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Abstract 

The Embedded Through-Section (ETS) technique is a promising technique for the shear strengthening of 

existing (RC) elements. According to this technique, holes are drilled through the beam section, and bars of steel 

or FRP material are introduced into these holes and bonded to the concrete with adhesive materials. An 

experimental program was carried out with RC T-cross section beams strengthened in shear using the ETS steel 

bars and ETS CFRP rods. The research is focused on the evaluation of the ETS efficiency on beams with 

different percentage of existing internal transverse reinforcement (ρsw=0.0%, ρsw=0.1% and ρsw=0.17%). The 

effectiveness of different ETS strengthening configurations was also investigated. The good bond between the 

strengthening ETS bars and the surrounding concrete allowed the yield initiation of the ETS steel bars and the 

attainment of high tensile strains in the ETS CFPR rods, leading to significant increase of shear capacity, whose 

level was strongly influenced by the inclination of the ETS bars and the percentage of internal transverse 

reinforcement.  

Key words: Reinforced Concrete Beams, Shear strengthening, ETS technique, Embedded Through-Section 

Technique, ETS steel bars, ETS CFRP bars, Existing stirrups. 

1. Introduction 

To avoid brittle and unpredictable failures due to lack of shear resistance in RC elements, strengthening 

techniques based on the use of fiber reinforced polymer (FRP) materials have been proposed and developed in 
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the last two decades [1–4]. The efficiency of these techniques relies on the bond of performance of concrete-

adhesive-FRP interfaces. It has been demonstrated that the Near Surface Mounted (NSM) technique assures 

better bond conditions for the FRP strengthening systems than the externally bonded reinforcement (EBR) 

technique due to the higher confinement applied by the surrounding concrete to the FRPs [5–8]. It was also 

realized that as deeper is introduced a NSM FRP system into the groove opened on the concrete cover, as higher 

is the strengthening effectiveness of this system [9,10]. The Embedded Through-Section (ETS) technique was 

recently proposed for the shear strengthening or RC beams [11]. According to this technique, steel or FRP bars 

are inserted into holes drilled through the cross section, and are bonded to the surrounding concrete with an 

epoxy adhesive. In case of ETS technique, this concrete is able to provide a high confinement to the ETS bars, 

which increases the bond strength. Furthermore, a larger concrete fracture surface is mobilized during the pullout 

process of a ETS bar crossing the shear crack, when compared to the case of a NSM FRP strengthening system. 

When concrete cover has not the bond strength requisites to guarantee the aimed strengthening effectiveness for 

the EBR or NSM techniques, ETS strategy can be a technical and economic alternative since it mobilizes the 

beam’s concrete core that is generally the less damaged zones of a beam. Significant increase of shear capacity 

was pointed out by Valerio et al. [11,12] who investigated the use of the ETS technique for the shear 

strengthening of RC existing bridges, and performed pullout tests for assessing the strengthening effectiveness of 

adhesive materials, and different embedment lengths for the ETS bars. The shear stress transfer mechanism 

developed in an ETS bar was studied by Barros et al. [13]. In this context, direct shear tests were executed with 

the purpose of capturing the main features of FRP/steel ETS bars as shear strengthening systems. From these 

tests it was verified that steel bars were notably effective for this purpose. Chaallal et al. [14] carried out 

experimental tests to compare the shear strengthening effectiveness of the ETS, NSM and EBR techniques based 

on the use of vertical CFRP bars applied on RC beams that were reinforced with different percentage of internal 

steel stirrups. It was verified that the ETS technique has provided the highest strengthening efficiency, and it was 

able to convert shear failure into a flexural failure. An experimental program was carried out by Barros and 

Dalfré [15] with RC beams shear strengthened with ETS steel bars. The variables examined in this experimental 

program were the width of the beam’s web, the percentage and inclination of the ETS bars, the spacing of steel 



stirrups and their interaction with the strengthening bars. A significant increase of load carrying capacity was 

obtained (up to 124%), proving that the use of ETS steel bars can be a very effective and cost-competitive shear 

strengthening technique. The beams with the higher percentage of ETS bars have failed in bending, despite the 

very high percentage of flexural reinforcement used. The ETS technique can also be extended to punching shear 

strengthening of concrete slabs [16,17]. 

Shear is a complex phenomenon due to the high number of parameters that affect shear behavior, which justifies 

to be not yet completely addressed. The parameters that influence the shear behavior of a strengthened RC 

element are already identified [18–20]. International guidelines on the use of FRPs [21–24] take into account 

only a restricted number of factors, ignoring the influence, for instance, of existing transverse reinforcement. The 

interaction between the strengthening system and the existing internal transverse reinforcement has been 

investigated for the EBR and NSM techniques, and some design approaches have been proposed in these respect 

[25–30]. 

The present work aims to contribute to a deeper understanding of the ETS shear strengthening mechanisms, and 

the susceptibility of these mechanisms to the interaction between ETS bars and existing steel stirrups. The 

ultimate purpose of this work is to provide useful data for the establishment of design guidelines on the shear 

strengthening of RC beams using the ETS technique. The experimental program was conceived for assessing the 

influence on the ETS shear strengthening effectiveness of the percentage, inclination and material type of the 

ETS systems. For this purpose, three series of RC T-cross section beams with different percentage of internal 

transverse reinforcement (ρsw=0.0%, ρsw=0.1% and ρsw=0.17%) were tested. The experimental program is 

described in detail and the relevant results are presented and discussed. 

 

2. Experimental program 

2.1 Test series 

Fig.1 presents the geometry and the reinforcement arrangements of the nineteen T cross section beams of the 

experimental program. The reinforcement system was designed according to the Eurocode 2 [31], using an high 



percentage of longitudinal reinforcement (ρsl=2.79%) in order to force the occurrence of shear failure mode for 

all the beams of the experimental program. To localize shear failure in one of the beam’s shear spans, a three 

point load configuration was selected, with a different length of the beam shear spans. The monitored beam span 

(L1=0.9 m) is 2.5 times the effective depth of the beam’s cross section (L1/d=2.5), since according to the 

available research [32], beyond this limit the arch effect is negligible. To avoid shear failure in the L2 beam span, 

steel stirrups ϕ8@90 mm were applied in this span. Different shear reinforcement systems were applied in the L1 

beam’s span of the tested beams. In fact, the experimental program consisted of the following three series of 

beams: 0S-Series that does not have conventional steel stirrups; 2S-Series that has steel stirrups ϕ6@300 mm, 

corresponding to a shear reinforcement ratio ρsw =0.10%, 4S-Series that has steel stirrups ϕ6@180 mm, 

corresponding to a shear reinforcement ratio ρsw =0.17%, where: 
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being Asw the cross sectional area of the two legs of a steel stirrup, ssw the spacing of the steel stirrups, and 

bw=180 mm the width of the beam’s web.  

Each series has a reference beam without any strengthening system (Fig. 1, Fig.2), and four beams with different 

ETS strengthening configurations (Fig. 3). The investigated parameters are the shear strengthening ratio (ρfw) and 

the inclination (90°, 45°) of the ETS bars, as well as the influence of the percentage of existing steel stirrups. In 

particular, the shear strengthening ratio of the ETS steel bars and ETS CFRP rods was defined as follows: 
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where Afw is the cross sectional area of ETS bar, and sfw and αf represent the spacing and inclination of this bar, 

respectively.  

The influence of the material type of the ETS bars used for the strengthening was also investigated, by having 

beams strengthened with CFRP and steel bars in both 2S and 4S series of beams. The diameter of the ETS steel 

and CFRP bars was 10 and 8 mm, respectively. A smaller diameter for the CFRP bar was chosen in order that 



the estimated force at the debonding of this bar was similar to the force at yield initiation of the steel bar. Based 

on previous experiences [11,14,15], it was considered for the strain at debonding of this type of CFRP bars a 

value in the interval 0.55-0.6%. Table 1 indicates the designation adopted for each beam and the strengthening 

configurations, namely, the number of applied ETS bars, inclination, spacing, shear strengthening ratio (ρfw), as 

well as the percentage of steel stirrups (ρsw ) and total shear reinforcement (ρsw +ρfw ) calculated from Eq (1) and 

Eq (2). Fig. 3 shows the strengthening configurations of the two tested series. As previously demonstrated by 

Barros and Dalfré [15], the effectiveness of the ETS bars is higher if they are placed in between existing stirrups. 

