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Abstract

Secure Multiparty Computation (abrv. MPC) is a group of techniques that
enable multiple entities to compute some function on their private inputs.
More formally, it enables a set of players {P1, . . . , Pn}, each of them holding
private inputs xi, where i is the index of the player, to evaluate a function
f(x1, . . . , xn) = (y1, . . . , yn) so that every player Pi learns yi.

Multiparty Computation has many application scenarios such as pri-
vate auctioning, computation outsourcing, or private information retrieval.
These and other applications make MPC a very appealing object of study,
since it may be a solution to problems in different fields.

The objective of this thesis is twofold. First, we aim to provide a com-
prehensive guide to the current state of multiparty computation protocols.
We do so by inspecting the two categories where most general functionality
secure function evaluation protocols are inserted - boolean or arithmetic
circuit evaluation. Moreover, we show how to implement MPC protocols
with current constructions, and what problems are inherently connected to
the chosen representations.

Second, we document some of the design choices behind a partial
implementation of a concrete secure arithmetic circuit evaluation protocol
- the SPDZ protocol by Damgård et al. [10]. We explain the protocol in
general terms, and then go into the details of some subprotocols, namely
those that were implemented.
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Resumo

Secure Multiparty Computation (abrv. MPC) é uma área que engloba um
conjunto de técnicas que permitem que diferentes entidades avaliem uma
função sem revelar os seus valores privados.

Formalmente, esta técnica permite a um conjunto de participantes
{P1, . . . , Pn}, que possuem inputs privados xi, onde i é o índice de cada
participante, avaliarem a função f(x1, . . . , xn) = (y1, . . . , yn) de forma a que
cada participante Pi obtenha unica e exclusivamente yi.

Multiparty Computation destaca-se pelo facto de ser aplicável em di-
versas áreas como private auctioning, computation outsourcing ou private
information retrieval. Estas aplicações tornam MPC um tópico de bastante
interesse, pois engloba a solução para problemas de diferentes ramos.

Esta dissertação é composta por duas partes.
Primeiro, disponibilizamos um manual de introdução ao tópico, com

o objectivo de descrever o estado actual da tecnologia. Com esse fim, in-
troduzimos os dois grandes ramos onde todos os protocolos de avaliação
genérica se enquadram - avaliação de circuitos booleanos ou avaliação de
circuitos aritméticos. A nossa descrição engloba também aspectos práticos,
como os recursos existentes em termos de frameworks para desenvolvi-
mento de protocolos multiparty. Por fim, descrevemos os problemas que
estão associados à escolha de uma representação em vez de outra.

Na segunda parte, descrevemos algumas das decisões que foram tomadas
aquando da implementação parcial do protocolo SPDZ de Damgård et al.
[10]. Com esse objetivo, começamos por descrever o protocolo em termos
gerais, e posteriormente explicamos o funcionamento em detalhe de alguns
subprotocolos, nomeadamente os que foram implementados.
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Chapter 1

Introduction

A combination of factors has led organisations to store enormous amounts
of data. Having access to the right information has become an aspect of
vital importance, as it can enable a sales department, marketing team or
even an executive board of a company to take crucial decisions. In addition,
the costs of storing and collecting information keep decreasing, thanks to
technological advances such as cloud-based infrastructures.

Despite having these massive databases, organisations still struggle on
how to handle sensitive data in a safe way. Cryptography has helped in this
field. Cryptographic techniques such as symmetric/public-key encryption
have been available for years, and are used extensively when it comes to
securing communications or storage.

Even though there are tools to develop these secure, robust and privacy-
preserving systems, there is another set of problems that can be of much
interest to companies, for which the community has been working on. One
of them is the secure multiparty computation (abrv. SMPC or just MPC)
paradigm. Secure multiparty computation is a set of techniques that enable
multiple parties to jointly compute some function on their private inputs.

In this chapter we provide a concise explanation of what MPC is and
what set of problems it solves. We do so by describing some problems that
organisations face, and what are the available solutions to those problems.
Later, we propose MPC alternatives and explain their benefits.

The problem and the usual approach There are many situations where
multiple parties want to obtain some result, but do not want to reveal their
contributions.

As an example, one can imagine an art auction. The investors may want
the auction to be closed (no bids displayed), so that no investor knows the
intentions of the other.
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From the point of view of the investors, they expect the auction to be
secure. In essence, the investors only want two security requirements to be
fulfilled:

• Privacy - No bid will be disclosed to anyone.

• Correctness - The result of the auction corresponds to the actual
highest bid.

Now that we described the problem, we will focus on the solution. The
typical way to solve this problem is to have some kind of referee that receives
the votes and announces the result. To reduce the abstraction level, we can
think of the referee as a company that specialises on this kind of auctions.
Trivially, it follows that the investors have to trust the referee. They trust
that he will process the auction in such a way that the aforementioned
security requirements are respected. In summary they trust the referee to
pick the best bid, without revealing to anyone the other bids.

This classical solution suffers from this trust problem. The way to make
this work is to pay the referee enough money so that he doesn’t have an
appealing reason to fail. If there are many investors and the exposed art
items are expensive, an investor may try to bribe the referee so that he
selects his bid, instead of the highest. In the same fashion, an investor may
force the referee to disclose the other investors bids, thus learning how
much money each of them is willing to pay for a certain item.
The need to trust some entity is common among this set of problems. As
such, from now on, we will use the term trusted party instead of referee.
Generally speaking, the role of the trusted party is to receive the private
information from each of the participants and send the correct result of the
computation to every participant.

The Multiparty Computation approach The goal of secure multiparty
computation techniques is to achieve the same results by replacing the
previously mentioned trusted party by a secure protocol (see figure 1.1 ).

Based on the security requirements of the auction example , we gener-
alise our definition of security for any multiparty computation protocol .
We state that a multiparty computation protocol is secure if it accomplishes
these two requirements:

• Privacy - The private input of the players is never revealed.

• Correctness - The output of the computation is correct.

Secure Multiparty Computation Protocols 2



1.1 Secure Function Evaluation

Figure 1.1: Setting with physical TP / Same setting where TP was replaced
by a MPC protocol

Multiparty Computation and Applications In the following sections
we provide a more detailed explaination of what MPC is. We describe
the particular problem of Secure Function Evaluation (see section 1.1).
Examples of practical applications that could be achieved with MPC are
listed in section 1.2.

1.1 Secure Function Evaluation

Along with MPC comes the concept of Secure Function Evaluation (ab-
breviated SFE) which is a more concrete example of a Secure Multiparty
Computation . Secure Function Evaluation enables any function to be eval-
uated by various parties, in such a way that no party learns nothing more
than:

• The party’s own private contribution to the function

• The output of the function.

• Information that can be deducted from the output of the function

In a formal notation, SFE is a cryptographic protocol that allows multiple
parties P1 . . . PN with respective private inputs X1, X2, . . . XN to evaluate
function f(X1, X2, . . . XN).

Permitted Leaks The last item refers to the obvious case were the party
can learn the other parties’ input from the result. As an example, we can

Secure Multiparty Computation Protocols 3



1.2 Applications

image two parties which want to securely evaluate a sum function. A
party can always learn the other’s input by subtracting the result with it’s
contribution. We do not consider this to be a leak.

The millionaires problem An easy example of a Secure Function Evalu-
ation is the Millionaire’s problem, which was introduced by Andrew Yao
[27]. The problem was formulated as:

• Two millionaires (M1,M2) have their respective fortunes (FM1 , FM2).

• They want to know which one of them is richer.

• Both millionaires do not want to reveal their fortune. That means:

– M1 should not learn FM2 ;

– M2 should not learn FM1 ;

This classical example clearly exposes the purpose of SFE. Yao published
a scheme that solves this problem without the need of an external trusted
party. Moreover, Yao designed a general protocol for two-party computa-
tion, that was latter named "Garbled Circuits". We provide a full description
of Garbled Circuits in section 3.1

1.2 Applications

There are multiple scenarios where a party may want to perform computa-
tions over sensitive data.

Private Information Retrieval
An airline company wants to check wether there are terrorists in
the list of passengers of a certain flight. The company has to query
the government server to know whether a passenger is a suspected
terrorist or not. The problem is that nor the company wants to reveal
the passenger details nor the Government wants to reveal the full
list of suspected terrorists. The airline company and the Government
server could engage in a MPC and check if any of the passengers is a
terrorist. Note that at the end of this process, the government does
not know which passengers where queried, and the company does
not have the list of suspected terrorists. This way both the passengers
and government privacy are preserved.

Secure Multiparty Computation Protocols 4



1.2 Applications

Distributed Certificate Authority
A Certificate authority (abbreviated CA) sells certificates to clients, by
signing them with it’s own private key. In order to protect the key, the
CA could have it split in multiple shares, in different locations. The
problem is that for the signing operation to work, the shares have to
be joined by some entity. This entity would be a point of failure since
it would have all the shares and hence the private key of the CA. One
can think of a Distributed Certificate Authority to avoid this point of
failure. The signing operation could be done in a MPC fashion, with
each CA server to contribute to the signing operation with it’s private
share. This way there is no entity with access to the CA private key.

Electronic Bidding
Suppose that the government wants to make a contract with the
company that offers the best price. Each of the companies could
contribute with their bid without revealing it. The result would be
the best price along with the company that made that bid.

Private Satellite Collision Analysis
There are many (< 7000) spacecrafts orbiting the Earth. Recently,
two satellites belonging to the US and Russia collided in orbit. This
problem could be solved if countries revealed their satellites orbit
information. But in reality, countries do not want to reveal the orbit
of their most strategic satellites. Recent works by [17] propose a
MPC solution to the Satellite Collision problem. In this work, the
authors propose a way for operators to discover satellites with high
probability of collision, by doing MPC calculations, thus not revealing
the private orbit details. Floating point operations in multiparty
computation are also described in the same article.

Location-Sharing Applications
Location-aware smartphone applications (dating, networking) typ-
ically work by sending the user location to a central server. As an
example, in the case of location sharing based on close by contacts,
the central server processes the query and sends the list of contacts
that are physically close to the client. With MPC , each user can run a
protocol with the server and obtain the list of contacts that are close
to him, while the server remains oblivious as to which location was
queried or which of the contacts are near that exact location.

Analysis between State Institutions
Different institutions cannot merge their data into a super-database,

Secure Multiparty Computation Protocols 5



1.3 Goals and structure of this dissertation

as this is illegal in most countries. With MPC, they can obtain mutual
information without disclosing private information or breaking the
law.

MPC techniques have evolved to the point where some schemes can
actually be used in practice. In Denmark [5], there was a project involving
sugar beet farmers and the Aarhus University. The project was the first to
put MPC in practice in a large-scale scenario. The farmers were able to find
the market trading price which is a price per unit of the commodity that is
traded. This was all done without a physical trusted party and in such a
way that the bids remained private.

Even though this topic has seen some growth in terms of number of
publications, there aren’t many documented cases of large-scale use of
MPC. Nevertheless, there are important initiatives like the EU PRACTICE
project that aims to build a secure cloud framework, based on techniques
such as MPC.

1.3 Goals and structure of this dissertation

Despite the growing number of publications, we still consider MPC to
be a hard topic to understand. A consequence of being an area of great
expansion is that many definitions are being added, and even core concepts
are still under study. For this reason, it is hard to have a big picture of the
current status.

This logic brings us to our first goal, which is to provide a useful learning
resource on MPC. We want to present MPC in understandable terms, and
give a summary of the current knowledge, so that even an unfamiliar
reader may enter the topic. By showing concrete protocols that work under
different models, we expect to provide a good overview of the current
schemes.

