
Gossip-based Service Coordination for
Scalability and Resilience

Filipe Campos
Qimonda Portugal S.A.

(Trainee/Internship, 2008)
fcampos@di.uminho.pt

José Pereira
Universidade do Minho
jop@di.uminho.pt

ABSTRACT
Many interesting emerging applications involve the coordi-
nation of a large number of service instances, for instance, as
targets for dissemination or sources in information gather-
ing. These applications raise hard architectural, scalability,
and resilience issues that are not suitably addressed by cen-
tralized or monolithic coordination solutions.

In this paper we propose a lightweight approach to ser-
vice coordination aimed at such application scenarios. It
is based on gossiping and thus potentially fully decentral-
ized, requiring that each participant is concerned only with
a small number of peers. Although being obviously simple
and scalable, it has been shown that gossip-based protocols
lead to emergent strong resilience guarantees.

We illustrate the approach with WS–PushGossip, a proof-
-of-concept coordination protocol based upon the WS–Coor-
dination framework. Besides presenting WS–PushGossip,
we illustrate its usefulness with a sample application, and
outline a middleware implementation based on Apache Axis2.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed applications;
D.2.11 [Software Architectures]: Patterns

General Terms
Design, Performance, Reliability

Keywords
Web Services, Gossip

1. INTRODUCTION
As service-oriented computing matures and becomes wide-

spread, there is an increasing demand for applications in-
volving very large numbers of coordinated services. For in-
stance, in systems management it is often necessary to ag-
gregate and then query information amassed from a large

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MW4SOC ’08, December 1, 2008, Leuven, Belgium
Copyright 2008 ACM 978-1-60558-368-6/08/12 ...$5.00.

number of sources. More often, the goal is to disseminate
information to a very large number of interested parties, as
attested by the growing interest in notification services, as
described in Section 2.1.

As an example, consider a trading floor scenario in which
stock market information is disseminated to a number of
trader workstations and automatic trading systems. This
way, each node maintains a local copy of the list of stock
values with which a client application may interact.

This scenario has traditionally been addressed by mono-
lithic applications and group communication protocols [25],
but it is increasingly interesting in a service-oriented ap-
proach as stock markets and trading systems become in-
creasingly interconnected and interoperable. Anecdotal ev-
idence for this is its usage to motivate multiple research
efforts [23, 15, 14] and also as sample code for popular mid-
dleware packages [1].

Stock trading systems have however very stringent re-
silience and scalability requirements, that are hard to achieve
even with existing monolithic implementations [25]. Specifi-
cally, it is very hard to achieve stable high throughput when
the number of participants is very large, even if the network
topology and conditions are stable. Such stability is an es-
sential guarantee for these systems where high volumes of
data are transferred with tight timeliness requirements. The
same requirements exist, for instance, in automated produc-
tion management systems as deployed in the semi-conductor
industry.

Furthermore, it has been pointed out that this is a fun-
damental limitation of reliable information dissemination
based on feedback mechanisms [11]. The problem stems from
messages being buffered at multiple locations until fully ac-
knowledged by all destinations, to deal with node and net-
work faults. A single slow receiver, or worse yet, multiple
transient perturbations, can thus delay acknowledgment and
garbage collection, leading to degraded throughput.

Current state-of-the-art is that stable high throughput
can be achieved by using gossip-based, or epidemic, pro-
tocols [12]. As described in Section 2.2, such protocols are
also highly resilient to network and process faults, while
scaling to large number of participants and high message
throughput. Gossip protocols are, for instance, a key tech-
nology within Amazon.com Web Services implementation
infrastructure [28].

The goal of this paper is to leverage gossiping in service-
oriented computing as an high level structuring paradigm,
thus inherently achieving scalability and resilience when co-
ordinating large numbers of services.

In detail, we aim at using gossip regardless of the system
being architected according to existing event dissemination
and notification standards, and with minimal to none appli-
cation code changes. We illustrate that this is feasible with
the WS–PushGossip proof-of-concept service based on the
WS–Coordination framework.

Note that being just a proof-of-concept, WS–PushGossip
is restricted to a single gossip style, which is useful only
for information dissemination, and does not consider secu-
rity issues. Future work should expand its applicability and
improve performance to match current state-of-the-art in
gossip-based protocols and fully integrate with other Web
Services standards.

