
Integrating HCI concerns into a UML based Software
Engineering course

Ant«onio Nestor Ribeiro
anr@di.uminho.pt

Jos«e Creissac Campos
jose.campos@di.uminho.pt

F. M«ario Martins
fmm@di.uminho.pt

Departamento de Inform«atica/CCTC
Universidade do Minho

Campus de Gualtar, 4710-057 Braga, Portugal

ABSTRACT
Software Engineering (SE) and HCI (Human Computer In-
teraction) are not the same age, do not have the same his-
tory, background or foundations, and did never share de-
sign principles and design models. The separation principle,
by encouraging separate concerns and techniques to design
the interactive and the computational layers of a software
system - despite being absolutely correct from several SE
crucial design principles, like modularity, separation of con-
cerns, encapsulation, context independence and so on -, has
sometimes been misjudged and mistakenly used. Therefore,
instead of bridging the gap between the two separate de-
signs, it helped widening that gap. However, the principle
does not mention and does not impose any restrictions on
how the integration should be done.

In the context of a software engineering course the authors
have been involved with for some years, the need has arisen
to provide students with HCI skills. Several attempts at
integrating HCI into software engineering can be found in
the literature. However, none seemed amenable to applica-
tion in the context of the course, basically because none of
them could be taught and learnt in such a way (methodol-
ogy) that could easily be blent into the software engineering
design process. We present a methodological process that
we have been teaching that aims at shortening the gap that
software engineering students face when trying to adapt SE
techniques to the interactive layer.

Keywords
Model based design, UML, user centred design, UI mod-
elling, software engineering

1. INTRODUCTION
This paper arises from experience by the authors in teach-
ing a software engineering course with an emphasis in model
based development. More specifically, a course on UML

(Unified Modelling Language) [1] based modelling and de-
velopment of software systems.

The course is taught every other semester to about 120
fourth year students of software engineering and computer
science licentiate degrees (5 years). The students reach the
course with good programming skills (including object ori-
ented programming) but little knowledge of Human-Compu
ter Interaction (HCI) related issues.

The course is organised into theoretical and practical lec-
tures, complemented with independent team work and tuto-
rial support. During the semester the students (organised in
teams of 3 to 5 students) engage in a project were they must
develop a software system using the entire set of knowledge
needed to go from analysis, to specification and modelling,
to development and later deployment.

Initially the course followed an approach close to IBM’s RUP
(Rational Unified Process) [11], going through the usual soft-
ware development stages:

• requirements gathering

• architectural analysis and design

• behavioural analysis and design

• implementation

• deployment

Development of the software systems followed the traditional
3-tired architectural approach: User Interface layer, Busi-
ness Logic layer and Database layer (see Figure 1 in section
5.2).

When this approach started being applied, it became evident
that the students had great difficult in creating a complete
understanding of the system to be built from the modelling
process and its outcomes. One major difficulty was derived
from the fact that the approach was mainly addressing the
business logic layer of the application, but little was said
about the data layer and user interface layers. Regarding the
database layer the students already had notions of databases
and were able to bridge the object relational mapping with
minimal support.



The user interface layer, however, presented greater prob-
lems:

• On the one side, most of the ’logic’ derived from the
use case models could not be directly expressed in the
business logic. This happened because we take the
view that the use case model describes the system from
an external perspective – i.e. from the perspective of
its (user) interface to the outside –, while the busi-
ness logic implements the services that support those
interfaces, not the interfaces themselves;

• On the other side, without a model/understanding of
the user interface, it was not always completely clear
what the functionalities of the business logic should
be.

It became clear and well assumed that the students were
having problems bridging the (considerable) gap between
use case model and the architectural model.

In order to solve this issue we needed to include user in-
terface modelling and development into the course syllabus.
The idea being that the user interface (UI) should act as a
bridge between the outside (use case) and the inside (archi-
tectural) view of the system.

This had to be done in the context of the UML/RUP based
approach already in place, keeping the focus on a model
based approach to software systems development, and trying
to create as little disruption and additional work load to the
students as possible (the course was already a high load
course as it was). The approach taken was to identify how
best to use UML in the development of interactive systems.
This paper presents the envisaged process – i.e. how to
effectively use UML to design and model the UI layer and its
integration to the rest of the system – and briefly discusses
the results of that experience.

