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Abstract—This paper presents the design and the prototype 

implementation of a three-phase power inverter developed to drive 

a motor-in-wheel. The control system is implemented in a FPGA 

(Field Programmable Gate Array) device. The paper describes the 

Field Oriented Control (FOC) algorithm and the Space Vector 

Modulation (SVM) technique that were implemented. The control 

platform uses a Spartan-3E FPGA board, programmed with 

Verilog language. Simulation and experimental results are 

presented to validate the developed system operation under 

different load conditions. Finally are presented conclusions based 

on the experimental results. 

Keywords—Axial Flux Motor-in-Wheel; Field Oriented Control 

(FOC); Field Programmable Gate Array (FPGA); Space Vector 

Modulation (SVM) 

I. INTRODUCTION 

It is estimated that within 50 years the oil resources are 
virtually exhausted. While it is also expected that the overall 
number of vehicles will increase from 700 million to 2.5 billion, 
as consequence of the world population increase. Therefore, 
alternative energy sources and storage systems are needed. 
Electric mobility is growing as response to this need of reducing 
vehicles´ dependence on fossil fuels [1], [2]. 

Electric motors manufacturers are sensible to this change of 
the mobility paradigm, and new motors, specially designed for 
electric vehicles (EVs) are being developed. The axial flux 
motors are one of the most promising technologies due to its 
high power density. They can be mounted inside the vehicle’s 
wheels, reducing, or even eliminating mechanical components. 
This concept is known as motor-in-wheel. 

Electric motors can be used in electric vehicles to drive the 
vehicle, or in hybrid electric vehicles to assist the internal 
combustion engine (ICE). When assisting the ICE, the electric 
motor only produces the peak power required by the vehicle, 
reducing the ICE power, and consequently reducing fuel 
consumption, and therefore improving vehicle’s efficiency. 
Another advantage of using electric motors in the powertrain is 
its ability to work as motor or generator. This characteristic 
allows regenerative braking, that increases the efficiency and 
autonomy of the vehicle. 

This paper presents the power converter and the control 
algorithms design, simulation and experimental results of a 
motor-in-wheel controller. The proposed solution uses Field 
Oriented Control (FOC), and a Space Vector Modulation (SVM) 
techniques. The control platform uses a Spartan-3E FPGA 
Starter Kit Board from Xilinx. 

II. FIELD ORIENTED CONTROL 

With the Field Oriented Control (FOC) the motor torque and 
magnetization flux are, directly and separately, controlled. 
Using the FOC the motor is controlled as it is a DC motor, with 
all the arising advantages, namely instantaneous torque and flux 
control, which improves the motor performance both in transient 
and steady state operation [3]-[5]. 

Fig. 1 depicts the FOC with a Space Vector Modulation 
(SVM) technique. The Clarke transform is used to represent the 

motor currents in a two axes orthogonal - coordinate system. 
These currents are called iα and iβ. With the Park transform the 

- components are translated to a two axes orthogonal d-q 
coordinate system synchronous with the rotor position. In this 
system the motor currents are called Id and Iq Each of these 
current components is then compared with the correspondent 
reference current, Id

* (flux reference) and Iq
* (torque reference). 

The Id
* reference is set to zero in order to be obtained the 

maximum torque. The Iq
* reference is generated by the speed 

regulator. Using two PI controllers the d-q axis motor reference 
voltages (Vd and Vq) are obtained. The inverse Park transform 

translates the voltage references in two - reference voltage 
components, vα and vβ, which are used as inputs for the SVM 
technique. 