The second goal is to document the partial implementation of the SPDZ
[10] protocol. The work behind this implementation was carried out while
the author was an intern at the Alexandra Institute (Denmark). By explain-
ing the design choices and the protocol itself, we expect to provide a useful
description for further implementation efforts.

This dissertation is structured in two parts, each of them comprising
two chapters.

Chapters 2 and 3, Multiparty Computation Protocols
This part is focused on describing the current state of MPC protocols.

Secure Multiparty Computation Protocols 6



1.3 Goals and structure of this dissertation

We do so by first showing the different security parameters that differ-
entiate current MPC schemes. Here we include notions like different
adversarial capabilities, unconditional/computational security or the
UC framework.

Every general purpose multiparty computation protocol belongs to
one of two sets. Those that evaluate boolean circuits and those that
evaluate arithmetic circuits. We describe the two approaches with
details and examples.

Finally we compare the two approaches (boolean, arithmetic) and
discuss what are the outcomes of choosing one representation over
the other.

Chapters 4 and 5, The SPDZ protocol
Here we focused on describing the SPDZ [10] protocol, which en-
ables any arithmetic circuit to be securely evaluated. We explain the
protocol and exemplify with the evaluation of a concrete arithmetic
circuit. As the author had an internship where he worked on the
implementation of some parts of the protocol, we describe some of
the subprotocols that were implemented as well.

Later, we present some of the implementation details such as how
the classes were modeled, or how we implemented constructions that
were used inside the protocols, like the commitment scheme and the
pseudo random number generator.

The final chapter summarizes our results and leaves a suggestion for further
works.

Secure Multiparty Computation Protocols 7



Chapter 2

Multiparty Computation
Protocols

Multiparty Computation is a problem that was first described and studied
by Yao [27] and Goldreich et al. [14]. In these classical results, it was proved
that secure multiparty computation was achievable. The results revealed
that n parties are able to compute the value of a function with n inputs, in a
way that every party learns the result, but nothing more. Since then, MPC
evolved to become a research field.
It is of major importance to begin this section with security definitions, so
that different protocols can be compared. As such, the security aspects are
provided in section 2.1. In the same section there is a characterisation of
the possible adversaries and the communication models.

Finally the difference between information-theoretic security and cryp-
tographic security is given in section 2.3.

8



2.1 Settings

Most of the MPC protocols fall in two main categories. There are proto-
cols that allow the evaluation of Boolean Circuits and others that allow the
evaluation of Arithmetic Circuits.

Boolean Circuit Evaluation A Boolean circuit evaluation protocol, which
is found in literature by the name of Garbled Circuits is discussed in section
3.1. As Garbled Circuits is a protocol (or family of protocols) with various
steps, we provide a simpler explanation (see section 3.1.1) followed by a
detailed description (see 3.1.3).
Garbled Circuits are also shown "in action". A transcript of an execution
can be followed in section 3.1.4. Finally, we describe a framework, called
Fairplay, which uses the same protocol . This is available in section 3.1.5,
where we also provide an explanation of how to implement MPC programs
with it.

Arithmetic Circuit Evaluation Schemes for secure evaluation of Arith-
metic circuits are mostly based on Secret Sharing. In section 3.2.1 we
describe what secret sharing is, and exemplify with a concrete secret shar-
ing scheme. Further, we describe an arithmetic circuit scheme by Bogdanov
[4] that uses secret sharing.

2.1 Settings

Security is usually defined by what properties are wanted from the crypto-
graphic technique. For instance, when we talk about Encryption schemes
we may say that we require ciphertext indistinguishability i.e., that an ad-
versary cannot distinguish two ciphertexts based on the message they
encrypt.

In the case of multiparty computation, the aspects of security are also
usually defined in terms of adversarial capabilities, but there are other vari-
ables that add to the equation. Since multiparty computation is interactive
by nature, it’s security notions should be based on those of protocols. Many
authors worked on the construction of protocols with provable security.

Protocols for securely evaluating a function fall in this set of works.
Canetti et al. [6] define the types of adversaries, security requirements
and how to define a SFE protocol. That terminology will be used in the
upcoming descriptions.

Secure Multiparty Computation Protocols 9



2.2 Passive, Active and Covert Security

Figure 2.1: A visual representation of a player in the passive security (left)
and active security (right) settings. In the passive setting the player has
a leakage port (Leak) whereas in the active setting the player also has an
influence (Inf ) port

.

A major contribution by Canetti et al. [6] was the introduction of the
concept of Universally Composable protocols. In this section we will give
an explanation of the UC framework and how it can help build secure
protocols.

2.2 Passive, Active and Covert Security

We consider an adversary as en entity which can potentially corrupt honest
parties, access their private values and take control of them. This entity
might have different capabilities. A way to model adversary behaviour
can be to define how the participants P of the protocol interact with the
adversary A (see figure 2.1). Each participant of the protocol has always an
Input and an Output port. If the adversary is capable of using data from the
participants, then each participant also has a leakage (Leak) port. This port
may leak additional information from the participants to the adversary.

The participant might as well have an influence port (Inf ) . This port
is used by the adversary to send instructions to the participant. With this
abstraction of participant in mind, we now describe the different types of
adversaries found in literature.

• A passive or semi-honest adversary. In this setup, the player only has a
leakage port. The adversary can learn the private inputs of a group
of parties but can not control those parties. That means the parties
still follows the protocol.

• An active adversary. In this scenario each party has a leakage and an

Secure Multiparty Computation Protocols 10



2.3 Information-theoretic Security and Cryptographic Security

influence port. This means that the adversary is able to control a party
or a group of parties. The parties follow the adversary orders instead
of the protocol. Nowadays it is considered to be more realistic than
the passive model. Usually solutions in this model are less efficient
than those in the passive model.

• The less often referred covert adversary. In this setup, an adversary
who deviates from the protocol is caught with high probability. This
model usually leads to more efficient constructions than those in the
active security setting.

Despite it’s security relaxation (the fact that it allows an attacker to
cheat), this model might still be realistic for many application scenar-
ios. Consider two business partners that will do a joint computation
on their private values. It seems reasonable to admit that no party
will cheat, knowing in advance that it may get caught with 99/100
probability, thus ruining the partnership. This concept is relatively
recent and does not appear on older publications.

2.3 Information-theoretic Security and Crypto-
graphic Security

When we say that a certain protocol is information-theoretic secure, it
means that the security is based on information theory. A technique that
has information-theoretic security is secure against an adversary with un-
limited computing power. It is not an unachievable goal. In fact, some
techniques such as Shamir secret sharing (that will be later discussed in
section 3.2.1) have this characteristic. Many MPC protocols also have
information-theoretic security. Notice we are assuming the channels to be
secure (i.e. they provide authentication and confidentiality).
If a protocol has Cryptographic assumption, it’s security is based on some
computational assumption. That means that an attacker with sufficient com-
puting power can break the security. It is also assumed that the channels
provide authentication.

Usually this schemes rely on some kind of hardness assumption. A
typical example of cryptographic security is the set of schemes that base
their security on the RSA problem. The RSA problem says that given a
public key (N, e) and a ciphertext c = pe (mod N) it is hard to find p, where
hard means that there is no PPT (Probabilistic Polynomial Time) algorithm
that solves the problem.

Secure Multiparty Computation Protocols 11



2.4 UC Framework

Bounds on the number of corrupted players Fundamental results by
Goldreich et al. [13] define the bounds on the number of corrupted players
t for every MPC protocols with Cryptographic security. They show that
any function can be securely evaluated with cryptographic security against
t corrupted players where t < n for a passive adversary and t < n/2 in the
case of an active adversary.

Following this line of works, Chaum et al. [7] and Ben-Or et al. [3]
proved the bounds in the Information Theoretic setting. They show that
any function can be securely evaluated with unconditional security, as long
as t < n/2 in the case of a passive adversary and t < n/3 in the case of an
active adversary. These results are displayed in table 2.1. The table was
extracted from Maurer [19] and summarizes the results in Goldreich et al.
[13], Ben-Or et al. [3] and Chaum et al. [7].

setting Cryptographic Information-theoretic
adversary type passive active passive active
condition t < n t < n

2
t < n

2
t < n

3

Table 2.1: Necessary conditions for MPC to be possible, depending on the
number t of corrupted players.

Corruption Strategy - adaptive vs static A non-adaptive or static ad-
versary has to decide, before the protocol execution, which set of players
he will corrupt, whereas an adaptive adversary may corrupt new players
during the protocol execution. The adaptive setting is usually the most
preferred when modelling the adversary corruption strategy.

2.4 UC Framework

The UC framework was introduced by Canetti et al. [6] and since then has
been used by many authors to prove the security of multiparty computation
protocols. For a clearer understanding of the UC framework we must first
consider an ideal world. This ideal world is secure by definition. In the
ideal world, all the parties give their private inputs to a functionality F . An
ideal functionality is a sequence of actions that represent what the protocol
should do. An environment ,Z is an agent that "sees" the messages between
the functionality and the players.
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Figure 2.2: The real world and ideal world scenarios, from left to right.
Extracted from [12]

A protocol execution in the real world π has an adversary A instead
of a functionality. The way to prove that the protocol is secure is to "fool"
the environment Z , so that he cannot distinguish whether he is in the real
world or the ideal world.

To do so, one has to build a simulator (see Figure 2.2, right drawing)
S to work on top of the ideal functionality F , such that the environment
cannot distinguish whether it is running the protocol π or the simulator S .
If we achieve this, we can prove that the protocol is UC-secure.

Composability UC-secure protocols enjoy the composability property.
This means that if a protocol that is proven UC-secure uses as resource
another UC secure protocol, then the composition of the two protocols
results in a UC-secure protocol which implements the functionality of the
first protocol with access to the functionality of the second protocol.

2.5 Communication Models

The way we model the network can have dramatic consequences for the
practical efficiency of a protocol. As such we make a brief distinction
between the two main communication models.

Synchronous By synchronous it is meant that we make assumptions
about the time. For instance, we can define t as the time between a message
being sent and received. Therefore, we can say that a message is lost if it
takes more than t to deliver it.

Asynchronous In an asynchronous model there is no time assumption.
That means that the protocol cannot take actions based on what time took
a certain event.

Secure Multiparty Computation Protocols 13
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2.6 Initial Setup

Every UC-secure protocol assumes some kind of initial trusted setup. The
most common models are the CRS (Common Reference String) and the PKI
(Public Key Infrastructure). CRS assumes that the players have access to
a common random string taken for instance from some physical event. A
PKI is a infrastructure that is held accountable for binding public keys with
the respective players.
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Chapter 3

Circuit Evaluation

Before starting any MPC protocol, the parties must agree on what function
to compute. The available protocols differ on what type of representation
they use for this function.

In general terms, there are two different ways to represent the function.
The first set of protocols expresses the function by means of boolean cir-
cuits, while the second uses arithmetic circuits. In this chapter, we describe
protocols for boolean circuit evaluation and arithmetic circuit evaluation.
Moreover, we discuss the advantages and drawbacks of using one repre-
sentation over the other.

Boolean Circuits A way to express the wanted functionality, is by defin-
ing a boolean function, i.e. a function f : {0, 1}n → {0, 1}n. Every boolean
function can be converted to a boolean circuit representation. This boolean
circuit is a composition of wires and logical gates that entirely captures
the behavior of the function. For a better understanding, consider figure
3.1, where we provide an example of a boolean circuit that does the AND
operation between two 4-bit sized values.

Figure 3.1: Boolean circuit that represents the AND operator for 4-bit num-
bers
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3.1 Boolean Circuit Evaluation

The wires w1, . . . , w8 are considered input wires. The first value corre-
sponds to the input wires w1, . . . , w4, while the second value corresponds
to input wires w5, . . . , w8. The wires w9, . . . , w12 are the output wires of the
gates they are connected to, and at the same time output wires of the circuit.

