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Abstract 

 
Within the civil engineering field, the use of the Finite Element Method has acquired a 

significant importance, since numerical simulations have been employed in a broad field, which 

encloses the design, analysis and prediction of the structural behaviour of constructions and 

infrastructures. Nevertheless, these mathematical simulations can only be useful if all the 

mechanical properties of the materials, boundary conditions and damages are properly 

modelled. Therefore, it is required not only experimental data (static and/or dynamic tests) to 
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provide references parameters, but also robust calibration methods able to model damage or 

other special structural conditions. The present paper addresses the model calibration of a 

footbridge bridge tested with static loads and ambient vibrations. Damage assessment was also 

carried out based on a hybrid numerical procedure, which combines discrete damage functions 

with sets of piecewise linear damage functions. Results from the model calibration shows that 

the model reproduces with good accuracy the experimental behaviour of the bridge. 

 

Keywords: GFRP pultruded profiles; Experimental tests; Operational Modal Analysis; Static 

test; Finite Element Model Updating; Damage identification; Civil structures.  

 

Abbreviations:  

GFRP - Glass Fibre Reinforced Polymer 

SFRSCC - Steel fibre reinforced self-compacting concrete 

FEM - Finite Element Method 

FEMU - Finite Element Model Updating 

MAC - Modal Assurance Criterion 

1 Introduction 

In the last few years, new civil engineering designs have emerged in the field of the construction 

of footbridges, considering new materials [1] and [2] and constructive [3],[4] and [5] solutions. 

Within these new materials, have received special attention the use of fiber reinforced polymer 

(FRP) and glass fiber reinforced polymer (GFRP), offering better resistance to environmental 

agents and the advantages of high stiffness-to-weight and strength-to-weight ratios when 

compared to conventional construction materials[6] and [7]. They also can be combined with 

traditional materials, like concrete or steel, offering particularly effective flexural 

properties [8], [9] and [10]. These hybrid structures are particularly suitable for footbridge 

structures thanks to the possibility of an easy and quick erection. 

However, several characteristics restrict the use of this type of materials: (i) high deformability 

(low elastic and shear modulus); (ii) brittle failure; (iii) behaviour at elevated temperatures; and 
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(iv) lack of specific design codes [11]. Due to the small service loads, these structures usually 

are light and slender. For these reason the interaction with pedestrians or wind can arise some 

structural problems [12] and [13]. Considering the mentioned above, several tests are needed in 

order to assess the structural behaviour of these structures in different scenarios. The diversity 

of materials and the interaction between them makes the Finite Element Methods (FEM) as the 

most feasible solution to evaluate and simulate these structures. 

In contrast with the potentialities that the FEM can offer, some choices (mechanical properties 

of the materials or structural conditions) may give erroneous numerical results. Within this 

context, this paper attempts to demonstrate a methodology to evaluate, through experimental 

tests and robust numerical calibration strategies, the structural behaviour of a pedestrian bridge 

prototype. The bridge was experimentally tested with several static and dynamic tests and with 

the main results, a model calibration was performed to tune the mechanical parameters. 

In order to obtain a robust finite element model, which represent accurately the structural 

behaviour of the footbridge a damage assessment was carried out, based on an hybrid numerical 

procedure, which combines discrete damage functions with sets of piecewise linear functions to 

evaluate the damage present at the structure. Special attention was paid to the influence of the 

supports, the interaction between structural components and the damage response of the 

SFRSCC deck. 

This paper is organized as follows: Section 1 is the introduction; Section 2 a general structural 

description of the hybrid footbridge is presented; Section 3 presents the static and dynamic tests 

performed on the footbridge; Section 4 a robust dynamical-static calibration process is carried 

out; and finally in the Section 5 the conclusion are drawn. 

2 GFRP-SFRSCC hybrid footbridge 

2.1 Description of the structure 

The studied prototype at full scale was developed in the framework of research project 

PONTALUMIS – Development of a prototype of a pedestrian bridge in GFRP-ECC, involving 

ICIST/Instituto Superior Técnico, ISISE/University of Minho and company ALTO – Perfis 

Pultrudidos, Lda. The footbridge design was carried out considering the main potentialities of 
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the used materials. Therefore, the composite Steel Fiber Reinforced Self-Compacting Concrete 

(SFRSCC) material was placed in zones where compressive stresses exist, whereas GFRP 

girders were used to carry the tensile stresses. The cross section of the bridge is characterized by 

the following: (i) a SFRSCC deck; (ii) SFRSCC jackets placed in the vicinity of the supports; 

and (iii) GFRP girders (Fig. 1). 