The rest of the paper is structured as follows. We start by
presenting brief surveys of the state of the art in informa-
tion dissemination services and gossiping protocols in Sec-
tion 2. Section 3 describes the architecture of the proposed
WS–PushGossip service, and Section 4 its implementation.
Finally, Section 5 discusses the approach and future work di-
rections.

2. BACKGROUND
In this section we survey the state of the art in notification

services and gossip-based dissemination. Gossip is also use-
ful for aggregation of information located at disparate nodes
in a network [19, 26], specially when the targeted network
has a large number of nodes which provide some useful data
to be conveyed. This is however out of the scope of this
paper.

2.1 Notification Services
A straightforward approach to information dissemination

is to use messaging middleware, typically through JMS, as
transport protocol instead of HTTP. Messaging is often faster
than HTTP [13], and furthermore more suited for those sce-
narios where asynchronous event notifications must be prop-
agated to several destinations [27]. Unfortunately, this ap-
proach severely limits the ability to deploy across organiza-
tional boundaries and still does not meet throughput stabil-
ity requirements.

At the present time, there are some protocols that provide
the publish/subscribe message exchange pattern to Web Ser-
vices. WS–Events was created by Hewlett-Packard in 2003,
but has since been made obsolete both by WS–Eventing
and WS–Notification, which are similar [17, 22]. WS–
Eventing has two versions [17] that were released in 2004,
and remains, at the present time, as a W3C draft [9] sub-
mitted in 2006.

WS–Notification is a family of three specifications (WS–
BaseNotification [7], WS–BrokeredNotification [8] and
WS–Topics [10]) whose latest version is 1.3, released in
2006. The previous versions of the standard were inter-
connected with WS–ResourceFramework, as these two
specifications depended on each other [17]. This connection
was disrupted in the last version of WS–Notification.

Although WS–BaseNotification allows the reception of
raw notifications, i.e. through the invocation of an opera-
tion defined in the WSDL of the consumer, it also implies
that additional logic must be added to the receiving appli-
cations, so they perform the subscription step, as well as
on the emitting applications, so each consumer receives the
adequate type of notification, according to its preferences
enclosed in the subscription.

 0

 20

 40

 60

 80

 100

 2 4 6 8 10 12 14

(%
)

Fanout (f)

Average receivers
Atomic runs

Figure 1: Reliability of gossip (1000 participants,
1000 dissemination runs, variable fanout).

Multiple implementations of these specifications exist. Apa-
che ServiceMix [2] is an Enterprise Service Bus (ESB), built
on the Java Business Integration (JBI) specification [6], which
provides an implementation of version 1.3 of the WS–Noti-
fication standard. However, this implementation has some
drawbacks, like the impossibility of clustering or persistent
subscriptions, as well as the unrestricted message publish-
ing, which can be performed by any node, even if it is a
non-registered publisher.

WS-Messenger [3] implements both WS–Notification and
WS–Eventing, and provides interoperability between the
two specifications. However, the implemented versions are
not the latest, standardized by OASIS, but, instead, the
first specifications [5, 4] defined by consortiums of compa-
nies. Among other types of underlying messaging system, it
also supports an implementation of JMS.

2.2 Gossip-based Dissemination
In a gossip or epidemic protocol, all the processes that

make part of a system are potential disseminators of mes-
sages. Briefly, every process chooses randomly a subset of
the remaining processes to which the message is then for-
warded. Each of these processes behaves exactly in the same
way when it receives a message. There is no reactive mech-
anism to deal with failures. This also mimics how epidemics
spread in populations, hence the name epidemic protocols.
Key parameters are:

Fanout (f) Number of targets that are locally selected by
each process for gossiping.

Rounds (r) Maximum number of times a message is for-
warded before being ignored.

The reliability of these algorithms is based on a pro-active
mechanism where redundancy and randomization are used
to avoid potential process and network link failures. It has
also been shown that parameters f and r can be config-
ured [16] such that any desired average number of receivers
successfully get the message. Better yet, parameters can be
set such that the message is atomically delivered to receivers
with high probability.

Figure 1 illustrates this, by showing simulation results of
disseminating 1000 messages to 1000 receivers, with r = 5
and a variable f . Notice that with f > 6 each destination
gets each message with a very high probability. With f > 11,
each message is atomically received by all destinations also
with a very high probability. This happens even in face of
process crashes and network faults.

The key to scalability is that the required fanout config-
uration is at worst logarithmically proportional to system
size. Furthermore, it isn’t required that nodes have perfect
knowledge of the entire membership to select gossip targets.
Instead, a small local system view built using the gossip
protocol itself works as well [18].