Following this approach, the strengthening arrangements indicated in Table 1 and Fig. 3 were adopted, leading 

to four different ρfw values. The ETS strengthening ratio varied between 0.15% (ETS vertical bars spaced at 300 

mm) and 0.34% (ETS bars at 45° and spaced at 180 mm). Two strengthening ratio values were adopted in the 

beams strengthened with ETS CFRP bars, ρsw= 0.16 (vertical bars spaced at 180 mm), and ρsw=0.22 (bars at 45° 

spaced at 180 mm) 

2.2. Material properties 

The concrete average compressive strength (fcm) of the beams was evaluated at 28 days and at the age of the 

beams’ test, by carrying out direct compression tests on cylinder specimens of 150 mm diameter and 300 mm 

height according to EN 206-1 (2004) [33]. It was obtained an fcm equal to 24.7 and 29.7 MPa at 28 days and at 

the day of the test (approximately 255 days), respectively, for the first batch (0S-Series and 2S-Series) and 27.6 

and 32.3 MPa, at 28 days and at the day of the test (approximately 250 days) for the second batch (4S-Series and 

CFRP ETS strengthened beams), respectively. For the internal reinforcement of the beams, high bond steel bars 

of 6, 10, 8, 12, and 24 mm diameter were used. The steel class is B 450 C (fyk =450MPa) according to the Italian 

Construction Code. [34]. The yield stress and tensile strength were obtained by means of uniaxial tensile tests 

performed according to recommendations of UNI EN ISO 6892-1:2009 [35]. For the steel bars of 6, 8, 10, 12 

and 24 mm diameter it was obtained an average yield stress of 574 (εsy= 0.287%), 505 (εsy=0.253%), 549 (εsy= 

0.275%), 527 (εsy= 0.264%) and 598 (εsy= 0.299%) MPa, and an average tensile strength of 667, 594, 642, 617 

and 708 MPa, respectively. The adopted ETS steel bars were of the same class of the bars used for the flexural 

reinforcement and steel stirrups applied in the beams. To bond the ETS steel bars to the concrete substrate the 



Sikadur 32 N epoxy based adhesive was used. The tensile behavior of this adhesive was characterized by 

carrying out direct tensile tests according to the ISO 527-2 [36], having been obtained an average tensile strength 

of 20.7 MPa and an elasticity modulus of 3.27 GPa. The pultruded carbon fiber sandblasted 8mm rod, 

MasterBrace BAR 8 CFS [37], has an elasticity modulus of 130 GPa and an ultimate strain of 1.8 %.  

2.3. Strengthening technique 

To simplify the drilling process and to avoid the possibility of intersecting the longitudinal bars, the execution of 

the ETS strengthening process was executed with the beam’s web turned upward. The ETS strengthening 

technique was composed of the following steps: (1) Holes of 16 mm diameter for the ETS steel bars, and holes 

of 14 mm for the ETS CFRP bars were drilled in the beam core. The holes length was defined by preserving 20 

mm of intact concrete cover at the lower side of the beam, in order to avoid the adhesive flow through the 

bottom part of the hole. During the drilling process the concrete dust was aspired using a vacuum system. (2) 

The holes were cleaned by using an helicoidally steel brush capable of removing the particles from the walls of 

the hole, which were then eliminated by the vacuum system; the cleaning procedure was repeated until the dust 

was definitely removed. (3) The epoxy resin was prepared according to the recommendations of the supplier, and 

was slowly poured into the holes. (4) The ETS bars were cut in the desired length, cleaned with acetone, and 

were slowly introduced into the holes removing the resin in excess. To guarantee a proper curing of the adhesive, 

the beams were tested at least two weeks after the ETS application.  

 

2.4 Test set up and monitoring system 

Fig. 4 shows the position of the displacement transducers (LVDTs) and force transducers used for measuring the 

beam’s deflection and applied/reaction forces, respectively. The LVDTs were supported in a bar fixed at the 

beams supports’ sections in order to register displacements only caused by the deflection of the beam. The 

displacement transducer TR1 was used to control the tests at a displacement rate of 10 µm/s up to the failure of 

the beams. The beams were loaded under three-point bending configuration with a shear span of 900 mm. The 

applied load (F) was measured using a force transducer of ±750 kN capacity and accuracy of ±0.1%. A second 



force transducer of ±500 kN capacity and 0.1% accuracy was under the support corresponding to the longer span 

(L2) to complement the information for a full assessment of the shear force in each span of the beam. To obtain 

the strain variation in steel stirrups and ETS bars, electrical strain gauges (SGs) were bonded on selected cross 

sections of stirrups and ETS bars that have the highest probability of providing the largest contribution for the 

shear strengthening of the RC beam. Eight and five SGs for each beam of series without stirrups (0S-Series) and 

beam with stirrups (2S and 4S Series), respectively, were installed on ETS bars according to the configuration 

represented in Figs 5a and 5b. In ETS CFRP strengthened beams, six SGs were installed on a CFRP bar, and two 

SGs were applied on an internal steel stirrups. The monitoring SGs system in CFRP strengthened beams was 

slightly different of the one adopted in the steel strengthened beams, and the position of the SGs is indicated in 

Fig.5c.  

3. Results 

3.1 Load carrying capacity of the tested beams. 

The load (F)-deflection (uL) diagrams are presented Fig.6 for 0S Series, 2S Series and 4S Series. All the beams 

showed the same behavior up to the formation of the first diagonal crack, that has formed at an approximate load 

of 113 kN (uL=0.98mm), 100 kN (uL=0.91mm) and 135 kN (uL=1.37mm) in case of the reference beams 0S-Ref, 

2S-Ref and 4S-Ref, respectively. Fig. 7 shows the failure crack patterns obtained for all the tested beams. As 

already observed in beams that have been strengthened in shear with carbon fiber reinforced polymer (CFRP) 

laminates, installed according to the NSM technique [38], the stiffness degradation of the ETS strengthened 

beams is generally smaller than that of the reference beams. The ETS steel bars bridging the shear cracks 

surfaces offer resistance to crack opening and sliding, enhancing concrete’s contribution to the shear resistance 

due to the aggregate interlock effect, which leads a higher load carrying capacity after shear crack initiation. The 

ETS strengthening technique increased significantly the maximum load carrying capacity and ultimate deflection 

capacities of the beams, whose performance level depends on the shear reinforcement/strengthening 

arrangement. All the beams exhibited a shear failure mode, since a quite high flexural reinforcement was 

adopted in order to avoid flexural failure mode. The beam with the highest load carrying capacity (4S-C180-45) 



has presented a mixed-mode shear-flexural failure, and its crack pattern was characterized by the opening of two 

large diagonal cracks, followed by the crushing of the concrete at the loaded section at failure (Fig.7). The main 

results of the experimental tests are presented in Table 2, where Fmax is the maximum load attained by the beams 

and uLmax is the displacement in the loaded section at Fmax. The strengthening efficiency of the ETS technique can 

be evaluated by considering the ΔF/FRef ratio, where FRef is the maximum load of the reference beam, and 

ΔF=Fmax-FRef is the increase of maximum load provided by each ETS arrangement. The Table 2 also includes the 

maximum shear force Vmax (=0.6 Fmax ) applied in the L1 beam’s span (Fig. 1) and the resisting shear force 

provided by the ETS arrangement, Vf(exp). This last term was determined by considering the shear resistance in 

the 0S-Ref, 2S-Ref and 4S-Ref reference beams, by assuming as valid the principle that the shear resistance of a 

beam reinforced with steel stirrups and strengthened with ETS bars is the addition of the contributions of the 

concrete, steel stirrups and ETS bars. The last two columns in this table include, respectively, the tangent 

(CDCtang) and the average (CDCavg) inclination of the failure shear crack (CDC), whose evaluation process is 

schematically represented in Fig. 7, for 0S-Ref beam. For the evaluation of the CDCtang, an auxiliary horizontal 

line at half distance from the longitudinal reinforcement to the bottom surface of the beam’s flange (d1 represented 

in 0S-Ref beam in Fig. 7) was introduced; then the point of its interception with the CDC was determined. The 

CDCtang is the inclination of the CDC at this point of interception. The (CDCavg) is determined by connecting the 

points of the interception of the CDC with the bottom surface of the beam’s flange and the longitudinal 

reinforcement. According to the obtained results, the (CDCtang) was usually higher than (CDCavg). The values of 

(CDCtan)  have ranged from 34° to 73°. By considering all the tested beams, an average value of CDCavg = 45° 

was obtained. It is possible to notice that the beams with the highest percentage of shear reinforcement (ρws+ρwf) 

and the CFRP strengthened beams exhibited higher inclinations of the CDCavg. 2S-S180-90 and 2S-C180-90 

beams presented high inclinations of critical diagonal crack, probably due to the less evenly distributed of the 

shear reinforcements. Fig. 7 clearly shows that the number of diagonal cracks increased with the percentage of 

transverse steel reinforcement.  