Now that we gave an introduction on boolean circuits, we proceed to
explain Yao’s scheme, known in literature by the name of Garbled Circuits.

3.1 Boolean Circuit Evaluation

The first general-purpose MPC protocol was presented by Andrew Yao in
1982. The protocol was designed so that 2 parties could securely evaluate
any deterministic function, as long as it was represented in the form of a
boolean circuit. In this chapter we explain the secure function evaluation
protocol by Lindell and Pinkas [18] which is based on Yao’s work, and also
uses the boolean circuit representation.

Yao’s scheme is secure in the passive/semi-honest model. Revisiting
section 2.2,we recall that a semi-honest adversary , by definition, is not
able to induce malicious behavior on other parties. This means that despite
being able to gain access to the private values of the corrupted parties, the
adversary is not able to instruct them to follow his orders.

Lindell and Pinkas [18] developed a formal proof of security for the
protocol. Without covering the proof, we proceed to describe Yao’s protocol,
based on the description and notation found in the same article.

3.1.1 Garbled Circuits Overview

Yao’s technique was first designed as a 2-party computation protocol, yet
other works by Ben-David et al. [2] extended it to a multi-party protocol.
For the sake of simplicity we will explain the original 2-party protocol.

In Yao’s protocol there are two parties P1 and P2 who wish to compute
the function f(x1, x2) = (y1, y2) so that Pi holds the input xi and receives
the output yi. Function f can be viewed as a boolean function, that has a
circuit representation C and where the inputs x1 and x2 are also the inputs
of the circuit (as bit strings). The circuit C will be the one used in the start
of the protocol.

P1 starts by encrypting (garbling) the circuitC in order to make the input
values private. For each wire of the circuit, two random values are chosen.
One represents 0 while the other represents 1. Then, for each gate g, with
inputs b1 ∈ {0, 1} and b2 ∈ {0, 1}, the random values corresponding to the
input values b1 and b2 are used as keys to encrypt the value corresponding
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to the output wire of g (the result of the computation of g(b1, b2)). Each
gate’s computation table is also randomly permuted so that one cannot
guess the entries by their order.

Notice that we are hiding the direct result of the gate evaluation. This
is not safe because the output of the intermediate gates are revealed after
decryption. To ease our explanation, we will not consider this a leak, and
will come to it later in our description.

After constructing the garbled circuit, P1 sends it to P2, together with
his encrypted inputs. P2 evaluates the circuit. While evaluating, he uses
a 1-out-of-2 Oblivious Transfer for each of his input bits to obtain the
corresponding encrypted value from P1. We will later describe in detail the
Oblivious Transfer, but for now it is sufficient to say that it is a protocol
where P2 obtains from P1 the key corresponding to his input bit while P1

remains oblivious as to which key he sent.
Note that P2, in no case gets access to P1’s private input bits. During the

Oblivious Transfer protocol, P1 sends the keys used to encrypt the output
of the gate, so that P2 only learns the keys, not the values.

P2 uses this technique to evaluate all the gates, and finishes the circuit
evaluation, obtaining the output of the function. He then sends the resulting
output to P1.

3.1.2 Garbled Circuits in Detail

To explain Yao’s protocol we have to understand the first phase of the proto-
col which is the construction of the garbled circuit. There are four types of
wires in the circuit. Circuit-input wires (wires that are input to the circuit),
circuit-output wires (output of the circuit), gate-input wires(intermediate
input wires) and gate-output wires (intermediate output wires).

Our previous construction "leaked" the intermediate values of the circuit.
Now, we define more explicit rules.

We state that no intermediate value should be revealed. In other words,
only the final output must be revealed. With this security requirements in
mind, now it is not the result of each intermediate gate that is encrypted,
but the key which leads to the result. The final wires (circuit-output wires)
do not need to be hidden. They can simply return the plain values, as it is
not necessary to encrypt something that is supposed to be public.

Before the presentation of the secure function evaluation protocol, we
describe two important components, garbled circuits and oblivious transfer.
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3.1 Boolean Circuit Evaluation

Garbled Circuit Construction Every deterministic function can be viewed
as a boolean circuit, where there are input wires followed by multiple gates
that lead to the final output wire(s). Let C be a boolean circuit that re-
ceives two inputs x, y ∈ {0, 1}n and outputs C(x, y) ∈ {0, 1} (for simplicity,
we assume the output length is 1, and leave the security parameter im-
plicit). The circuit C is boolean, so any gate is represented by a function
g : {0, 1} × {0, 1} → {0, 1}. Function g has two input wires , named w1

and w2 . Let {k01, k11, k02, k12, k03, k13} be six keys of size n generated by a key
generation algorithm G(1n). To garble the gate we use the keys associated
with each input. The garbled version of g would be:

c0,0 = Ek01(Ek02(k
g(0,0)
3 ))

c0,1 = Ek01(Ek12(k
g(0,1)
3 ))

c1,0 = Ek11(Ek02(k
g(1,0)
3 ))

c1,1 = Ek11(Ek12(k
g(1,1)
3 ))

where E is a private key encryption scheme (G,E,D) that has undistin-
guished encryptions under chosen plaintext attacks. Another property of
the encryption scheme is that it allows verifiable range, i.e. one can verify
if the decryption was successful. In order to mask the identity of each of
these values, we make a random permutation of them. The result of this
random permutation is stored in c0, c1, c2, c3. A possible permutation could
be

c0 = C0,1 = Ek01(Ek12(k
g(0,1)
3 ))

c1 = C1,0 = Ek11(Ek02(k
g(1,0)
3 ))

c2 = C0,0 = Ek01(Ek02(k
g(0,0)
3 )

c3 = C1,1 = Ek11(Ek12(k
g(1,1)
3 )

Decryption Let’s assume the input values {α, β} , and the output value
γ. With access to the keys kα1 , k

β
2 we are able to decrypt all the entries and

verify which one was correct. With this in mind, for every i ∈ {0, . . . , 3}we
compute Dkβ2

(Dkα1
(ci)). The only successful decryption (the one which does

not return a ⊥ value) will be kγ3 . This results from the fact that the entry
was encrypted with kα1 , k

β
2 .
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Entire Circuit Garbling For each wire wi, we choose two keys k0i , k1i ←
G(1n). These keys must be independent. With these keys, we can now
compute the four garbled values of each gate, using the steps described
above. Then, we make a random permutation of the values.

At last, the decryption tables of the circuit are computed. These tables
have the values (0, k0i ), (1, k

1
i ), where wi is the gate-output wire. For the

last gates (circuit-output gates) one can skip the encryption. This way we
can simply obtain the correct output bits directly. In other terms, for the
circuit-output wires, cα,β = Ekα1 (Ekβ2

(g(α, β))) for every α, β ∈ {0, 1}.)

Oblivious Transfer Oblivious Transfer is a protocol where there is a
sender S, who wishes to send one of multiple pieces of data to a receiver R.
The main goal is to do this transfer in such a way that S remains oblivious
as to which the pieces were transferred.

The first form of Oblivious Transfer was described by Rabin [23]. Ra-
bin’s scheme had some unwanted effects. One of them was that the sender
could only send a piece with probability 1/2. A more practical solution was
found by Even et al. [11], called 1 out of 2 oblivious transfer. The protocol is
general, yet a version using RSA by Rivest et al. [24] will be described.

Player P1 has two messages x, y. P2 wants to obtain one of them, without
P1 knowing which of them was chosen.

1. P1 generates an RSA key pair (N, e, d) where N is the modulus, e the
public exponent and d the private exponent.

2. P1 picks two random numbers a0, a1, and sends them to P2, along
with his public key.

3. P2 selects ab ∈ {a0, a1}where b is P2’s choice.

4. P2 generates a random value k and masks ab by computing v =
(ab + ke) mod N . Then, sends it to P1.

5. P1 Computes the following two possible values for k.

k0 = (v − a0)d mod N

k1 = (v − a1)d mod N

6. P1 sets

x′0 = x0 + k0

x′1 = x1 + k1
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7. P1 sends x′0, x′1 to P2

8. P2 computes the correct message xb = x′b − k

It must be remembered that the original protocol is a generalization.
Therefore, cryptosystems other than RSA could be employed.

Correctness The protocol is correct if the final computed value corre-
sponds to the chosen message xb. Proof:

x′b − k = (xb + kb)− k =

= xb + (v − ab)d − k =

= xb + ((ab + k)− ab)d − k
= xb + (ke)d − k
= xb + k − k =

= xb

Security Generally speaking, an OT protocol is considered secure if it
obeys the two following security requirements:

1. The receiver only obtains one of the messages.

2. The sender does not learn the receiver’s choice

Now we provide a simplified explanation of why the previous protocol
respects each of these requirements.

1. The receiver only obtains one of the messages. From the correction
of the scheme, the receiver is able to successfully recover one message.
To learn the other message, he has to guess kα, where α is the index of
the message that was not chosen. But kα is an RSA encryption using
d, which is private to the sender. This means that the receiver has to
break RSA to learn the other message.

2. The sender does not learn the receiver’s choice. One of the mes-
sages (k0, k1), will be equal to k, the random value generated by the
receiver. But the sender does not know which, since v is the sum of
xb with the random number k. Since k can be any number, he cannot
guess the receivers choice, so this security property is achieved with
information theoretic security.
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3.1.3 Yao’s Garbled Circuits Protocol

After explaining the protocol at a high level of abstraction, we went into
each of it’s building blocks. We described how the circuit garbling is
performed, and gave an intuition on oblivious transfer. Additionally, we
provided an example of a 1-out-of-2 oblivious transfer scheme, based on the
RSA construction.

In order to summarise our description of the protocol, we finally enu-
merate each of the involved steps:

1. P1 constructs the garbled circuit using the garbling scheme described
in the section "Garbled Circuit Construction".

2. P1 sends the garbled circuit to P2.

3. Let w1, . . . , wm be the circuit-input wires of x and wm+1, . . . , w2m be
the circuit-input wires of y. P1 sends to P2 the keys kx1 , . . . , kxm, where
x ∈ {0, 1} is P1’s input bit.

Then, for every of P2’s input bit i, P1 and P2 run a 1-out-of-two
oblivious transfer protocol in which P1 contributes with (k0m+i, k

1
m+i)

while P2 contributes with yi. At the end of the oblivious transfer P2

obtains the keys associated with his inputs, while P1 learns nothing.

4. Now that P2 has the garbled circuit and 2m keys corresponding to the
2m input wires, he evaluates the circuit, obtaining f(x, y). Afterwards,
he sends f(x, y) to P1 and both parties output this value.

3.1.4 Execution Example

For a better understanding of the protocol, we will describe how to evaluate
a simple circuit that is formed by a single gate. In our case we are going
to use an OR gate (see figure 3.2). As this is a one gate circuit, it does not
make sense to encrypt intermediate values, since there are no intermediate
values at all. So we made the simplification of applying the encryption
function directly to the output of the gate.

Figure 3.2: Simple OR gate

The protocol starts with two parties, P1 and P2. P1 holds his private
input x while P2 holds his private input y. They want to compute f(x, y) =
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B00 = 0
B10 = 1
B01 = 1
B11 = 1

Table 3.1: Truth table value boxes

z, where f : {0, 1} × {0, 1} → {0, 1} is a boolean function that behaves like
an OR logical gate, and x,y are single bit values. The scheme works as
follows.

• P1 picks two random keys for each input wire. An OR gate has 2
input wires, so P1 picks random keys {k01, k11, k02, k12}, using the key
generation algorithm G.

• P1 builds 4 boxes containing the result of the corresponding truth table
value. See table 3.1.