 

Figure 1 

 

The connection between the structural components (SFRSCC deck and GFRP pultruded girders) 

was made through two different solutions: (i) for the contact areas located above the jackets an 

epoxy resin layer with 2 mm of thickness was used; and (ii) for the remaining contact zones the 

same adhesive solution was used in combination with a redundant mechanical connection based 

on M10 stainless steel bolts, with 300 mm of spacing (two per main girder’s flange), in order to 

extend the bridge life time due to rheological effects, vandalism and accidental loads. 

Complementary to the previous structure, a group of secondary girders were placed between the 

main ones. This solution prevents any distortion caused by eccentric loads. Positioned at the 

support, quarterspan and midspan sections, this profiles were constituted by I-shaped 

(200 × 100 mm2) GFRP pultruded profiles and connected to the main girders by means of equal 

length angle GFRP (60 × 8 mm2) profiles and stainless steel bolts (M10) threaded rods and 

nuts. 

The footbridge structure presents a total length of 11.00 m on two pairs of supports (two pinned 

and two sliding), as show (Fig. 2). More details can be found elsewhere [11]. 

 

Figure 2 
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2.2 Mechanical properties of the footbridge components 

Made by E-glass fiber rovings and mats embedded in a isophthalic polyester, the main and 

secondary pultruded profiles have been characterized by the following tests [11]: (i) tension (EN 

ISO 527) [14]; (ii) compression (ASTM D 695) [15]; and (iii) shear test (10° off-axis tension 

test), according to the recommendations of Hodgkinson [16]. Allowing the evaluation of several 

material mechanical properties, namely: (i) longitudinal elasticity modulus in tension (EL,t); (ii) 

transverse elasticity modulus in compression (ET,c); (iii) in-plane shear modulus (GLT); (iv) 

longitudinal tensile strength (ftu,L); and (v) in-plane shear strength (Tu,LT). These properties are 

summarizes in Table 1. 

 

Table 1 

 

For the SFRSCC material, a specific mixture composition was used (details about the mix 

design are available in [17]: (i) cement; (ii) limestone filler; (iii) water; (iv) superplasticizer; (v) 

fine sand; (vi) river sand; (vii) crushed stone; and (viii) fibers. The compressive strength and 

flexural properties of the SFRSCC were assessed according to standards NP EN 12390-

3 [18] and RILEM TC 162-TDF, respectively [19], providing the following mechanical 

information: (i) Young’s modulus; (ii) compressive strength (fcm); (iii) cracking strength in 

flexure (fct,L); (iv) equivalent flexural tensile strengths (feq,2 and feq,3); and (v) residual flexural 

tensile strengths (fR,1 to fR,4) (see Table 2). 

 

Table 2 

 

The epoxy adhesive used to bond the main girders to the SFRSCC deck has an elasticity 

modulus in tension of Ea = 8.8 GPa and a tensile strength of fau = 17.3 MPa [20]. The redundant 

mechanical connection into the span between jackets was materialized by stainless steel anchors 

(M10 × 55). This solution present a bearing capacity of fbk = 700MPa (according to the 

manufacturer). For the present study case, three different types of connections had been 
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considered: (i) epoxy layer; (ii) epoxy layer and bolt; and (iii) bolt L-union between secondary 

and main girders. This connection were materialized through interface elements, considering the 

mechanical properties obtained in the different experimental program carried out (Table 3). 

 

Table 3 

 

3 Experimental programs 

3.1 Static test 

In order to ensure the correct erection, disposition and performance of the different structural 

elements in the footbridge several static tests were performed [11]. These experimental tests 

were mainly focused on the characterization of the bending response of the footbridge, as well 

as the deformation recovery after unloading. For this purpose, the footbridge was loaded with 

multiple close-spaced water reservoirs, with a total weight of 8.8 kN/m2. These reservoirs were 

placed in different uniformly and distributed configurations (load case A to C, see Table 4). 

All the loading and unloading operations were performed as fast as possible in order to 

minimize creep effects on the concrete. As a result, three load configuration (A, B, and C) were 

evaluated: (i) load distributed on the entire span with a width of 1.20 m; (ii) load in the central 

part of the span with a length of about 2.70 m and a small gap of 0.30 m in the vicinity of 

midspan; and (iii) load in the central part of the span with a length of 5.10 m and a small gap of 

0.30 m in the vicinity. In order to evaluate the different load setups, different sensors were 

placed along the footbridge: (i) electrical transducers (with a precision of 0.01 mm); and (ii) 

axial strains electric strain gauges (Fig. 3).  