The load vs. deflection relationship of the beams of 0S-Series is indicated in Fig. 6a. This series is characterized 

by the absence of stirrups in the strengthened shear span (ρws= 0.0%). Due to the detrimental interaction effect 



between existing steel stirrups and strengthened systems in the context of the shear strengthening effectiveness 

[27], the beams of this series presented the highest strengthening efficiency amongst the tested series, with an 

increase of load carrying capacity that ranged from 40% to 136%. For the ETS vertical bars, the beams with the 

lowest percentage of ETS bars, ρfw = 0.15% (0S-S300-90), and with the highest ρfw= 0.24% (0S-S180-90) 

presented an increase of load carrying capacity of 39.5% (Fmax= 217.8 kN; uLmax = 4.37 mm) and 64.6% (Fmax= 

256.8 kN; uLmax 4.31 mm), respectively. The highest increase of load carrying capacity was obtained in the 

beams with ETS bars inclined at 45°. In fact the beam with the lowest ρfw = 0.24% (0S-S300-45) and with the 

highest ρfw= 0.34% (0S-S180-45) presented an increase of load carrying capacity of 123.4% (Fmax=348.6 kN) and 

of 136.3% (Fmax= 368.8 kN; uLmax =6.56 mm), respectively. This indicates that the inclination of the ETS bars 

seems to have a higher contribution for the strengthening effectiveness that the spacing of these bars, as long as 

this distance assures that a CDC is crossed by an effective ETS bar (with an enough bond length to avoid 

premature debonding), which is in agreement with the tendency observed in the NSM technique [27]. 

The load vs. deflection relationship of the beams of 2S-Series is depicted in Fig. 6b. This series is shear 

reinforced with 2-arms ϕ6mm steel stirrups @300 mm (ρws= 0.10%). For the ETS vertical bars, the beams with 

the lowest percentage of ETS bars, ρfw = 0.15% (2S-S300-90), and with the highest percentage, ρfw= 0.24% (2S-

S180-90), have presented an increase of load carrying capacity of 30.4% (Fmax= 315.7 kN; uLmax =5.32 mm) and 

68.1% (Fmax= 406.8 kN; uLmax 8.27 mm), respectively. Like already occurred in the beams of the 0S-Series, in the 

2S-Series the highest strengthening effectiveness has occurred in the beams with ETS bars inclined at 45°. In 

fact, the beam with the lowest percentage, ρfw = 0.24% (0S-S300-45), and with the highest percentage, ρfw= 

0.34% (2S-S180-45), presented an increase of the load beam carrying capacity of 68.2% (Fmax=407.1 kN; uLmax 

7.03 mm) and 108.5% (Fmax= 504.7 kN; uLmax =8.37 mm), respectively. 

The load vs. deflection relationship of the beams of the 4S-Series is illustrated in Fig. 6c. This series is shear 

reinforced with 2-arms ϕ6mm existing steel stirrups @180 mm (ρws= 0.17%). For the ETS vertical bars, the 

beams with the lowest percentage of ETS bars, ρfw = 0.15% (4S-S300-90), and with the highest percentage, ρfw= 

0.24% (4S-S180-90), presented an increase of load carrying capacity of 4.8% (Fmax= 370.9 kN; uLmax = 7.43mm) 

and 16.8% (Fmax= 413.2 kN; uLmax = 6.32mm), respectively. The decrease of the shear strengthening 



effectiveness with the increase of existing shear reinforcement is quite evident, and will be discussed in more 

detail in Section 5. Furthermore, for configuration 4S-S300-90 a Vf(exp) of 10.3 kN indicates that the contribution 

provided by the only ETS bar crossed by the shear crack was low, due to its small resisting bond length (Fig7). 

The results of this beam showed the importance of the adopted strengthening geometry, revealing that strengthen 

elements should be placed in between stirrups [15,28]. For the beams with ETS bar inclined at 45° a higher 

increase of load carrying capacity was obtained. In fact, the beams with the lowest percentage of ETS bars, ρfw = 

0.24% (4S-S300-45), and with the highest percentage, ρfw= 0.34% (4S-S180-45), presented an increase of load 

carrying capacity of 56.1% (Fmax=552.4 kN; uLmax = 12.03 mm) and 60.1% (Fmax= 566.4kN; uLmax =11.01mm), 

respectively. These results indicate that by increasing the percentage of existing steel stirrups, the influence of 

the inclination of the ETS bars in terms of shear strengthening effectiveness becomes larger, while the influence 

of the spacing of ETS bars becomes smaller.  

The shear strengthening effectiveness of CFRP bars was also investigated, by strengthening two beams of both 

2S-Series and 4S-Series. The load vs. deflection relationship of the beams strengthened with ETS CFRP bars is 

indicated in Fig. 6b for 2S-Series and in Fig. 6c for 4S-Series. For the CFRP vertical bars, ρfw= 0.16% 

(CFRP180-90), the beams presented an increase of load carrying capacity of 53.1% (Fmax= 370.49 kN; uLmax = 

6.89 mm) and 6.5% (Fmax= 376.88 kN; uLmax = 6.2 mm) for 2S- and 4S-Series, respectively. For the ETS CFRP 

bars inclined at 45°, ρfw= 0.22% (CFRP180-45), the beams presented an increase of load carrying capacity of 

120.9% (Fmax= 534.69 kN; uLmax = 9.53 mm ) and 74.4% (Fmax= 616.86 kN; uLmax = 12.03 mm ) for 2S- and 4S-

Series, respectively. A lower strengthening performance was observed for the vertical CFRP bars when 

compared to the vertical steel bars due the strengthening configuration. In fact, the available bond length of the 

CFRP bar crossed by the CDC was not sufficient to develop high tensile strains in this type of bars. However, 

when the strengthening configuration provided an adequate bond length, as was the case of inclined bars, a 

higher load carrying capacity was obtained by using CFRP bars instead of steel bars. The results obtained in the 

beams strengthened with ETS CFRP bars demonstrate that the decrease of the shear strengthening effectiveness 

with the increase of the reinforcement ratio of existing steel stirrups occurs regardless of the type of material 

adopted for the ETS bars. 