• P1 builds an encrypted truth table. For each row, he uses the generated
keys.

Ek01(EK0
2 (B00))

Ek01(EK1
2 (B01))

Ek11(EK0
2 (B10))

Ek11(EK1
2 (B11))

• P1 makes a random permutation of the encrypted truth tables.

Which ends up being the unordered table

Ek11(EK1
2 (B11))

Ek11(EK0
2 (B10))

Ek01(EK0
2 (B00))

Ek01(EK1
2 (B01))

• P1 sends the permuted boxes to P2.

• P1 sends the key kx1 corresponding to his input bit x ∈ {0, 1}. Notice
that P2 learns nothing about x.

• P1 and P2 run an Oblivious Transfer protocol, where P2 learns ky2
where y is P2’s input bit, while P1 learns nothing.
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• P2 uses the keys he received to decrypt the row corresponding to the
input bits. As an example, if the bits were x = 0 and y = 1 P2 would
compute EK0

1
(EK1

2
(B01)). The outcome is that he learns B01, since this

value will be the only successful decryption.

• P2 sends the result to P1.

With this we end our example of the secure evaluation of an OR gate. In the
next section we deal with how to implement secure evaluation protocols
using existing tools.

3.1.5 Implementations

There are some implementations of SFE toolkits based on Yao’s protocol.
For instance, JustGarble by Bellare et al. [1] is focused on the garbling
phase of Yao’s protocol. It enables very efficient garbling and evaluation of
boolean circuits, but it does not help in constructing the circuits, making it
less easy to use from a programmers perspective.

TASTY, by Henecka et al. [16] is a compiler that enables the creation of
MPC programs. With TASTY, the programmer can explicitly say which
parts of the program should be computed using boolean circuits or arith-
metic circuits.

Fairplay by Ben-David et al. [2] is a framework for developing applica-
tions with multiparty computation functionality. It enables programmers
to easily implement programs to evaluate any type of function, using Yao’s
Garbled circuits.

FairPlay is a multilevel framework. It has:

• A high level procedural definition language called SFDL tailored to
the SFE paradigm;

• A compiler of SFDL into a one-pass Boolean circuit presented in a
language called SHDL

• Bob/Alice programs that evaluate the SHDL circuit using Yao’s gar-
bled circuits technique.

Since we are only describing boolean circuit evaluation protocols, we
will use FairPlay to demonstrate how MPC protocols can be easily imple-
mented. We chose FairPlay because it goes beyond the garbling phase of
the Yao technique. It is a full-stack framework, so it enables a program-
mer to write programs without using any additional external tool, like a
functionality to circuit translator.
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Fairplay Application As an example, we built a simple AND program.
We specified the program in Fairplay’s SFDL as seen on the appendix
6.1 The FairPlay SFDL language has a syntax that resembles common
languages like C or Java. The program must be described as a class that
implements an Output method. As class variables we must declare the
types, in this case we always use a 4-bit size integer. The Output method in
our example is self explanatory; We pick Alice’s input and bitwise AND it
with Bob’s input. Finally, we send this result to Alice’s and Bob’s output.

SFDL to SHDL Conversion FairPlay was able to convert our program to
a boolean circuit representation. The resulting file is available in appendix
6.2. The lines 0-7 represent both Bob’s and Alice’s input gates. Lines 8-11
represent the logical AND operator gates, with the output going to alice’s
output wires. As can be observed, each of these gates has two input wires.
For instance, in line 8, the AND gate is supplied with input wires 4 and
0. Wire 0 is one of Alice’s and wire 4 is one of Bob’s wires. Finally, lines
12-15 represent Bob’s output wires. They come directly from Alice’s output
wires.

Multiplication The previous example had a very simple circuit, which
may trick the reader to think that the conversion is always efficient. To
provide counter evidence, we implemented a simple 4-bit integer multi-
plication program, available in Appendix 6.3. Since multiplication is not
implemented in FairPlay, we did our own. We have encoded the shift and
add multiplication algorithm.

The resulting circuit is found on 6.4. An interesting observation is that
the circuit grew in complexity when compared to the AND circuit. For a
single 4-bit multiplication we needed a circuit with 92 wires. This problem
is inherent to boolean circuits. While comparisons are very efficient, multi-
plications are a problem, since they make the circuit grow larger, increasing
the overall complexity of the protocol execution.

Of course we could have used other procedures for building our circuit.
We could have used a hardware description language like Verilog to reduce
the number of wires. Nevertheless, these would be only optimisations, and
while they might alleviate the problem, they are not able to solve it.

In the following section we will describe the other set of protocols,
the ones based on arithmetic circuit evaluation. Furthermore, we will
distinguish which protocols might be better suitable for certain types of
computations.
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3.2 Arithmetic Circuit Evaluation

An Arithmetic Circuit is an abstract structure that takes as inputs either
variables or numbers, and is allowed to either add or multiply two expres-
sions it already computed. More formally, an arithmetic circuit is an acyclic
graph where each node is a gate, variable or constant in the field. Gates can
be either additive (+) or multiplicative (x).

Arithmetic circuits are specially efficient for representing and comput-
ing polynomials. But since it is possible to encode boolean operations by
representing the bits as the values 0 and 1 in the finite field, this means
that all boolean circuits can also be embedded in arithmetic circuits. Conse-
quently, arithmetic circuits are able to represent any functionality.

Arithmetic circuit evaluation protocols are usually based on Secret
Sharing. As such, we proceed to explain how Secret Sharing works. Fur-
thermore, we show how Secret Sharing is used as a tool for building MPC
protocols that evaluate Arithmetic Circuits.

3.2.1 Secret Sharing

Secret Sharing is a cryptographic scheme that is the building block of many
Arithmetic Circuit MPC protocols. A Secret Sharing scheme allows a secret
S to be divided in pieces S1, . . . , Sn in such a way that:

1. Knowledge of a number of Si pieces, namely k, makes S easily com-
putable

2. Knowledge of any k − 1 or fewer Si pieces makes S completely unde-
termined.

This definition of Secret Sharing was presented by Shamir [26]. Using the
above nomenclature, we consider a (k, n) threshold scheme, where k is the
minimum number of pieces needed to reveal the secret, while n is the total
number of pieces (i.e. shares).

Shamir Secret Sharing Shamir Secret Sharing , first described by Shamir
[26] is a (k, n) secret sharing scheme based on polynomial interpolation.

The way the scheme works is that we generate a polynomial

q(x) = a0 + ax1 + . . . ak−1x
k−1

Where secret value S is the first term (a0). Valid points of the polynomial
(i.e: tuples in the form (x, q(x))) can now be used as a shares.
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In order to rebuild the secret we use polynomial interpolation. Using an
interpolation technique such as the Lagrange interpolation, we are able to
recover q(x), and consequently learn a0 = S. Note: Due to the thresholding
property of the scheme it would only reveal S if k shares were known.

3.2.2 Secret Sharing as a tool for MPC

Secret Sharing can be used as a building block for Arithmetic MPC protocols.
Secret Sharing provides MPC functionality like privacy-preserving and
controlled exposure of information.
MPC based on Secret Sharing usually follows a pattern [25]:

• Input Sharing: Each party shares its secret

• Computing: Parties engage in MPC protocols which make operations
on shared vales.

• Output: Each party collects the shares from other parties and recon-
structs the output.

In the computation step, parties are able to make operations on shared
values, for instance using the homomorphic properties of the Secret Sharing
Scheme, as explained bellow. Computations can be viewed as multiple
tasks. In each task, a minimal protocol transforms shared inputs on shared
outputs. This construction is useful so that we can build secure protocols
on top of each other.
Secret Sharing plays a big role in the process, as intermediate computations
may (or may not) be reconstructed (public vs private values). In order to
reconstruct the shares, the set of parties with access to the secret , must be
in agreement, so no information is leaked in the process.

Homomorphic properties in Shamir Secret Sharing It is possible to
do basic arithmetic computation with shamir shares. As presented in [4],
the basic operations are defined as follows:

Addition Assuming shared values [u] = [u1, . . . , un] and [v] = [v1, . . . , vn],
we say that each party may run the protocol given in algorithm 1 to add
two shared values.

Share multiplication with a public value Having a shared value [u]
and a public value t, the product [w] = t[n] can be obtained by using the
algorithm 2
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Algorithm 1 Addition between two Shamir shares

Require: Shares uk and vk
Ensure: Share wk, that is the sum of [u] and [v]

Round 1:
wk = uk + vk

Algorithm 2 Multiplication between Shamir share and public value

Require: Shares uk and public value t
Ensure: Share wk, that represents the value t[u]

Round 1:
wk = tuk

Share Multiplication Having [u] = [u1, . . . , un] and [v] = [v1, . . . , vn], one
could try to multiply the shares, but it would be of no use, for two reasons.
First, the result would raise the threshold, because the resulting polynomial
would be of degree 2t, requiring 2t+ 1 shares for reconstruction. Second,
the new polynomial is not random (since it is the product of two polynomi-
als). Reconstructing the result from the shares reveals the product of the
polynomial, which is not wanted. Algorithm 3 is based on the fact that
the product can be computed as a linear combination of secret values with
public coefficients.

Algorithm 3 Multiplication of shares

Require: Shares ui and vi, precomputed value βi
Ensure: Share wi, that represents the value of [u][v]

Round 1:
zi = uiviβi
Share zi to zi1, . . . , zin
Send to every other node Pl, i 6= l the share zil
Round 2:
Receive shares zji, j 6= i from other nodes wi = zii +

∑n
j=1,j 6=i zij

Full circuit evaluation Using the aforementioned protocol we are able
to evaluate a full arithmetic circuit. Though this construction "works", it
has many assumptions. We are abstracting from details like how to share a
value across a set of participants in a secure way or how to open the shared
values so that no participant cheats (malicious behaviour). Besides, we do
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not explain how the players generate and agree on the random values used
for the multiplication protocol.

Modern protocols try to address those questions, and others, without
incurring in overhead. The overhead can either be in round complexity,
communication or computational.

In the next chapter we will talk about a family of modern arithmetic
protocols, named SPDZ, that address these and other problems.

3.3 Comparison

As there are protocols for evaluating both boolean and arithmetic circuits,
we can make comparisons and try to understand which representation is
the best.

It turns out that some types of computations are better performed
on certain representations over others. For instance, polynomials can be
expressed very efficiently in an arithmetic circuit. On top of that, evaluating
an arithmetic circuit is just doing basic arithmetic operations in the field
like adding and multiplying.

On the other hand there are operations that also happen to become very
inefficient with arithmetic circuits. Comparison, equality or interval tests
are examples. In contrast, these operations are very efficient in boolean
circuits. Take the example of comparison. Comparing two values in a
boolean circuit is "cheap", since we can do bit comparison.

Summarising, on the one hand we have the generality of arithmetic
circuits, because they allow operations on a finite field, and on the other
hand there are these operations like equality test or comparison that are very
problematic using arithmetic operations, but that can be done efficiently in
a boolean representation.

Bit Decomposition A solution to join the two "worlds" could be by using
bit-decomposition protocols such as the one by Damgård et al. [8]. A bit
decomposition protocol converts elements in Zp into sharing of bits. More
specifically, given a shared value a ∈ Zp it returns a shared value b ∈ {0, 1}l,
where b is a binary representation of the value a, of length l. This is, the
protocol handles a share bi to each player Pi , such that

∑l−1
i=0 2

ibi = a, where
bi ∈ {0, 1} .

Having the values as bitwise sharings makes it easy to do the bit opera-
tions and convert back the result to a number in Zp. The problem is that
the known bit-decomposition protocols are expensive.
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Another alternative to this problem is to use specific protocols for these
operations. Nishide and Ohta [20] proposed protocols for interval test,
comparison and equality without using bit-decomposition. All of these
protocols are more efficient than using the bit-decomposition alternative
suggested by Damgård et al. [8].