The rest of the paper is organised as follows. Section 2 dis-
cusses model based analysis and the impact it has on devel-
opment. Section 3 addresses the use of UML as a standard
modelling language and its adequacy to HCI and interactive
systems. Section 4 distinguishes between software engineer-
ing and interactive systems processes. Section 5 presents
our methodological approach to teaching HCI concepts in
a software engineering setting. In Section 6 the usage of
UML diagrams to assist the interactive layer modelling is
explained in detail. In Section 7 an example is introduced
in which we briefly illustrate some results of project work
carried out according to the approach described. Finally, in
Section 8 the conclusions we have thus far reached from the
application of the approach can be found.

2. MODEL BASED ANALYSIS AND DEVEL-
OPMENT

The use of models has become a standard technique when
dealing with complexity in software systems’ development.
The use of models has two main purposes:

• helps understanding a complex problem/solution — a
good model represents a adequately simplified version

of the problem/solution, making it easier to grasp what
is essential about it;

• helps communicating complex problems/solutions —
once the model is produced it can be used to com-
municate information to others (assuming they will be
able to understand it).

The main modelling artifacts in UML are diagrams (the lan-
guage identifies 12 different diagram types). UML has di-
agrams for many different purposes, which can be used at
different levels of abstraction. The use of these diagrams
can vary in:

• formality — they can range from very informal ”back
of the envelope” sketches to more formal models (for
example, using OCL) of specific aspects of the system;
typically, as the level of detail increases, so does de-
crease the range of features that can be expressed in
the model;

• view — different diagrams will address different as-
pects of the system; a typical distinction is between
structural and behavioural models;

• purpose — different needs will typically demand dif-
ferent types of models; a common distinction is that
made between conceptual models (used for describing
the problem domain), specification models (use for de-
scribing what the solution to the problem is), and im-
plementation models (used for describing how the so-
lution is implemented).

In any case a process of abstraction is used to focus the at-
tention on the relevant issues that must be considered. One
of the consequences of the abstraction process is that dia-
grams will reflect a partial view of the system. This view is
determined by the combination of the factors just described.

Hence, a UML model is built from a collection of different
diagrams, expressing different views of the system at the
appropriate level abstraction.

3. UML AND INTERACTIVE SYSTEMS
The Unified modelling Language (UML) was an obvious
choice of modelling language when initially preparing the
course. The UML is nowadays the standard language for
modelling object oriented software systems. To practition-
ers, novice or expert ones, the object oriented approach of-
fers a high degree of affinity in what concerns the develop-
ment of interactive systems, once it allows layer indepen-
dency as stated in software design patterns such as MVC
[13]. Nevertheless both UML, as the reference modelling
language, and the Rational Unified Process [11] development
process are notoriously insufficient when modelling interac-
tive systems.

Several approaches to adapting the UML to best suite the
modelling of interactive systems have been put forward over
the last years. Despite their intrinsic value the adoption
of these proposals has been slow and was not adequate for
our purpose. They did not have the same usage scope and



some of the proposals introduced new constructors into the
language syntactic set.

We can divide these proposals into two groups: those that
advocate the extention of the UML language to address HCI
related models; those that make use of the UML’s exten-
tion mechanisms (namely profiles) to taylor the UML to the
needs of interactive systems modelling.

In the first group we can inlude Paternò’s proposal of in-
tegrating CTT (ConcurTaskTrees [18] – a task modelling
language) into the UML, or the proposal by Nobrega et al.
[14] of an increment to the UML’s abstract syntax in order
to model tasks.

In the second group we have approaches such as WISDOM
[16] and UMLi [19]. In this case, UML profiles are defined
to capture the decisive aspects of interactive systems mod-
elling. However these strategies pay more attention to the
user interface modelling than to the process that defines
what the user interface should be.

Practitioners have been adopting these proposals very slowly.
This is due to the fact that they require the learning of a
new language, which is definitely an obstacle to the mod-
elling process. On the other hand the effort that software
engineers must devote in order to master a set of different
profiles and languages, is a natural obstacle to the popular-
ity of these profiles. We specifically wanted to avoid intro-
ducing new constructs since one of the learning outcomes
of the course is knowing UML, and introducing additional
notations would create confusion.

Some of the proposed profiles are mainly targeted at mod-
elling the user interface and the graphical objects within. In
that sense we can argue that nowadays IDE’s master that
task in a reasonable way allowing the direct graphical edition
of the UI. This might be criticised as promoting permature
commitment. However, students are encouraged to leave the
definition of the concrete user interface to the coding stages,
and to use paper prototyping techniques during the analysis
stages. Because the course delays coding phase to the quar-
ter of the semester, permature commitment to a concrete
user interface is avoided.

We could have adopted a more structured approach to user
interface prototyping (for example, using Canonical Abstract
Prototypes [2]), however that would mean deviating from
the standard UML notation. Something we did not want
to do. In any case, it should be stressed that the question
is not only how to specify and change the interface layout
but on how to describe the dialogue between end-users and
the application itself, as well as the structure of the code in
order to support the intended dialogue.

