models behavior is caused by presence of a viscous 

component in the first set of models. 

 

Figure 3.23- Dynamic models behavior: friction force versus displacement. 

Figures 3.23 and 3.24 show the plots of the friction force versus displacement and 

friction force versus relative velocity for the dynamic friction approaches. Comparing 
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these models with Rabinowicz’s work (1951), it can be stated that LuGre, Elasto-Plastic 

and Gonthier’s present the friction force as a function of displacement with a similar 

shape. During the pre-sliding displacement phase, the slope of the friction force is di-

rectly related to the stiffness coefficient of each model (see Figure 3.23). In contrast 

with the static models, the dynamic approaches do not change the force direction with 

the change of velocity direction, as can be observed in Figure 3.24. The Gonthier, Elas-

to-Plastic, and LuGre (to some extent) seem increase the friction force before sticking. 

In turn, the Liang’s model shows more instability in velocity, before reaching the stick-

ing phase. From the analysis of Figure 3.24, it is also possible to state that LuGre and 

Elasto-Plastic can describe the frictional lag phenomenon, since both models present a 

higher friction force when the relative velocity is increasing. 

 

Figure 3.24 - Dynamic models behavior: friction force versus relative velocity. 

3.5 Summary and Conclusions 

In this chapter, the main considerations about friction modelling in multibody sys-

tems were covered. The most relevant issues about friction were addressed in order to 

understand the characteristics that the friction models should capture. Stick-slip motion, 
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viscous friction, frictional lag, pre-sliding displacement and break-away force are the 

discussed topics. 

A comparative study of some of the most relevant friction force models for multi-

body systems dynamics has been presented in this work. In the sequel of this process, 

the main characteristics, advantages and limitations of the static and dynamic friction 

force models were also analyzed. On the one hand, the static friction models are, in gen-

eral, simpler and describe the steady-state behavior of the friction force. Most of them 

show incapacity to correctly capture the frictional effects. Several static models present 

a discontinuity of friction force at zero velocity, this difficulty provokes numerical in-

stability during a dynamic simulation. On the other hand, the dynamic models use extra 

state variables to be able to take into account more phenomena. These approaches tend 

to be more complex and require, generally, the determination of more parameters. 

To perform a comparative study of the dynamic response of the discussed models, 

a 1-DOF spring-mass model was utilized as example of application. This example 

showed that the most significant difference between friction models is the ability to cap-

ture the stick-slip motion. However, the viscous friction, the frictional lag or the pre-

sliding displacement also have a relevant impact in the system dynamics. 

The choice of a friction model to implement in a dynamic simulation is not an 

easy assignment. Nevertheless, in order to have more complex friction models, it is, in 

general, necessary to introduce larger number of parameters to fully define the physics 

of the friction phenomena. These parameters are usually determined experimentally 

which can become a weakness for those models. This study illustrates that in order to 

correctly model, analyze and simulate frictional behavior in multibody systems, an ap-

propriate friction model must be adopted. 
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“Do not go where the path may lead, 

go instead where there is no path and leave a trail.” 

Ralph Waldo Emerson 

4. DEMONSTRATIVE EXAMPLES OF APPLICATION 

The modelling of the frictional contacts in multibody systems dynamics can be 

used in different contexts. The main aspects about spatial multibody systems formula-

tion and friction modelling approaches were considered in Chapters Two and Three, 

respectively. Thus, the requirements to conduct a more complex analysis of the impact 

of friction implementation are gathered. The example presented in Chapter Three was a 

quite simple mechanical system, mainly friction dependent, which was subjected to a 

one-dimensional analysis. In that sense, this chapter provide a more sophisticated study 

of frictional effects in the motion of mechanical systems. 

Two main examples will be presented in the following sections, a smooth and a 

non-smooth cases are modelled. The first consists in the inclusion of friction modelling 

in a kinematic translational joint. This example represents a smooth motion, since the 

contact of between the slider and the guide is a continuous phenomenon. The second 

example involves modelling the behavior of a spatial revolute joint with clearance, 

which introduces impacts in the system and, therefore, chaotic motion. For these exam-

ples, some of the previously presented friction models are employed, and their influence 

on the response of the system is studied. 

4.1 Translational Joints with Friction 

In this section, it is presented a study of the influence of friction modelling in a 

kinematic translational joint. For this approach, it is not considered any clearance and 
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the generated forces result from continuous contact. 

The modelling of friction in mechanism joints has been studied during the past 

years. Kale and Rampalli (2011) investigated the application of LuGre friction model to 

revolute, cylindrical and spherical joints. For the specific case of translational joints, Qi 

et al. (2011) and Zhuang and Wang (2013; 2014) presented methodologies based on 

nonsmooth mechanics. These approaches considers a very small clearance size, and 

they use LCP formulation to detect and evaluate the nonsmooth events. 

Since the kinematic constraints associated to the translational joint continue to be 

included in the equations of motion, the reaction forces are only calculated during the 

process of solving the problem dynamics. Bearing in mind that the friction force is a 

function of the joints reactions, there are two alternatives of introducing friction model-

ling in a multibody dynamics simulation with Lagrange multipliers technique. 