 

3.2 Strains in the ETS bars/rod and steel stirrups. 

The relationships between the force applied in the beams and the strains registered in the most representative 

SGs installed in the monitored ETS bars and stirrups are shown in Fig. 8, while in Table 3 are included the 

relevant results, where εFmax is the strain measured at Fmax, while εmax is the maximum strain recorded in the ETS 

bars and stirrups. For the εmax it is also provided the value of the uL/uLmax parameter, in order to indicate if εFmax 

has occurred in pre- (uL/uLmax <1) or post-peak (uL/uLmax >1) phase of the beam’s force-deflection response. The 

recorded strain values are quite dependent on the distance between the SG and the shear failure crack. This effect 

is quite visible in beams strengthened with vertical ETS bars, in which relatively high strain values have been 

measured in zones of the ETS bars crossed by a shear crack (Figs 8a and 8d). For instance, large strains at Fmax 

have been recorded in SG No.4 of the 0S-S180-90 beam (0.59% at Fmax) (Fig8a), SG No.8 of the 2S-C180-90 

beam (0.67% at Fmax) (Fig8d), SG No.7 for the 4S-S180-90 (ε=88% at Fmax). The designation attributed to the 

strain gauges in Table 3 for the ETS bars and steel stirrups (second and third column) is represented in Figs. 5 

and 8 in order to highlight the relative position between the SGs and the shear cracks, and to help a better 

interpretation of the obtained results. Furthermore, the strain values are quite dependent on the available bond 

length of the elements they are installed. If the available bond length is relatively small, the steel bars cannot 

attain the yield strain due to slip occurrence, as was the case of SG No.4 of the 4S-S180-90 beam (ε=0.04% at 

Fmax) and SG No.1 of the 0S-S180-90 (ε= 0.16% at Fmax). For the same reason, CFRP bars can record low strain 

even if the bars are crossed by the critical shear crack, as was the case of SG No.4 of the 2S-C180-90 beam 

(ε=0.27% at Fmax).  

Higher strains have been recorded in both inclined ETS steel and CFRP bars, thanks to the adopted strengthening 

configuration that provided longer force transfer length and, consequently, higher increase of load carrying 

capacity. It was verified that steel ETS bars have reached the yield strain in the sections where they were crossed 

by the critical shear crack and also by a secondary diagonal crack, as occurred in the beams 0S-S300-45, 0S-

S180-45, 2S-S300-45, 2S-S180-45, 4S-S300-45, and 4S-S180-45 (Fig. 8). In some of the tested beams, the 

excellent bond conditions provided by the concrete core allowed the steel yield strain to be exceeded in more 



than one section of the same ETS bar crossing shear cracks, such was the case, for instance, 4S-S300-45 beam 

(Fig.8c) with ε=0.91% in SG No.6 at 0.75 uL/uLmax and ε=0.90% in SG No.8 at 0.82 uL/uLmax). By using inclined 

bars, strain values higher than 0.8% have been usually recorded in at least one of the ETS steel bars. In all the 

monitored elements of the strengthened beams with inclined CFRP bars, as is the case of beams 2S-C180-45 and 

4S-C180-45, higher strains were recorded due to the formation of diffuse crack patterns (Figs. 8e and 8f). For 

instance, in the ETS4 and ETS3 monitored sections of beams 2S-C180-45 and 4S-C180-45, a relatively high 

average strain of ε=0.9% was obtained. The higher number of cracks is a consequence of the higher percentage 

of the ETS strengthening ratio and the larger effective bond length (in case of inclined ETS bars) that can 

mobilizes simultaneously bond and concrete resisting fracture mechanisms [39]. The maximum strain of ε=1% 

at 0.83 uL/uLmax was measured in the SG No.7 of beam 2S-C180-45. Considerable strains were also attained in 

case of a reduced bond length (ε=0.61% at 0.63 uL/uLmax in SG No.4 of beam 2S-C180-45). Higher strains were 

generally recorded in CFRP bars than in steel bars, due to the lower elasticity modulus of the CFRP. 

Steel stirrups showed a trend in terms of strain variation similar to the ETS bars, attaining relatively high strains 

in the sections crossed by a diagonal crack, as was the case of SG No.3 in beam 4S-S300-45 (ε=0.89% at 0.68 

uL/uLmax), or SG No.3 for beam 4S-C180-45 (ε=0.79% at 0.78 uL/uLmax). Moreover, the excellent anchorage 

conditions provided by the closed configuration of the stirrups, as well as its smaller diameter (when compared 

to the ETS steel bars diameter), have assured the attainment of the yield strain in several sections monitored with 

SG. In some of the beams, the steel stirrups have even attained its rupture (2S-S300-45, 4S-S180-90, 

2SCFRP180-45, 4S-C180-45). 

 

3.3 Failure modes 

The ETS shear strengthening systems have failed by the debond at the bar/adhesive interface. Due to the higher 

confinement provided to the ETS bars by the web-flange surrounding concrete under compression, debonding  

which was the governing failure mode occurred in the bond length of ETS bars localized in the bottom part of 

the beam’s cross section (apart 0S-S300-90, see Fig. 7). This type of failure has been observed either in steel 

(Fig. 9a) as well as in CFRP bars (Fig. 9b). In case of ETS steel bars, it was possible to observe that the ribs of 



these bars have scratched the surrounding epoxy adhesive, Fig. 9c. Despite this observed behavior, the bond 

performance was capable to mobilize the yield stress of the steel bars, and assured relatively high tensile strains 

in the CFRP bars, as reported in the previous section. This type of failure mode might justify the relatively low 

maximum strains recorded in the vertical ETS bars, and consequently the lower shear strengthening 

effectiveness when compared to the same strengthening configuration but using steel bars (Table 2). In fact, 

since the average direction of the shear failure cracks is about 45° with the beam’s axis (Table 2), during the 

opening and sliding process of this type of cracks, the vertical and inclined ETS bars that cross these cracks are 

submitted to axial and transversal force components. As already observed in a previous study [40], due to this 

latter component, the axial force transferred from the bar to the surrounding material increases, leading the ETS 

bars to scratch the surrounding epoxy adhesive. This scratching effect was also observed in the face of the CFRP 

bars, due to the relatively low shear resistance of the external layer of these bars, when compared to the ribs of 

the steel bars. The combined action of tensile and transversal forces on the bar has led, in most of cases, to the 

peeling-off of the external layer of the CFRP bars (Fig. 9d). The post-test inspection of the failure modes in 2S-

C180-45 has revealed that the bars have ruptured, probably not because the ultimate strain was attained, but a 

consequence of the combined tensile-shear forces applied in the bar at crack section. The type of failure 

characterized by the loss of bond between the steel end epoxy adhesive was also found in the bond test 

conducted by [11], and [41]. The types of  failures reported by [42], namely, concrete fracture, and mixed 

concrete-fracture-debonding were not observed in the present experimental program. The concrete fracture was 

not observed due to the relatively high confinement of the core concrete surrounding the ETS bars when using 

the ETS technique. It is also possible to observe that the group effect, i.e. the tendency for the detachment of the 

concrete cover with the increase of the shear strengthening percentage, observed when using the NSM technique 

[38,43,44], did not occur in the ETS technique. Due to the scratching of the epoxy adhesive, the maximum strain 

recorded in the ETS bars never attained the steel ultimate strain, and therefore the rupture of the steel ETS bars 

have never occurred. However, in case of the steel stirrups, due to the excellent anchorage conditions provided 

by its closed shape, the steel rupture was observed (see. § 3.2). 

 



4. Influence of the percentage and inclination of the ETS strengthening.   

Fig.10 represents the relationship between the strengthening effectiveness ratio, ΔF/FRmax, provided by the ETS 

strengthening arrangement, and the total percentage of transverse reinforcement (ρsw+ ρfw) (see also Tables 1 and 

2). The ρsw+ρfw percentage is in the range of 0.15% to 0.52 %, while the ρfw is in the interval of 0.15% to 0.34%. 

