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ABSTRACT 

The bond behavior between Fiber Reinforced Polymers (FRPs) and masonry substrates has been 

the subject of many studies during the last years. Recent accelerated aging tests have shown that 

bond degradation and FRP delamination are likely to occur in FRP-strengthened masonry 

components under hygrothermal conditions. While an investigation on the possible methods to 

improve the durability of these systems is necessary, the applicability of different bond repair 

methods should also be studied. 

This paper aims at investigating the debonding mechanisms after repairing delaminated FRP-

strengthened masonry components. FRP-strengthened brick specimens, after being delaminated, 

are repaired with two different adhesives: a conventional epoxy resin and a highly flexible 

polymer. The latter is used as an innovative adhesive in structural applications. The bond 

behavior in the repaired specimens is investigated by performing single-lap shear bond tests. 

Digital image correlation (DIC) is used for deeper investigation of the surface deformation and 
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strains development. The effectiveness of the repair methods is discussed and compared with the 

strengthened specimens. 

Keywords: Repair; Bond; FRP; Masonry; Digital image correlation; Delamination. 
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1 Introduction 

Most masonry structures and historical heritage are vulnerable to the course of time and 

accidental actions and require structural improvements, using traditional techniques or 

innovative solutions. Several strengthening and intervention techniques have thus been proposed 

and used by researchers and professionals during the last years. The focus has been mostly on 

improvement of the in-plane and out-of-plane resistance of masonry components, while issues 

such as long-term performance, durability and sustainability have only recently received 

attention. 

Externally bonded reinforcement (EBR) of masonry components with composite materials such 

as Fiber Reinforced Polymers (FRPs) has been accepted as an effective strengthening solution. 

Experimental studies have been carried out on the effectiveness of this strengthening technique, 

see e.g. [1–4], while few numerical models have been developed for simulating the complex 

nonlinear behavior of FRP-strengthened masonry elements, see e.g. [5,6].  

It is well known that the effectiveness of EBR strengthening is intrinsically dependent on the 

bond performance between the composite material and the masonry substrate [7]. Several 

researchers have focused during the last years on experimental, numerical and analytical 

modeling of the bond behavior in FRP-strengthened masonry, see e.g. [7–16]. The experimental 

tests have been conducted on different substrates (including stone, brick or masonry prism) 

strengthened with various FRP composites. Valluzzi et al. [12] presented the results of 280 bond 

tests of masonry bricks strengthened with different composite materials (CFRP, BFRP, GFRP 

and SRG). Different test setups (single-lap and double-lap) were used for performing the tests in 

different laboratories. The results show that the failure generally occurred by detachment of a 

thin layer of the brick, although detachment of a thick irregular layer of the brick has also been 
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reported by other researchers, see e.g. [17]. A small difference was reported in [12] between the 

experimental results obtained from the single-lap and double-lap shear tests. Based on the 

experimental results, several bond-slip laws are adopted and proposed by researchers numerical 

modeling purposes, see e.g. [9,13].  

Recent experimental accelerated ageing tests have shown that bond degradation and FRP 

delamination may occur in FRP bonded masonry components due to moisture attack or thermal 

incompatibility between masonry bricks and FRP composites [18,19]. FRP delamination may 

also occur due to poor workmanship or substrate surface preparation. While it is necessary to 

investigate the methods to improve the durability of these systems, the possibility of repairing 

(re-application of) the FRP delaminations and the effectiveness of different repair methods have 

also to be investigated which are the main subjects of this study. It should be noted that the strips 

delamination frequently leads to a considerable removal of the material composing the support 

(which does not remain adherent to the strip). In these cases, filling the removed area with a new 

material can be a suitable solution. The latter is out of the scope of this study and should be 

further investigated. 

This paper aims at investigating the debonding mechanism in FRP-brick specimens at the initial 

state (after strengthening) and after repair (re-application of the FRP composite to the bricks’ 

surface after delamination tests). The specimens are strengthened and repaired with two different 

adhesives: a conventional epoxy resin and a highly flexible polymer (called PS polymer 

hereafter). The effectiveness of each adhesive on the bond performance at both states is 

investigated with the aim of Digital Image Correlation technique (DIC). The PS polymer is used 

as an innovative adhesive for structural strengthening solutions. The use of this polymer for re-

application of FRP sheets to the bricks’ surfaces after delamination tests has been recently 
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reported in [20,21] and this paper is considered as a continuation of the experimental tests started 

by the authors. 