The first technique consists in applying the friction forces as external generalized 

forces using an iterative procedure. For this methodology, the equations of motion, giv-

en by Eq. (2.46), can be rewritten as 

  F

1

T

i

i

    
    

    

v g f λM D

λ γD 0
 (4.1) 

where fF is the vector with the generalized friction forces which is calculate recurring to 

the reaction forces obtained in the previous iteration. For the initial approximation, it 

can be considered a null vector. This process ends when the difference between two 

consecutive vectors of reaction forces are lower than a defined tolerance, ε, i.e., the fol-

lowing condition should be fulfilled 

 
1i i  λ λ  (4.2) 

This methodology requires to solve Eq. (4.1) several times in each time step of the 

integration process which can become computationally inefficient. Therefore, it is not 

adopted for this work. 

The second approach is to include the calculation of the friction forces implicitly 

in the equations of motion. Most of the friction models considers that friction force is 

proportional to the magnitude of the normal load, therefore, Eq. (2.44) can be adapted as 

 T  Mv D λ F λ g  (4.3) 

where F is a matrix that establishes the relation of proportionality between the reaction 

and friction forces. However, Eq. (4.3) cannot be employed, so it can should be rewrit-

ten in the following form 
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   diag sgnT  Mv D λ F λ λ g  (4.4) 

where diag(v) returns a square diagonal matrix with the elements of vector v on the 

main diagonal. 

In order to solve the system dynamics with Eq. (4.4), it is necessary to evaluate 

the sign of the reaction forces which is unknown. To work around this problem, it is 

usual to consider the sign of the reaction forces equal to the previous time step. This 

technique has the inconvenient of using incorrect values in the steps that the reaction 

forces change their sign. However, in these situations, the reaction forces are close to 

zero and, since the friction forces are proportional to them, these erroneous friction 

forces do not have influence on the system due their low magnitude. 

Thus, the matrix F can be rectified as 

   1' diag sgn iF F λ  (4.5) 

Considering Eq. (4.4) and Eq. (4.5), the equations of motion for constrained 

multibody systems with frictional constraints can be stated as 

 'T     
    

    

v gM D F

λ γD 0
 (4.6) 

It should be noticed that, for the modelling of viscous friction forces, those com-

ponents must be introduced in the equations of motion as external generalized forces, 

since they do not depend of the normal contact forces. 

In order to correctly model the forces acting on the slider, it is necessary to know 

about its geometry. For an ideal joint, the dimensions of the slider are expendable, 

while, for this case, they must be defined since the friction force can create moment 

over the slider.  

 

(a) (b) 

Figure 4.1 - Distinction of friction force acting on (a) an inner slider and (b) an outer slider. 

λ

λ

fF

fF
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Another important aspect consists in taking into account the type of the slider, it 

can be an inner or outer slider. That will influence the direction of the moment generat-

ed by the friction force. Figure 4.1 represents two planar sliders in which the reaction 

force acts in the upward direction. In the figure, it is demonstrated that, although the 

friction force has the same magnitude, its line of action is different and, therefore, the 

generated moment acts in the opposite direction. 

A spatial slider-crank mechanism is employed to demonstrate the effects of fric-

tion modelling in a translational joint, the system is represented in Figure 4.2. This 

mechanism was also considered in Chapter 2, and its dimensional and inertial proper-

ties, as well as the initial conditions can be found in Table 2.1 and Table 2.2, respective-

ly. For these simulations, it was considered an inner slider with a shape of a cube with 

side length of 0.01 m.  

 

Figure 4.2 - Spatial slider-crank mechanism. 

The dynamic simulation of this mechanical system was carried for the frictionless 

case, and with four of the most utilized friction models. Two static and two dynamic 

models were considered, namely Coulomb (1785), Stribeck (Bo and Pavelescu, 1982), 

Dahl (1968), and LuGre (Canudas de Wit et al., 1995) approaches. The parameters for 

the friction force models are displayed in Table 4.1. The final time of the simulations is 

5 s, the integration process was held with a fourth-order Runge-Kutta integrator with a 

z

yx
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time step equal to 5×10-5 s.  

Table 4.1 - Parameters considered for the different friction models. 

Parameter Symbol Value 

Static coefficient of friction μs 0.2 

Kinetic coefficient of friction μk 0.1 

Stribeck velocity vs 0.001 m/s 

Geometry factor δσ 2 

Stiffness coefficient σ0 105 N/m 

Damping coefficient σ1 
510  Ns/m 

Coefficient of viscosity σ2 0 Ns/m 

 

 

(a) (b) 

 

(c) (d) 

Figure 4.3 - Comparison of the motion of the slider for different friction models: (a) position; (b) veloci-

ty; (c) acceleration; (d) detail of the acceleration. 

In Figure 4.3, it is presented the motion of the slider for the different friction 

models, namely the plots for the position, velocity and acceleration are displayed. From 

the analysis of position and velocity, it can be stated that the inclusion of friction model-
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ling introduces an important dissipative effect, regardless of the friction approach. Fig-

ure 4.3c shows the acceleration of the slider which demonstrates more significant dif-

ferences between the friction models, especially when the velocity changes direction. 

For that reason, Figure 4.3d shows in detail the slider acceleration during the first time 

that the velocity changes its direction. In this plot, the static models exhibit a discontin-

uous behavior, while the dynamic models clearly have a more smooth transition. When 

compared with Stribeck approach, the LuGre model also presents the advantage of de-

scribing the frictional lag behavior, since it has a much higher friction force when the 

velocity is increasing than for its decreasing. 

This example allows to identify the impact of friction modelling in the dynamic 

analysis of a multibody systems, as well as the main differences between some of the 

most common friction force models. 