The recent version of UML, UML 2.0, brings some new mod-
elling constructors reinforcing the idea that it is important
to exploit the best way to use the language in the context of
an interactive layer modelling. As UML is a well-established
modelling language being thoroughly used and supported by
a large community of practitioners, and being taught to our
students during their course, it is relevant to explore which
is the best manner to use the language - in its standard

definition - in order to take the best usage of it when mod-
elling an interactive system. In that sense our primary goal
is to allow that a software engineer with a common under-
standing of the language might not only be able to use it
properly in order to specify, model and develop an interac-
tive system, but also to integrate his or hers skills into a
software engineering development team with no knowledge
of HCI specific notations.

In the context of the software engineering course we teach,
we developed a methodological framework to allow for an
improved usage of UML in interactive systems modelling.
We specifically avoided including new language construc-
tors, instead we propose a new way to integrate actual stan-
dards and modelling best practices in order to improve the
correctness of the overall model.

Hence we explore the ability to use UML in order to build co-
herent models in which the interactive layer is fully detailed.
We propose a method in order to bring into the analysis and
design phase aspects and facets related with the interactive
dialogue that are often neglected by the modelling processes.

4. SOFTWARE ENGINEERING VS. INTER-
ACTIVE SYSTEMS DEVELOPMENT

When trying to incorporate HCI related issues into a soft-
ware engineering process we are faced with the fact that the
theories and practices of software engineering and those of
human-computer interaction have, to a great extent, evolved
separately. Software engineering deals with the construction
of software systems. Despite its infancy, from programming
technology to software development process, a large body of
tools and knowledge has been produced (cf. [9]). However,
developing software is still a mostly difficult and complex
process.

HCI is concerned with the process of communication be-
tween humans and computer systems. In the context of our
course we are mainly interested in software interactive sys-
tems. This field is younger than software engineering, but
also in this case a considerable body of knowledge has been
developed (see, for example, [4, 15]).

Since the focus is on the interaction between system and
users, the techniques developed within HCI for interactive
systems development deal mainly with what can be called
the interface layer of systems. Despite all progress, it is also
true for interactive systems that developing them is a diffi-
cult and complex process. It is estimated that 60% to 90%
of all system failures can be attributed to problems in the
interaction between the systems and their users [7]. The
problems with interactive systems development are not par-
ticularly surprising since interactive systems are a special
case of software systems with the added complexity of hav-
ing to cope with human activities, goals, capabilities and
limitations.

Practitioners from both fields have developed distinct skills.
The course already covered software engineering skills, we
now felt the need to include enough of HCI related skills
to enable students to develop better user interfaces for their
systems, and help them create a clearer picture of the system
being developed.



Decisions regarding the user interface design can have se-
rious implications on the implementation of the whole sys-
tem, not just the user interface implementation. Even in the
case of non-interactive systems, input from the HCI body
of knowledge can help in understanding the impact of the
system in the overall context when this context involves hu-
mans. In practice, however, reconciling the two views on
development becomes difficult. This can be attributed to a
number of factors, such as:

• different views on where the development focus lies —
software engineering is mainly interested in solving the
technical difficulties faced when implementing a given
functionality; HCI is mainly about solving the problem
of which functionality should be provided, and how to
optimise the way in which it is provided to users;

• communication difficulties — not always the same terms
are used to describe the same concepts in the two
communities; this hinders communication, at best can
make it difficult and at worst can mislead the two par-
ties into thinking that they are talking about the same
thing when in fact they are not. This is particularly
relevant in a teaching context since concepts need to
be presented in a clear and non confusing way.

5. THE PROPOSED APPROACH
In order to understand why the differences between SE and
HCI exist we can look at typical development processes used
by each community. This enables us to identify how the
previously identified differences manifest themselves.

5.1 Human-Centred Design vs. RUP
Software engineering methods (for example, the Rational
Unified Process [11]) are mostly concerned with building
the system. Typically the requirements gathering phase
attempts to determine the functionality the system should
provide, and the focus quickly shifts to the issue of how to
better implement that functionality. The main concerns are
the quality and maintainability of the code produced. Us-
ability issues are seldomly mentioned, if at all.

Interactive systems development methods (for example, human-
centred design [10]) on the contrary, are more concerned
with the design of the interaction between the system and
its users. The focus of attention is on how best to support
the users in performing specific activities with the aid of the
system in concrete contexts of usage.