There are however multiple variants of gossip protocols [20,
24], which provide different message exchange patterns and
performance trade-offs:

Push Gossip A node that knows of new information, con-
veys it immediately to target nodes.

Lazy Push Gossip Optimizes the previous variant by de-
ferring the transmission of the payload. A node that
knows of some new data sends only the information
topic. An interested node contacts another and, by
sending the information topic, identifies the desired
data. If the contacted node already has it, it just
passes it through to the interested node. Otherwise,
the originator of that data will complete the transmis-
sion. Similarly to the other lazy variant, this one is also
useful when the data payload is very large, but also
when it is very likely that the data is already known
throughout the network.

Pull Gossip Instead of gossiping upon arrival of new infor-
mation, a node periodically selects a number of peers
and asks them for new information.

2-Phase Pull Gossip Very similar to pull gossip but where
the target node sends only the recent information topic
which must be asked for, explicitly by an interested
node.

It has been shown that combining push and pull gossip dis-
semination is achieved in a lower number of steps [20]. The
combination of both push gossip variants [24] achieves better
performance in heterogeneous networks.

Gossip variants can have two alternative models [16], which
differ in the behavior of the infected nodes. In the infect-
-and-die model, a node that is infected, i.e. receives a mes-
sage, takes only one round to send the received message to
other nodes, and then never sends it again, becoming dead
in the analogy with nature. In the infect-forever model,
also known as balls-and-bins [21], a node does not die, which
means it can send a received message for more than one
round, possibly until some stoppage criterion is satisfied.

Futher variations of the basic gossip procedure address
the publish/subscribe model, in which messages are dissem-
inated only to a subset of interested nodes, and multiple
security concerns.

3. GOSSIP SERVICE

3.1 Assumptions
Figure 2 describes the architecture that is assumed in the

information dissemination system where gossiping is to be
applied. The list of subscribers is embedded in some applica-
tion App0 which initiates message dissemination by invoking
some operation op() in all of them. Interested applications,
e.g., App1, request to be added to the list of subscribers by
using some operation subscribe().

The main assumption is thus that we consider operations
without any return message, that is the same to say those

Initiator

App0

Consumer

App3

Consumer

App1

Consumer

App2

subscribe subscribe subscribe
op op op

Subscription

Figure 2: Typical dissemination scenario.

Coordinator Initiator

App0b

Consumer

App3

Disseminator

App1

Disseminator

App2

subscribe subscribe subscribeop

Gossip Gossip

Activation

Registration

op
op

register register

create

op
op

Subscription
subscription

Gossip

Figure 3: Dissemination using the gossip service.

that use an In Only message exchange pattern. This way
the initiator of the gossip interaction can send the message
and not bother about it again, in an asynchronous fire and
forget manner.

Notice that it is irrelevant whether App0 generates infor-
mation by itself or simply acts as a broker, relaying messages
received by some other service. Note also that the assumed
system fits both ad hoc dissemination applications as well as
those built on top of standard notification services described
in Section 2.1.

3.2 Architecture
The proposed WS–PushGossip service is built on the

standard WS–Coordination framework in order to pro-
vide gossip-based communication seamlessly to any regular
service that wishes to disseminate any invocation or result.
Figure 3 presents an overview of its architecture. There are
now four different roles:

Initiator Initiates the dissemination of each data item. This
role requires that the application code (App0b) is changed
to use the gossip service and that a compliant middle-
ware stack is used.

Disseminator A node that receives a message, sends it to
the peers in the list obtained from the Membership
service. Although the application code is oblivious to
the gossip service, a compliant middleware stack is re-
quired.

Consumer A node that receives a message, consumes it.
This node is completely unchanged and unaffected by
the introduction of gossip.

Coordinator Besides the Activation and Registration ser-
vices from WS–Coordination, these nodes manage
the subscription list.

The main impact of adopting WS–PushGossip is chang-
ing the initiator application to delegate subscription man-
agement and to issue a single notification, after having acti-
vated a gossip interaction with the Activation service. The
middleware stack intercepts the outgoing message and re-
routes it to selected destinations, i.e. App2 in Figure 3.

Upon arrival to App2, the message is again intercepted
by the Gossip layer in the middleware stack. If this is an
unknown gossip interaction, it registers itself with the Reg-
istration service, thus obtaining gossip targets to which it
will forward the message. In the case of Figure 3, App1 and
App3. The Coordinator can later refresh peer lists that were
sent during registrations by sending messages to peers.