4.2 Spatial Revolute Joint with Axial and Radial Clearance 

A revolute joint is constituted essentially by two elements, a cylindrical case, the 

bearing, and a cylindrical pin, the journal, as it is illustrated in Figure 4.4. A real joint 

does not behave smoothly as the kinematic constraints evidence. In contrast, due to 

manufacturing tolerances, wear or surface deformations, the presence of clearance leads 

to the occurrence of impacts which highly change the dynamics of the system. 

 

Figure 4.4 - Typical configuration of a spatial revolute joint with clearance. 

In chapter two, it was introduced the basic concepts and formulation for spatial 

multibody dynamics, and the equations of motion were derived for constrained multi-

body systems. Before introducing the kinematics and the dynamics of a revolute joint 

with clearance, the kinematic constraint equations for a perfect joint should be high-

Bearing

Journal
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lighted (Nikravesh, 1988). Bearing that in mind, Figure 4.5 must be considered. From 

now on, the subscripts i and j refer to the bearing and the journal, respectively. 

 

Figure 4.5 - General configuration of a spatial revolute joint. 

In order to impose the constraints of a revolute joint between bodies i and j, an ar-

bitrary point P belonging to the joint axis must have constant coordinates in the local 

coordinate systems. This restriction is given by a vector loop, and holds three constraint 

equations which are expressed by Eq. (4.7). In Figure 4.5, there are also represented two 

unit vector which define the joint axis for the bearing and the journal, respectively, ai 

and aj. Those two vectors must remain parallel for a perfect revolute joint. Thus, two 

additional constraints must be considered which are given by Eq. (4.8), resulting in five 

kinematic constraints. 

 (3) P P

i i j j    Φ r s s r 0  (4.7) 

 (2)

i j Φ a a 0  (4.8) 

The modelling of imperfect joints is a widely studied field in which the revolute 

joints have paramount importance (Dubowsky and Freudenstein, 1971; Rhee and Akay, 

1996; Flores, 2004). Most of the approaches consist in considering the joints as collid-
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ing bodies, and they use different force models to evaluate the contact forces. Thus, in 

order to compare the validity of several force models and their effect in the dynamic 

response of a multibody system, a few studies were conducted by Schwab et al. (2002), 

Flores and Ambrósio (2004), Flores et al. (2006a) and Koshy et al. (2013). Other meth-

odologies can be implemented, Brutti et al. (2011) modelled the contact using finite 

element analysis. The researchers can formulate the clearance joint for planar or spatial 

multibody systems. The majority of the papers are on the modelling of planar revolute 

joints (Tian et al., 2010; Flores, 2010; Flores et al., 2011c; Muvengei et al, 2012), this 

type of joints present more simplicity in the implementation due to the fewer contact 

scenarios, and easier contact detection. Although, most of mechanical system have spa-

tial behavior which led to the implementation of several models for three-dimensional 

joints (Flores et al., 2006b; Tian et al.; 2011; Brutti et al., 2011; Yang et al., 2015). 

This work aims to present a comprehensive model of spatial revolute joint, and 

use it for the study of the influence of friction force models in the dynamic response of a 

mechanical system. 

Most of the referred bibliography only takes into account the radial clearance of 

the joint. This assumption is valid for planar motion since there is no movement in the 

axial direction. However, a real joint also presents axial clearance (see Figure 4.6) 

which becomes more important for three dimensional joints. These two types of clear-

ance results from the differences between the dimensions of the bearing and the journal, 

and they can be calculated as follows 

 
r i jc R R   (4.9) 

 
a i jc L L   (4.10) 

where cr and ca denote the radial and axial clearance, respectively, Ri and Rj are the ra-

dii, and Li and Lj are the lengths of the bodies. 

This methodology consists in replacing the kinematic constraints of Eq. (4.7) and 

Eq. (4.8) by forces constraints. These force elements are introduced as external general-

ized forces, and they are evaluated as a function of the contact cases. When there is no 

contact, the joint does not establish any force element. If any contact scenario occurs, 

the contact points and the local deformations should be identified in pursuance of the 

determination of the generated loads. Thus, to solve the contact dynamics, two main 

phases have to be considered, (i) the contact detection, and (ii) the determination of the 

produced forces. 
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Figure 4.6 - General configuration of a spatial revolute joint with clearance. 

4.2.1 Contact Detection 

The modelling of spatial revolute joint with radial and axial clearances involves 

the awareness for several contact scenarios. Hence, there were identified thirteen differ-

ent types of motion which are represented in Figure 4.7, and can be following enumer-

ated: 

1. No contact; 

2. Contact in radial line (aligned joint); 

3. Contact in axial surface (aligned joint); 

4. Contact in radial line and axial surface (aligned joint); 

5. Contact in one point in the lateral wall; 

6. Contact in one point in the top wall; 

7. Contact in two points in the lateral wall; 

8. Contact in two points in the two top walls; 

9. Contact in two points in the lateral wall and in the top wall (same end); 

10. Contact in two points in the lateral wall and in the top wall (different end); 

11. Contact in three points, two in the lateral wall, and one in the top wall; 

12. Contact in three points, two in the top walls, and one in the lateral wall; 
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13. Contact in four points, two in the lateral wall and two in the top walls. 

It should be stated that some of the presented contact cases can be impractical, 

since the possibility of some contact scenarios are directly related to the dimensions of 

the journal and bearing. The proportions of the bodies introduce some restrictions which 

do not allow the joint to have some particular configurations. 