In [12] a brief comparison between the ISO 13407 standard
for human-centred design (HCD) [10] and RUP is made.
There we can conclude that the human-centred design (HCD)
process is primarily concerned with the design of the sys-
tem, while the Rational Unified Process (RUP) primarily
concerned with the implementation of the system. Both
methods are based on prototyping and iteration. However,
these terms do not necessarily mean exactly the same in
both contexts. In RUP, prototypes are mainly executable
code and mostly seen as intermediate steps in the develop-
ment of the final system (a partially implemented system).
In HCD prototypes are simulations or models of the user
interface of the system. They are developed for usability
testing purposes, and need not to be executable.

User interface layer

Business logic layer

Data base layer

Figure 1: 3-tier architecture

5.2 Different perspectives on development
From the above we can conclude that the two disciplines
have different perspectives on development. HCI is pri-
marily interested in developing the “outside” of the sys-
tem. That is, the interaction of the system with its users.
Software engineering is primarily interested in the “inside”
of the system. That is, how the system is actually imple-
mented. We will say that HCI has a black box view of the
system, while software engineering has a white box view of
the same system.

Software engineers think about the system in terms of its
internal architecture, encompassing how components are or-
ganised and communicate. It is common for this architec-
tural view to be organised as a set of overlapped layers. An
example of this organisation is the 3-tier architecture pre-
sented in Figure 1.

Note that in this architectural model there is no mention to
the user. In fact, despite mentioning the user interface, most
of the initial development effort usually goes into the busi-
ness and data layers, and concerns about the user interface,
when present, are geared towards its implementation.

A usability practitioner will typically talk of users’ goals,
tasks, and user interface designs, without deeper consider-
ation of the architectural issues and tradeoffs “behind the
scene”. The focus is on the interaction between user and
artifact, not on the artifact by itself. It is usual to see ref-
erences to the “interactive system” as the composition of
human + system (system, in a software engineering sense).

These different views of the system (development) lead to
differences on how the available tools are applied. Neverthe-
less these two different processes are not incompatible and
how to best establish a communication link between them
is a problem that deserves study. Namely, regarding syn-
chronization points between the teams responsible for mod-
elling different parts of the system being developed within a
project.

The main differences between the two processes lie in the
audience they are targeted at and in the different percep-
tions of what the result should be. HCD is intended to
define the requirements gathering process related to the in-
teractive layer and the subsequent prototyping and UI vali-
dation. On the other hand RUP is targeted at defining the
activities that must be carried out in order to successfully
deliver a software system according to requirements. RUP
does not recognize the UI layer as a particular sub-system



with its own specificities and treats it as one more of the
components that compose the overall system.

5.3 Main stages of the process
We have seen that UML/RUP does not offer native sup-
port to the process of user interface design and modelling.
Hence, it is mandatory that we introduce some changes to
how UML diagrams are used in order to meet our objec-
tive. The changes we propose to the standard process im-
ply that some diagrams must be used earlier than what is
recommended in RUP. In that way we are able to gather in-
formation relevant to the interactive layer definition earlier
in the process. Usually this information would be splintered
throughout the several views that RUP addresses.

The most important modelling phases of the adopted pro-
cess are depicted bellow. The diagrams used in each step
are also introduced.

1. Requirements gathering – both in HCD and RUP the
requirements gathering phase is a crucial part of the
process. However in RUP and in UML authoring tools
the requirements related to the interactive layer are
mixed with the overall requirements of the system. All
these requirements are collected using the Use Case
diagrams. Use case diagrams collect all the informa-
tion about the requirements the system must meet.
Among those requirements it is possible to collect the
ones related to the interactive layer. For each use case
identified it is necessary to depict scenarios that fully
describe it. That information is valuable in order to
establish the flow of the interactive dialogue between
the user and the system.

2. Task analysis & design – these activities are supported
by the use case model (cf. [3]). Besides the use case di-
agrams themselves, other UML behavioural diagrams
may be used to formally describe the behaviour under-
lying the identified use cases. In [14] a translation from
CTT to activity diagrams is proposed. In [6] sequence
diagrams are used to model tasks.

Although there is no complete formal mapping be-
tween the typical task modelling strategies used in a
Hierarchical Task Analysis (HTA) approach (using for
instance CTT diagrams [17]) and UML activity dia-
grams, we have adopted the latter to describe use case
behaviour.

3. Dialogue design – the dialogue structure that supports
the behaviour specified in the activity diagrams can be
described in UML using a statechart diagram (c.f., [8]).

In this design stage the requirements for the business
logic layer are formally described by identifying the
API methods needed for the state transitions at the
UI level. This phase is of crucial importance since
it allows, and promotes, the discovery of the business
logic methods that the interactive layer will use.