Conversions Another interesting aspect is that any boolean circuit can
be converted to an Arithmetic circuit and also the other way around. A
boolean circuit can be converted to arithmetic by constructing a circuit that
has only the possible values {1, 0} and then in the end converts the final
bit values to a value in the field. The binary gates can be converted to
arithmetic operations as follows:

AND(x, y) = x ∗ y
NOT (x) = 1− x
OR(x, y) = 1− ((1− x) ∗ (1− y))

To convert an Arithmetic circuit in Fp to boolean, one can simply set all the
input values to boolean strings of size log2 p and convert the +, * operations
to binary adders and multipliers.

A conclusion we can take from these observations is that there is no
"best" representation. There are operations that are more efficient on
boolean representations and others that are more efficient on arithmetic
representations. Nonetheless we may exchange representations/protocols
depending on the type of computation that we want to perform.

An alternative is to use mixed solutions. For instance in the case of
arithmetic circuits, we might consider bit decomposition/specific protocols
for handling the expensive operations such as interval test, equality and
comparison.

Summarising, we consider that all these approaches have their benefits
and problems, and is difficult to make a fair comparison because of the
aforementioned reasons.
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Chapter 4

SPDZ

During the development of this thesis, I had a 6 month internship at the
Alexandra Institute in Aarhus, Denmark. There, I worked on implementing
some parts of the SPDZ protocol by Damgård et al. [10].

In this chapter there is an overview description of the SPDZ protocol
followed by a detailed description of some of the sub-protocols that were
implemented. The implementation details were left for the next chapter.

4.1 Description

SPDZ, by Damgård et al. [10] is a protocol that enables n parties to securely
evaluate any arithmetic circuit.

Unlike the previously referred protocol by Bogdanov, SPDZ is secure
in the active setting. Being secure against active adversaries is a strong re-
quirement, that usually forces designers to add complexity to the protocols.
SPDZ is no exception, but it handles this additional complexity in a clever
way, that we will detail further.

SPDZ uses the preprocessing model, meaning that there are two distinct
phases of the protocol - the online and offline phase. The offline phase is
a procedure for generating some random data. This random data will be
consumed later in the online phase, which is where the actual circuit is
evaluated.

A great feature of SPDZ is that it has an extremely fast online phase. In
fact, the communication and computational complexity in the online phase
are both linear in n, the number of players. This efficient evaluation comes
at the cost of shifting heavy operations to the offline phase. The ideas that
led to the approach of having a light online phase and heavy offline phase
are explained in section 4.1.3.
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Like most arithmetic circuit evaluation protocols, SPDZ uses Secret
Sharing as a building block. In the next section we explain the Secret
Sharing scheme behind SPDZ, so that other components of the protocol can
also be understood.

4.1.1 Secret Sharing

The SPDZ protocol uses additive secret sharing instead of the Shamir-based
secret sharing described in section 3.2.2.

To additively share a value a across a set of n participants , we simply
generate a set (a1, . . . , an) of random values such that

n∑
i=1

ai (mod p) = a

An easy way of generating values in this form is to generate (a1, . . . , an−1)
values and then compute the last number,

an = a−
n−1∑
i=1

ai (mod p)

Notice that this scheme is perfectly secure. To recover a one must have
every share ai where i ∈ {1, . . . , n}. An attacker with access to the shares
{a1, . . . , an−1} still has no clue about a.

Before going into details about how to evaluate the circuit, we give a
brief overview of the notation that will be used.

〈.〉 Notation We will follow the 〈.〉 notation that is used in the original
paper [10]. A value a is 〈.〉 shared if every party Pi holds a tuple (ai, γai),
such that ai is a valid share of a and γai is a valid share of γa.

γa is the MAC (Message Authentication Code) that validates a’s integrity.
The MAC algorithm is described further in section 4.1.5.

4.1.2 Online phase

The online phase is where the actual circuit evaluation takes place. In order
to explain how it works, we will show the secure evaluation of the circuit
that represents the function f(x, y, z) = (x+y)∗z. Figure 4.1 shows a visual
representation of the circuit.

We assume that the values x, y, z have been 〈.〉 shared. This means that
each player Pi has a set of tuples {(xi, γxi), (yi, γyi), (zi, γzi)}, where

∑n
i=1 xi
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Figure 4.1: Arithmetic Circuit representing f(x, y, z) = (x+ y) ∗ z

(mod p) = x,
∑n

i=1 γxi (mod p) = γx,
∑n

i=1 yi (mod p) = y,
∑n

i=1 γyi (mod p) =
γy,

∑n
i=1 zi (mod p) = z,

∑n
i=1 γzi (mod p) = γz

It can be seen from the topology of the circuit (see figure 4.1) that the
first gate to be computed is the addition gate. To evaluate the addition gate,
the players simply sum their local shares

〈x〉+ 〈y〉 = (xi + yi, γxi + γyi) = 〈x+ y〉

As can be observed, the addition gates are basically for free. Players
perform the addition on their own shares, so no communication is needed.
The correctness of this operations comes from the fact that the shares are
additively shared. Notice that adding the MACs will also result in a MAC
that is still correct .This is a property of the MAC scheme, described in
section 4.1.5.

Now, the players proceed the circuit evaluation and encounter a multi-
plication gate. Multiplication is trickier. Simply multiplying the shares is
not a solution as this would yield undefined results. We proceed to explain
how the multiplication algorithm works.

We now have to make the assumption that each player has access to
a triplet of shared values (〈a〉, 〈b〉, 〈c〉) such that c = a ∗ b. This values are
assumed to have been generated in the offline phase, in such a way that no
player learned a, b, c, and no player behaved maliciously.

We want to process the gate o = t ∗ z, where t is the result of the
previously evaluated addition gate , i.e. t = x + y. To do it, each player
computes ε and δ, as follows:

ε = 〈t〉 − 〈a〉, δ = 〈z〉 − 〈b〉
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As can be seen, the players make ε and δ public. Since each player has a
triplet (〈a〉, 〈b〉, 〈c〉) and public values ε, δ, then he is able to compute the
multiplication o = t ∗ z as follows:

〈o〉 = 〈c〉+ ε ∗ 〈b〉+ δ ∗ 〈a〉+ ε ∗ δ
Proof:

〈o〉 = 〈c〉+ ε ∗ 〈b〉+ δ ∗ 〈a〉+ ε ∗ δ
= 〈c〉+ (〈t〉 − 〈a〉) ∗ 〈b〉+ (〈z〉 − 〈b〉) ∗ 〈a〉+ (〈t〉 − 〈a〉) ∗ (〈z〉 − 〈b〉)
= 〈c〉 − 〈b〉 ∗ 〈a〉+ 〈t〉 ∗ 〈z〉
= 〈c〉 − 〈c〉+ 〈t〉 ∗ 〈z〉
= 〈t〉 ∗ 〈z〉

At this phase, every player has a share of the output oi, and a MAC
value associated with that share γoi . Before opening the output value,
the players verify if the MAC values are correct. This procedure is called
MacCheck, and the full description of it is found in section 4.2.3. If the
MACs are correct, then the players can open o, revealing the output of the
circuit evaluation.

Randomness Generation What we provided here was a simplified ex-
planation of the online phase of the protocol. Notice that we made many
assumptions. One of them was that a triplet (〈a〉, 〈b〉, 〈c〉) had been previ-
ously generated, in a secure way. This work is done in the preprocessing
phase. In fact, the preprocessing phase has to generate not only one, but a
set of triplets, since every multiplication will consume a triplet, making it
unusable for further use. We are also not considering details such as how
the players agreed on a secret-shared key. We leave this technical details to
the preprocessing phase .

Optimization Even though we can already do multiplications using triplets,
there are some tricks to make some operations faster. For instance, if we
give the players square pairs 〈a〉, 〈b〉 such that b = a2, we can compute
squares more efficiently. If every player computes ε = 〈x〉 − 〈a〉 then the
players can compute 〈z〉 = 〈b〉+ 2 ∗ ε ∗ 〈x〉 − ε2. Proof :

〈z〉 = 〈b〉+ 2 ∗ ε ∗ 〈x〉 − ε2

= 〈a2〉+ 2 · (〈x〉 − 〈a〉) ∗ 〈x〉 − (〈x〉 − 〈a〉)2

= 〈a2〉+ 2〈x2〉 − 2〈a〉〈x〉 − 〈x2〉+ 〈x〉〈a〉+ 〈a〉〈x〉+ 〈a2〉
= 〈x2〉
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Other optimisations can be done if we store shared bits (more efficient
comparisons , for instance). So we end up with the need to generate :

• Triplets (〈a〉, 〈b〉, 〈c〉), such that c = a ∗ b

• Square Pairs (〈a〉, 〈b〉), such that b = a2

• Shared bits 〈b〉 such that
∑n

i=1 bi = 0 (mod 2) and b ∈ F2

The number of triplets, square pairs and shared bits will depend on the
number of gates to evaluate.

4.1.3 The Preprocessing Model

In the preprocessing model of MPC there are two distinct phases - the
online phase and the offline phase (also named preprocessing phase). The
online phase corresponds to the actual secure computation (for instance,
the evaluation of an arithmetic circuit). The offline phase is a procedure
that is used to generate data that is needed when the protocol goes online.

Online and offline are totally separated. The players running the offline
phase do not need to know the circuit nor the inputs of the players. The
benefit of this model comes from the fact that we can shift heavy operations
of the protocol to the preprocessing phase, resulting in less overhead when
the protocol goes live. This can be a push towards practicability. If some
servers want to securely evaluate multiple circuits on demand, they can
spend some time generating the needed data (offline) and then use it
anytime they want to perform the secure evaluation (i.e. run the online
phase).

Tools The subprotocols we are about to demonstrate assume some cryp-
tographic tools such as a Commitment Scheme and a Mac Algorithm. In
the following sections we explain how these tools work and what schemes
are used in the concrete case of SPDZ.

4.1.4 Commitment Scheme

A commitment scheme is a cryptographic tool that enables a party to
commit to a value and reveal it later. Commitment schemes have two
distinct phases:

• Commitment phase where the commiter commits to a certain value.

• Opening phase where the commiter reveals the value.
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Figure 4.2: Commitments Protocol[21]

After the commitment phase, the commiter cannot change the commit-
ted value. This is known as the binding property. Another important aspect
is that the other party should not be able to learn the committed value
before the opening phase. This is known as the hiding property.

Commitment schemes are particularly useful in secure multiparty com-
putation protocols. In the case of the SPDZ protocol there is a sub-protocol
for commitments (see figure 4.2). The protocol works as follows:

Lets suppose that a party (from now on we will call it commiter) wants
to commit to value v. The commiter picks a random number r and com-
putes o = v||r and c = H(o) where H is a hash function. The hash function
should be pre-image resistant - it should be computationally unfeasible to
find a value o′ such that H(o′) = c. The commiter then broadcasts c to the
other players, finalising the commitment phase.

In the opening phase the commiter broadcasts (v, r) and the players
verify whether H(v||r) = c. Players continue only if this verification passes.
The commitment protocol is used throughout the preprocessing phase,
most of the times as part of a cut-and-choose procedure.

4.1.5 MAC Algorithm

A MAC (Message Authentication Code) is a piece of information that
guarantees the authenticity and integrity of a certain message. If Alice and
Bob have a common secret key sk, Alice can send a message m to Bob, and
a MAC of the message γm = MACsk(m). This enables Bob to later verify
the MAC, and see if the message is authentic and unchanged.