 

  

  

  

(1) (2)

(3) (4)

(5) (6)
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Figure 4.7 - Representation of the different contact scenarios. 

In order to promote an easier contact detection, there are considered two auxiliary 

(7) (8)

(9) (10)

(11) (12)

(13)
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points in each element which are located at the centers of both ends, as it shown in Fig-

ure 4.6. The two extremities must be differentiated, therefore, they will be named end A 

and end B. The position of those points can be determined by the following expressions 

 A P
,  ( = , )

2
k k k

k

L
k i j r r a  (4.11) 

 B P
,  ( = , )

2
k k k

k

L
k i j r r a  (4.12) 

The previously presented contact scenarios can be divided in two main groups, the 

cases where the journal and the bearing are aligned (ii-iv) and misaligned (v-xiii). In 

order to verify the alignment, the parallelism of the unit vectors of each element should 

be checked. Therefore, the following condition must be fulfilled 

 
i j a a 0  (4.13) 

Bearing that in mind, Figure 4.8 represents a situation where the elements are 

aligned, and axial and radial contacts occur. These two contacts establish a superficial 

and linear contact zones, respectively, for the axial and radial interaction. Thus, the tar-

get is to determine the contact points in the center of each contact zone, which can be 

used to represent the whole contact and, where the forces can be applied. 

 

Figure 4.8 - Configuration of a spatial revolute joint aligned with axial and radial contact. 

The contact points are denoted by C, with the subscripts i and j for bearing or 

journal, respectively, and the superscripts a and r represent the type of contact, axial and 

(i)

(j)
Pi

ai

Pj

aj

Ci
r

Cj
r

Bj≡ Cj
B,a

Ci
B,a

Bi

Ai

Aj



4. DEMONSTRATIVE EXAMPLES OF APPLICATION 95 

radial. For the axial contact, the superscript also includes the extremity where it occurs. 

For instance, Ci
B,a is the contact point of the bearing for axial contact in end B. 

Regarding the radial contact, the center point of the contact line is at half of the 

length of the journal, as it is illustrated in Figure 4.8. The normal unit vector, nv, can be 

calculated as follows 

    

   

P PP P

v
P PP P

j ji i

j ji i

T

i i

T

i i

  


  

r r r r a a
n

r r r r a a

 (4.14) 

Thus, the contact points are determined with the following expressions 

  PP P

v

r
ji i i

T
C

i i iR   r r r r a a n  (4.15) 

 P

v

r
j jC

jR r r n  (4.16) 

In order to analyze the axial contact, it will be considered the situation represented 

in Figure 4.8 which exhibits contact in end B, similar calculations are performed for the 

other extremity. In this case, the contact area is a circle and the center point is the center 

of the base of the journal as it is identified in Figure 4.8. Therefore, the contact points 

are given by 

  
B, B BBa

j ji i

T
C

i i  r r r r a a  (4.17) 

 B, Ba
j jC

r r  (4.18) 

When the condition specified by Eq. (4.13) is not verified, the alignment of the 

bearing and journal is not achieved. Thus, the contact detection turns into a more com-

plex assignment. In that sense, four types of contact have to be checked, namely axial 

and radial, in both ends. The combination of these contacts results in the different sce-

narios previously presented (see Figure 4.7), in which they are point contacts. 

A generic contact configuration is represented in Figure 4.9, where there is axial 

contact in end B and radial contact in end B. Again, it will be exemplified the calcula-

tion of the contact points for the presented example. 

Taking into account the axial contact detection, it can be simplified as that inter-

section of a circumference (base of the journal) and a plane (base of the bearing) which 

can be defined, respectively, as 

 2
B B2j jT T

j j jR   x r a x a r  (4.19) 

 BiT T

i ia x a r  (4.20) 
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Figure 4.9 - Configuration of a spatial revolute joint misaligned with axial and radial contact. 

Both Eq. (4.19) and Eq. (4.20) can be solved together in order to find the intersec-

tion points analytically. The solution can hold the empty set, one or two solutions, re-

spectively, no contact, tangent contact or penetration. If the solution is given by two 

points, I1 and I2, their middle point and the center of the base of the journal form a vec-

tor, that define the direction of the contact point, as 
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 (4.21) 

Thus, the contact point of the bearing can be given as 

 B, B

d

a
j jC

jR r r n  (4.22) 

where the sign is chosen after the evaluation of the position of each point, i.e., the cor-

rect sign returns a point outside of the bearing. Hence, the contact point in the journal is 

calculated with the following expression 

  
B, B,B, B

a aa
j ji i

T
C CC

i i  r r r r a a  (4.23) 

In the case of radial contact, the problem can be converted into the intersection of 

a circumference (base of the journal) and a cylindrical surface (lateral wall of the bear-

ing) which can be defined, respectively, as 
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 2
A A2j jT T

j j jR   x r a x a r  (4.24) 

  
2

P 2i

i iR a x r  (4.25) 

Contrary to the previous case, in this situation, the intersection points cannot be 

calculated analytically, since it involves the resolution of a nonlinear system. Thus, the 

intersection points have to be determined recurring to an iterative procedure, such the 

Newton-Raphson technique. This intersection can have from zero until four solutions, 

although, considering that the angle between the bearing and the journal is small, the 

maximum number of solutions is two. The method converges easily, since, at least, one 

solution exists and the initial approximation does not hold any singular position as a 

point equidistant of two solutions. When penetration occurs, similarly to the axial con-

tact, the intersection is given by two points, I1 and I2, and the contact point of the jour-

nal is calculated in the same way as Eq. (4.21) and Eq. (4.22), that is 

 
 