Assuming a single instance of the Coordinator for simplic-
ity, it knows the entire list of subscribers, as well as those
that are participating in gossiping. It is thus capable of pro-
viding adequate parameter configurations and peers for each
gossip round.

Notice that a distributed Coordinator is supported by
WS–Coordination and thus also by WS–PushGossip, as
the list of subscribers can be maintained in a distributed
fashion as proposed by WS–Membership [29]. It however
an open issue if a distributed coordinator is really required,
as long as managing membership is not a performance or de-
pendability bottleneck. This is precisely where gossip-based
protocols within a service-oriented computing setting might
differ from previous applications of gossip, where such re-
quirement was indeed true.

3.3 Operational Details
Figure 4 shows the header of a SOAP message, where

the element CoordinationContext contains all the necessary
information for a gossip interaction to be performed. Among
that information we can find:

• the type of coordination, that in this case points to the
WS–PushGossip namespace;

• the address of the Registration service of the Coordi-
nator that created this context;

• the parameters used in the gossip mechanism, described
in Section 2.2.

A message with such an header will be sent firstly by the
Initiator of the gossip interaction, and this only occurs after
the Initiator has contacted the Coordinator to create a gos-
sip context. The operations that lead to this creation are
depicted in Figure 5 and described as follows. The Initiator
sends a message to the Coordinator invoking the Create-
CoordinationContext operation, with the desired values for
the gossip parameters as arguments. Then, the Coordinator
creates the coordination context with the indicated param-
eters, and sets the type of coordination to gossip, and the
address of the Registration service to point to its own. Af-
ter this, the Coordinator retrieves the list of peers of the
Initiator from the Membership service, giving knowledge of

<?xml version="1.0" encoding="utf-8"?>

<S11:Envelope

xmlns:S11="http://www.w3.org/2003/05/soap-envelope">

<S11:Header>

. . .

<wscoor:CoordinationContext

xmlns:wsa="http://www.w3.org/2005/08/addressing"

xmlns:wscoor=

"http://docs.oasis-open.org/ws-tx/wscoor/2006/06"

xmlns:wspg=

"http://gsd.di.uminho.pt/ws/gossip/wspg/2008/06"

S11:mustUnderstand="true">

<wscoor:Identifier>

Gossip1

</wscoor:Identifier>

<wscoor:Expires>3000</wscoor:Expires>

<wscoor:CoordinationType>

http://gsd.di.uminho.pt/ws/gossip/wspg/2008/06

</wscoor:CoordinationType>

<wscoor:RegistrationService>

<wsa:Address>

http://gsd.di.uminho.pt/ws/gossip/my/reg

</wsa:Address>

<wsa:ReferenceParameters>

<wspg:Fanout>5</wspg:Fanout>

<wspg:Rounds>3</wspg:Rounds>

</wsa:ReferenceParameters>

</wscoor:RegistrationService>

</wscoor:CoordinationContext>

. . .

</S11:Header>

<S11:Body>

. . .

</S11:Body>

</S11:Envelope>

Figure 4: SOAP message with the gossip coordina-
tion context.

the desired fanout which determines the size of the returned
list. This list is then conveyed, alongside with the newly cre-
ated context, in the same return message. After receiving
this message, the Initiator can then send the message to the
peers on the received list.

On Figure 6, the Initiator who created a gossip context, as
depicted in Figure 5 (s1), sends the message to the services
s2 and s3.

When a Disseminator, like service s2, receives a message
containing a gossip context, it knows it must register with
the indicated Coordinator to intervene in the message prop-
agation. The registration process is also depicted on Fig-
ure 6. It starts by the invocation of the Register operation
on the Coordinator by the Disseminator. The received con-
text is also transmitted so that the Coordinator can know
to which gossip interaction the Disseminator wants to be-
come part of. The Coordinator then retrieves and sends to
the Disseminator its list of peers. Then, the Disseminator
is able to propagate the message to its peers, and this set
of operations is repeated by each peer that performs the
Disseminator role.

On the other hand, when a Consumer, like service s3, re-
ceives a similar message, it just consumes its contents, that is

Figure 5: Sequence diagram of the creation of a gos-
sip context

Figure 6: Sequence diagram of the registration of a
node to a gossip interaction

the same to say, that it processes internally the information
contained on the body of the message, without resending it
or intervening in any way in the gossip interaction.

