Object-Oriented Open Implementation of Reliable
Communication Protocols

José Orlando Pereira

Rui Oliveira

Departamento de Informatica
Universidade do Minho, Portugal
{jop,rco}@di.uminho.pt

Abstract

This paper presents a novel architecture for com-
munication protocols that takes advantage of ob-
ject mobility, allowing applications to specify the
behavior of protocols for each individual message.
This is achieved by opening the implementation of
protocols and letting the application program as-
sociate a set of possibly customized meta-objects
to every message, separately adapting different as-
pects of the service provided by the protocol.

Keywords: reliable distributed systems, object-
oriented communication protocols, open implemen-
tation.

1 Introduction

A simple definition of a distributed system is a col-
lection of independent computers communicating
by message passing and working together. As a di-
rect consequence, the most conspicuous character-
istic of distributed programs is the code that deals
with communication related aspects. Most notably,
the recovery from network faults and the detection
of remote computer crashes account for most of the
added complexity [1].

This complexity can be addressed by developing
communication protocols that provide powerful ab-
stractions such as view synchronous process groups
and totally ordered multicasts, which the applica-
tion can use through a simple message passing in-
terface [2, 10].

However, this simplicity reduces the freedom of
the application programmer to customize the sys-

tem for optimum performance, leading to the re-
jection of reliable communication toolkits in favor
of ad-hoc solutions that often neglect reliability as-
pects.

This results in a growing necessity to rethink the
loose relationship between application programs
and communication protocols and, as a conse-
quence, to improve protocol implementation tech-
niques. The reasons for this necessity comes both
from developer demand as well as from a techno-
logical push.

The demand for communication protocols that
are easily modified to accommodate new situations
and are dynamically adaptable to network condi-
tions and application requirements, is present in a
series of proposals in the area, such as: active net-
works [21, 22, 16], very thin protocol layers [23],
event-driven micro-protocols [11, 5], protocol spe-
cialization by inheritance [7] and protocol compo-
sition with the strategy pattern [6, 8].

The technology push comes from the wide-spread
availability of networks that are able to transfer ob-
jects, as opposed to networks which convey byte
strings. The most ubiquitous is the coupling of ob-
ject streams [19, 20] with sockets and portable code
on the Java platform [15].

In this context, this paper presents a novel ar-
chitecture that takes advantage of object mobility
provided by object networks to allow applications
to configure the behavior of communication proto-
cols for each individual message. This is achieved
by an object-oriented open implementation [14] of
protocols, allowing customizable meta-objects that
describe each aspect of communication to be asso-
ciated to each individual message object.

The remainder of this paper is organized as fol-

Sender application

data

protocol
data

Receiver gpplication

data
T
: code !
he&derdﬁ\@ 30
T p
dda \K
H protocol
data

Network

Figure 1: Traditional protocol implementation.

lows: In Section 2 we present a short overview of
traditional protocol implementations. Section 3 in-
troduces the general architecture of object-oriented
open protocols. Section 4 briefly describes an ap-
plication of the proposed architecture. Section 5
concludes the paper and speculates about future
research directions.

2 Protocol stacks

The most widely used architecture for reliable com-
munication protocols is the protocol stack, adopted
from point-to-point protocols such as TCP/IP [3],
the OSI reference model [17, 4] and the z-Kernel
[12].

In these systems, each protocol layer accepts data
packets and prefixes them with headers which are
used to convey meta-information about the mes-
sage to the receiver (e.g. sequence numbers for
ordered delivery). Upon reception, the header is
examined, in order to decide what to do with the
packet (e.g. delay or drop it), and discarded when
the packet is delivered. Figure 1 depicts such a sys-
tem, restricted to a single layer for simplicity and
clarity of presentation.

The problem with this approach is that there is
not a clear separation between the code that deals
with message headers and the code that maintains
protocol state, which can not be separately cus-

tomized or replaced. This is the consequence of
both entities being hidden inside the same black
boz.

This excessive encapsulation is a source of trou-
ble for application developers that wish to cus-
tomize protocols and are confined to using them
through very simple message passing interfaces.

The same is true for system programmers devel-
oping new entities that must deal with the same
messages, such as gateways, which is in part solved
by strict standardization of message formats. How-
ever, this solution is a further limitation to the
possibility of configuring and adapting protocols,
even if the application programmers interface is en-
riched.

With complex reliable communication protocols
that have not stabilized around a few well de-
fined standards, these limitations are particularly
restraining of their wide acceptance and evolution.