 

Figure 3 

 

As results of the static tests (see Table 4 and Fig. 3), the acquired data was distributed into five 

groups, namely: (i) midspan deflection (δms,Avg); (ii) axial strains on the SFRSCC deck (εc,Avg); 



(iii) axial strains on the web of the main girders (εw,Avg); (iv) axial strains on the bottom flanges 

of the main girders (εc,Avg); and (v) curvature at midspan (ζ).   

 

Table 4 

 

3.2 Dynamical identification test 

A dynamical identification campaign, based on the Operational Modal Analysis (OMA) 

approach, was performed with the aim of identifying the modal properties of the structure. 

With a sensitivity of 10 V/g, range of ±0.5 g, and 8 μg rms broadband resolution, a total of 

eighteen uniaxial piezoelectric accelerometers were place on different locations on the vertical 

direction (Fig. 4).  

 

Figure 4 

 

By using Enhanced Frequency Domain Decomposition (EFDD) technique [22] each mode is 

estimated as a decomposition of the system’s response spectral densities into several single 

degree of freedom systems.  

A total of 16 vibration modes were identified. It is noted that, in this modal identification, 

several modal shapes present an asymmetric behaviour. This phenomenon can be attributed to 

the presence of damage in the structure especially in the first and fourth quarterspan (Fig. 5). 

 

Figure 5 

 



Following this antisymmetric behaviour in the different vibration modes, a visual inspection 

was carried out. Some micro-cracks on the SFRSCC deck were detected, the average value of 

the crack width being about 0.06 mm, in the vicinity of the quarterspans and an isolate crack in 

the midspan, with an average value of 1.5 mm (Fig. 6). 

 

Figure 6 

Table 5 

 

4 Finite element updating strategy 

4.1 Numerical model of the footbridge 

In order to simulate the structural (static and dynamic) behaviour of the footbridge a 

tridimensional FE model was built using the commercial software TNO Diana [23]. With a total 

of 24 334 elements high-order elements (CHX60) [23], with 10 cm as the maximum dimension 

(Fig. 7). For the epoxy connections (main girder-deck and secondary girder-primary girder) 

interfaces elements were chosen, avoiding the use of highly distorted solid elements, since the 

width of these connections are about 2 mm. As a result, 3240 interface elements (Q24IF) were 

used. 

The numerical model includes the following structural components: (i) GFRP main girders; 

(ii) GFRP secondary girders; (iii) bolted connections with a GFRP L union; (iv) SFRSCC deck; 

(v) SFRSCC jackets; (vi) epoxy-bolt layer; and (vii) epoxy layer. All the structure is supported 

by two groups of pinned supports (in the left side) and other two groups of sliding supports 

(right side). Both supports are modelled by 88 spring elements in the main directions (SP2TR). 

 

Figure 7 



 

Finally, the material properties (mean and deviation values) obtained by the different tests 

carried out (see Table 1, Table 2, and Table 3), were consider for the FE model. Also a perfect 

normal bond was assumed at the GFRP-epoxy and SFRSCC-epoxy interfaces, consider only the 

interface stiffness [1].   

4.2 Cost function and optimization algorithm 

Finite Element Model Updating (FEMU) strategy can be employed in a wide range of 

applications [24-26]: (i) design; (ii) simulation; (iii) prediction; and (iv) damage identification. 

In this context, several approaches can be carried out [27]: (i) deterministic approaches; (ii) 

Bayesian finite element strategies; and (iii) fuzzy approaches. 

For the present study case, a deterministic strategy was followed. The success of this approach 

is based on minimizing the residual vector (r) of the objective function (J), considering the data 

derived from the experimental campaigns, defined by the Eq. (1). 
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where || • || denotes the Euclidean norm, r is the residual vector of 𝐽𝑠𝑡𝑎and 𝐽𝑑𝑖𝑛 (static and 

dynamic residuals, respectively). The objective function terms (J = Jsta + Jdin) are given by: 
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where Wf, Wφ, and Wδ are the weights considered for the frequency, vibration modes and static 

displacements, respectively, 𝑓 is the frequency, 𝜙  the modal displacements, 𝛿 the static 

displacements, and 𝜙𝑟𝑒𝑓  is a scaling factor (normalization) that enable a comparison between 

the experimental and numerical modes displacements. For the dynamic functions (Jdin) the i 

index indicates the mode shape and for the static one (Jsta)  the j index indicates the load case. 