 

1 2

1 2

AI I

d
AI I

1

2
1

2

j

j

 



 

r r r

n

r r r

 (4.26) 

 A, A

d

r
j jC

jR r r n  (4.27) 

As before, the correct sign is the one that corresponds to a position outside of the 

bearing. The normal unit vector can be expressed as 

    

   

A, A,

A, A,

C CP P

v
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r r
j ji i
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  
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  

r r r r a a
n

r r r r a a

 (4.28) 

With this vector, the contact point of the bearing is given by 

  
A,A, P P

v

rr
ji i i

T
CC

i i iR   r r r r a a n  (4.29) 

It should be reminded that the contact points were determined for axial contact in 

end B and radial contact in end A, as it is exemplified in Figure 4.9. For contacts in the 

opposite extremities, analogous equations should be employed. 

4.2.2 Contact Kinematics 

At this point, it was defined the methodology for the evaluation of the contact 

points for all types of contacts. Therefore, it is possible characterize the contact kine-

matics for each collision as function of the contact points in the bearing and journal, 



 

98 FRICTIONAL CONTACTS IN MULTIBODY DYNAMICS 

respectively, Ci and Cj. 

The normal unit vector of the contact was already defined for some cases, but it 

can be, generically, given as 

  
 

C C

v C C

j i

j i






r r
n

r r
 (4.30) 

The penetration depth, δ, can be expressed by 

  C Cj i  r r  (4.31) 

Moreover, the penetration velocity,  , can be determined as it follows 

  C C

v
j i

T

  r r n  (4.32) 

where Cir  and 
C jr  are the linear velocities of the bearing and journal in the contact 

points which can be calculated as 

 C C
,  ( = , )k k

k k k k i j r r ω s  (4.33) 

Finally, the relative tangential velocity can be obtained recurring to the following 

expression 

    C CC C

T v v
j ji i

T

   v r r r r n n  (4.34) 

4.2.3 Contact Force Evaluation 

For modelling revolute joints with clearance, it is of paramount importance to se-

lect a suitable contact force model. The contact model should properly define the forces 

acting in the journal and bearing during the contact-impact events. 

In Section 1.2.2, it was provided a general overview of the most significant meth-

odologies to deal with contact problems. Thus, for this application, it will be employed 

a model based on Hertzian theory, which, in its genesis, considered elastic impacts. 

Hunt and Crossley (1975) proposed a methodology to take into account the energy dis-

sipation through the inclusion of a damping term, and it can be expressed in a general 

form as  

 N

n nF K     (4.35) 

where K is the contact stiffness, χ is the hysteresis damping factor, and n is an exponent 

that defines the degree of nonlinearity. This approach was the basis for the development 

of other contact force models, as the work of Lankarani and Nikravesh (1990) which is 
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here utilized. In this model, n is 3/2, and the hysteresis damping factor is given by 

 
 2

e

( )

3 1

4

c K


 


  (4.36) 

where ce is the coefficient of restitution, and ( )   is the initial impact velocity. 

Introducing Eq. (4.36) into Eq. (4.35), the expression to determine the contact 

force can be rewritten in the following form 
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 (4.37) 

This contact model exhibits a good numerical stability for low impact velocities, 

and shows an accurate damping effect for impacts with high coefficient of restitution. 

Normally, the contact stiffness can be calculated as a function of the geometry and ma-

terial properties. 

As it was aforementioned, this approach consists in utilization of force con-

straints. Thus, the contact forces are added to the equations of motion of a constrained 

multibody system, Eq. (2.44), as external forces. According to Eq. (2.23), the general-

ized external forces in each body are divided in forces and moments, which, in this case, 

can be calculated for the body that contains the bearing as 

 
N vi Ff n  (4.38) 

 C

v N
i

i i Fn s n  (4.39) 

and, for the body of the journal as 

 
N vj F f n  (4.40) 

 C

v N
j

j j F n s n  (4.41) 

These forces replace the effect of a clearance joint when a frictionless contact is 

taking into account. 

4.2.4 Simulations and Results 

In order to implement this methodology to simulate the behavior of a revolute 

joint with clearance, it is considered the same example as in the previous section, a spa-

tial slider-crank mechanism represented in Figure 4.2. The revolute joint with clearance 

is located at the connection between the crank and the ground. The bearing is placed in 

the crank, while the journal belongs to the ground. 

For the frictionless case, three different simulations were performed in order to 
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understand the influence of the clearance size in the dynamic response of the system. In 

Table 4.2, the dimensions of the journal and bearing are displayed together with the 

resulting axial and radial clearances. The simulation 1 will be considered the standard 

case, and the remaining situations consist on variations of axial and radial clearance 

size, respectively, simulations 2 and 3. 

Table 4.2 – Geometric parameters of the joint for each simulation 

Simulation Ri Rj cr Li Lj ca 

1 0.01 0.0095 0.0005 0.02 0.019 0.001 

2 0.01 0.0095 0.0005 0.02 0.0195 0.0005 

3 0.01 0.00975 0.00025 0.02 0.019 0.001 

 

The general parameters that are common for all the simulations can be found in 

Table 4.3. For sake of simplicity, the contact properties were assumed to be equal for 

the different types of collisions. These simulations were carried with a fourth-order 

Runge-Kutta integrator, and the time step had to be significantly decreased due to the 

importance of an accurate detection of the beginning of the contacts. 