4. Architectural design – during the previous stage, the
software engineers, or software engineering students,
will discover most of the methods associated with tran-
sitions in the statechart diagram. While discovering
the methods the project team may also describe in the

class diagram the classes (the entities) and their meth-
ods. From this point on, the rest of the process is very
similar to the typical UML/RUP modelling approach.

5. Behaviour modelling – in this phase and using UML
behavioural diagrams we can describe the different as-
pects that model how the system will behave. Special
attention should be paid to the description of object in-
teraction in order to fulfill the identified requirements.

6. Deployment – where the typical aspects concerning
the installation, configuration and deployment are ad-
dressed.

Comparing the above list to the original one, introduced
in section 1, it can be seen that we have introduced two
new phases (task analysis and dialogue design). Addition-
ally we made some changes to the other phases in order to
accommodate the new ones. This is particularly true in the
Requirements phase. Section 6.1 describe these three phases
in more detail.

5.4 Insights on the architecture design
As stated previously, and concerning the structure of the
code to be developed, we adopt a standard three-tiered model,
and we propose an MVC approach based on the Observer/
Observable [5] software pattern. This strategy allows inde-
pendence between the user interface layer and the business
layer.

The architecture of the user interface layer must be under-
stood as the set of software components that are available
at the UI level together with their physical layout. This
architectural design may be conducted by direct manipula-
tion in the context of an IDE. Therefore the used modelling
language does not need to support that description syntax,
although it is important that the semantic distance between
the two description levels is not considerable.

We note that a UI architectural design phase is not formally
identified above. Students are encouraged to perform basic
paper prototyping of the user interface during the dialog
design phase. Given the nature of the course, going into
detail in the UI graphical design area would be out of scope.

An interesting alternative is to consider a logical distinc-
tion between the architecture of the interactive layer and
the architecture of the remaining software system. In the
end that will lead to a clearer definition of the overall archi-
tecture promoting a separate management of the modelling
process.

6. UML IN THE DEVELOPMENT PROCESS
In this section, in order to prove our point and to assess
the proposed integration method, we describe how UML di-
agrams are used to model and develop the interactive layer.

RUP does not give enough, explicit support for these tasks,
since it was not developed with such tasks in mind or main
focus. RUP practitioners never thought that it could be
possible to use RUP diagrams to incorporate interactive
layer support into the usual modelling process. Therefore,
we propose a non-official, under development methodology,



based on using UML well known modelling constructs to
also model, in an integrated way, the interactive layer, with
no knowledge disruption from the process of modelling the
business layer.

An alternative route to achieve this goal would be the cre-
ation been the creation of extensions to the language or to
develop dedicated environments to model and specify the
UI. That would be a straightforward path although that
would close the process, making it heavily dependent on the
used tools. On the other hand, we claim that both inter-
active and business logic layers are alike in what concerns
software engineering principles. If we had chosen to build
specific tools we would be implicitly recognizing that they
are in fact separate worlds with separate rules.

Because we believe it is possible to maintain a single mod-
elling effort and join both the interactive layer and the com-
putational layer our proposal presents a set of good prac-
tices and a modelling process that combines UML diagrams
to proper formalize the interactive layer description. This
process can be extended to include the use of formal no-
tations and tools such as prototyping and automatic vali-
dation. Although our students have formal methods back-
ground knowledge, that approach would lead to explore a
completely, although also addressable, different way.

In this section we further explore how the existing UML
diagrams can be used in the context of the approach we
propose.

6.1 Notations
The three most relevant phases of interactive layer modelling
are Requirements Analysis, Task Analysis & Design, and
Dialogue Design. For each of these activities we propose
a methodological approach to the usage of UML in order
to capture the information needed to model the interactive
layer.

We will now briefly describe the proposed modelling process:

1. Requirements analysis – Use Case diagrams are used to
capture the requirements identified by the end- users.
This is the adequate diagram to use at this stage given
the fact that by definition a Use Case is an informal de-
scription of the functional requirements, the involved
actors and the expected results.

Usability requirements, as others non-functional re-
quirements, may be included in the model as notes
describing restrictions.

2. Task analysis & Design – at this stage, the information
obtained in the requirements analysis phase is used in
order to extract the necessary information to build the
task specification.

Approaches such as CTT formally capture the intended
information. Using UML we can use the Activity Dia-
grams to obtain a equally information rich description.