Generally, the residuals values (r) of the objective function (J) to be minimized shows a non-

linear relation with the unknowns. For these purpose a non-linear least squares function was 

used to solve the problem. Inside this non-linear least squares framework the Trust Region 

Reflective iterative algorithm was employed.  In each iteration, the search area is reduced to a 

zone known as “trust region” [28]. Finally, the objective function (J) was approximated to a 

quadratic minimizer by the truncated Taylor series. 

As exposed in [27], the gradient-based optimizations method, in our case the Gauss-Newton 

approach with the Trust Region Reflective algorithm, requires the computation of the Jacobian 

(or sensitivity matrix) and Hessian matrix. Both matrix can be solved following a special 

structure integrated into the least squares problem Eq.(4), and Eq.(5). 
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where Jacob is the Jacobian matrix, 𝑟 the vector which contains the residuals, Ѳ the different 

variables that will be optimized, 𝛻𝐽 is the first derivate of the objetive function and 𝛻2𝐽 the 

second one. The index n indicates the number of unknowns consider during the optimization.  

Aiming at avoiding unrealistic results, boundary constraints were applied to the updating 

parameters, based on the deviation values obtained in the different mechanical test (see Table 1, 

Table 2 and Table 3) and other values provided in literature [13, 20, 21]. With respect to the 

model updating, only the first six vibration modes were considered (see Table 5). 

4.3 Robust model updating 

Given the complexity of the structure, several calibration stages were considered, namely: (i) 

initial model updating; (ii) support stiffness model updating; and (iii) damaged model updating. 

As model robustness indicators for results quality check, the following quantities were used: (i) 



relative error between frequencies; (ii) modal assurance criterion [29]; and (iii) relative error 

between displacements for the different load cases. 

In the first stage, on the initial model updating only the Young’s modulus of the main materials 

(SFRSCC deck, pultruded profiles flanges and webs) and the stiffness of the different epoxy 

solutions (with and without bolt redundancies, see Section 2.2) were calibrated (see Table 6). 

It should be stressed that, for the pultruded profile material and given its orthotropic behaviour, 

in order to reduce the number of updating variables a constant relation between longitudinal and 

transversal Young’s modulus was established (EL,t/Et,c): (i) 5.27 for the GFPR webs; and (ii) 

10.00 for the GFPR flanges. This relation was considered in the different calibration procedures. 

 

Table 6 

 

Following the results obtained in Table 4 with above considerations, the model has high static 

and dynamic deviations with an average error in frequencies and displacement of 33.06% and 

55.04%, respectively (see Table 7 and Table 8). Also, the third mode shape was not identified 

numerically. 

 

Table 7 

Table 8 

 

Taking into account the previously results, it follows that the structural consideration of the 

initial model do not fit with the real behaviour of the footbridge (high structural stiffness). As a 

subsequent calibration, the footbridge supports were modelled with a different approach. Elastic 

springs in the main directions of both supports were considered, and subsequently a sensitivity 

analysis was performed, taking into account the initial values proposed by [13]. The results 

obtained in this analysis shows that the elastic springs are extremely sensitive, especially in 

the x and y direction. The same initial values and bounds have been considered for the elastic 

modulus, obtaining the presented in Table 9. 
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Table 9 

 

Analyzing the results obtained in terms of quality index (Fig. 8 and Fig. 9), an average relative 

error of 3.5% (relative error between frequencies) was obtained. Additionally, an average MAC 

value of 92.0% (with a minimum value of 86% in the sixth mode) was obtained and an average 

displacement relative error of 5.0%. Therefore, it can be stressed that the results obtained by the 

second model are more accurate compared with the previous one. But from the obtained results 

(the different modal shapes and error in frequencies) it is observable that the different modes 

considered have negative and positive frequencies errors. Said phenomena indicates a wrong 

relation between stiffness of the different structural parts, and also burden the model calibration 

(Fig. 8). 

 

Figure 8 

 

Evaluating more in deep the different measurement points through the COMAC index (Co-

ordinate Modal Assurance Criterion) [30] as a damage indicator (see Fig. 8), large discrepancies 

can be observed at different points (2, 9, 11 and 18), whose origin can be attributed to the 

structural damage (Fig. 9).  