To terminate a gossip interaction, the expiration time in-
cluded in the context should suffice. However, an alternative
mechanism may be used by any Disseminator. This mecha-
nism relies on the invocation of the Finish operation on the
Coordinator, so it will discard the gossip interaction that
corresponds to the context conveyed as a parameter.

4. IMPLEMENTATION
Apache Axis2 is a Web Services platform which has ma-

tured with the acquired experience in Apache SOAP and
Apache Axis1. The Axis2 engine is a pure SOAP processor.
It receives a message through some transport, calls the pre-
defined set of handlers to process the message, which is then
delivered to a Message Receiver. The Message Receiver usu-
ally hands over the message to the service implementation
class for processing.

We implemented our protocol as functional Web Service
extensions allowed by the Axis2 handler framework. An han-
dler normally processes information inside the SOAP head-
ers, but it isn’t restricted to process other parts of a message.
However, to fully understand the concept of an handler or
interceptor, we must define what a flow and a phase rep-
resent in the Axis2 architecture. The phase concept was
introduced in Axis2 to easily extend core functionality. A
phase is a collection of one or more handlers, which are re-
lated and connected according to the phase rules. The name
of each phase represents what happens to a message during

it. Similarly to the previous concept, a flow or pipe is a
collection of phases, and it can be classified as inflow, when
receiving a message, or outflow, when sending a message.

Axis2 introduced the concept of module to provide addi-
tional functionality which, compared to Axis1, has the ad-
vantage of not requiring any changes to global configura-
tion files. A module contains handlers, third-party libraries,
needed resources and a configuration file, which specifies
handlers and their phase rules. A module is said to be avail-
able once it is put into the repository, but it only becomes
active or engaged by adding an entry to axis2.xml or by us-
ing the Axis2 administration web interface. Only then, the
handlers of the module are added to the flows.

The implementation of this framework as an Axis2 mod-
ule, allows existing Axis2 SOAP engines to be upgraded in
order to use it by simply loading it before any gossip inter-
action.

Gossip interactions must not be restricted to Axis2 en-
gines that have loaded the WS–PushGossip module. In
that sense, other SOAP engines, other than Axis2, and even
Axis2 SOAP engines which have not loaded the module, can
intervene in the interaction with a minor role, as they simply
become recipients for the messages.

5. CONCLUSION
It is a well known problem in distributed systems that

stable high throughput when disseminating information in
large scale heterogeneous systems is a hard problem. Cur-
rent state-of-the-art points towards gossip-based protocols
as the best option regarding scalability and resilience.

In this paper we point out that interesting service-oriented
architectures, namely, those based on recently proposed no-
tification services, will face the same difficulties regarding
resilience and scalability.

Towards leveraging gossip-based protocols as a high-level
structuring paradigm that inherently avoids such problems,
we make the contribution that message dissemination done
in a distributed fashion by gossiping can be regarded as a
coordination problem. As a proof-of-concept we then pro-
pose WS–PushGossip, based on the standard WS–Coor-
dination framework, that illustrates the approach.

Current work is focused on achieving a gossip-based ser-
vice framework that encompasses further a wider range of
gossip styles and provides complete functionality, namely,
by fully integrating in the Web Service ecosystem. This will
require closely evaluating each design and implementation
decision.

6. REFERENCES
[1] Apache Axis2 Homepage.

http://ws.apache.org/axis2/.

[2] Apache ServiceMix.
http://servicemix.apache.org/home.html.

[3] WS-Messenger.
http://www.extreme.indiana.edu/xgws/messenger/.

[4] WS-Eventing Specification.
http://www.ibm.com/developerworks/webservices/

library/specification/ws-%eventing/, 01 August
2004.

[5] WS-Notification Specification.
http://www.ibm.com/developerworks/webservices/

library/specification/ws-%notification/, 01
March 2004.

[6] JSR 208: Java Business Integration (JBI).
http://www.jcp.org/en/jsr/detail?id=208, 25
August 2005.

[7] WS-BaseNotification 1.3 OASIS Standard.
http://docs.oasis-open.org/wsn/wsn-ws_base_

notification-1.3-spec-os.pdf%, 1 October 2006.

[8] WS-BrokeredNotification 1.3 OASIS Standard.
http://docs.oasis-open.org/wsn/wsn-ws_

brokered_notification-1.3-spec-os%.pdf, 1
October 2006.