3 Object-oriented open proto-
cols

A significant improvement of protocol implemen-
tation techniques can be achieved by replacing the
data network by an object network and by acknowl-
edging the fact that headers are suitably modeled
as meta-objects of messages, as they define the be-

Sender application

meta
obj

msg
obj
data
meta
................... obj, e
msg
obj

Receiver application

meta
obj

data

Object network

Figure 2: Object-oriented open protocol implementation.

havior of messages when being transfered. Figure
2 presents an overview of this approach.

As a consequence, and in deep contrast with clas-
sical implementation of protocols, the code that
manages protocol state is clearly separated from
code that deals with message meta-information.
These two entities, that were previously tightly
coupled, become now independent objects related
only by a set of abstract interfaces that describe
client-server interactions.

This separation eases both development of new
protocol layers as well as the configuration of proto-
cols by applications. Different implementations of
protocols, as long as they comply with the agreed
interfaces, are able to operate on different kinds of
meta-information because it is encapsulated behind
agreed interfaces.

Configurability is then achieved by opening the
implementation of protocols and allowing the appli-
cation itself to create and associate different meta-
objects to different messages, instead of letting the
protocol code to always use the same, as happens
with traditional protocols.

As a consequence, this proposal is an improve-
ment over other protocol configuration techniques,
as it allows the application programmer to specify
different qualities of service for different messages

within the same message stream, and not only over
unrelated streams.

4 Case study: Groupz

This architecture has been implemented in Groupz,
a toolkit of configurable communication protocols
built to support reliable process groups over large-
scale networks [18]. Groupz is written in Java and
is structured as four object-oriented open protocol
layers on top of the object network provided by the
Java platform. The layers correspond to four sepa-
rate concerns found in distributed programming;:

Dependable delivery: Buffer and retransmit
messages until a safe reception condition is
met, to cope with faults.

Order: Delay messages until an arbitrary precon-
dition on previous deliveries is met, possibly
implying agreement.

Membership: Maintain an agreed view of the
current set of correct processes.

Hierarchy: Support large hierarchical networks,
by transforming messages when gateways are
traversed.

Taking dependable delivery as an example, the
information collected by the corresponding the pro-
tocol layer in Groupz is an approximate history of
message receptions by foreign hosts. This informa-
tion is gathered from messages which can supply
it in a variety of ways, in contrast to the fixed se-
quence numbers or version vectors in traditional
protocols. It is then used to evaluate conditions
for message buffering and retransmission that are
associated to messages.

By programming the delivery of reception in-
formation and the conditions that act upon it, it
is possible to implement a wide range of services
for each individual message. For instance, a mes-
sage can discard all its predecessors, as in stub-
born channels [9], or only some of its predecessors,
being the equivalent of multiple stubborn channels
that have the advantage of being able to merge and
split. The same techniques can be exploited at the
ordering layer to relax and combine traditional or-
dering classes. As a consequence, it is possible to
configure protocols that take advantage of redun-
dancy and commutativity to relax reliability and
order constraints.

Another interesting example is the group mem-
bership change message under a virtually syn-
chronous environment. This event often means that
some messages are discarded from retransmission
buffers, even if not received by the members that
are leaving the group. To accomplish this, tradi-
tional group protocols usually have specific control
operations. In Groupz this is not necessary, as the
group membership change message itself, acts as
an universal acknowledge from failed processes, dis-
carding messages that are no longer needed. It is
also possible to consider changing the policy for
triggering view changes without stopping the sys-
tem, as it is defined by the view change message
itself that can be customized by the application.

5 Conclusions

A major goal of this work is to build protocols that
are configurable on a per-message basis, which is
considered to be necessary to adapt complex reli-
able communication toolkits to real life problems.
The proposed solution achieves it in two steps: first,
by the use object-orientation techniques to design
and implement protocols, clearly identifying the en-

tities involved, and then, by opening these imple-
mentations to application programmers.

Some proposals in active networks also allow this
degree of configuration, but do not make a clear
separation between the protocol as the mechanism
and the message as the policy. As a consequence, by
shifting most of the code to the message, active net-
working protocols are subject to many of the same
limitations of traditional protocols. For instance,
by having complete knowledge about what actions
to perform at each concrete node hard-coded in the
message, the introduction of new and unforeseen
types of nodes is restricted. It also is harder to
separately develop and reuse different aspects of a
protocol.

Other architectures that allow configuration of
protocols, rely on the composition of protocol
building blocks which after configured act mostly
as black boxes, making them useful only when con-
figuring unrelated communication sessions with dif-
ferent qualities of service for independent streams
of messages.

One final conclusion is that open protocol lay-
ers in Groupz separately address different emerg-
ing entities in distributed programs and as such
are good candidates for corresponding aspects to
be composed [13]. In this context, libraries of mes-
sage meta-objects can be seen as aspect libraries,
allowing the developer to separately program differ-
ent aspects of the same problem, providing valuable
information and experience for aspect languages to
be researched.