 

Figure 9 

 

Evaluating more in deep the different measurement points through the COMAC index (Co-

ordinate Modal Assurance Criterion) [30] as a damage indicator (see Fig. 9), large discrepancies 

can be observed at different points (2, 9, 11 and 18), whose origin can be attributed to the 

structural damage (Fig. 6). 

Considering the exposed above, it is expected that trough appropriate damage identification and 

quantification the results will improve. From the damage inspection previously showed (Fig. 6), 
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it is possible to conclude that mainly three areas can be improved with the damage calibration 

(the vicinity of first and fourth quarter-spans with a generalize damage) and the third quarter-

span (due to the presence of an isolate crack). 

4.4 Damage function 

Based on the classification defined by [31], four levels of damage assessment can be 

established: (i) level 1 or Detection; (ii) level 2 or Localization; (iii) level 3 or Assessment; and 

(iv) level 4 or Prediction of the remaining service life. The FEMU strategy allows a damage 

assessment up to level 3. This implies that this model-based approach is able of detecting, 

locating and quantifying the damage acting on the structure. Such potential is related to the 

understanding of damage in the structure. When the structure suffers damage it implies a 

degradation of the mechanical properties which can be simulated by the decrease of stiffness of 

the surrounding elements in the said area. The calibration of this structure, as well as the 

damage identification and extension, can be made through the adjustment of the mechanical 

properties of the different elements affected by this damage. 

However, adjusting the stiffness of all elements results in a large number of variables to be 

tuned, leading to an ill-conditioned problem that can be minimized through different 

approaches. One approach is the regularization technique [32]. Nevertheless, two drawbacks 

must be considered. On the one hand, as exposed above, evaluate the function sensitivity 

implies assessing the sensitivity of each variable, which results in a time consuming solution. 

On the other hand, less “real” results obtained by the updating of each element (non-continuous 

damage assumption) are obtained. 

In order to solve these drawbacks, the damage quantification can be made through three 

different approaches: (i) discrete approach that considers the crack as a macroblock splitter 

through interface elements [33]; (ii) diffused approach that considers a degradation zone [25] on 

the surroundings of the damage area; and (iii) sub-structuring the model and applying damage 

functions [24] and [27]. 
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Generally, the third approach could be applied successfully in different structures [32], but in 

contrast with the procedure showed in this updating analysis, a reference undamaged model is 

not available. 

For these purpose, a twofold methodology was applied: (i) sensitivity analysis, maintaining the 

variables previously obtained, of the different damage areas through different FE bands along 

the damage quarter-spams; and (ii) applying a damage strategy, with different damage functions 

assumptions, to materialize the damage present in the structure (Fig. 10). 

 

Figure 10 

 

For the present case of study and considering the damage inspection (see Fig. 6), and the 

COMAC’s values (see Fig. 9), an adaptation of the second and third approach was used (Fig. 

10): sub-structuring technique with piecewise linear functions show in Eq. (6)for the first and 

fourth quarter spams (with a general damage), and a discrete damage shape function for the 

isolate crack shown in Eq. (7) (see Fig. 11). 

 

𝑁𝑠𝑢𝑏𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒,𝑖     

𝑥 − 𝑥𝑖−1

𝑥𝑖 − 𝑥𝑖−1
𝑥 Є [𝑥𝑖−1, 𝑥𝑖]

𝑥𝑖+1 − 𝑥

𝑥𝑖+1 − 𝑥𝑖
𝑥 Є [𝑥𝑖 , 𝑥𝑖+1]

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

(6) 

𝑎𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒(𝑑𝑚𝑔, 𝑑𝑖𝑠𝑡, 𝑎𝑚𝑝𝑙)     

𝑑𝑚𝑔 (
𝑥𝑖 − 𝑥𝑑𝑖𝑠𝑡−𝑎𝑚𝑝𝑙

𝑥𝑑𝑖𝑠𝑡 − 𝑥𝑑𝑖𝑠𝑡−𝑎𝑚𝑝𝑙
) 𝑥 Є [𝑥𝑑𝑖𝑠𝑡−𝑎𝑚𝑝𝑙 , 𝑥𝑑𝑖𝑠𝑡]

𝑑𝑚𝑔 (
𝑥𝑑𝑖𝑠𝑡+𝑎𝑚𝑝𝑙 − 𝑥

𝑥𝑑𝑖𝑠𝑡+𝑎𝑚𝑝𝑙 − 𝑥𝑑𝑖𝑠𝑡
) 𝑥 Є [𝑥𝑑𝑖𝑠𝑡 , 𝑥𝑑𝑖𝑠𝑡+𝑎𝑚𝑝𝑙]

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (7) 

 

where Nsubstructure indicates the shape function for the substructure approach, xthe centroid of the 

damage elements, xi the border centroid between substructures,adiscrete the damage function 

for the discrete approach, dmg   the damage value of the function (between 0 and 1), dist the 
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distance from the origin to the point (into the discrete damage function), and ampl the discrete 

damage aperture. 