Since task modelling is not a concern of UML mod-
els, some of the activity diagrams that we obtain may
sometimes become somewhat more complex and hard
to read and interpret than models in domain specific

languages for task modelling. Recent changes in UML
brought new functionalities. One of these new func-
tionalities makes it possible to draw interruptible re-
gions – concerning flow control – allowing for the spec-
ification of cancellation operations. Looking at CTT
capabilities we still lack diagrammatic constructors to
describe the temporary suspension of a given dialogue
and its later resume (in CTT that corresponds to the
|> constructor).

3. Dialogue design – at this stage, and based on the in-
formation of the Use Case diagrams and the Activity
diagrams, it becomes possible to identify the interac-
tion points needed at the UI. Those interactions points
are most of the times dialogue windows provided by
the application to support the interactive dialogue. To
express the control flow between (and within) the win-
dows of the application, Statechart Diagrams are used.
These diagrams represent a change in the analysis fo-
cus. At this point, the focus of analysis changes from
the activities executed at the user interface to how the
system should be built in order to support those ac-
tivities.

Describing the actions and the associated transitions
also provides valuable information to the model. When
creating the statechart diagram it becomes necessary
to decorate the transitions with the corresponding meth-
ods from the business logic layer. This methodological
step allows for the continuous and iterative refinement
of the model until all the needed methods to imple-
ment the requirements are gathered.

Being this process highly iterative while designing the
statechart, it allows for the gathering of information
about the software system. This allows that besides
describing the interactive layer and the dialogue con-
trol the software engineers will also acquire informa-
tion about the component architecture of the user in-
terface.

So far, we have presented the necessary steps to model the
user interface and we have shown how to methodologically
accommodate this within the UML framework. However
there are some pre-conditions that must be met in order to
consider that this process is coherent. Namely:

• there is one single activity diagram for each use case
discovered in the requirements gathering phase. Each
activity diagram shall contain all the information nec-
essary to describe the different scenarios a use case can
be expanded to;

• there must exist a path in the statechart diagram for
every flow that can be drawn in the activity diagrams.
This assures that no information is lost between dia-
grams;

• the set of all methods discovered while decorating the
statechart diagrams for a given entity, represents the
observable behaviour of that entity. We can say that
there is no behaviour associated to an entity that is not
obtained through our process (excluding utility meth-
ods).



6.2 Refinement of the business logic
The process of designing the statechart diagrams makes vis-
ible all the business logic methods. Although it is not fea-
sible to tell when this information is completely obtained
since the process is clearly iterative, our proposal makes it
possible to obtain the essential pieces of the business logic
layer.

We definitely think this is also the natural process to dis-
cover business logic API’s since the methods being discov-
ered derive from the task analysis being conducted. In that
sense while being task oriented the software engineer will
obtain almost the complete set of needed methods to fully
answer the requirements.

Of course there will always exist utility methods or even
methods obtained from some refactoring process, but the
majority of the API’s from the interactive layer is gathered
throughout our process.

7. AN EXAMPLE
To illustrate our approach we briefly present some diagrams
that address the interactive layer modelling. The example
below is taken from project work developed by students in
the context of the course. The students were told to de-
velop a generic task management system, a typical compo-
nent of a Personal Information Management (PIM) system,
and had to derive the requirements for the system during
the practical and tutorial sessions and from scenarios that
were subsequently provided.

More than twenty student teams carried out this particular
project. Due to obvious space constraints we are unable to
present a thorough description of the work carried out by
any of the teams. Instead, for each of the stages described
above we present examples of the diagrams obtained. With
this eaxmples we hope to illustrate how UML can be used to
reason about and to model the interactive layer. These di-
agrams illustrate that traditional software engineering tech-
niques can be applied to model HCI aspects.

7.1 Requirements Analysis
In the requirements analysis stage we use the Use Case di-
agrams to identify the users of the system, their objectives
and even usability related objectives.

Figure 2 presents a view of the use case model showing the
high level use case diagram. The diagram identifies the types
of users of the system (in this case only one), and the ma-
jor functionalities it should provide. To each use case, a
description, relevant scenarios, and relevant non- functional
requirements can be attached. This feature was supported,
in textual form, by the modelling tool in use.

To illustrate the following steps we will choose a given use
case, ”Change Calendar Task”, and we present the following
diagrams in that context.

7.2 Task Analysis & Design
Once the users’ objectives identified it becomes necessary to
describe the interaction between the entities that are part
of the use case. We must create a task model that will allow

Figure 2: High level Use Case diagram

us to reason about the system and to guide the software de-
velopment process. Using UML as our modelling language,
activity diagrams are used to describe the behaviour that
is specified in the corresponding use case (considering the
different scenarios the use case may enclose).