[9] WS-Eventing W3C Member Submission.
http://www.w3.org/Submission/WS-Eventing/, 15
March 2006.

[10] WS-Topics 1.3 OASIS Standard.
http://docs.oasis-open.org/wsn/wsn-ws_

topics-1.3-spec-os.pdf, 1 October 2006.

[11] K. Birman. A review of experiences with reliable
multicast. Software Practice and Experience, 29(9),
July 1999.

[12] K. P. Birman, M. Hayden, O. Ozkasap, Z. Xiao,
M. Budiu, and Y. Minsky. Bimodal multicast. ACM
Trans. Comput. Syst., 17(2):41–88, 1999.

[13] R. Eggen and S. Sunku. Efficiency of Soap Versus
JMS. In International Conference on Internet
Computing, pages 99–105, 2003.

[14] A. Erradi, P. Maheshwari, and V. Tosic. WS-Policy
based Monitoring of Composite Web Services. Web
Services, 2007. ECOWS ’07. Fifth European
Conference on, pages 99–108, Nov. 2007.

[15] A. Erradi, V. Tosic, and P. Maheshwari. MASC -
.NET-Based Middleware for Adaptive Composite Web
Services. Web Services, 2007. ICWS 2007. IEEE
International Conference on, pages 727–734, July
2007.

[16] P. Eugster, R. Guerraoui, A.-M. Kermarrec, and
L. Massoulie. Epidemic information dissemination in
distributed systems. Computer, 37(5):60–67, May
2004.

[17] Y. Huang and D. Gannon. A comparative study of
Web services-based event notification specifications.
Parallel Processing Workshops, 2006. ICPP 2006
Workshops. 2006 International Conference on, pages 8
pp.–, Aug. 2006.

[18] M. Jelasity, R. Guerraoui, A.-M. Kermarrec, and
M. van Steen. The peer sampling service:
experimental evaluation of unstructured gossip-based
implementations. In Middleware ’04: Proceedings of
the 5th ACM/IFIP/USENIX international conference
on Middleware, pages 79–98, New York, NY, USA,
2004. Springer-Verlag New York, Inc.

[19] M. Jelasity, W. Kowalczyk, and M. van Steen.
Newscast Computing. Technical Report IR-CS-006,
Vrije Universiteit Amsterdam, Department of
Computer Science, Amsterdam, The Netherlands,
Nov. 2003.

[20] R. Karp, C. Schindelhauer, S. Shenker, and
B. Vocking. Randomized rumor spreading.
Foundations of Computer Science, 2000. Proceedings.
41st Annual Symposium on, pages 565–574, 2000.

[21] B. Koldehofe. Simple gossiping with balls and bins. In
Proceedings of the 6th International Conference on
Principles of Distributed Systems (OPODIS’02), pages
109–118, 2002.

[22] G. Monsieur, M. Snoeck, and W. Lemahieu.
Coordinated Web Services Orchestration. Web
Services, 2007. ICWS 2007. IEEE International
Conference on, pages 775–783, July 2007.

[23] G. S. Niblett, P. Events and service-oriented
architecture: The OASIS Web Services Notification
specifications. IBM Systems Journal, 44(4):869–886,
25 October 2005.

[24] J. Pereira, R. Oliveira, and L. Rodrigues. Efficient
Epidemic Multicast in Heterogeneous Networks. In On
the Move to Meaningful Internet Systems 2006: OTM
2006 Workshops, volume 4278/2006, pages 1520–1529.
Springer Berlin / Heidelberg, October 2006.

[25] R. Piantoni and C. Stancescu. Implementing the Swiss
Exchange trading system. Fault-Tolerant Computing,
1997. FTCS-27. Digest of Papers., Twenty-Seventh
Annual International Symposium on, pages 309–313,
Jun 1997.

[26] R. V. Renesse, K. P. Birman, and W. Vogels.
Astrolabe: A robust and scalable technology for
distributed system monitoring, management, and data
mining. ACM Trans. Comput. Syst., 21(2):164–206,
2003.

[27] E. Roch. Web Services HTTP vs. JMS.
http://it.toolbox.com/blogs/the-soa-blog/

web-services-http-vs-jms-19110%, 17 September
2007.

[28] W. Vogels. All Things Distributed.
http://www.allthingsdistributed.com/.

[29] W. Vogels and C. Re. WS-Membership - Failure
Management in a Web-Services World. 2003.