The MAC scheme used in SPDZ is very simple. Assuming a key α and
a message m, then

γm =MACα(m) = α ∗m (mod p)
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This MAC scheme enables operations on MAC values. For instance, we
can add two MAC values and obtain the MAC of the sum of the values
they are authenticating.

γx + γy = (α ∗ x (mod p)) + (α ∗ y (mod p)) =

= α(x+ y) (mod p) =

= γx+y

The same goes with multiplication by a public value t

γx ∗ t = (α ∗ x (mod p)) ∗ (α ∗ t (mod p)) =

= α(x ∗ t) (mod p) =

= γx∗t

With both of these operations, it’s also possible to multiply two MAC’s, by
using the same scheme that we used for multiplying shares, i.e. reducing
the operations to public values.

4.2 Protocols

The SPDZ protocol is composed of many subprotocols, where each of them
performs a different task. In this section we give a theoretical description
of some of the subprotocols that compose the preprocessing phase, more
specifically the ones that were implemented during the internship. We also
provide some context for a better understanding of what these subprotocols
are supposed to do.

4.2.1 EncCommit

At some stage of the preprocessing phase of the SPDZ protocol, each player
needs to have a set of public ciphertexts {c1, . . . , cn} where each of these
ci, i ∈ {1, . . . , n} ciphertexts is an encryption of the private message mi

from the player Pi. Summarised, each player must have a public ciphertext
(composed by ciphertexts from every player) and a private message.

The goal of the EncCommit protocol is that the players generate these
values in a secure way. One must ensure, for instance, that each ciphertext
is a genuine encryption of a valid message. A valid message is one that is
picked from a specific distribution.

In the EncCommit protocol (see Figure 4.3 ), if a malicious player devi-
ates from the protocol (i.e. picks the message from another distribution),
then the honest players will detect this behaviour and abort the protocol.
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Figure 4.3: EncCommit Protocol[21]

The EncCommit protocol is secure in the covert setting, which means
that players controlled by a malicious adversary will succeed with a proba-
bility 1/c where c is the covert parameter.

Protocol description

(1) All players start by picking a random value ei from the interval
{1, . . . , c}. Each player then commits to this value. This commit
will be a proof that the value was chosen before the ciphertext genera-
tion phase. The commitment scheme is the one described in section
4.1.4.

(2) The players generate multiple ciphertexts that will be later opened
(except for one ciphertext, that will remain closed). They proceed as
follows: Every player generates c seeds, and commits to them. Using
those seeds, the player does some deterministic steps to obtain the
messages and ciphertexts. Finally, he broadcasts those ciphertexts to
every other player. The intention of the deterministic steps b) and c)
is to provide an easy way to verify that the messages and ciphertexts
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were correctly generated. Notice that once given the seed, any party
can reproduce the operations thus obtaining the ciphertexts.

(3) All the players open the previously committed ei. If any opening fails,
they abort.

(4) All the players compute the value chall, that is now a public value.
chall is a value in the range {1, . . . , c}

(5) Now that the players agree on this public value every player will
open every seed, except for the one with the index corresponding to
chall. If any opening fails the players abort the protocol.

(6) Each player will use the received seeds (except for the one with index
chall) and compute the respective ciphertexts using the deterministic
steps b) and c). If any of the recovered ciphertexts does not match
with the previously received ciphertexts, the player aborts.

(7) All the players store their private message mi and the unopened
ciphertexts from the other players.

Security The EncCommit protocol uses a cut-and-choose technique. It
works as follows: Each player commits to c seeds. Then, using those
seeds, multiple ciphertexts are generated and broadcasted. Later, each
player opens exactly c − 1 seeds. Every player can now use these seeds
to recover the ciphertexts and verify if they match with the previously
received ciphertexts.

The covert security feature comes from this cut-and-choose phase. If a
player generates a bad ciphertext, he will get caught with probability 1/c. If
the player generates a bad ciphertext and is not caught, then he was lucky
in guessing in which ciphertext should he cheat.

The commitments of the ei value are important as well. When the
players commit to ei they become locked with that value. Every player
sends/receives a handle that gives no information about the underlying
value. Since they don’t know others ei values, they simply cannot learn
chall until the values are opened. Only after the ciphertexts are generated,
the players open ei and learn chall. EncCommit is UC-secure, and a proof
is available in [21].

4.2.2 Reshare

In Reshare (see figure 4.4) the players start with an encryption cm =
Encpk(m). The output of the protocol is a share (mi), for every player

Secure Multiparty Computation Protocols 38



4.2 Protocols

Figure 4.4: Reshare Protocol[21]

Pi, and possibly a new ciphertext. This is done in such a way that no player
learns m.

Description

(1) All players run EncCommit, so that each of them obtains fi and a
public set of encryptions cf1 , . . . , cfn .

(2) The players obtain the sum of the encryptions , cf , and then compute
cm+f = cm + cf .

(3) The players run the protocol DistDec (distributed decryption) on the
value cm+f and obtain m+ f

(4) Each player Pi sets mi = −fi , except for P1, that sets mi = m+ f − f1

(5) If enc = NewCiphertext , the players compute the new ciphertext
c′m = Encpk(m+ f)− cf1 − · · · − cfn

We will not describe the DistDec protocol, but rather use it a black box.
DistDec is a protocol that enables the players to jointly decrypt a value,
without revealing the secret-shared decryption key.

4.2.3 MacCheck

MACCheck is a procedure that is called both in the online phase and offline
phase. This procedure enables the players to verify the correctness of the
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Figure 4.5: MACCheck Protocol[21]

MAC’s of a public set of values {a1, . . . , at}.
Having a triple (α, a, γa) , where α is the key, a is the value to be checked

and γ is the MAC, we need to check wether

MAC(α, a) = α.a mod p = γa

MacCheck Each of the players has a share αi of the key α. At some phase
they want to run a protocol to verify if the already computed values are
correct. A solution could be to open α and verify every single MAC value,
but this would disclose α, making it unusable in further operations. The
purpose of the MacCheck protocol is for this verification to take place
without opening α. It works as follows:

(1) Each player starts with the public set of values to be checked {a1, . . . , at},
a set containing his shares of the MAC of each of the a′s {γ(aj)i, . . . , γ(aj)i}
and a share of the key ai, for 1 ≤ i ≤ n, 1 ≤ j ≤ t .

The players generate a random value si and commit to that value.

(2) The players open the commitment, revealing si.

(3) Each player obtains s = s1 + · · ·+ sn.

(4) The value s is then used as a seed to obtain a vector of uniformly
generated values r. Because every player uses the same seed, value r
is public.
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(5) All players compute the public value a.

(6) Each player computes γi, σi

(7) Each player commits σ

(8) Each player opens σ.

(9) Players sum all σ values. The sum should be equal to 0. Otherwise,
the players assume that some MAC value was forged.

Correctness For 1 ≤ i ≤ n, σi can be computed as follows:

σi = γi − αi.a =

= (
t∑

j=1

rj.γ(aj)i)− αi(
t∑

j=1

rj.aj) =

=
t∑

j=1

rj.γ(aj)i − αi
t∑

j=1

rj.aj =

=
t∑

j=1

rj.(αi.aj)− αi
t∑

j=1

rj.aj =

=
t∑

j=1

αi.rj.aj − αi
t∑

j=1

rj.aj =

= αi

t∑
j=1

rj.aj − αi
t∑

j=1

rj.aj =

= 0

If every MAC is correct, then

n∑
i=1

σi = σ1 + · · ·+ σn =

= 0 + 0 + · · · =
= 0

These linear combinations enable us to check the MAC values of the set
{a0, . . . , at}without opening α.
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Chapter 5

Implementations

We implemented some of the protocols that compose the preprocessing
phase of the SPDZ protocol. Many of the details of the implementation will
not be described due to legal concerns. Instead, we will show how the code
was organised and how some of the different components interacted with
each other. Moreover, we describe how we implemented constructions like
the pseudorandom generator and the commitment scheme.

5.1 Class Hierarchy

The classes were organised so that the basic structure and API remained
the same across different protocols (see figure 5.1). A Protocol is an
object that is responsible for acting as an execution of a single party in
the protocol. When we mention protocol we are referring to one of the
subprotocols (MacChec,EncCommit or Reshare). The members of this
class are objects or pointers to objects that store sent/received values and
parameters of the protocol execution. The Protocol class is not entirely
responsible for all the business logic of the protocol. Indeed, most of the
state is held in another abstraction - the protocol player.

The protocol player is an object that is member of the Protocol and
has all the values that matter to the specific protocol. For instance, an
EncCommit protocol class has an EncCommitPlayer object inside (more
specifically, a pointer to an object) that keeps track of the values and most of
the business logic. A Player is modelled as a states machine. It’s internal
state changes as the protocol runs. The API of the player object differs from
protocol to protocol, due to the nature of the values that need to be stored
and methods that need to called. A player in the EncCommit protocol will
have a different API than a player in the MacCheck protocol.
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Figure 5.1: Interaction between two Protocol instances

This granularity is needed because each protocol has different behaviour,
so having a distinct "player" abstraction per protocol is more useful than
having a generic player bloated with methods and member variables.

5.2 Network

Our communication layer provides simple methods to connect/disconnect
parties and send messages between them. We decided to use asynchronous
I/O. Asynchronous communication requires the programmer to write
handlers that deal with certain events. In the case of our protocols, we
implemented Handler classes for this purpose (see figure 5.1) .

A Handler receives a message as input and decides on what should be
done based on the message information. The handler class is designed to
interact with the specific protocol that is being executed. This means that
for every protocol we need to implement the respective Handler class.

A problem with this design is that the Network class must hold dif-
ferent Handler objects, depending on which protocol is running. Having
a NetworkClass specifically designed for every protocol would increase
the complexity and duplicate much of the code. The solution to this is to
pass the type of handler as a template to the Network Class. This way,
the compiler builds different versions of Network, while the code base
remains the same (only one Network class).

The template hierarchy is shown in figure 5.2. As can be observed, it is
possible to build "custom" network classes. As an example, we could in-
stantiate a Network<Reshare>, and this class could be used as a member
of ReshareProtocol.
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Figure 5.2: Use of Templates in Network Class

5.3 Protocol Classes

Each protocol class has a method run() that triggers the protocol execution.
It basically loads the players hosts from a file, connects to those hosts and
listens for incoming connections. Once he successfully connects to all
the players, the protocol execution proceeds. The following paragraphs
describe some of the functionality of the Protocol classes.

Protocol objects act as a middle tier between the network and the player
state object. Protocols send/receive messages to/from the Network object.
Also, they decide what to do based on the received messages. They can
for instance abort the protocol or "feed" the player state object with data.
Moreover, they can query the player state for important information, like
asking whether some commitment opens to the right value.

Message Handling Every time a message is received, it is parsed and
analysed. All the messages have a message identification tag. These mes-
sages tags are dependent on the protocol being executed, so we use tem-
plates again to define different Message classes. So a EncCommitProtocol
class deals with Message<EncCommit> types of messages, and the same
applies to the other protocol classes.

A message can be simply a control message without content like ResendShare
or a tag like HereGoesCommitment accompanied by some raw data.

Verification Points In many instances we need the players to stop until
everyone agrees on something. For instance, when parties need to verify
if some commitments are correct before proceeding, they have to wait for
everyone’s confirmation. These verification points are solved by having
methods that block for a certain time and then check if the number of
received confirmations is correct.
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Figure 5.3: PRNG used in SPDZ

We proceed to explain how we implemented our constructions like the
random number generator and the commitment scheme.

5.4 AES-PRNG

Many of the protocols make use of a pseudo random number generator.
The authors in [10] suggest to use a RNG based on the AES encryption
scheme. As such, we built our PRNG by using the AES encryption func-
tion. This resulted in a very efficient implementation, since modern CPU’s
support the AES-NI [15] instruction set, that has specific instructions for
AES encryption/decryption.