Figure 3 presents a task model represented using an activity
diagram. Partitions are used to assign activities to users and
system. And interruptible regions to model dialogue can-
celling. Notice that due to the intelligibility of the diagram
it can be easily understood both by software engineering and
HCI practitioners.

The level of bstraction used is similar to that of Canonical
Abstract Prototypes. That is, interactions between users
and device are kept at a high level of abstraction. Concrete
instantiations of the users’ actions are left to the next phase
(Dialogue Design).

One possible drawback of using activity diagrams is that the
hierarchical approach favoured by task modelling languages
such as CTT is not as easily expressed. Nevertheless, activ-
ity diagrams can also be composed hierarchically.

7.3 Dialogue Design
Once the task model is established it becomes necessary to
develop the corresponding UI. As stated before we will focus
on the dialogue modelling. Assuming that we are dealing
with an UI based on a windows management system it is
necessary to identify the windows and to specify their dia-
logue control. As this stage we use statechart diagrams to
describe dialogue control.

Figure 4 presents the statechart for the selected task. The
overall model identifies not only the application windows
but also the relevant situations around those windows. The
dialogue control is modelled trough the transitions between
states, which also helps the business layer refinement task.



Figure 3: An Activity Diagram

Finally, Figure 5 shows an implementation of the system.
The menu containing the options for changing the status of
a task is presented. The transitions which are possible from
the UI controls are all documented in the UML diagrams
made in the analysis and design phase. Regardless of the
look and feel of the application, the dialogue control was
specified and developed accordingly.

The example given, although is not complex allowed us to
briefly present the motivation and the envisaged method.
More complex examples will decorate the model with HCI-
specific, or related, annotations and will probably include
scenarios and the inclusion of non-functional aspects. Our
thesis is that this will not be disruptive with typical software
engineering applications modeling.

As shown in the example of the positive gains of this ap-
proach is that anyone familiar with UML will be able to
understand the model. In what concerns to the UML meta-
modeling we did not introduce new constructors so what
really happens is that UML is used under a different light.
Nevertheless that does not compromise the comprehension
of software engineers who do not have these HCI concerns
in mind. They will find in the model information related to
UI layer that they will understand, but to which they can
pay more or less attention, depending on their focus.

The images that are presented above were taken from a
project made by the students. We notice an improve in
the overall quality of the projects, given the fact that the
envisaged approach introduces new factors in the model-
ing phases. In a qualitative approach the projects clearly
demonstrate that the students acquire a vision of what should
be an information system by opposition to their previous ex-

Figure 4: A statechart diagram

Figure 5: A screen from a project’s result

periences in which they just used to model the business layer.
The task management system, although simple, allowed us
to introduce to the students that once an information sys-
tem is a combination of a human and an application, it is
also valuable to model this interaction, using state of the art
languages and notations.

8. DISCUSSION AND CONCLUSIONS
Models are particularly good tools for communication and
play an important role in a typical software engineering cur-
ricula. Models taught in typical software engineer courses
are mainly focused in capturing and designing the business
logic layer and usually neglect the UI layer. Our experience
within a software engineering course showed that there is
a need for promoting the communication between HCI and
software engineering communities and techniques. We be-
lieve the proposed methodological process promotes a better
communication between both layers and, by shortening the
gap, allows students to acquire HCI concepts that are of



great relevance.

The envisaged process does not add new constructors to
the chosen modelling language, UML, ensuring that no lan-
guage disruption needs to occur during the entire process.
This was a main contraint from the ouset, since we wanted
students to focus on the UML language.

Although we lack concrete statistical data it is still possible
to detect some indicators that point to the success of the ap-
proach. Obtaining concrete hard statistical data would have
been difficult because we specifically did not want to intro-
duce the possibility of unequal treatment among students
of the same class. Since the approach was developed and
introduced incrementally and in parallel with other changes
to the course, data from different years cannnot also be re-
liably compared. Nevertheless we were able to perceive an
increase in the quality of the final result of the projects, both
in terms of the user interfaces designed and built by the stu-
dents, and in the number of teams that were able to hand in
projects with a GUI component. We could also witness an
augmented perception of the relevance of HCI topics among
the students, and, interestingly, an improved usage of the
UML was attained. Students could better understand the
scope of each diagram and its role in development, and the
previously asked question ”where to put the user interface
in my model?” was mostly eliminated.

Another advantage that the presented process has lies on
the fact that the use of well grounded modelling techniques
makes the software architecture of the interactive layer as
robust, maintainable and reusable as the remaining compo-
nents of the system. Regarding the three layers that ap-
plications should clearly have, namely Presentation Layer,
Business Layer and Data Layer, our approach allowed us
to reinforce their importance and even to clearly identify
different modeling stages for each one of them.