The motor was modeled using the d-q axis mathematical 
model. So, the main equations of the motor are expressed under 
a d-q coordinate system, as shown in equations (1) to (4). It was 
assumed that the rotor flux is constant and the motor losses were 
neglected [6], [7]. 

 
vq = Rs iq + Lq

diq

dt
 + ωe (ɸ

m
 + Ld id) (1) 

 
vd = Rs id + Ld

did

dt
 - ωe (Lq iq) (2) 

 ωe = 
p

2
 ω (3) 

 
Te = (

3

2
) (

 p

2
) (iq ɸ

m
 + (Ld - Lq)iq id) (4) 

Where, vd and vq, are the stator voltages, id and iq are the 
stator currents, Ld and Lq are the motor inductances, Rs is the 
stator resistance, ωe is the electrical rotor speed, ω is the rotor 
angular speed, ϕm is the rotor permanent magnets flux, and p is 
the number of poles. 
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III. SPACE VECTOR MODULATION 

As it can be seen in Fig. 1 the FOC produces two - 
reference voltage components, vα and vβ, which represent the 
voltages that should be applied to the motor. The translation of 
these reference voltages in gate pulses for the inverter 
semiconductors is done by a pulse width modulation technique. 
Since the reference voltage is a vector, and considering the 
advantages of the Space Vector Modulation (SVM) technique, 
it was the natural choice. In comparison with other modulation 
techniques, SVM does a more efficient use of the DC-link 
voltage, generates voltages with lower total harmonic distortion 
and reduces the power semiconductors switching losses, 
improving efficiency [8], [9]. The SVM has good performance 
in applications where it is necessary a variable frequency, as it 
is the case of motors control. Nevertheless, it should be 
mentioned that it consumes more computational resources [8]. 

The working principle of the SVM is depicted in Fig. 2. It 

consists in representing the reference voltage (Vref) in a - 
coordinate system, that is divided in eight different sectors 
defined by the voltage vectors, V0 to V7 [8]. 

The procedure to obtain the modulation duty cycles can be 
divided into three steps [10]: 

1) Determination of the Sector of Vref 

With equations (5) and (6), and Table I, is identified the 
sector where vector Vref is placed. 

{

If  vβ > 0 Then A = 1,   Else A = 0

If  (vα √3 - vβ) > 0 Then B = 1,   Else B = 0

If  (-vα √3 - vβ) > 0 Then C = 1,   Else C = 0

 (5) 

N = A + 2 B + 4 C (6) 

2) Calculation of the Dwell Times t1 and t2 

With equations (7) to (9) the auxiliary variables X, Y and Z 
are calculated. These auxiliary variables are used to define the 
dwell times, t1 and t2, according to Table II. 

 
 X = 

√3 uβ

VCC

Ts (7) 

 
 Y = 

1

2 VCC

(√3 uβ + 3 uα)Ts (8) 

 
 Z = 

1

2 VCC

(√3 uβ - 3 uα)Ts (9) 

Where, Vcc is the DC-link voltage and Ts is the switching 
period. 

3) Determination of the Duty Cycles Ta, Tb and Tc 

The next equations show the calculation of the duty cycles. 
Table III organizes the duty cycles according to Vref sector. 

 
taON = 

(Ts - t1 - t2)

4
 (10) 

 
tbON = taON + 

t1

2
 (11) 

 
tcON = tbON + 

t2

2
 (12) 

IV. SIMULATION RESULTS 

Before implementing the system a set of simulations were 
performed, in order to assess the system behavior and to improve 
design specifications. The simulation software used was PSIM 
9.1 from Powersimtech. 

Many times electric motors manufactures do not provide all 
the parameters needed for its proper simulation Therefore, a set 
of experimental tests are needed in order to obtain them [11]. 
Table IV presents the main parameters of the motor-in-wheel 
that was used. 

A. No-Load Simulations 

Fig. 4 shows the motor speed along the time and its reference 
when the motor is operating without any mechanical load. It is 

 
Fig. 1. Field Oriented Control (FOC) block diagram. 
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Fig. 2. SVM sectors and voltage reference (Vref) in the α-β coordinate system. 
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TABLE I.  VREF SECTORS 

N 1 2 3 4 5 6 

Sector II VI I IV III V 

 

TABLE II.  DWELL TIMES OF THE SWITCHING STATE VECTORS 

Sector I II III IV V VI 

t1 -Z Z X -X -Y Y 

t2 X Y -Y Z -Z -X 

TABLE III.  DUTY CYCLES FOR EACH SECTOR 

Sector I II III IV V VI 

Ta taON tbON tcON tcON tbON taON 

Tb tbON taON taON tbON tcON tcON 

Tc tcON tcON tbON taON taON tbON 

 



possible to observe the speed following the reference. It is also 
visible that the system has a fast response to reference variations. 