Fig. 10 clearly shows that the shear strengthening effectiveness decreases with the increase of ρsw+ρfw. It is also 

visible that most effective configurations are obtained by adopting inclined ETS bars, and a marginal shear 

strengthening effectiveness is obtained when vertical ETS bars are applied in RC beams with a reinforcement 

ratio of steel stirrups higher than of about 0.17%. The dashed lines identify the tendency lines of beams with the 

same strengthening solution and different reinforcement ratio, pointing out the importance of the internal shear 

ratio on the evaluation of the strengthening effectiveness (see § 5). The higher shear effectiveness showed by the 

ETS inclined bars can be justified by the orientation of the diagonal cracks that tends to be almost orthogonal to 

the ETS bars. Furthermore, for vertical ETS bars, the total resisting bond length of the ETS system is lower than 

the one for the inclined bars. As demonstrated in [39,42], in the case of shear strengthening elements of non-

closed geometric configuration, such is the case of EBR and NSM reinforcements, the effective bond length has 

a decisive and governing importance on the shear strengthening effectiveness, since a bond length less than the 

critical one limits the strengthening effectiveness of the system. To have a comprehensive understanding on the 

influence of the investigated parameters, the information available in previous works [11,14,15] have been 

considered. From this latter tests only the data regarding beams that failed in shear was considered, which is 

presented in Table 4 and Fig 11. The ρsw of the analyzed beams is in the range of 0.0 to 0.17 % and ρfw in the 

interval of 0.04 to 0.64%. Fig. 11a shows the influence of ρsw and ρfw on the shear strengthening effectiveness of 

RC beams strengthened with vertical and inclined ETS bars. It is visible the higher strengthening effectiveness 

of inclined ETS bars, and a tendency for an increase of this effectiveness with ρfw, while the opposite happens 

with the increase of ρsw. By projecting the results presented in Fig.11a on a ΔF/FRef - ρfw plane, and attributing to 

the marker a size diameter proportional to the ρsw of the beam it represents, the previous conclusions can be also 

extracted. A relatively high shear strengthening effectiveness with vertical CFRP bars was obtained by [14], but 

using an abnormal high shear strengthening ratio (ρfw=0.64%). Valerio et al. [11] have also obtained similar high 



shear strengthening effectiveness with smaller strengthening ratio (ρfw=0.24% to 0.34%), but using higher 

concrete strength class (fcm,cube= 55 to 60 MPa - cube strength -, instead of fcm=25 MPa [14]), which reveals the 

favorable effect of concrete strength on the shear strengthening performance. However, the results also indicate 

that when the shear strengthening ratio is relatively small, the influence of the concrete strength on the shear 

strengthening effectiveness is marginal due to the inexistence of interaction between ETS bars and smaller stress 

field applied by ETS bars to the surrounding concrete. The trend lines of the results corresponding to the inclined 

and vertical ETS bars (dotted and dashed line, respectively) evidence the higher effectiveness of the former bars. 

The inclination of the trend line is higher for vertical ETS bars, which might be justified by a high number of 

beams tested without shear reinforcement for this strengthening arrangement. From the results in Figures 10 and 

11, the inclined ETS CFRP bars provided higher effectiveness than inclined steel bars of similar ρfw and ρsw, but 

a comprehensive cost competitiveness evaluation of these strengthening solutions should be made for a 

sustainable decision of the most appropriate one. 

 

5. Influence of the existing shear reinforcement on the ETS strengthening effectiveness  

As already demonstrated in beams strengthened with the ETS [14,15], EBR and NSM techniques [44–47], the 

effectiveness of the ETS strengthening system decrease with the increase of the ρsw. Fig. 11 show this clear 

tendency for the ETS strengthened beams. This detrimental effect was more pronounced in case of vertical ETS 

bars; for instance in the case of the presented work, in ETS steel bars, spaced at 180mm, the ΔF/FRmax can 

decrease up to 74% (by comparing the results of 0S-Series and 4S-Series). The results presented in Fig. 11 

clearly show that the shear strengthening effectiveness is influenced by the shear reinforcement ratio of existing 

steel stirrups. The detrimental effect induced by the presence of stirrups was recently discussed and a parameter 

was proposed to simulate this effect [25,30]. In the present work it was verified that the stirrups have yielded, 

even in the beams with the highest ρsw and ρfw. This indicates that ETS technique using steel bars can mobilize 

integrally the strength capacity of both shear reinforcements, and consequently, the above parameter can be 

neglected in this technique. In shallow RC beams shear strengthened with ETS steel bars, the resisting bond 

length of those bars crossed by the critical shear crack may be not enough to mobilize its yield strain. In this case 



the applicability of a reduction parameter can be justified. However, no sufficient experimental data is actually 

available to propose a recommendation for this parameter. Fig. 12 compares the ΔF/FRmax  obtained when using 

ETS, NSM and EBR techniques, by considering the results obtained in previous experimental programs by Dias 

and Barros [48], where similar RC beams were tested (ρsw =0.1 and ρsw =0.17%). The highest strengthening 

efficiency of the ETS technique is clearly visible, mainly when using inclined ETS bars. 

 

6. Conclusions 

An experimental program on reinforced concrete (RC) T cross section beams shear strengthened with a recent 

technique denominated Embedded Through-Section (ETS) was described, and the relevant results are presented 

and discussed. The influence of the percentage of existing steel stirrups (ρsw) on the ETS shear strengthening 

effectiveness when using ETS steel or carbon fiber reinforced polymer (CFRP) bars was investigated. The 

inclination of these bars (90° and 45°) on this effectiveness was also analyzed. For this purpose three series of 

beams with different ρsw (0.0, 0.10, and 0.17%) were tested.  

From the obtained results it can be concluded that in general, a significant increase of load carrying capacity was 

obtained by using the proposed technique, regardless the material type of ETS bars. Vertical ETS bars provided 

an increase of load carrying capacity in the interval of 5% to 68%. The inclined ETS bars have assured a higher 

strengthening effectiveness, since an increase of load carrying capacity from 53% to 136% was obtained. The 

inclined ETS bars were also more effective in assuring larger deflection capacity at the failure of the beams. The 

higher effectiveness of inclined ETS bars is attributable to the larger available resisting bond length, and their 

better orientation regarding the inclination of the shear failure crack (almost mutually orthogonal). 

When comparing the results from the series of beams with different ρsw it was verified that the strengthening 

effectiveness has decreased with the increase of ρsw, and this tendency was more prone in the series with vertical 

ETS bars. Information in this respect was collected from available bibliography, which has confirmed the 

aforementioned tendency. 



By comparing the shear strengthening effectiveness obtained with the ETS technique proposed in the present 

work and the one assured by using the externally bonded reinforcement (EBR) and the near surface mounted 

(NSM) techniques it was verified that the former one is more effective. 

In fact, due to the good bond conditions of ETS bars assured by the concrete core of the beams, which also 

introduced some favorable confinement to these bars, those made of steel have yielded, and the CFRP bars have 

attained a relatively high maximum tensile strain, mainly the inclined ones. For similar shear strengthening ratio, 

the CFRP bars provided higher shear strengthening effectiveness than steel bars, due to the larger ultimate force 

capable to be mobilized in incliend bars. It was also verified that the steel stirrups have exceeded its yield strain, 

even in the beams with the highest percentage of steel stirrups.  

Taking into account the high level of shear strengthening effectiveness obtained in this experimental program, it 

can be concluded that ETS can assure ductile flexural failure mode in RC beams susceptible to brittle shear 

rupture. Moreover the ETS technique based on the use of steel bars is a cost competitive and sustainable solution 

for the shear strengthening of RC elements, and much less susceptible to the detrimental effect of high 

temperature than when using FRP systems. Corrosion of these bars can be avoided by providing a cement based 

cover at the bars' extremities.  

 

Acknowledgements 

The authors wish to acknowledge Elletipi S.r.l. (Ferrara, Italy) for supporting the experimental program, Interbau 

S.r.l. (Milano, Italy) for applying the ETS strengthening system, BASF company Italy for providing the CFRP 

rods and  the ENDIF Geomatic Group (University of Ferrara, Italy) for monitoring the experimental program, as 

well as the support provided by FCT (PTDC/ECM/114511/2009). The authors wish also acknowledge the 

Engineering Department of the University of Ferrara for its financial support.  

 

   References 



[1] Bakis CE, Bank LC, Brown VL, Cosenza E, Davalos JF, Lesko JJ, et al. Fiber-Reinforced Polymer 

Composites for Construction—State-of-the-Art Review. J Compos Constr 2002;6(2):73–87. 

http://dx.doi.org/10.1061/(ASCE)1090-0268(2002)6:2(73) 

[2] Teng JG, Chen JF, Smith ST, Lam L. Behaviour and strength of FRP-strengthened RC structures: a state-

of-the-art review. Proc ICE - Struct Build 2003;156(1):51–62. 

http://dx.doi.org/10.1680/stbu.2003.156.1.51 

[3] De Lorenzis L, Teng JG. Near-surface mounted FRP reinforcement: An emerging technique for 

strengthening structures. Compos Part B Eng 2007;38(2):119–43. 

http://dx.doi.org/10.1016/j.compositesb.2006.08.003 

[4] Choudhury R, Suntharavadivel TG, Keleher P, Patil A. Shear strengthening of RC beam with external 

FRP bonding: A state-of-the-art review. In: From Mater. to Struct. Adv. through Innov., Eds: Samali B, 

Attard MM, Song C, CRC Press; 2013, p. 263–7. 