 

Figure 11 

 

After defining the different shape functions, the damage can be applied following Eq.(8) and 

Eq.(9): 

 

𝐾𝑑𝑎𝑚𝑎𝑔𝑒,𝑖 = 𝑁𝑖  (1 − 𝑎𝑖)  
(8) 

𝑎𝑖 = 𝑝 ∗ 𝑁𝑖 (9) 

 

where Kdamage,i is the stiffness matrix which contains the damage values of the different 

elements affected by the damage for the shape function Ni, ai is the damage coefficient and p is 

the desing variables to be minimized. As a result the different values of the affected elements 

can ben obtained. Finally, once the different damage strategies were correctly defined, the 

Jacobian matrix Jacob needs to be re-formulated with the following considerations, Eq.(11): 

 

 

where 𝐽 is the objective function, Ѳ variable to be updated, 𝑎  and 𝑁 (with the index sub for 

substructure and dist for discrete) the damage and shape functions and 𝑑𝑚𝑔, 𝑥𝑑𝑖𝑠𝑡 , 𝑎𝑚𝑝𝑙  the 

different variables of the discrete damage function. For the resolution of the derivatives, a finite 

difference approach was consider.  

 𝜕𝐽

𝜕Ѳ
 → if Ѳ is an undamage variable  

Jacob Ѳ = 
𝜕𝐽

𝜕Ѳ
=

𝛿𝐽

𝛿𝑎𝑠𝑢𝑏
 𝑁𝑠𝑢𝑏 (Ѳ) → if Ѳ is an substructure variable (10) 

 𝜕𝐽

𝜕Ѳ
=

𝛿𝐽

𝛿𝑎𝑑𝑖𝑠
 [

𝛿𝑁𝑑𝑖𝑠(Ѳ)

𝛿dmg

𝛿𝑁𝑑𝑖𝑠(Ѳ)

𝛿𝑥𝑑𝑖𝑠𝑡

𝛿𝑁𝑑𝑖𝑠(Ѳ)

𝛿𝑎𝑚𝑝𝑙
] → if Ѳ is an discrete variable  



4.5 Robust calibration with damages functions 

The damage presented by the footbridge can only be observed only in the intrados of the 

footbridge’s deck. Considering this, only the lower elements of the footbridge’s deck has been 

updated (by the proposed damage identification). As a result of the robust calibration a new 

model of the footbridge has been obtained (Table 10). This model presents a damage along its 

deck as show (Fig. 12). 

 

Table 10 

Figure 12 

 

Regarding the damages of the first and fourth quarterspans, as it was expected, a general 

damage was obtained with higher values next to the more damage areas, according with the 

visual inspection (Fig. 6). Also, through the discrete function, it was possible to identify the 

isolate crack, which is in the third quarterspan, at a distance of the deck origin equal to 7.60 m 

(in contrast to 7.37 m obtained in the visual inspection), originate by the presence of a 

transversal crack. 

As a result, the final model shows a better similarity with the experimental results (seeTable 

11 and Table 12). In terms of updating results, an average error in frequencies of 2.12% and an 

average MAC value of 93.50%. Considering the static behaviour, it was also observed an 

improvement in the results with an average error equal to 2.02%. 

 

Table 11 

Table 12 

 

Finally (Fig. 13) presents a comparison between the different mode shapes identified 

experimentally and tuned numerically. 

 

Figure 13 
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5 Conclusions 

Nowadays, the evaluation of new constructive solutions and therefore the evaluation of new 

infrastructures implies a multidisciplinary task. Such analysis must involve: (i) mechanical tests 

of the different components; (ii) experimental programs to understand the global behaviour of 

the structure; and (iii) accurate numerical simulations to design, evaluate and predict its 

structural behaviour. Nevertheless, the interaction between different components (joints), 

boundary conditions and damage, are unavoidable considerations within a numerical simulation. 