In Fig. 3 is shown the motor voltages (va, vb and vc) and 
currents (ia, ib and ic) at nominal speed without mechanical load. 
The voltages were measured between each motor phase and the 
middle point of the DC-link, it was also used a low-pass filter 
set with a 500 Hz cutoff frequency. 

B. Full-Load Simulations 

The system was simulated with a mechanical load of 33 Nm. 
Fig. 5 shows the motor speed and its reference when the motor 
runs at nominal load. It is possible to observe the speed 
following its reference. It is also visible that the system has a fast 
response to reference variations, and that it has not changed with 
the load. 

Fig. 6 shows the motor voltages (va, vb, vc, vab, vbc and vca) 
and currents (ia, ib and ic) at nominal speed. Like in the no-load 
simulations, va, vb, and vc voltages were obtained between the 
motor phase and the middle point of the DC-link, while vab, vbc, 
and vca voltages are the phase-to-phase motor voltages. It is 

TABLE IV.  MOTOR-IN-WHELL CHARACTERISTICS 

Characteristic Value Unit 

Nominal Power 1.8 kW 

Speed 520 rpm 

Nominal Voltage 33.2 V 

Nominal Current 40.8 A 

Torque 33 Nm 

Number of Poles 32 - 

Nominal Frequency 139 Hz 

Stator Resistance 58 mΩ 

d-axis Stator Inductance 205 µH 

q-axis Stator Inductance 221 µH 

Voltage constant 86.8 V/1000 rpm 

 
Fig. 4. Motor speed (wreal) and its reference (wref) without mechanical load. 
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Fig. 3. Voltages and currents of the motor without nominal mechanical load: 

(a) va, vb and vc; (b) ia, ib and ic. 
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Fig. 5. Motor speed (wreal) and its reference (wref) with nominal mechanical 

load. 
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Fig. 6. Voltages and currents of the motor at nominal speed and with nominal 

mechanical load: (a) va, vb and vc; (b) vab, vbc and vca; (c) ia, ib and ic. 
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visible that the currents ripple is lower than with no-load 
operation, due to the higher RMS currents values. 

V. SYSTEM IMPLEMENTATION 

As shown in Fig. 7, it was developed a three-phase power 
inverter to drive the motor. This inverter is composed by three 
IGBT legs, and three driver boards from SEMIKRON. 

The control platform uses the FPGA Spartan-3E Starter Kit 
Board from Xilinx (Fig. 8). 

This board uses the Xilinx XC3S1600E Spartan-3E with 232 
I/O ports and around 10 000 logic cells. This board also has other 
features such as: a 50 MHz oscillator, a 16 Mb flash memory 
with SPI communication, two RS-232 ports, and support for a 
LCD [12]. The code was programmed in Verilog language to be 
achieved a faster system response. 

The FOC process implementation follows the state machine 
presented in Fig. 9. In each state sequentially or parallel tasks 
can coexist. The sequence and parallelization of the tasks 

execution are shown in Fig. 10. The transaction between two 
different states takes one clock cycle. 

The signal conditioning between the voltage and current 
sensors from the inverter, accelerator position, rotor position, 
and the FPGA is done by the board presented in Fig. 11 (a). The 
inverter command signals are adjusted by the board shown in 
Fig. 11 (b). 

VI. EXPERIMENTAL RESULTS 

The experimental results were obtained with the support of 
the test bench shown in Fig. 12. With this test bench is possible 
to change the mechanical load between 0 and 47 Nm [13]. 

A. Experimental No-Load Test 

In Fig. 13 are shown the motor speed and its reference with 
no-load condition. It is visible that the motor speed follows the 
reference. It is also visible that the system has a fast response to 
reference variations. 