[5] Sena-Cruz JM, Barros JAO. Bond Between Near-Surface Mounted Carbon-Fiber-Reinforced Polymer 

Laminate Strips and Concrete. J Compos Constr 2004;8(6):516–27. 

http://dx.doi.org/10.1061/(ASCE)1090-0268(2004)8:6(519) 

[6] Barros JAO, Dias SJE, Lima JLT. Efficacy of CFRP-based techniques for the flexural and shear 

strengthening of concrete beams. Cem Concr Compos 2007;29(3):203–17. 

http://dx.doi.org/10.1016/j.cemconcomp.2006.09.001 

[7] Bilotta A, Ceroni F, Di Ludovico M, Nigro E, Pecce M, Manfredi G. Bond Efficiency of EBR and NSM 

FRP Systems for Strengthening Concrete Members. J Compos Constr 2011;15(5):757–72. 

http://dx.doi.org/10.1061/(ASCE)CC.1943-5614.0000204 

[8] Seo S-Y, Feo L, Hui D. Bond strength of near surface-mounted FRP plate for retrofit of concrete 

structures. Compos Struct 2013;95:719–27. http://dx.doi.org/10.1016/j.compstruct.2012.08.038 

[9] Oehlers DJ, Haskett M, Wu C, Seracino R. Embedding NSM FRP plates for Improved IC debonding 

resistance. J Compos Constr 2008;12(6):635–42. http://dx.doi.org/10.1061/(ASCE)1090-

0268(2008)12:6(635)) 

[10] Barros JAO, Dias SJE. Assessment of the effectiveness of the NSM shear strengthening technique for 

deep T cross section RC beams.In: Proc. International Symposium on fiber reinforced polymers for 

reinforced concrete structures FRPRCS11, Guimarães, Portugal. 26-28 June 2013. p. 10. 

[11] Valerio P, Ibell TJ, Darby AP. Deep embedment of FRP for concrete shear strengthening. Proc ICE - 

Struct Build 2009;162(5):311–21. http://dx.doi.org /10.1680/stbu.2009.162.5.311 

[12] Valerio P, Ibell T, Darby A. Shear Assessment and Strengthening of Contiguous-Beam Concrete Bridges 

Using FRP Bars. In: Proc. of the 7th international symposium on fiber reinforced polymer reinforcement 

for concrete structures (FRPRCS-7), Kansas City, Missouri; 6-9 Nov. 2005:825–48. 

 [13] Barros JAO, Dalfré GM, Trombini E, Aprile A. Exploring the possibilities of a new technique for the 

shear strengthening of RC elements. In: Proc. Int. Conf. Challenges Civil Construction (CCC2008), Univ. 

Porto, Porto, Portugal; 16-18 Apr. 2008.  

http://dx.doi.org/10.1061/(ASCE)1090-0268(2002)6:2(73)
http://dx.doi.org/10.1061/(ASCE)1090-0268(2004)8:6(519)
http://dx.doi.org/10.1061/(ASCE)CC.1943-5614.0000204
http://dx.doi.org/10.1016/j.compstruct.2012.08.038
http://dx.doi.org/10.1061/(ASCE)1090-0268(2008)12:6(635)
http://dx.doi.org/10.1061/(ASCE)1090-0268(2008)12:6(635)


[14] Chaallal O, Mofidi A, Benmokrane B, Neale K. Embedded Through-Section FRP Rod Method for Shear 

Strengthening of RC Beams: Performance and Comparison with Existing Techniques. J Compos Constr 

2011;15(3):732–42. http://dx.doi.org/10.1061/(ASCE)CC.1943-5614.0000174 

[15] Barros JAO, Dalfré GM. Assessment of the Effectiveness of the Embedded Through-Section Technique 

for the Shear Strengthening of Reinforced Concrete Beams. Strain 2012;49(1):75–93. 

http://dx.doi.org/10.1111/str.12016 

[16] Sissakis K, Sheikh SA. Strengthening Concrete Slabs for Punching Shear with Carbon Fiber-Reinforced 

Polymer Laminates. ACI Struct J 2007;104(1):49–59. http://dx.doi.org/10.14359/18432 

[17] Fernàndez Ruiz M, Muttoni A, Kunz J. Strengthening of Flat Slabs Against Punching Shear Using Post-

Installed Shear Reinforcement. ACI Struct J 2010;107(4):434–42. http://dx.doi.org/10.14359/18432 

[18] Lima JLT, Barros JAO. Reliability analysis of shear strengthening externally bonded FRP models. Proc 

ICE - Struct Build 2011;164(1):43–56. http://dx.doi.org/10.1680/stbu.9.00042 

[19] Bousselham A, Chaallal O. Mechanisms of Shear Resistance of Concrete Beams Strengthened in Shear 

with Externally Bonded FRP. J Compos Constr 2008; http://dx.doi.org/12:499–512. 

10.1061/(ASCE)1090-0268(2008)12:5(499) 

[20] Belarbi A, Kuchma DA, Okeil AM, Bae S-W. Design Equations for Shear Capacity of Concrete Girders 

Strengthened in Shear with Externally Bonded FRP Sheets. In: Proc: Asia-Pacific Conference on FRP in 

Structures (APFIS), Hokkaido University Japan 2-4 February 2012, p. 8. 

[21] Fib – Bulletin 14. Externally bonded FRP reinforcement for RC structures. Technical report by Task 

Group 9.3 FRP (Fiber Reinforced Polymer) reinforcement for concrete structures, Féderation 

Internationale du Béton – fib; July 2001. 130p. 

[22] Standards Australia. CIDAR-Design guideline for RC structures retrofitted with FRP and metal plates: 

beams and slabs Draft 3 2006. 

[23] American Concrete Institute. Guide for the design and con- struction of externally bonded FRP systems 

for strengthening concrete structures. ACI440.2R. Farmington Hills, MI: American Concrete Institute, 

Detroit; 2008. 

[24] National Research Council 2004. Guide for design and construction of externally bonded FRP systems 

for strenghtening existing structures CNR-DT200 2012. 

[25] Chen GM, Teng JG, Chen JF. Shear Strength Model for FRP-Strengthened RC Beams with Adverse 

FRP-Steel Interaction. J Compos Constr 2013;17(1):50–66. http://dx.doi.org/10.1061/(ASCE)CC.1943-

5614.0000313 

[26] Chen GM, Teng JG, Chen JF, Rosenboom OA. Interaction between Steel Stirrups and Shear-

Strengthening FRP Strips in RC Beams. J Compos Constr 2010;14(5):498–509. 

http://dx.doi.org/10.1061/(ASCE)CC.1943-5614.0000120 

[27] Dias SJE, Barros JAO. Shear strengthening of RC beams with NSM CFRP laminates: Experimental 

research and analytical formulation. Compos Struct 2013;99:477–90. 

http://dx.doi.org/10.1016/j.compstruct.2012.09.026  

http://dx.doi.org/10.1061/(ASCE)CC.1943-5614.0000174
http://dx.doi.org/10.1111/str.12016
http://dx.doi.org/10.14359/18432
http://dx.doi.org/10.14359/18432
http://dx.doi.org/10.1061/(ASCE)CC.1943-5614.0000313
http://dx.doi.org/10.1061/(ASCE)CC.1943-5614.0000313
http://dx.doi.org/10.1061/(ASCE)CC.1943-5614.0000313


[28] Chaallal O, Mofidi A. Shear Strengthening of RC Beams with Externally Bonded FRP Composites: 

Effect of Strip-Width-to-Strip-Spacing Ratio. J Compos Constr 2011;15(5): 732–42. 

http://dx.doi.org/10.1061/(ASCE)CC.1943-5614.0000219 

[29] Li A, Delmas Y. CRFP contribution to shear capacity of strengthened RC beams. Eng Struct 

2001;23(10):1212–20. http://dx.doi.org/10.1016/S0141-0296(01)00035-9 

[30] Pellegrino M, Modena C. Fiber-Reinforced Polymer Shear Strengthening of Reinforced Concrete Beams: 

Experimental Study and Analytical Modeling. ACI Struct J 2006;103(5):720–8. 

http://dx.doi.org/10.14359/16924 

[31] European Committee for Standardization. Eurocode 2: Design of concrete structures - Part 1-1: General 

rules and rules for buildings Eurocode 2004. 