Digital Image Correlation (DIC) technique is used for full-field measurement of deformation and 

strains development by comparing the similarity between image features recorded at different 

mechanical states. This method has been widely used for measurement of displacements in 

different fields of solid mechanics, see e.g. [22–27]. However, use of this technique for 

investigating the interfacial bond behavior has only recently received attention, see e.g. [28–32]. 

This technique has been successfully used in better understanding the strain and stress transfer 

mechanisms, the evaluation of the effective bond length and in the extraction of the bond-slip 

laws. 

 

2 Experimental program and specimens 

The aim of this study is to investigate the effectiveness of repairing (re-application of) the FRP-

strengthened masonry components after delamination. The experimental program includes 

performing single-lap shear bond tests on GFRP-strengthened bricks followed by re-application 

of the delaminated FRP sheets and performing the bond tests on the repaired specimens, see 

Fig.1. The full program includes preparation and testing of 25 specimens in total. The DIC 

technique is used during the debonding tests for full-field monitoring of the strain development 

on the specimens’ surfaces. 

The specimens consist of solid clay bricks with dimensions of 200×100×50 mm
3
 as the substrate 

and a commercial unidirectional glass fiber (MapeWrap G UNI-AX) as the repair/strengthening 

material bonded to the bricks’ surfaces following the wet lay-up procedure. Two different 

adhesives are used for impregnation and bonding the FRP sheets to the substrate to investigate 
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the effect of adhesive properties on the effectiveness of the strengthening/repair. The first 

adhesive is a commercial epoxy resin (MapeWrap 31) previously used by the authors in [30] for 

preparation of FRP-strengthened brick specimens, which has average tensile strength and elastic 

modulus of 53.8 MPa and 2.52 GPa, respectively. The second adhesive is a highly flexible 

polyurethane polymer, called PS hereafter, with average tensile strength and elastic modulus 

(provided by the manufacturer) of 2.2 MPa and 8.0 MPa, respectively [33].  

Mechanical tests are performed on the materials following the applicable test standards and the 

results are presented in Table 1, where CoV indicates the coefficient of variation. The 

compressive strength of the brick is obtained by performing compressive tests on 40 mm high 

brick cubes, in the flatwise direction with a 50 kN Lloyd testing machine according to EN 772-1 

[34]. Tensile strength and elastic modulus of the epoxy resin and GFRP coupon are determined 

from tensile tests performed according to ISO 527-1 [35]. The tests are carried out with an 

Instron testing machine at the displacement rate of 0.01 mm/min. The real mechanical properties 

of the PS polymer (average tensile strength and elastic modulus of 2.87 MPa and 14.8 MPa, 

respectively) are taken from previous experimental results, obtained from tensile tests performed 

according to ISO 527-1 [35], carried out with a Zwick testing machine at the strain rate of 

100 %/min. 

The prepared specimens can be categorized into four groups as illustrated in Fig.1, where S 

indicates a reference Strengthened specimen, R indicates a Repaired strengthened specimen, E 

indicates Epoxy and F indicates the Flexible polymer:  

 SE-specimens (SEa and SEb): bricks strengthened with GFRP using the conventional epoxy 

resin; 

 RE-specimens: delaminated SE-specimens repaired with the conventional epoxy resin; 
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 SF-specimens: bricks strengthened with GFRP using the PS polymer; 

 RF-specimens: delaminated SE-specimens repaired with the PS Polymer. 

For preparation of the strengthened SE- and SF-specimens, the GFRP sheets are bonded to the 

bricks surfaces with the adhesive following the wet lay-up procedure. The bricks are initially 

washed and dried in the oven for about 24 hours at 100°C. After cooling down, a primer layer is 

applied to the original surface of the bricks (without application of any physical surface 

treatment such as grinding or sandblasting) for preparation of the substrate. Finally, the adhesive 

is used for the matrix for the fibers impregnation and for adhesion to the masonry substrate. The 

procedure followed for preparation of the strengthened specimens is illustrated in Fig.2 and 

Fig.3. All the specimens have the same geometrical details consisting of 50 mm FRP widths 

applied along a length of 150 mm on the brick with a 40 mm unbonded part at the loaded end, 

see Fig.4. 