Table 4.3 - General parameters for simulation 

Parameter Symbol Value Parameter Value 

Contact stiffness K 6.71×1010 N/m3/2 Time step 5×10-7 s 

Coefficient of restitution ce 0.9 Simulation time 1 s 

 

This example shares the dimensional and inertial properties, and the initial condi-

tion with the example presented in Section 2.4, in which this information is displayed in 

Tables 2.1 and 2.2, respectively. 

Figure 4.10 shows the position, velocity and acceleration of the slider for simula-

tion 1. The results are compared with the situation of an ideal joint. The motion of the 

slider is highly affected by the impacts of a clearance joints, which results in peaks of 

acceleration displayed in Figure 4.10c. These peaks produce sudden changes in the 

mechanism motion. From the position plot, it is possible to conclude that the energy 

loss does not allow the mechanism to reach a full revolution of the crank, since the slid-

er does not achieve its minimum position. The phase portrait presented in Figure 4.11 

indicates that the global motion of the slider-crank is nonlinear. This phenomenon is 

more evident in Figure 4.11b due the dense overlapping lines. 
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(a) (b) 

 

(c) 

Figure 4.10 - Motion of the slider for simulation 1: (a) position; (b) velocity; (c) acceleration. 

 

(a) (b) 

Figure 4.11 – Phase portraits for simulation 1: (a) Position-Velocity; (b) Velocity-Acceleration. 

The same analysis was performed for simulation 2, which considers a smaller axi-

al clearance size (half of the preceding experiment). The motion of the slider is dis-

played in Figure 4.12.  In this case, the mechanism shows a slightly smoother motion, 

the peaks of the acceleration achieve lower values compared with the previous case. For 
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this situation, the mechanism is able to perform a full crank revolution which indicates 

less energy loss. The phase portraits suggest a more stable motion, mainly Figure 4.13a, 

where the similarities with the results for ideal joint are more evident. 

 

(a) (b) 

 

(c) 

Figure 4.12 - Motion of the slider for simulation 2: (a) position; (b) velocity; (c) acceleration. 

 

(a) (b) 

Figure 4.13 – Phase portraits for simulation 2: (a) Position-Velocity; (b) Velocity-Acceleration. 
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(a) (b) 

 

(c) 

Figure 4.14 - Motion of the slider for simulation 3: (a) position; (b) velocity; (c) acceleration. 

 

(a) (b) 

Figure 4.15 – Phase portraits for simulation 3: (a) Position-Velocity; (b) Velocity-Acceleration. 

In simulation 3, the geometric properties are identical to simulation 1, except for 

the radius of the journal, which, in this situation, was increased in order to reduce by 

half the radial clearance. The resultant motion of the slider is represented in Figure 4.14. 

The results shows that the reduction of the clearance has a significant impact in the dy-
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namic response of the mechanism. As in the previous case, the reduction in clearance 

caused the decrease of the slider acceleration peaks. Although, this time, the differences 

were not so considerable. The mechanism also presents a nonlinear behavior, as it is 

shown by Figure 4.15. 

 

Figure 4.16 - Comparison of the variation of mechanical energy for the three simulations. 

The variation of the mechanical energy of the whole mechanism is presented in 

Figure 4.16. The results exhibit the energy loss for each simulation. The simulation 1, 

which considers both axial and radial clearance sizes larger, has the highest energy dis-

sipation. This phenomenon is explained by higher impact velocities between the bearing 

and journal. The axial and radial clearance sizes were halved in simulations 2 and 3, 

respectively, and simulation 2 presents a lower energy dissipation, which seems to sug-

gest that the axial clearance have more influence in energy loss for this mechanism. 

4.3 Spatial Revolute Joint with Clearance and Friction 

Similarly to the previous section, a revolute joint with clearance is considered. 

The joints description and the methodology for contact detection closely follows the 

steps already presented. The main difference is the employment of some of the friction 

models described in Chapter 3 rather than considering frictionless contacts. 

In order to evaluate the friction force, it is necessary to introduce the relative tan-

gential velocity and the normal contact force, which are given by Eq. (4.34) and Eq. 

(4.37), respectively. The friction force, fF, should be included in the generalized external 

forces vector. Thus, Eq. (4.38) and Eq. (4.39) are rewritten as 
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N v Fi F f n f  (4.42) 

 C C

v N F
i i

i i iF n s n s f  (4.43) 

and, Eq. (4.40) and Eq. (4.41) can be replaced by 

 
N v Fj F  f n f  (4.44) 

 C C

v N F
j j

j j jF  n s n s f  (4.45) 

For this study, the same example will be considered, and the geometric properties 

of the imperfect joint follows simulation 1 of the previous section (see Table 4.2). From 

that case, it will be analyzed the influence of four friction force models. Bearing that in 

mind, two static models, Coulomb friction (1785) and Stribeck (Bo and Pavelescu, 

1982), and two dynamic models, Dahl (1968) and LuGre (Canudas de Wit et al., 1995), 

will be considered. 

The parameters necessary for the correct implementation of the referred friction 

models are established in Table 4.4. The remaining parameters of the simulation are 

equal to the preceding section. 

Table 4.4 - Parameters considered for the different friction models. 