[32] Collins MP, Mitchell D. Prestressed concrete structures. Englewood Cliffs (NJ): Prentice-Hall, Inc.; 

1997. 

[33] European Committee for Standardization. EN 206-1 Concrete – Part 1: Specification, performance, 

production and conformity. 2001. 

[34] C.S.L.P. Nuove Norme Tecniche per le Costruzioni DM 14 gennaio 2008 - Gazzetta Ufficiale n. 29 del 4 

febbraio 2008. 2009. 

[35] European Committee for Standardization. UNI EN ISO 6892-1:2009 Metallic materials - Tensile testing - 

Part 1: Method of test at room temperature. 2009 

[36] European Committee for Standardization. ISO 527-2:2012. Plastics - Determination of tensile properties - 

Part 2: Test conditions for moulding and extrusion plastics. 2012 

[37] BASF Construction Chemicals Italia Spa. Technical sheet MasterBrace BAR 8 CFS. http://www.master-

builders-solutions.basf.it/ 

[38] Dias SJE, Barros JAO. Performance of reinforced concrete T beams strengthened in shear with NSM 

CFRP laminates. Eng Struct 2010;32(2):373–84. http://dx.doi.org/10.1016/j.engstruct.2009.10.001 

[39] Bianco V, Barros JAO, Monti G. New approach for modeling the contribution of NSM FRP strips for 

shear strengthening of RC beams. J Compos Constr 2010;14(1):36–48. 

http://dx.doi.org/10.1061/(ASCE)CC.1943-5614.0000048 

[40] Mazaheripour H, Barros JAO, Sena-Cruz JM, Pepe M, Martinelli E. Experimental study on bond 

performance of GFRP bars in self-compacting steel fiber reinforced concrete. Compos Struct 

2013;95:202–12. http://dx.doi.org/10.1016/j.compstruct.2012.07.009 

[41] Dalfré GM, Barros JAO, Machado D. Steel bar – concrete bond behavior in the context of the ETS shear 

strengthening technique for RC beams. In: Proc: 53° Brazilan Conference on Concret – IBRACON, 

Florianopolis, November 2011. p. 15. 

[42] Bianco V, Monti G, Barros JA. Theoretical Model and Computational Procedure to Evaluate the NSM 

FRP Strips Shear Strength Contribution to a RC Beam. J Struct Eng 2011;137(11):1359–72. 

http://dx.doi.org/10.1061/(ASCE)ST.1943-541X.0000370 

http://dx.doi.org/10.1061/(ASCE)CC.1943-5614.0000048


[43] Rizzo A, De Lorenzis L. Behavior and capacity of RC beams strengthened in shear with NSM FRP 

reinforcement. Constr Build Mater 2009;23(4):1555–67. 

http://dx.doi.org/10.1016/j.conbuildmat.2007.08.014 

[44] Dias SJE, Barros JAO. Shear strengthening of RC T-section beams with low strength concrete using 

NSM CFRP laminates. Cem Concr Compos 2011;33(2):334–45. 

http://dx.doi.org10.1016/j.cemconcomp.2010.10.002 

[45] Pellegrino C, Modena C. Fiber Reinforced Polymer Shear Strengthening of Reinforced Concrete Beams 

with Transverse Steel Reinforcement. J Compos Constr 2002;6(2):104–11. 

http://dx.doi.org10.1016/10.1061/(ASCE)1090-0268(2002)6:2(104) 

[46] Bousselham A, Chaallal O. Effect of transverse steel and shear span on the performance of RC beams 

strengthened in shear with CFRP. Compos Part B Eng 2006;37:37(1)–46. 

http://dx.doi.org/10.1016/j.compositesb.2005.05.012 

[47] Grande E, Imbimbo M, Rasuolo A. Effect of transverse steel on the response of RC beams strengthened 

in shear by FRP: Experimental study. J Compos Constr 2009;13(5):405–14. 

http://dx.doi.org/10.1061/(ASCE)1090-0268(2009)13:5(405) 

[48] Dias SJE, Barros JAO. Experimental Behaviour of RC Beams Shear Strengthened with NSM CFRP 

Laminates. Strain 2011;48(1):88–100. http://dx.doi.org/10.1111/j.1475-1305.2010.00801.x 

 

 

 

  

http://dx.doi.org/10.1016/j.compositesb.2005.05.012
http://dx.doi.org/10.1061/(ASCE)1090-0268(2009)13:5(405)


TABLES CAPTIONS 

 

Table 1 ETS shear strengthening configurations of the tested beams. 

Table 2 Experimental results of 0S-Series, 2S-Series and 4S-Series. 

Table 3 Significant strains measured for 0S- 2S- 4S-Series. 

Table 4 Experimental results of previous experimental tests on beams strengthened with ETS technique. 

  



 

Table 1 

 ETS shear strengthening configurations of the tested beams. 

Number 

of bars 

Angle 

[θfw] 

ETS bar 

spacing 

[sfw] 

ETS 

Reinforcing 

ratio [ρfw] 0S-Ref c 2S-Ref d 

 

 

4S-Ref e 

dETS [°]a (mm) [%]b  (ρsw=0.0%) 

ρsw+ρfw 

[%]  (ρsw=0.10%) 

ρsw+ρfw 

[%]  (ρsw=0.17%) 

ρsw+ρfw 

[%] 

3 90 300 0.15 0S-S300-90 0.15 2S-S300-90 0.25 4S-S300-90 0.32 

3 45 300 0.21 0S-S300-45 0.21 2S-S300-45 0.31 4S-S300-45 0.38 

5 90 180 0.24 0S-S180-90 0.24 2S-S180-90 0.35 4S-S180-90 0.42 

5 45 180 0.34 0S-S180-45 0.34 2S-S180-45 0.45 4S-S180-45 0.52 

5 90 180 0.16 -- -- 2S-C180-90 0.26 4S-C180-90 0.33 

5 90 180 0.22 -- -- 2S-C180-45 0.32 4S-C180-45 0.39 
a Angle between the ETS bar and the beam’s axis. 
b The ETS percentage was obtained from Eq. (2). 
c Series of beams without steel stirrups (0S-Series) (Figure 1). 
d Series of beams with two stirrups (2S-Series) (Figure 2a). 
e Series of beams with four stirrups (4S-Series) (Figure 2b). 

  



Table 2  
Experimental results of 0S-Series, 2S-Series and 4S-Series. 

  Fmax  uLmax ΔF/FRef Vmax  Vf(exp) CDCtang. CDCavg. 

  [kN] [mm]  [%] [kN]  [kN] [°] [°] 

0S-Ref 156.1 4.66 -- 93.6 -- 34 39 

0S-S300-90 217.8 4.37 39.5 130.7 37.0 48 42 

0S-S300-45 348.6 
 

123.4 209.2 115.5 
58 47 

0S-S180-90 256.8 4.31 64.6 154.1 60.5 63 44 

0S-S180-45 368.8 6.56 136.3 221.3 127.7 35 43 

2S-Ref 242.1 4.70 -- 145.2 -- 45 39 

2S-S300-90 315.7 5.32 30.4 189.4 44.2 58 42 

2S-S300-45 407.1 7.03 68.2 244.3 99.0 48 39 

2S-S180-90 406.8 8.27 68.1 244.1 98.8 73 47 

2S-S180-45 504.7 8.37 108.5 302.8 157.6 70  49 

4S-Ref 353.8 7.35 -- 212.3 -- 48 40 

4S-S300-90 370.9 7.43 4.8 222.6 10.3 32 46 

4S-S300-45 552.4 12.03 56.1 331.5 119.2 61 54 

4S-S180-90 413.2 6.32 16.8 247.9 35.6 52 54 

4S-S180-45 566.4 11.01 60.1 339.8 127.6 53 40 

2S-C180-90 370.485 5.89 53.1 222.3 77.1 62 60 

2S-C180-45 534.69 9.53 120.9 320.8 175.6 48 46 

4S-C180-90 376.875 6.20 6.5 226.1 13.9 49 52 

4S-C180-45 616.86 12.03 74.4 370.1 157.8 42 40 

  



Table 3  

Significant strains measured for 0S- 2S- 4S-Series. 