Therefore we are convinced of the merits of our proposal
namely regarding the add-ons it brings. It allows us as
software engineers and HCI researchers to shorten the gap
between the two areas and creates a methodological back-
ground to software engineering students. Usage of these
techniques has proven very useful to the students, since it
made possible the elaboration and validation of UI proto-
types during the analysis and design phases. The students
had a clear perception and understanding about how dif-
ferent a software project becomes when UI issues are, from
the beginning brought into the general modelling and design
concerns of the business layer, and how both layers may in-
fluence each other. Finally, the final product is one product
indeed, and not two separate software products to be inte-
grated at last.

Acknowledgements
The authors whish to thank the students of the Informa-
tion Systems Development Course (2005/06), whose project
works were used in this paper.

This work was partially carried out in the context of the IVY
Project supported by FCT, the Portuguese Foundation for
Science and Technology, and FEDER, the European regional
development fund, under contract POSC/EIA/56646/2004.

9. REFERENCES
[1] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified

Modeling Language User Guide. Object Technology
Series. Addison-Wesley, Reading, MA, 1998.

[2] Larry L. Constantine. Canonical abstract prototypes
for abstract visual and interaction design. In J. Jorge,
N.Nunes, and J. Falc?o e Cunha, editors, Interactive
Systems – Design, Specification, and Verification,
volume 2844 of Lecture Notes in Computer Science,
pages 1–15. Springer-Verlag, 2003. (invited paper).

[3] Larry L. Constantine and Lucy A.D: Lockwood.
Object-Modeling and User Interface Design, chapter
Structure and Style in Use Cases for User Interface
Design. Addison-Wesley, 2001.

[4] Alan Dix, Janet Finlay, Gregory D. Abowd, and
Russel Beale. Human-Computer Interaction. Pearson
Education Ltd., third edition edition, 2004.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns - Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1994.

[6] Jeremie Guiochet, Gilles Motet, Claude Baron, and
Guy Boy. Toward a human-centered uml for risk
analysis. In C.W. Johnson and P. Palanque, editors,
Proc. of the 18th IFIP World Computer Congress
(WCC), Human Error, Safety and Systems
Development (HESSD04), pages 177–191. Kluwer
Academic Publisher, 2004.

[7] E. Hollnagel. Human reliability analysis: context and
control. Academic Press, London, 1993.

[8] Ian Horrocks. Constructing the User Interface with
Statecharts. Addison-Wesley, Harlow, England, 1999.

[9] IEEE Computer Society, Los Alamitos, California.
Guide to the Software Engineering Body of
Knowledge: Trial Version, May 2001.

[10] ISO. ISO standard 13407 – Human-centered design
processes for interactive systems. International
Organization for Standardization, first edition, June
1999.

[11] I. Jacobson, G. Booch, and J. Rumbaugh. The Unified
Software Development Process. Object Technology
Series. Addison-Wesley, Reading, MA, 1999.

[12] Bonnie E. John, Len Bass, and Rob J. Adams.
Communication across the HCI/SE divide: ISO 13407
and the Rational Unified Process. In Proceedings of
the 10th International Conference on Human
Computer Interaction, Crete, Greece, June 2003.

[13] G. E. Krasner and S. T. Pope. A cookbook for using
the model-view-controller user interface paradigm in
smalltalk-80. Journal of Object-Oriented
Programming, 1(3):26–49, August/September 1988.

[14] Leonel N?brega, Nuno Jardim Nunes, and Helder
Coelho. Mapping concurtasktrees into uml 2.0. In
Stephen W. Gilroy and Michael D. Harrison, editors,
Interactive Systems – Design Specification and
Verification, volume 3941 of Lecture Notes in
Computer Science, pages 237–248. Springer-Verlag,
2006.

[15] William M. Newman and Michael G. Lamming.
Interactive System Design. Addison-Wesley, 1995.

[16] N. J. Nunes and J. Falcão e Cunha. Wisdom — A
UML based architecture for interactive systems.
Lecture Notes in Computer Science, vol. 1946, 2001.



[17] F. Paternò. Model Based Design and Evaluation of
Interactive Applications. Applied Computing. Springer
Verlag, 1999.

[18] F. Paternò. ConcurTaskTrees and UML: how to marry
them? Position paper at TUPIS’00 – a UML 2000
Workshop. York, UK, October 2000.

[19] P. P. Silva. Object Modelling of Interactive Systems:
The UMLi approach. PhD thesis, Department of
Computer Science - University of Manchester, 2002.