Parameter Symbol Value 

Static coefficient of friction μs 0.2 

Kinetic coefficient of friction μk 0.1 

Stribeck velocity vs 0.001 m/s 

Geometry factor δσ 2 

Stiffness coefficient σ0 105 N/m 

Damping coefficient σ1 
510  Ns/m 

Coefficient of viscosity σ2 0 Ns/m 

 

Coulomb’s law is the most simple friction model, although, its implementation 

has a paramount influence in the resultant motion of the slider-crank when compared 

with frictionless behavior. Figure 4.17 delivers the position, velocity and acceleration of 

the slider, which suggest a much higher energy dissipation, since the slider has more 

cycles with less amplitude. The phase portrait represented by Figure 4.18a also shows 

this phenomenon. The acceleration peaks seems to decrease with the introduction of this 

friction model.  

The model with the Stribeck curve is equal to Coulomb friction, except when the 

relative tangential velocity is lower than the Stribeck velocity. Thus, the main differ-
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ences occur when the impact is almost frontal. From the analysis of the position and 

velocity plots in Figure 4.19, it has a similar behavior of the Coulomb friction. In the 

acceleration plot, some differences are can be evidenced. The phase portrait show a 

nonlinear behavior as expected. 

 

(a) (b) 

 

(c) 

Figure 4.17 - Motion of the slider for Coulomb friction: (a) position; (b) velocity; (c) acceleration. 

 

(a) (b) 

Figure 4.18 – Phase portraits for Coulomb friction: (a) Position-Velocity; (b) Velocity-Acceleration. 
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(a) (b) 

 

(c) 

Figure 4.19 - Motion of the slider for Stribeck model: (a) position; (b) velocity; (c) acceleration. 

 

(a) (b) 

Figure 4.20 – Phase portraits for Stribeck model: (a) Position-Velocity; (b) Velocity-Acceleration. 

For the Dahl model, it is expected to have a performance similar to Coulomb’s 

law with the exception of the beginning of the contact and in changes of the velocity 

direction. In these two situation, this models takes into account the pre-sliding dis-

placement which consider a progressive increase of friction force. The outcome of the 
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mechanism in terms of the slider motion presents some differences to the Coulomb and 

Stribeck approaches, as it is represented in Figure 4.21. This model seems to create 

more oscillations on the slider acceleration when it is moving forward, as it shows the 

nonlinear behavior Figure 4.22b. 

 

(a) (b) 

 

(c) 

Figure 4.21 - Motion of the slider for Dahl model: (a) position; (b) velocity; (c) acceleration. 

 

(a) (b) 

Figure 4.22 – Phase portraits for Dahl model: (a) Position-Velocity; (b) Velocity-Acceleration. 



4. DEMONSTRATIVE EXAMPLES OF APPLICATION 109 

This problem was also modelled by LuGre friction model, which is clearly the model 

that presents the most chaotic motion. For this case, the acceleration reaches higher val-

ues and has more significant peaks (see Figure 4.23c). Figure 4.23a displays the slider 

position which indicates that in this simulation the amplitude if its motion is even lower. 

 

(a) (b) 

 

(c) 

Figure 4.23 - Motion of the slider for LuGre model: (a) position; (b) velocity; (c) acceleration. 

 

(a) (b) 

Figure 4.24 – Phase portraits for LuGre model: (a) Position-Velocity; (b) Velocity-Acceleration. 
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The energy dissipation by each model is compared with the frictionless case, and 

the results are displayed in Figure 4.25 which contains the variation of mechanical ener-

gy of the system. From the analysis of the plot, it is possible to conclude that consider-

ing friction itself, regardless of the model, introduces a large amount of energy dissipa-

tion. The LuGre model presents a higher level of energy loss comparing to the remain-

ing friction approaches. Figure 4.25 also shows that, for a frictionless model, the de-

creasing of mechanical energy only occurs by levels of energy which are result from the 

impacts, while, for frictional contacts, the energy dissipation can also happen in a con-

tinuous process. 

 

Figure 4.25 - Comparison of the variation of mechanical energy for the different friction models. 

4.4 Summary and Conclusions 

In this chapter, it was a performed a general study on the influence of friction im-

plementation in the dynamic analysis of a mechanical systems with tridimensional mo-

tion. For this purpose, two different analyzes were conducted. 

Firstly, the inclusion of friction in a kinematic translational joint was investigated. 

This implementation requires special attention in the construction of the equations of 

motion since the friction forces are calculated implicitly. This analysis was carried with 

the dynamic study of spatial slider-crank mechanism. The results showed that friction 

introduces a high energy dissipation, which have a huge impact in the velocity of the 

bodies. The friction models present more significant differences at the accelerations 

level, mainly when there are changes on the velocity direction. Since the main differ-

ences between friction models happens for small relative velocities, the time integrator 
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and the time step should be carefully chosen in order to be able to capture correctly 

those differences. 

Secondly, a complete methodology for modelling a spatial revolute joint with axi-

al and radial clearance was fully described. The different contact scenarios were identi-

fied and the procedure for the evaluation of the contact points was defined. The evalua-

tion of the normal contact force during the impacts was held by the continuous contact 

force model proposed by Lankarani and Nikravesh (1990). The same mechanism was 

considered for the analysis of frictionless contacts in which the influence of clearance 

sizes were tested. The results show that larger clearance sizes emphasize the chaotic 

motion of the system and increase the energy dissipation. 