As any other PRNG, our receives a seed as input, and based on that
seed, generates pseudo random values. The seed is supposed to come from
a source of "randomness". In our implementation we use /dev/random/.
Once initialised, the PRNG can retrieve pseudo-random numbers with the
next() method. Multiple calls to next() will retrieve different values.

We proceed to explain how the PRNG works internally. When initialised,
it sets the AES encryption function with the seed as key, and sets an internal
variable counter to zero. So, we obtain a seed the size of an aes-128 key,
16 bytes. The admitted seed values are basically all the values within the
key space of AES-128, i.e. {0, . . . , 2128 − 1}.

Each time a next() method is invoked, an encryption of the counter is
retrieved, and the counter is incremented. The PRNG design can be seen in
Figure 5.3. This design enables the PRNG to be very efficient, since every
next() invocation incurs only in two costs: incrementing a value and
encrypting it.

Most modern cpu’s have embedded instructions for AES encryption/de-
cryption. This makes our PRNG construction very efficient.
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Figure 5.4: Interaction between CommitObject and CommitVerifier Classes,
where Alice is the prover and Bob the verifier.

5.5 Commitment Classes

The commitment functionality of our implementation is based on two
classes, the CommitObject and CommitVerifier. We provide a graphical
representation of the interaction between prover and verifier players in
Figure 5.4.

A CommitObject is simply an abstraction that captures the functionality
of the prover. The constructor accepts the value to be committed as param-
eter. After the declaration we can query the object for the handle (in this
context handle means the commitment value). This handle can then be sent
to any of the other players. When the player is ready to open his value, he
calls the method open(), that returns a pair (v,r). This pair is then sent
to the other players for them to open the commitment.

On the side of the verifier, there is a CommitVerifier object. It is ini-
tialised with the handle (h) that the prover sent him. Later, the player can
query the object with the method open(v,r). This method verifies if the
handle was associated with v or not, and returns the result as a boolean
value.

5.6 Details

The code was programmed using c++11 and the clang compiler. We chose
GMP as our multi precision library. We also made intense use of the Boost
library, specially for the network-related classes.

GMP C++ Interface GMP provides a interface that is more friendly
for C++ programming. Instead of using mpz_t types, we chose to use
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mpz_class. The latter allows operator overloading, which means that
instructions such as

mpz_add (c,a, b);
mpz_set (x,10);
mpz_mul (x,x,c);

are written instead in the form

c = a+b;
x = 10;
x = x*c;

The overloaded operators make the code easier to understand, specially
when implementing complex algorithms.

Serialization Our network classes only work at the byte level, i.e. they
only process bytes. There was a frequent need to send values represented
as GMP’s mpz_class from a player to another.

GMP provides I/O methods that convert these objects to a raw byte
representation that can be later recognised and parsed. But despite working,
it made things harder when we wanted to send a batch of values.

We needed a more abstract structure that would efficiently translate a
memory represented object to a sequence of bytes that could be sent over
the network and rebuilt on the other end.

The boost libraries provide a serialization framework. We used it in
binary mode, which is less portable but more efficient. Another problem
is that Boost doesn’t support GMP’s mpz_t types serialization. We solved
that problem by extending Boosts serialisation support to GMP types.

In the end, serialising an object was as easy as

// v is a vector<mpz_class> that we want to serialise
serialized = v.serialize();

//convert back to original representation
//in a realistic scenario this is performed on the other end
vector<mpz_class> deserialized;
deserialized = deserialize<vector<mpz_class>>(serialized);

This simplification is possible because Boost "knows" how to serialize a vec-
tor and how to serialize an object of the type mpz_class. The serialisation
of containers such as vector<> is already implemented in Boost.
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Figure 5.5: Boost ASIO framework

C++11 We made use of C++11 features such as unique_ptr and shared_ptr.
These are classes that encapsulate raw pointers and are capable of call-
ing the free function when the object runs out of scope. In the case of
shared_ptr there is a counter that is incremented every time the object
is called. Because of this overhead we chose to use shared_ptr with
caution.

Cryptographic Operations For symmetric encryption and hashing we
used CryptoPP. It supports the AES-NI set of instructions, which makes the
AES encryption/decryption faster. This aspect is very useful because we
make many AES calls in our PRNG. A test showed performance gains by a
factor of 4 when using the special instructions.

Boost ASIO We used boost’s ASIO library to handle the asynchronous
I/O network operations. It works by having a io_service routine that
from time to time checks if there are incoming messages in the queue. For
instance, if a player sends a message to another player, the message is
added to a queue, and I/O continues. Later, the io_service picks the
message from the queue and sends it to the Operative System (see figure
5.5).

When the reply comes, the operative system puts the message in the
queue. Once again, io_service will pick the message at some point, and
finally dispatch it to the application.

By using asynchronous calls we can make better use of the resources,
since there is no blocking. The downside is that it grows the programming
complexity, since we have to design protocols in a less intuitive way.
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Chapter 6

Conclusion and Results

The very first secure function evaluation (SFE) protocol was proposed
by Yao, who demonstrated how two parties could evaluate a function
represented as a boolean circuit. This result was of tremendous importance
as it would later set the race for constructing more general, efficient SFE
protocols.

The research in the field continued at a steady pace, but there has been
an increase in the number of publications in the recent years. According
to Google Scholar, the number of articles on multiparty computation until
1999 was approximately 130. The same value increases to approximately
5200 if we add all the articles until 2014.

This interest can be justified by the fact that MPC can be potentially
used in a wide array of sectors. Some of the possible applications are
electronic voting, anonymous auctioning, private information retrieval or
computation outsourcing. Another important aspect is that the efficiency
of current protocols is narrowing the gap between theory and practice. For
instance, the results by Damgard et al. [9](2012) show that using the SPDZ
protocol it takes 0.24s to encrypt an AES block in the active setting, whereas
an implementation based on Yao by Pinkas et al. [22] (2009) in the same
setting, took 19 minutes.

For the aforementioned reasons, we think MPC will become more prac-
tical within the next years, and as such it is an important object of study.

6.0.1 Multiparty Computation

In the first two chapters we gave an introduction on the topic of multiparty
computation. We described the motivation for such studies, by giving
concrete application scenarios where MPC techniques could be employed.
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Later, we went into the problem of defining security in MPC. The com-
munity has put a lot of effort into modelling the security properties that
should be sufficient for a multiparty computation protocol to be considered
secure. In general terms, there are two major requirements that are com-
monly agreed as being the standard requirements, and those are privacy
and correctness. We introduced those two requirements as our building
block for subsequent reasoning about security in MPC.

Proving that a certain protocol is secure in these terms without any
further assumptions can be very hard. For instance, one has to define very
precisely what privacy and correctness actually mean. The UC framework
by Canetti et al. [6] is a rich reference model for proving security, that
mitigates this problem. It builds on the idea of defining an ideal world
protocol and then proving that any instantiation of the concrete protocol
in the real world will leak exactly the same amount of information as the
ideal-world version. We describe the UC framework in section 2.4, and
give an intuition on how to build proofs using this framework.

It is important to categorise protocols into different settings because of
two reasons. First, because different settings may lead to better (or worse)
solutions. As an example, the way we model the adversary can be of great
importance, since it normally has direct influence on the overall efficiency
and security of the scheme. Second, because it makes it easier to compare
protocols in a fair way. For these reasons, we wrote sections on the different
settings found in literature.

We listed the the different adversarial models (active, passive and covert)
and described how they are modelled. Moreover, we made the distinction
between cryptographic security and information-theoretic security.

Finally, we finished the chapter by discussing the different models of
communication (synchronous, asynchronous) and initial setup assumptions
(CRS, PKI).

6.0.2 Boolean and Arithmetic Circuits

The first form of secure multiparty computation protocol was presented
by Andrew Yao [27]. The scheme is formerly known as "Garbled Circuits"
and allows the evaluation of any deterministic function represented as a
boolean circuit. In section 3.1.1 we describe Yao’s scheme. We explain
the protocol in general terms and then elaborate on a full and detailed
description. Moreover, we explain what a boolean circuit is and show how
to evaluate a simple one-gate circuit using Yao’s Garbled circuits.

On the practical side, we used the FairPlay framework by Ben-David
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et al. [2] to demonstrate practical uses of Garbled circuits. We gave an intu-
ition on the complexity issues that result from certain operations in boolean
circuit representations. We did so by implementing a simple multiplier and
extracting information from the circuit generated by FairPlay.

Since Yao many authors came with different protocols that differ in
many details. For instance, there are protocols that allow more than two
parties and there are protocols that work over arithmetic circuit representa-
tions.

We went into describing arithmetic circuit evaluation, and showed a
simple protocol by Bogdanov [4] that shows how multiple parties can eval-
uate a full arithmetic circuit. As many other arithmetic circuit evaluation
protocols, it is based on Secret sharing. We discussed Secret Sharing, and
described how a concrete scheme, by Shamir [26] is defined.

Finally, we compared the two approaches (boolean, arithmetic) and dis-
cussed the benefits and problems that come from using one representation
over the other.

6.0.3 The SPDZ Protocol

Recent works showed protocols that are closer to being practical. Damgård
et al. [10] proposed a very efficient arithmetic circuit evaluation protocol
in the so-called preprocessing model. The protocol, named SPDZ, has a
computational heavy offline phase that can be run at any time, and a very
fast online phase where the actual secure evaluation is performed.

The main author of the thesis had an internship at the Alexandra Insti-
tute, Denmark, where he worked on implementing some parts of the SPDZ
preprocessing phase. This internship led to the writing of two chapters on
the SPDZ protocol. The first chapter is mostly theoretical, and replicates the
contents of the original article in a more compact and easy format, whilst
the second is about the implementation that was performed while working
as an intern at the Alexandra Institute.

The SPDZ protocol is composed of two phases, the preprocessing and
online phase. In section 4.1 we described the protocol in general terms. We
started by explaining the online phase, by assuming some random values
were already generated . This randomness generation is basically what the
preprocessing phase does, so we skipped it. We also gave an example of
how the players proceed to evaluate a simple circuit composed of a sum
and multiplication gate.

Later, we described the functionality of some of the subprotocols that
compose the preprocessing phase. More concretely, we explained the
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subprotocols that were implemented (EncCommit, Reshare, MacCheck).
The second chapter is focused on describing how the subprotocols

were implemented. It shows how we converted protocol functionalities
to concrete classes. All the classes were implemented with code reuse in
mind. Consequently, every protocol can be described by the same class
structure, despite the inner behaviour being different. We explained the
basic protocol class hierarchy and how the different components interact
with each other. Additionally, we made a description of how the network
layer is modelled.

Some of the protocols dependent on cryptographic constructions like
commitments and pseudo random number generators. As such, we explain
how we implemented our commitment scheme and PRNG. Finally, we
made reference to the libraries that were used during the construction of
the protocols.

6.1 Future Works

Despite the growing number of MPC protocols available, there is no large
scale adoption taking place. This aspect leads us to conjecture that current
MPC protocols may not be practical enough and that the designers may be
missing some important properties.

One of the problems in this domain is to understand what protocols
are more efficient, because there are many variables involved. Protocols
can be either two-party or multi-party. They also differ in terms of ad-
versarial behaviour, underlying hardness assumption, communication,
round complexity and many other variables. All these variables make
it difficult to judge which protocol is the best. Another problem is that
authors claim their protocols to be the most efficient, but it also happens
that those protocols may be efficient in models that probably do not express
the requirements of the industry.