References

[1] K. Birman and B. Glade. Consistent failure
reporting in reliable communication systems.
Technical report, Cornell University, Dept. of
Computer Science, May 1993. TR 93-1349.

[2] Kenneth Birman. The process group approach
to reliable distributed computing. Communi-
cations of the ACM, 36(12):37-53, December
1993.

[3] David Clark. The design philosophy of the
DARPA internet protocols. In ACM Sigcomm
Symposium, 1988.

[4]

[5]

[6]

[7]

[10]

[11]

[12]

[13]

J. Day and H. Zimmermann. The OSI refer-
ence model. Proc. of the IEEE, 1983.

Henrique Fonseca. Ambientes de suporte para
modularizagdo, concretizagdo e execucdo de
protocolos de comunicacdo. Master’s thesis,
Universidade Técnica de Lisboa, Instituto Su-
perior Técnico, 1994. (In Portuguese).

E. Gamma, R. Helm, R. Johnson, and J. Vlis-
sides. Design Patterns, Elements of Reusable
Object-Oriented Software. Addison-Wesley,
1995.

B. Garbinato, P. Felber, and R. Guerraoui.
Protocol classes for designing reliable dis-

tributed environments. In Proceedings of
ECOOP’96, July 1996.

B. Garbinato, P. Fleber, and R. Guerraoui.
Using the Strategy pattern to compose reli-
able distributed protocols. In Proceedings of
the 8rd Conference on the Patterns Languages
of Programs (PLoP’96), September 1996.

R. Guerraoui, R. Oliveira, and A. Schiper.
Stubborn communication channels. Technical
report, LSE, EPF Lausanne, December 1996.

Vassos Hadzilacos and Sam Toueg. Fault-
Tolerant Broadcasts and Related Problems. In
Sape Mullender, editor, Distributed Systems,
chapter 5. Addison Wesley, second edition,
1993.

Matti Hiltunen. Configurable Fault-Tolerant
Distributed Services. PhD thesis, Department
of Computer Science, The University of Ari-
zona, Tucson, Arizona 85721, July 1996.

N. Hutchinson and L. Peterson. The x-Kernel:
An Architecture for Implementing Network

Protocols. IEEE Transactions on Software
Engineering, 17(1):64-76, January 1991.

G. Kiczales, J. Lamping, A. Mendhekar,
C. Maeda, C. Lopes, J. Loingtier, and J. Irwin.
Aspect-oriented programming. In M. Aksit
and S. Matsuoka, editors, ECOOP’97 Object
Oriented Programming, Proceedings, number
1241 in Lecture Notes in Computer Science,
page 220. Springer-Verlag, 1997.

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

G. Kiczales and Xerox Parc. Beyond the black
box: Open implementation. IEEE Software,
13(1):8-11, January 1996.

T. Lindholm and F. Yellin. The Java Vir-
tual Machine Specification. The Java Series.
Addison-Wesley, 1996.

G. Di Marzo, M. Muhugusa, C. Tschudin, and
J. Harms. The messenger paradigm and its im-
plications on distributed systems. In Proceed-
ings of ICC’95 Workshop on Intelligent Com-
puter Communication, 1995.

NN, ISO, TC97, SC16, and ANSI. Data
processing - open system interconnection ba-
sic reference model. Computer networks and:
ACM CCR 11, April 1981, 5:81-118, 1981.

J. Pereira and R. Oliveira. On stacks and rus-
sian dolls: Mobile objects in configurable com-
munication protocols. In Proceedings of the
3rd. ECOOP Workshop on Mobile Object Sys-
tems, Jyvaskyla, 1997.

R. Riggs, J. Waldo, A. Wollrath, and
K. Bharath. Pickling state in the Java system.
Useniz Computing Systems, 9(4):291-312, Fall
1996.

Sun Microsystems, 2550 Garcia Avenue,
Mountain View, CA 94043. Java Object Se-
rialization Specification, December 1996. 1.2.

D. Tannenhouse, J. Smith, W Sincoskie,
D. Wetherall, and G. Minden. A survey of ac-
tive network research. IEEE Communications,
35(1):80.

D. Tannenhouse and D. Wetherall. Towards an
active network architecture. Computer Com-
munication Review, 26(2), April 1996.

R. van Renesse, K. Birman, B. Glade, K. Guo,
M. Hayden, T. Hickey, D. Malki, A. Vaysburd,
and W. Vogels. Horus: A flexible group com-
munications system. Technical Report TR95-
1500, Cornell University, Computer Science
Department, March 23 1995.