In order to solve this, in the present paper it was shown a robust calibration method based on a 

non-linear least-squares method complemented by a hybrid strategy to detect and quantify the 

damage. The proposed methodology was validated with a high innovative structure: a hybrid 

footbridge based on a SFRSCC deck and GFPR pultruded profiles. The model updating analysis 

was carried out with results from experimental data (static and dynamic tests). It considers the 

stiffness of the different joints (L-union and GFPR main girders-deck union), non-perfect 

supports and damage as a set of linear damage functions. 

Finally, an accurate damage identification analysis was performed, arising in an accurate model. 

However, there are always further needs of investigations in order to improve results, mainly 

the MAC’s values for the fifth mode shape and to consider the cracks direction in the damage 

functions as a design variable to better improve their effects. 
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Figures 

 

 
 

Figure 1: Isometric view of the footbridge (in dark-grey the SFRSCC concrete, in light-grey the 

SFRSCC jackets and in yellow the GFRP profiles). 

 

Figure 2: Section views of the SFRSCC-GFPR footbridge (units in meters). Longitudinal 

sections (above and middle). Transversal view (bellow). 



 

Figure 3: Cross-section of the footbridge: Longitudinal cross-section, with the electrical 

transducers (above). Transversal cross-section, at mid-span, with the strain gauges sensors 

(bellow).  

 

Figure 4: Modal identification test: accelerometers positions and test setups. 

 



Figure 5: Results of the 16 modes obtained from the Operational Modal Analysis campaign (the 

x axis was consider along the longitudinal direction, the y along the transversal and z along the 

orthogonal direction) [11]. 

 

Figure 6: Damage inspection on the footbridge (cracks are in red colour). 

 

Figure 7: Front view of the mesh model (above). Mesh detail of the inner part (bellow). 

 

Figure 8: Frequency pair between spring model updated and OMA (left). MAC matrix with the 

first six modes (right). 



 

Figure 9: COMAC values obtained in the spring model updating: COMAC values in y direction 

(left) and COMAC values in z direction (right). 

 

Figure 10: Schematic representation of the damage identification strategies employed during the 

robust model updating. In blue the areas with substructure damage functions and in red the area 

with a discrete damage function. 

 

Fig. 11: Different shape functions used during the robust model updating. Substructure damage 

functions (above). Discrete damage function (bellow). 



 

Figure 12: Graphical comparison between the numerical and experimental damage obtained by 

the proposed methodology. 

 

Figure 13: Experimental and numerical mode shapes of the first six modes shapes. 

 



Tables 

 

Part 
EL,t  

(GPa) 

ET,c 

(GPa) 

GLT  

(GPa) 

ftu,L  

(MPa) 

Tu,LT  

(MPa) 

p 

(kN/m3) 
 

GFRP Web 23.98±1.61 4.55±0.52 3.49±0.43 278.90±23.78 20.42±1.15 18.00  

GFRP Flange 35.71±1.83 3.57±0.36 - 336.94±37.51 - 18.00  

 

Table 1: Mechanical properties of the GFRP pultruded profiles [11]. 

Ec,28 

(GPa) 

fcm 

(MPa) 

fct,L 

(MPa) 

feq,2 

(MPa) 

feq,3 

(MPa) 

fR,1 

(MPa) 

fR,2 

(MPa) 

fR,3 

(MPa) 

p 

(kg/m3) 

37.75±1.3 75.95±10.0 6.21±1.2 10.42±2.4 10.56±2.4 10.17±2.1 10.27±2.34 9.71±2.34 2325.78 

 

Table 2: Mechanical properties of the SFRSCC material used [11]. 

Variable Epoxy layer Epoxy layer and bolts Bolt union 

K(N/m3)106 288.55±59.75 300.57±71.79 140.02±9.63 

 

Table 3: Mechanical properties obtained in the experimental program [21]. 

Setup δms,Avg (mm) εc,Avg (µm/m) εw,Avg (µm/m) εf,Avg (µm/m) ζ (104m-1) 

A (along the entire span) 38.07 -190 320 1102 30.6 

B (central part of the span) 23.27 -145 220 712 20.3 

C (central part of the span) 43.28 -252 392 1208 34.6 

 

Table 4: Static test results for the three different load configurations [11] 

Mode 

Shape 

Frequency Damping ratio Description 

Mean value 
(Hz) 

CoV  
(%) 

Mean value 
(Hz) 

CoV  
(%) 

 

1 6.40 0.28 1.89 18.69 1st vertical bending mode 

2 8.16 0.01 1.26 11.77 1st torsional mode 

3 12.13 0.63 1.96 16.28 1st lateral bending mode 

4 20.78 12.28 1.57 62.08 2nd torsional mode 



5 22.16 6.14 0.92 20.59 2nd vertical bending mode 

6 23.74 0.09 0.76 11.65 3rd torsional mode 

 

Table 5: Results values from the Enhanced Frequency Domain Decomposition. 