For preparation of the repaired RE- and RF-specimens, the ten SE-specimens are debonded 

under single-lap shear bond tests after curing in the laboratory conditions, see Sec. 3 for the test 

setup and procedure. The failure mode of the SE-specimens was delamination of a thin layer of 

the brick (six specimens) or delamination of a brick bulb at the free end (four specimens) of the 

specimens as shown in Fig.5. As it can be observed in the figure, the specimens are divided into 

two groups (to be repaired with PS polymer and epoxy resin) containing specimens with similar 

fractured surface conditions. The bricks surfaces are carefully cleaned with air compressor 

followed by application of a primer layer on the bricks’ surfaces. The delaminated GFRP sheets 

are then bonded again to the bricks’ surfaces with the conventional epoxy resin (for the RE-

specimens) and with the PS Polymer (for the RF-specimens). 
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Five specimens are prepared for each group resulting in a total of 25 specimens. The test setup 

and procedure for the delamination tests are the same for all the specimens and are explained in 

the next section. 

 

3 Debonding test setup and method 

The test setup for performing the single-lap shear bond tests and DIC measurements was 

previously used by the authors to characterize the bond behavior in GFRP-strengthened brick 

specimens [30].  

A testing apparatus with maximum load capacity of 50 kN is used for conducting the single-lap 

shear bond tests. A rigid supporting frame is used to support the specimens appropriately and 

avoid misalignments in the load application, see Fig.6. The specimens were pulled 

monotonically with the displacement rate of 0.3 mm/min. The tests were driven under 

displacement control using a LVDT placed at the loaded end of the FRP composite. The 

resulting load was measured by means of a load cell. The surface deformation and strains were 

determined with the DIC technique.  

For application of the DIC technique, a speckle pattern, produced by applying a thin coating of 

white matt followed by a spread distribution of black dots using spray paint, is applied to the 

specimens surfaces in the region of interest (ROI). Detailed information on this procedure can be 

found in [30]. The ARAMIS DIC-2D software by GOM [36,37] was used here. The 

measurement system was equipped with an 8-bit Baumer Optronic FWX20 camera coupled with 

a Nikon AF Micro-Nikkor 200mm f/4D IF-EDlens (Table 2).  

In the test set-up, the optical system was positioned facing the surface of the specimen. A laser 

pointer was used to guarantee the correct alignment of the camera with regards to the specimen. 
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The working distance (defined between the target surface and the support of the cameras) was set 

about 1.8 m, leading to a conversion factor of 0.037 mm.pixel
-1

, see Table 2. The aperture of the 

lens was completely open (minimum depth of field) in order to focus the image on the 

specimen’s surface. The lens aperture was then closed to f/11 in order to improve the depth of 

field during testing. The shutter time was set to 5 ms. The light source was finally adjusted in 

order to guarantee an even illumination of the target surface and to avoid over-exposition. 

Regarding the size of the ROI, the optical system (magnification) and the quality of the granulate 

(average speckle size) obtained by the spray paint, a facet size of 15×15 pixels
2
 was chosen in 

this study. The facet step was also set to 15×15 pixels
2
 in order to avoid statistically correlated 

measurements. The in-plane displacements were then numerically differentiated in order to 

determine the strains field. The typical measurements resolution was in the range of 10
-2

 mm and 

0.02-0.04 % for displacement and strain evaluation, respectively. 