In Fig. 14 are shown the motor voltages (vab, vbc and vca) and 
currents (ia, ib and ic) at an angular speed of 44 rad/s. The 
voltages were acquired with an oscilloscope and a low-pass filter 
set with a 500 Hz cutoff frequency. The currents were measured 
using FLUKE i400s current probes set with a scale of 10 mV/A. 

B. Experimental Load Test 

In Fig. 15 are shown the motor speed and its reference with 
different mechanical loads. Five different time instants are 
depicted. At instant T1, the mechanical load was changed from 0 
to 10 Nm and the motor speed reference was set to 31 rad/s, 
resulting in a speed overshoot of about 4.5 rad/s, during 0.5 s. At 
instant T2, the mechanical load is increased by 15 Nm. As 

 
Fig. 7. Developed three-phase power inverter. 

 
Fig. 8. Spartan-3E FPGA Starter Kit Board. 

 
Fig. 9. The FOC state machine. 
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Fig. 10. The FOC state machine. 
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consequence the speed slightly decreases, to increase again to 
the reference values 1 s later. At instant T3, the mechanical load 
is decreased by 15 Nm, returning to the initial value. 
Consequently, the speed slightly increases, about 1 s later 
decreases to the reference value. At instant T4, the speed 
reference starts decreasing to zero. Finally, at instant T5, it was 
given a reference for the motor to stop. 

In Fig. 16 are shown the motor voltages (vab, vbc and vca) and 
currents (ia, ib and ic) at 33 rad/s with nominal mechanical load. 
Like in the no-load test, the voltages and currents were also 
obtained with an oscilloscope and current probes. 

VII. CONCLUSIONS 

In this paper was presented a three-phase power inverter 
developed to drive an Axial Flux Motor-in-Wheel. It was also 
presented the simulation and experimental results obtained with 
a control system using Field Oriented Control (FOC) and Space 

(a) 

 

(b) 

 
Fig. 11. Developed FPGA signal conditioning boards: (a) Input signals; 

(b) Inverter command signals. 

 

Fig. 12. Assemblage between the motor-in-wheel and the test bench. 

Potenciómetro

Sin e Cos do 
módulo 

RMB28MB

Sin, Cos e 
ωref  para 
os ADCs

Erro_inv, Enable 
e Reset no FPGA

Erro_inv, Enable e Reset 
na Placa de Comando

Accelerator Position

Rotor Position

(RMB28MB)

Error_inv, Enable 

and Reset to FPGA

Error_inv, Enable and Reset 

from command board

Sin, Cos and 

wref to ADC

Braço VSI
fase a

Braço VSI
fase b

Braço VSI
fase c

P
W

M
s

P
W

M
s

Reset

Erro_inv Enable

Phase A 

Inverter

Phase B 

Inverter

Phase C 

Inverter

 

Fig. 13. No-load motor speed (wreal - 8 rad/s/div) and its reference 

(wref - 8 rad/s/div). 
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Fig. 14. Motor voltages and currents at speed of 44 rad/s without mechanical 

load: (a) vab, vbc and vca (20 V/div); (b) ia, ib and ic (10 A/div). 
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Vector Modulation (SVM). The experimental results showed 
that the FOC presents a good performance and fast response to 
speed reference variations in both no-load and load conditions. 

The control platform used to implement the control system 
was a Spartan-3E FPGA Starter Kit Board from Xilinx. The 
code was programmed using Verilog language, in order to be 
achieved a faster system response. Currently the FPGA is 
already programmed in order to reduce the number of resources 
used. Even though, as future work it is intended to optimize the 
parallelization of the tasks, so that the resources consumption 
can be even more reduced. 
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Fig. 15. Motor speed (wreal - 8 rad/s/div) and its reference (wref - 8 rad/s/div) 
for different mechanical loads. 
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Fig. 16. Motor voltages and currents at 33 rad/s with nominal mechanical 

load: (a) vab, vbc and vca (20 V/div); (b) ia, ib and ic (50 A/div). 
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