 Initial values Lower bound Upper bound Updated values 

ESFRSCC (GPa) 37.75 33.82 41.68 39.90 

EGFRP-FLAN (GPa) 35.71 30.22 41.20 41.12 

EGFRP-WEB (GPa) 23.98 19.15 28.81 28.80 

KEPOXY (N/m3)  14.43×1010 5.53×1010 23.33×1010 17.3×1010 

KEPOXY-BOLT (N/m3) 15.03×1010 4.27×1010 25.79×1010 25.2×1010 

 

Table 6: Results of the initial model robust calibration. 

Vibration mode fexp (Hz) fnum (Hz) Error (%) MAC (%) 

1 6.40 10.69 67.05 98 

2 8.16 10.80 32.39 99 

3 12.13 - - - 

4 20.79 20.04 -3.59 82 

5 22.16 25.86 16.70 89 

6 23.74 27.09 14.10 88 

 

Table 7: Summary of the dynamical results obtained with the initial considerations, in terms of 

relative error in frequencies and MAC values. 

Load case dispexp (mm) dispnum (mm) Error (%) 

A -38.07 -16.08 -57.77 

B -23.27 -11.29 -51.50 

C -43.28 -19.10 -55.86 



 

Table 8: Summary of the results obtained in the initial model, through the static correlation 
values considered (relative error in displacement). 

 Initial values Lower bound Upper bound Update values 

ESFRSCC (GPa) 37.75 33.82 41.68 34.10 

EGFRP-FLAN (GPa) 35.71 30.22 41.20 38.94 

EGFRP-WEB (GPa) 23.98 19.15 28.81 28.81 

EEPOXY (N/mm3)  14.43 x1010 5.53 x1010 23.33 x1010 9.72 x1010 

EEPOXY-BOLT (N/m3) 15.03 x1010 4.27 x1010 25.79 x1010 21.52 x1010 

KAx (N/m) 10.00x106 10.00x105 10.00x107 4.37x106 

KAy (N/m) 10.00x105 10.00x104 10.00x106 8.78x105 

KBx (N/m) 10.00x103 10.00x102 10.00x105 1.69x104 

KBx (N/m) 10.00x105 10.00x104 10.00x106 4.24x105 

 
 

Table 9: Results obtained in the robust calibration of the spring model. 

 Initial values Lower bound Upper bound Update values 

ESFRSCC (GPa) 37.75 33.82 41.68 39.66 

EGFRP-FLAN (GPa) 35.71 30.22 41.20 39.29 

EGFRP-WEB (GPa) 23.98 19.15 28.81 28.81 

EEPOXY (N/m2)  14.43×1010 5.53×1010 23.33×1010 9.49×1010 

EEPOXY-BOLT (N/m2) 15.03×1010 4.27×1010 25.79×1010 13.13×1010 

KAx (N/m) 10×106 10×105 10×107 4.77×106 

KAy (N/m) 10×105 10×104 10×106 8.98×105 

KBx (N/m) 10×103 10×102 10×105 1.44×104 

KBx (N/m) 10×105 10×104 10×106 4.77×105 

 

 

Table 10: Summary of the updated variables (without consider the damage variables) obtained 
in the damage model calibration. 



Vibration mode fexp (Hz) fnum (Hz) Error (%) MAC (%) 

1 6.40 6.61 3.28 100 

2 8.16 8.33 2.08 100 

3 12.13 12.33 1.65 96 

4 20.79 20.51 -1.35 90 

5 22.16 21.52 -2.89 89 

6 23.74 24.09 1.47 86 

 
 

Table 11: Summary of the results, for the damage model, through the dynamical correlation 

values considered (relative error in frequencies, MAC values). 

Load case dispexp (mm) dispnum (mm) Error (%) 

A -38.07 -39.15 2.82 

B -23.27 -23.80 2.27 

C -43.28 -43.71 0.98 

 

Table 12: Summary of the results obtained in the damage model, through the static correlation 
values considered (relative error in displacement). 

 