Beam ID | SG Element ε Fmax 

[%] 

εmax 

[%] 

(uL/uLmax) 

0S-S300-90 1 S1 0.06 0.08 (0.72) 

 6 S2 -- 0.29 (0.66) 

0S-S300-45 3 S2 -- 0.92 (0.62) 

 8 S3 -- 0.87 (0.99) 

0S-S180-90 1 S2 0.16 0.17 (1.03) 

 4 S3 0.59 1.06 (2.23) 

0S-S180-45 3 S3 0.46 0.48 (1.03) 

 7 S4 -- 0.64 (0.89) 

2S-Ref 1 St1 0.17 0.21 (1.49) 

2S-S300-90 1 St1 0.14 0.19 (1.26) 

2S-S300-45 3 St1 0.30 0.95 (1.07) 

 5 S1 0.16 0.73 (1.14) 

 6 S2 0.59 0.84 (0.63) 

 8 S2 0.30 0.92 (1.06) 

2S-S180-90 3 St1 -- 1.00 (0.83) 

2S-S180-45 2 St1 0.42 0.56 (1.13) 

 5 S2 0.30 0.31 (1.07) 

 8 S3 0.29 0.31 (1.11) 

4S-Ref 1 St1 0.47 0.47 (1.00) 

 2 St2 0.75 0.86 (0.50) 

4S-S300-90 6 S2 0.16 0.16 (1.00) 

4S-S300-45 1 St1 0.25 0.31 (1.10) 

 3 St2 -- 0.89 (0.69) 

 4 S1 -- 0.38 (0.82) 

 6 S2 -- 0.91 (0.75) 

 8 S2 -- 0.90 (0.82) 

4S-S180-90 2 St2 0.26 0.38 (1.06) 

 4 S2 0.04 0.05 (1.05) 

 7 S3 0.88 1.00 (1.02) 

4S-S180-45 1 St1 0.41 0.48 (1.18) 

 3 St2 -- 0.96 (0.92) 

 5 S2 0.66 0.82 (1.20) 

 8 S3 0.26 0.27(1.20) 

2S-C180-90 2 St1 -- 0.87 (0.79) 

 1* C2 0.40 0.46 (1.31) 

 4 C3 0.27 0.38 (0.82) 

 8 C4 0.67 0.67 (1.00) 

2S-C180-45 2 C2 0.66 0.76 (1.20) 

 1* C2 0.46 0.56 (0.70) 

 4 C3 0.24 0.61 (0.63) 

 6 C4 -- 0.97 (0.92) 

 7 C4 -- 1.00 (0.83) 

 8 C4 0.86 0.86 (1.00) 

4S-C180-90 4 C2 0.15 0.16 (1.05) 

 6 C3 0.13 0.15 (0.60) 

4S-C180-45 3 St2 -- 0.79 (0.78) 

 5 C2 0.77 0.86 (1.18) 

 8 C3 0.62 0.89 (1.18) 

 2 C4 0.86 0.86 (1.00) 

  



 

Table 4  
Experimental results of previous experimental tests on beams strengthened with ETS technique. 

Valerio et al 2009 [11] 
Angle 

[θfw] Material 

fcm,cube/fcm 

[MPa] 

ρsw 

[%] 

ρfw 

[%] 

ρsw+ ρfw 

[%] 

ΔF/FRef 

[%] 

Vf 

[kN] 

SLB P4d-2S8@d 90° S [55-60]a 0.00 0.09 0.09 18.0 53.2 

SSB R3d-C6@0∙7d 90° C [55-60]a 0.00 0.24 0.24 97.0 22.9 

SSB R3d-C6@0∙5d 90° C [55-60]a 0.00 0.34 0.34 114.0 27.0 

SLB P4d-2C7∙5@d 90° C [55-60]a 0.00 0.08 0.08 14.6 43.2 

SLB P4d-C7∙5@d 90° C [55-60]a 0.00 0.04 0.04 6.5 19.1 

Chaallal et al 2011 [14] 
 

       

S0-ETS 90° C 25.00b 0.00 0.64 0.64 112.40 99.50 

Dalfré and Barros 2013 [15] 
 

       

A.3 E300.90 90° S 30.78 b 0.00 0.17 0.17 47.7 31.2 

A.4 E300.45 45° S 28.81 b 0.00 0.25 0.25 47.7 57.1 

A.5 S300.90/E300.90 90° S 30.78 b 0.13 0.17 0.30 40.8 40.3 

B.3 E300.90 90° S 30.78 b 0.00 0.11 0.11 17.5 21.3 

B.4 E300.45 45° S 28.81 b 0.00 0.16 0.16 65.3 98.5 

B.5 S300.90/E300.90 90° S 30.78 b 0.06 0.11 0.17 67.9 94.7 
a fcm,cube. Average concrete cube compressive strength 
b fcm.. Average concrete cylindrical compressive strength 

 

 

 

  



FIGURE CAPTIONS 

 

Fig. 1. Tested beams: geometry, steel reinforcements applied in all beams (dimensions in mm). 

Fig. 2. Reference Beams: (a) 2S-REF(stirrups ϕ6@300), (b) 4S-REF(stirrups ϕ6@180). 

Fig. 3. Strengthening configurations of series: (a) 0S, (b) 2S; (c) 4S (dimensions in mm). 

Fig. 4. Test set-up. 

Fig. 5. Position of the strain gauges (dimensions in mm) 

Fig. 6. Force vs deflection at the loaded section for (a) 0S-Series, (b) 2S-Series, (c) 4S-Series. 

Fig. 7. Crack Patterns at Maximum Load. 

Fig. 8. Load versus strains recorded in strain gauges applied in ETS bars and steel stirrups. 

Fig. 9. Failure (a-b) loss of bond in ETS steel bars and CFRP roads, respectively, (c) scratching of the epoxy 

adhesive (d) peeling-off of the CFRP road. 

Fig. 10. Influence of the ρsw+ ρfw  on the ETS effectiveness. 

Fig. 11. ETS effectiveness (a) influence of ρsw and ρfw, (b) projection on the plane ΔF/FRef - ρfw.
  

Fig. 12. Comparison of shear strengthening efficiency between ETS, NSM and EBR techniques [48]. 

 

 

 

 

 

 

  



 

 

Fig. 1. Tested beams: geometry, steel reinforcements applied in all beams (dimensions in mm).  
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 Fig. 2. Reference Beams: (a) 2S-REF(stirrups ϕ6@300), (b) 4S-REF(stirrups ϕ6@180)  
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Fig. 3. Strengthening configurations of series: (a) 0S, (b) 2S; (c) 4S (dimensions in mm). 

  



 

Fig. 4.Test set-up. 
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Fig. 5. Position of the strain gauges (dimensions in mm). 
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Fig. 6. Force vs deflection at the loaded seciton for (a) 0S-Series, (b) 2S-Series, (c) 4S-Series. 

  



Fig. 7. Crack Patterns at Maximum Load.  
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Fig. 8. Load versus strains recorded in strain gauges applied in ETS bars and steel stirrups.  



    
 

Fig.9. Failure (a-b) loss of bond in ETS steel bars and CFRP roads, respectively, (c) scratching of the epoxy 

adhesive (d) peeling-off of the CFRP road.  



 
Fig. 10. Influence of the ρsw+ ρfw  on the ETS effectiveness. 
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Fig. 11. ETS effectiveness (a) influence of ρsw and ρfw, (b) projection on the plane ΔF/FRef - ρfw.
  

  



 

Fig. 12. Comparison of shear strengthening efficiency between ETS, NSM and EBR techniques [48]. 