The study of spatial revolute joints with clearance was naturally extended to the 

friction modelling. As in the case of the translational joint, the inclusion of friction itself 

provokes a significant increase in the energy dissipation. The models present some dif-

ferences in their motion, and LuGre is the approach that yields the most chaotic motion. 

It should be put in evidence the difficulties that the dynamic friction models have 

in capture some frictional properties, such as pre-sliding displacement or friction lag, 

when in the presence of impact motion. The dynamic models use extra state variables 

which have to be integrated together with the state properties of the system, and if their 

derivatives are not correctly captured, it might result in an inaccurate evaluation of the 

friction forces. The impacts produce rapid changes in the contacting kinematics and, 

therefore, provoke more difficulties to use properly a dynamic model. 

This study provides a better understanding of the impact of some of the static and 

dynamic friction models in the analysis of a multibody systems. 
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“Perfection is not attainable, but if we chase perfection we can catch excellence.” 

Vince Lombardi 

 

5. CONCLUDING REMARKS 

A comprehensive and broad study of the dynamic of multibody systems with fric-

tional contacts has been delivered throughout this report. Several conclusions were 

drawn during the whole document, they will summarized and presented in following 

paragraphs. 

The Newton-Euler formulation to build the equations of motion for constrained 

multibody systems was concisely described in Chapter Two. This formulation uses Car-

tesian coordinates and it was presented in the context of the analysis of spatial motion of 

mechanical systems, therefore, the Euler parameters are used to describe rotational posi-

tions. The assemblage of the equations of motion involves the construction of the mass 

matrix, the definition of the kinematic constraints, and the gathering of the generalized 

external forces. In order to solve the equations of motion, the standard Lagrange multi-

pliers technique can be employed, although it does not ensure the fulfillment of the con-

straints equations at position and velocity levels and does not handle redundant con-

straints. In this sense, several other methodologies to solve the equation of motion have 

been characterized. In the end, a comparative study between the different methodologies 

to eliminate constraints violation was provided. With a small increase in computational 

time, it is possible to apply a technique to keep the violation of the constraints under 

control, although the utilization of the direct correction approach completely vanishes 

the errors in the constraints. 

In Chapter Three, the main phenomena associated with friction were detailed, and 
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a comparative study of several static and dynamic friction models was provided. It was 

also discussed the ability of each approach to capture frictional effects, such as pre-

sliding displacement, stick-slip, Stribeck effect, viscous friction, among others. For sake 

of simplicity, the friction models were divided in two groups, the static and dynamic 

models. On the one hand, the static models are simpler, and only represent the steady-

state behavior of friction force. Some of them also present problems due to having a 

discontinuity at zero velocity. On the other hand, the dynamic models use extra state 

variables which make them able to describe friction phenomena in more details. A sim-

ple multibody system, in which friction has preponderant role, was used to compare 

some of the presented models. For the analysis of results, the friction models were di-

vided into three groups according their behavior, namely static models without stiction, 

static models with stiction and dynamic models. The ability to capture stick-slip motion 

showed to be the friction phenomenon with more impact in dynamic response of a 

multibody system. Although, the remaining characteristics also exhibited their influence 

in the results. It was seen that some of the dynamic models were capable of describing 

correctly most of frictional effects, nevertheless, the more advanced approaches need to 

define a large number of parameters. This becomes a significant limitation, since most 

of the parameters have to be determined experimentally. 

The study of the influence of friction modelling in the dynamic analysis of a 

multibody system is extended in Chapter Four. For that reason, it is considered a more 

complex mechanical system, and two different approaches are utilized. The first exam-

ple involves implementing friction in the continuous contact of kinematic translational 

joint, while the second situation consists in describing a methodology for modelling 

friction for a spatial revolute joint with axial and radial clearance which includes im-

pacts. Both examples were performed only with four different friction models, and the 

implementation of friction introduces a high level of energy dissipation when compared 

with the respective frictionless cases. In the translation joint with friction, the main dif-

ferences between the models occur at the acceleration level, mainly for low relative ve-

locities. In the case of the revolute joint with clearance, the differences are also present-

ed at position and velocity levels. It was seen that the selection of the friction model has 

a significant impact in the system dynamics. The evaluation of friction forces during the 

resolution of equations motion does not introduce considerable extra computational 

time, although, since the main differences of the models are displayed for low veloci-

ties, the time integrator and the time step should be accurately selected to capture those 
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differences. The dynamic models usually require a more refined time step, since they 

use a differential equations to estimate the variation of the bristle deflection. This quan-

tity must be correctly calculated to not generate unrealistic friction forces. 

All the numerical simulations performed in the context of this work were carried 

in MATLAB. Some of them were done by implementing additional features in MU-

BODYNA (MUltiBOdy DYNAmics) which is a MATLAB code developed by Flores 

for the dynamic analysis of multibody systems. The remaining simulations were execut-

ed from dedicated codes. 

One the most important statements of this work is that the dynamic modelling of 

frictional contacts in multibody systems is an open field of investigation and further 

developments will be certainly made in the upcoming years. Bearing that in mind, the 

author suggests some issues that can treated in future works. The establishment of a 

simple experimental procedure for the validation and comparison of any friction force 

model, the study the influence of friction modelling on the wear prediction in mechani-

cal systems, and the employment of some of the previous presented models in the simu-

lation of more complex multibody systems, such as railroad vehicles, are some of the 

proposed topics. 
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“Someone is sitting in the shade today 

because someone planted a tree a long time ago.” 

Warren Buffett 
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