 

4 Bond test results 

The envelopes of the experimental force-slip curves are presented in Fig.7. A large increment of 

debonding force can be observed in the repaired specimens in comparison to the original 

strengthened specimens. The initial stiffness of the specimens (initial slope of the force-slip 

curves) is also larger in the repaired specimens. The better bond performance observed in the 

repaired specimens can be due to a better mechanical interlocking, which is the result of the 

increased roughness of the bricks surfaces after initial debonding. The debonding slip is similar 

in SE- and RE-specimens (around 1.2 mm), however an increase is observed from 0.5 mm in SF-

specimens to 1.0 mm in RF-specimens.  
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Table 3 and Table 4 present the debonding force and failure modes of all the specimens for each 

group. The average debonding force of the strengthened specimens with the epoxy resin (average 

of SEa and SEb specimens) is 8.85 kN (CoV=8.3%). Meanwhile, the average debonding force in 

the specimens strengthened with flexible polymers (SF-specimens) is 5.65 kN (CoV=18.5%) 

being 33% lower than the SE-specimens. The loss of debonding load observed in the SF-

specimens can be attributed to the lower adhesion strength of the PS polymer-to-brick than the 

epoxy resin-to-brick and the governing failure mode. As can be observed in Table 3, all the SF-

specimens had an adhesive failure mode at the FRP-brick interface. The weak interface has 

resulted in the change of failure mode in the composite system and therefore lower debonding 

strength. Moreover, due to the very low elastic modulus of the PS polymer, the effective bond 

length can be larger than the actual bonded length (150 mm) resulting in partial development of 

the bond strength in the tests. This latter issue is further investigated and discussed next with the 

aim of the DIC measurements. 

A large increase is found in the debonding strength of the specimens after repair in comparison 

to the strengthened specimens. This difference is clearer in the graph presented in Fig.8. The 

average debonding force of the RE-specimens is 16.56 kN (CoV=15.4%), while the debonding 

force of the corresponding strengthened specimens (SEa-specimens) is 8.48 kN (CoV=8.3%). A 

large increase in the debonding strength is also observed after repairing the specimens with the 

PS polymer (RF-specimens). In this case, the average debonding force of the strengthened 

specimens (SEb-specimens) was 9.23 kN (CoV=6.5%) which increased to 12.92 kN 

(CoV=13.5%) after repair (RF-specimens). The increments are around 95% and 40% for the RE- 

and RF-specimens, respectively. The initial delamination tests resulted in removal of the 

superficial layer of the bricks and therefore increment of surface roughness in the repaired 
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specimens. Therefore, the interlocking adhesion has increased significantly between FRP and the 

brick substrate in comparison to the strengthened specimens resulting in higher debonding 

forces. 

The failure mode in the SE-specimens was mostly cohesive with fracture inside a thin layer of 

the brick or adhesive with formation of a brick bulb at the free end, see Fig.9(a). However, the 

governing failure mode in the SF-specimens was adhesive failure at the polymer-brick interface 

as shown in Fig.9(b). This can be due to the low chemical and mechanical adhesion between the 

brick surface and the PS polymer in the strengthened specimens.  

All the RE-specimens had a cohesive failure with the fracture occurring inside the brick, see 

Fig.10(a). In some cases a brick bulb was also detached at the free end of the specimens. A 

similar failure mode was also observed in the corresponding strengthened specimens (SEa), see 

Table 3. However, the failure of the RF-specimens changed in comparison to their 

corresponding strengthened specimens (SEb). The failure mode in these specimens was either 

cohesive inside the brick or cohesive inside the PS polymer as shown in Fig.10(b). This change 

of failure mode can be due to reduction of stress concentrations caused by many times lower 

Young’s modulus than epoxy resin and strong mechanical interlocking between the PS polymer 

and the brick surface in the repaired specimens. 

 

5 Strain analysis results 

Fig.11 and Fig.12 present the typical evolution of longitudinal strains on the FRP surface during 

the debonding tests at different load levels. The full-field strain distributions, determined from 

the DIC measurements, clearly show the strain transfer zone along the bonded length. It can be 

observed that longer bonded lengths are contributing to the strain and stress transfer to the 
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substrate in the RE-specimens in comparison to the SE-specimens, see Fig.11. On the other 

hand, it seems that in SF- and RF-specimens the strains are developed along all the bonded 

length gradually diminishing near the free end. 

The longitudinal strain profiles are extracted from the full-field measurements, by averaging the 

strains along the FRP width [30], and presented at different load levels for a typical specimen in 

each group in Fig.13. The observed fluctuations in the strain profiles can be partly attributed to 

the variation of the material properties, bond imperfections and also non-smooth surface of the 

specimens [30].  