A positive contribution would be to study the available MPC protocols
and understand what characteristics are relevant from a practical point
of view. The study would consist of implementing MPC protocols and
comparing them under different parameters so that useful information
could be extracted. The result could be in the form of a more systemised
way of comparing the available protocols, that catches the requirements of
practical application scenarios.

This new knowledge could be potentially useful to protocol designers as
it would provide them some insights on what aspects should be improved.
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Listings

Listing 6.1: Fairplay 4-Bit AND Operation
/*
* Compute AND of two 4-bit int

*/
program And {

const N=4;
type Size = Int<N>;
type AliceInput = Size;
type BobInput = Size;
type AliceOutput = Size;
type BobOutput = Size;
type Input = struct {AliceInput alice, BobInput bob};
type Output = struct {AliceOutput alice, BobOutput bob};

function Output output(Input input) {
output.alice = (input.bob & input.alice);
output.bob = (input.bob & input.alice);

}
}

Listing 6.2: Fairplay 4-Bit AND Operation in SHDL circuit format
0 input //output$input.bob$0
1 input //output$input.bob$1
2 input //output$input.bob$2
3 input //output$input.bob$3
4 input //output$input.alice$0
5 input //output$input.alice$1
6 input //output$input.alice$2
7 input //output$input.alice$3
8 output gate arity 2 table [ 0 0 0 1 ] inputs [ 4 0 ]//output$output.alice$0
9 output gate arity 2 table [ 0 0 0 1 ] inputs [ 5 1 ]//output$output.alice$1
10 output gate arity 2 table [ 0 0 0 1 ] inputs [ 6 2 ]//output$output.alice$2
11 output gate arity 2 table [ 0 0 0 1 ] inputs [ 7 3 ]//output$output.alice$3
12 output gate arity 1 table [ 0 1 ] inputs [ 8 ]//output$output.bob$0
13 output gate arity 1 table [ 0 1 ] inputs [ 9 ]//output$output.bob$1
14 output gate arity 1 table [ 0 1 ] inputs [ 10 ]//output$output.bob$2

56



15 output gate arity 1 table [ 0 1 ] inputs [ 11 ]//output$output.bob$3

Listing 6.3: Fairplay 4-bit Multiply Operation
/*
Multiplication of two 4-bit integers

*/
program Mult {

// Type Definitions

type AliceInput = Int<4>;
type AliceOutput = Int<8>;
type BobInput = Int<4>;
type BobOutput = Int<8>;
type Input = struct {AliceInput alice, BobInput bob};
type Output = struct {AliceOutput alice, BobOutput bob};

// This is the main function
function Output output(Input input) {

var Int<8> r;
r=0;
if (input.bob & 8) // test bit 3

{r = r + input.alice;}

r = r + r;
if (input.bob & 4) // test bit 2

{r = r + input.alice;}

r = r + r;
if (input.bob & 2) // test bit 1

{r = r + input.alice;}

r = r + r;
if (input.bob & 1) // test bit 0

{r = r + input.alice;}

output.bob = r;
output.alice = r;

}

}

Listing 6.4: Fairplay 4-bit Multiply Operation Circuti
0 input //output$input.bob$0
1 input //output$input.bob$1
2 input //output$input.bob$2
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3 input //output$input.bob$3
4 input //output$input.alice$0
5 input //output$input.alice$1
6 input //output$input.alice$2
7 input //output$input.alice$3
8 gate arity 2 table [ 0 0 0 1 ] inputs [ 4 3 ]
9 gate arity 2 table [ 0 0 0 1 ] inputs [ 7 3 ]
10 gate arity 2 table [ 0 0 0 1 ] inputs [ 6 3 ]
11 gate arity 2 table [ 0 0 0 1 ] inputs [ 5 3 ]
12 gate arity 2 table [ 0 0 0 1 ] inputs [ 5 8 ]
13 gate arity 2 table [ 0 1 1 0 ] inputs [ 6 11 ]
14 gate arity 3 table [ 0 0 0 1 0 1 1 1 ] inputs [ 12 6 11 ]
15 gate arity 2 table [ 0 1 1 0 ] inputs [ 12 13 ]
16 gate arity 2 table [ 0 1 1 0 ] inputs [ 7 10 ]
17 gate arity 3 table [ 0 0 0 1 0 1 1 1 ] inputs [ 14 7 10 ]
18 gate arity 2 table [ 0 1 1 0 ] inputs [ 14 16 ]
19 gate arity 2 table [ 0 1 0 0 ] inputs [ 7 3 ]
20 gate arity 3 table [ 0 0 0 1 0 0 1 1 ] inputs [ 17 7 3 ]
21 gate arity 2 table [ 0 1 1 0 ] inputs [ 17 19 ]
22 gate arity 2 table [ 0 1 1 0 ] inputs [ 20 19 ]
23 gate arity 3 table [ 0 1 0 1 0 0 1 1 ] inputs [ 9 22 2 ]
24 gate arity 2 table [ 0 0 0 1 ] inputs [ 4 2 ]
25 gate arity 3 table [ 0 1 0 1 0 0 1 1 ] inputs [ 9 21 2 ]
26 gate arity 3 table [ 0 1 0 1 0 0 1 1 ] inputs [ 10 18 2 ]
27 gate arity 3 table [ 0 1 0 1 0 0 1 1 ] inputs [ 11 15 2 ]
28 gate arity 3 table [ 0 1 0 1 0 1 1 0 ] inputs [ 8 5 2 ]
29 gate arity 2 table [ 0 0 0 1 ] inputs [ 5 24 ]
30 gate arity 2 table [ 0 1 1 0 ] inputs [ 6 28 ]
31 gate arity 3 table [ 0 0 0 1 0 1 1 1 ] inputs [ 29 6 28 ]
32 gate arity 2 table [ 0 1 1 0 ] inputs [ 29 30 ]
33 gate arity 2 table [ 0 1 1 0 ] inputs [ 7 27 ]
34 gate arity 3 table [ 0 0 0 1 0 1 1 1 ] inputs [ 31 7 27 ]
35 gate arity 2 table [ 0 1 1 0 ] inputs [ 31 33 ]
36 gate arity 2 table [ 0 1 1 0 ] inputs [ 7 26 ]
37 gate arity 3 table [ 0 0 0 1 0 1 1 1 ] inputs [ 34 7 26 ]
38 gate arity 2 table [ 0 1 1 0 ] inputs [ 34 36 ]
39 gate arity 2 table [ 0 1 1 0 ] inputs [ 7 25 ]
40 gate arity 3 table [ 0 0 0 1 0 1 1 1 ] inputs [ 37 7 25 ]
41 gate arity 2 table [ 0 1 1 0 ] inputs [ 37 39 ]
42 gate arity 2 table [ 0 1 1 0 ] inputs [ 7 23 ]
43 gate arity 2 table [ 0 1 1 0 ] inputs [ 40 42 ]
44 gate arity 3 table [ 0 1 0 1 0 0 1 1 ] inputs [ 25 41 1 ]
45 gate arity 3 table [ 0 1 0 1 0 0 1 1 ] inputs [ 23 43 1 ]
46 gate arity 2 table [ 0 0 0 1 ] inputs [ 4 1 ]
47 gate arity 3 table [ 0 1 0 1 0 0 1 1 ] inputs [ 26 38 1 ]
48 gate arity 3 table [ 0 1 0 1 0 0 1 1 ] inputs [ 27 35 1 ]
49 gate arity 3 table [ 0 1 0 1 0 0 1 1 ] inputs [ 28 32 1 ]
50 gate arity 3 table [ 0 1 0 1 0 1 1 0 ] inputs [ 24 5 1 ]
51 gate arity 2 table [ 0 0 0 1 ] inputs [ 5 46 ]
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52 gate arity 2 table [ 0 1 1 0 ] inputs [ 6 50 ]
53 gate arity 3 table [ 0 0 0 1 0 1 1 1 ] inputs [ 51 6 50 ]
54 gate arity 2 table [ 0 1 1 0 ] inputs [ 51 52 ]
55 gate arity 2 table [ 0 1 1 0 ] inputs [ 7 49 ]
56 gate arity 3 table [ 0 0 0 1 0 1 1 1 ] inputs [ 53 7 49 ]
57 gate arity 2 table [ 0 1 1 0 ] inputs [ 53 55 ]
58 gate arity 2 table [ 0 1 1 0 ] inputs [ 7 48 ]
59 gate arity 3 table [ 0 0 0 1 0 1 1 1 ] inputs [ 56 7 48 ]
60 gate arity 2 table [ 0 1 1 0 ] inputs [ 56 58 ]
61 gate arity 2 table [ 0 1 1 0 ] inputs [ 7 47 ]
62 gate arity 3 table [ 0 0 0 1 0 1 1 1 ] inputs [ 59 7 47 ]
63 gate arity 2 table [ 0 1 1 0 ] inputs [ 59 61 ]
64 gate arity 2 table [ 0 1 1 0 ] inputs [ 7 44 ]
65 gate arity 3 table [ 0 0 0 1 0 1 1 1 ] inputs [ 62 7 44 ]
66 gate arity 2 table [ 0 1 1 0 ] inputs [ 62 64 ]
67 gate arity 2 table [ 0 1 1 0 ] inputs [ 7 45 ]
68 gate arity 2 table [ 0 1 1 0 ] inputs [ 65 67 ]
69 gate arity 3 table [ 0 1 0 1 0 0 1 1 ] inputs [ 47 63 0 ]
70 gate arity 3 table [ 0 1 0 1 0 0 1 1 ] inputs [ 44 66 0 ]
71 gate arity 3 table [ 0 1 0 1 0 0 1 1 ] inputs [ 45 68 0 ]
72 gate arity 2 table [ 0 0 0 1 ] inputs [ 4 0 ]
73 gate arity 3 table [ 0 1 0 1 0 0 1 1 ] inputs [ 48 60 0 ]
74 gate arity 3 table [ 0 1 0 1 0 0 1 1 ] inputs [ 49 57 0 ]
75 gate arity 3 table [ 0 1 0 1 0 0 1 1 ] inputs [ 50 54 0 ]
76 gate arity 3 table [ 0 1 0 1 0 1 1 0 ] inputs [ 46 5 0 ]
77 output gate arity 1 table [ 0 1 ] inputs [ 72 ] //output$output.bob$0
78 output gate arity 1 table [ 0 1 ] inputs [ 76 ] //output$output.bob$1
79 output gate arity 1 table [ 0 1 ] inputs [ 75 ] //output$output.bob$2
80 output gate arity 1 table [ 0 1 ] inputs [ 74 ] //output$output.bob$3
81 output gate arity 1 table [ 0 1 ] inputs [ 73 ] //output$output.bob$4
82 output gate arity 1 table [ 0 1 ] inputs [ 69 ] //output$output.bob$5
83 output gate arity 1 table [ 0 1 ] inputs [ 70 ] //output$output.bob$6
84 output gate arity 1 table [ 0 1 ] inputs [ 71 ] //output$output.bob$7
85 output gate arity 1 table [ 0 1 ] inputs [ 72 ] //output$output.alice$0
86 output gate arity 1 table [ 0 1 ] inputs [ 76 ] //output$output.alice$1
87 output gate arity 1 table [ 0 1 ] inputs [ 75 ] //output$output.alice$2
88 output gate arity 1 table [ 0 1 ] inputs [ 74 ] //output$output.alice$3
89 output gate arity 1 table [ 0 1 ] inputs [ 73 ] //output$output.alice$4
90 output gate arity 1 table [ 0 1 ] inputs [ 69 ] //output$output.alice$5
91 output gate arity 1 table [ 0 1 ] inputs [ 70 ] //output$output.alice$6
92 output gate arity 1 table [ 0 1 ] inputs [ 71 ] //output$output.alice$7
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