In SE and RE-specimens, Fig.13(a, b), the strain profiles follow a nonlinear trend reaching zero 

along the bonded length. Moreover, a sudden increase in the strain level is observed at the final 

load stages which can be attributed to the initiation of debonding and crack propagation along 

the bonded length. On the other hand, the strain profiles in SF- and RF-specimens seem to 

increase linearly until the debonding, Fig.13(c, d). Moreover, as it was expected from the higher 

debonding loads, higher strain levels are developed in the repaired specimens in comparison to 

strengthened specimens. 

The strain distribution in SE- and RE-specimens is approximated with the following nonlinear 

expression by performing a regression analysis [30]: 

p

x

x

AA
Ax

)(1

)(

0

21
2




                                                        (1) 

where pxAA ,,, 012  are the constants to be determined from experimental results and x  is the 

distance from the loaded end. The predicted strain distribution at the ultimate load level, Pu, is 

shown with a solid line in Fig.14(a, b). It can be seen that the bonded area consists of three main 

regions as also discussed in [10, 30]. The FRP is fully debonded from the substrate near the 
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loaded end. This is followed by a stress transfer zone, and afterwards that no stress is transferred 

to the substrate. The length of the stress transfer zone is called the effective bond length and is 

around 30 mm and 90 mm for SE- and RE-specimens studied here, respectively (shaded in 

Fig.14(a, b)).  

The strain profiles in SF- and RF-specimens increase linearly until the debonding of the FRP 

from the substrate, Fig.14(c, d). A linear expression is thus used for fitting the experimental 

diagrams. The effective bond length is not distinguishable in the strain profiles showing that, 

possibly, it is larger than the actual bonded length (150 mm). This, in addition to the low 

chemical and mechanical adhesion, can be one of the possible reasons for the lower debonding 

loads observed in these specimens. 

Having the strain profiles along the bonded length, it is possible to extract the bond-slip laws 

defined as the relationship between the local applied shear stress and the FRP slip relative to the 

brick surface [30]. The FRP slip at distance x from the free end of the specimen, assuming a zero 

slip in the free end, can be obtained by integrating the strain profile along the bonded length as 

follows: 

 dxxs f)(             (2) 

Subsequently, the shear stress distribution is defined along the bonded length is defined as: 

dx

d
Etx

f

ff


 )(                                                              (3) 

where dxd f / is the gradient of FRP strain along the sheet length, fE  is the FRP elastic 

modulus, and ft  is the FRP thickness. The distribution of shear stresses can also help in 
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estimating the effective bond length can also be defined as the length in which the shear stresses 

are transferred to the substrate [38]. The typical shear stress distributions obtained with Eq. (3) at 

the peak load level are presented in Fig.15. It should be noted that the fitted curves of the strain 

profiles, see Fig.14, are used here for calculation of the shear stresses. A clear difference of the 

peak shear stress and the effective bond length can be observed between the SE- and RE-

specimens. As the strain profile is linear in case of SF- and RF-specimens due to the short 

bonded length, the stress profile is constant along the bonded length according to Eq. (3) and 

therefore the effective bond length is again not distinguishable. 

The interfacial bond-slip laws are obtained from the fitted strain profiles according to Eqs. (2, 3) 

and the results are presented in Fig.16 and Fig.17. A tri-linear bond-slip law is proposed for the 

SE- and RE-specimens as also used in [30], see Fig.16. The bond fracture energy, defined as the 

area under the bond-slip curve is much larger in the RE-specimens (1.88 N/mm) in comparison 

to SE-specimens (0.54 N/mm). The maximum bond strength has also increased from 3.4 MPa to 

7.5 MPa from SE- to RE-specimens. The increment of mechanical interlocking in the repaired 

specimens and change of debonding failure mode from fracture inside a thin layer of the brick (in 

SE-specimens) to a deep fracture inside the brick (in RE-specimens) have resulted in the 

observed higher fracture energy and maximum bond stresses.  

In case of SF- and RF-specimens, the maximum transferrable shear stresses cannot be developed 

in the composite system due to the short actual bonded length of the specimens, see Fig.17. The 

bond fracture energy in this case is 0.38 N/mm and 0.52 N/mm in SF- and RF-specimens, 

respectively for the tested specimens. However, for development of the maximum bond stress 

and fracture energy, preparation of specimens with longer bonded lengths is necessary. This 

brings in an obvious difficulty in this case, as the brick has a length of 200 mm only. 
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6 Conclusions 

The effectiveness of repairing delamination in FRP-strengthened masonry components was 

investigated in this study. The specimens consisted of bricks strengthened (denoted by S), tested 

and, subsequently, repaired (denoted by R) with GFRP sheets using two different adhesives: a 

conventional epoxy resin (denoted by E) and a highly flexible polyurethane polymer (denoted by 

F) as an innovative strengthening/repair adhesive in structural engineering applications. The 

effectiveness of strengthening/repair application was studied by performing single-lap shear 

bond tests. The digital image correlation (DIC) technique was used for investigating the 

evolution of strains on the specimens’ surfaces during the debonding. 

For the strengthened specimens, it was observed that the debonding force of the SE-specimens 

(9.19 kN) was higher than the SF-specimens (5.65 kN). The failure mode in the SE-specimens 

was mostly cohesive with fracture inside a thin layer of the brick or, in some specimens, with 

formation of a brick bulb at the free end. However, the governing failure mode in the SF-

specimens was adhesive failure at the polymer-brick interface. The lower debonding load 

observed in the SF-specimens can be due to the lower tensile strength (adhesion) of the PS 

polymer than epoxy resin, the governing failure mode and the fact that the effective bond length 

in these specimens was larger than the actual bonded length (150 mm). The latter was concluded 

from the full-field measurements obtained from the DIC.  

As for the repaired specimens, a large increase in the debonding force of the repaired specimens 

in comparison to the corresponding strengthened specimens was observed. This increase was 

around 95% for the RE-specimens and 31% for the RF-specimens which is attributed to the 

improved mechanical interlocking and chemical adhesion in the repaired specimens and 
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reduction of stress concentrations in the bond interface. The results show the effectiveness of 

both adhesives in repairing the delaminations in FRP-bonded components.  

The strain profiles obtained from the DIC measurements showed that the effective bond length in 

the SE-specimens was around 30 mm, while this value was around 60 mm for the RE-specimens. 

The effective bond length in the SF- and RF-specimens was observed to be larger than the actual 

bonded length. The bond-slip laws of the SE- and RE-specimens were also extracted from the 

strain profiles. A large increase in the bond fracture energy was observed in the RE-specimens in 

comparison to SE-specimens. Again, it was not possible to obtain the complete bond-slip laws 

for the SF- and RF-specimens. 

In general, it was observed that repairing the delaminated FRPs with both adhesives improve the 

bond performance in comparison to the strengthened specimens. 
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Table 1. Material mechanical properties. 

Masonry brick       CoV(%) 

Compressive strength fcb (MPa) 14.3 4.0 

GFRP coupons        

Tensile strength ftf (MPa) 1250 15.0 

Elastic modulus Ef (MPa) 79200 6.8 

Ultimate deformation ε (%) 3.0 20.2 

Epoxy resin        

Tensile strength ftm (MPa) 53.8 9.7 

Elastic modulus Em (MPa) 2500 9.5 

Polyurethane polymer (PS)    

Tensile strength ftm (MPa) 2.9 2.2 

Elastic modulus Em (MPa) 14.8 12.6 
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Table 2. Optical system components and measurement parameters. 

CCD camera  

Model Baumer Optronic FWX20  

(8 bits, 1624×1236 pixels, 4.4 m/pixel) 

Shutter time 5 ms 

Acquisition frequency 1 Hz 

Lens  

Model Nikon AF Micro-Nikkor 200mm f/4D 

Aperture  f/11 

Lighting LEDMHL10 (color temperature: 6000 K) 

Working distance 1800 mm 

Conversion factor 0.037 mm/pixel 

Project parameter – Facet  

Facet size 15×15 pixel
2
 

Step size 15×15 pixel
2
 

Project parameter – Strain  

Computation size 7×7 facets 

Validity code 55% 

Strain computation method Total 

Image recording  

Acquisition frequency 1 Hz 
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Table 3. Debonding force and failure mode of the SEa, RE and SF specimens. 

SEa 

specimens 

Pmax 

(kN) 

Failure 

mode* 

RE 

specimens 

Pmax 

(kN) 

Failure 

mode* 

SF 

specimens 

Pmax 

(kN) 

Failure 

mode* 

SEa1 8.81 CBT RE1 18.16 CB SF1 5.27 A 

SEa2 7.57 AB RE2 13.10 CB,CBT SF2 4.18 A 

SEa3 9.43 CBT RE3 19.39 CBT SF3 5.94 A 

SEa4 8.50 CBT RE4 14.85 CBT SF4 5.81 A 

SEa5 8.07 CBT RE5 17.29 CBT SF5 7.06 A 

Average 8.48   Average 16.56   Average 5.65  

Std. Dev. 0.71   Std. Dev. 2.55   Std. Dev. 1.05  

CoV. (%) 8.3   CoV. (%) 15.4   CoV. (%) 18.5  

*A: Adhesive failure at the FRP-brick interface; CA: Cohesive failure inside the adhesive layer; CB: Cohesive 

failure inside the brick with detachment of a thick layer of the brick; CBT: Cohesive failure inside the brick with 

detachment of a thin uniform layer of the brick; AB: Debonding with detachment of a brick bulb at the free end. 
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Table 4. Debonding force and failure mode of the SEb and RF specimens. 

SEb 

specimens 

Pmax 

(kN) 

Failure 

mode 

RF 

specimens 

Pmax 

(kN) 

Failure 

mode 

SEb1 8.40 AB RF1 14.93 CA 

SEb2 9.51 AB RF2 10.89 CA 

SEb3 9.70 CBT RF3 13.12 CA 

SEb4 8.80 AB RF4 14.26 CB 

SEb5 9.76 CBT RF5 11.42 CB 

Average 9.23   Average 12.92  

Std. Dev. 0.6   Std. Dev. 1.75  

CoV. (%) 6.51   CoV. (%) 13.5  

*A: Adhesive failure at the FRP-brick interface; CA: Cohesive failure inside the adhesive layer; CB: Cohesive 

failure inside the brick with detachment of a thick layer of the brick; CBT: Cohesive failure inside the brick with 

detachment of a thin layer of the brick; AB: Debonding with detachment of a brick bulb at the free end. 
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Fig.1. Specimens’ preparation and testing program. 
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Fig.2. Procedure followed for preparation of the strengthened specimens with epoxy resin (note 

that the same procedure was followed for specimens prepared with PS polymer). 
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(a) (b) 

Fig.3. Strengthened specimens: (a) SE-specimens; (b) SF-specimens. 
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Fig.4. Geometrical details of the specimens (dimensions in mm). 
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Fig.5. Bricks surfaces after initial delamination tests (used for repair). 
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(a) (b) 

Fig.6. Shear debonding test setup (a) side view; (b) top view. 
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(a) (b) 

  

(c) (d) 

Fig.7. Force-slip curves of: (a) SE-; (b) RE-; (c) SF- and (d) RF-specimens. 
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Fig.8. Comparison of average debonding forces. 
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(a) 

 
(b) 

Fig.9. Typical failure modes of (a) SE- and (b) SF-specimens. 
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(a) 

 
(b) 

Fig.10. Typical failure modes of (a) RE- and (b) RF-specimens. 
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(a) 

 
(b) 

Fig.11. Strain distribution along the bonded area at different load levels in a typical (a) SE- and 

(b) RE-specimen. 
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(a) 

 
(b) 

Fig.12. Strain distribution along the bonded area at different load levels in a typical (a) SF- and 

(b) RF-specimen. 
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(a) (b) 

  
(c) (d) 

Fig.13. Longitudinal strains distribution in typical (a) SE-; (b) RE-; (c) SF- and (d) RF-

specimens. Note that graph (b) has a vertical scale different from the other plots. 
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(a) (b) 

  
(c) (d) 

Fig.14. Average longitudinal strain profiles in (at the peak load) (a) SE-; (b) RE-; (c) SF- and (d) 

RF-specimens. 
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Fig.15. Typical bond stress distribution along the bonded length at the peak load level. 
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Fig.16. Bond-slip laws obtained for SE- and RE-specimens. 
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Fig.17. Bond-slip laws obtained for SF- and RF-specimens. 
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