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Abstract

Spatio-temporal modelling of environmental data

Environmental monitoring may be defined as a description of processes and

activities performed to characterize and monitor the quality of the environ-

ment. Monitoring schemes may differ greatly in their spatial and temporal

extent, but as an outcome of any environmental monitoring process, data

are gathered exhibiting both a spatial and a temporal dimension.

With this work, we aim to analyze the predictive accuracy when characteri-

zing the spatio-temporal patterns of heavy metal deposition in mainland

Portugal. The data set in use consists of measurements of heavy metal

deposition in mosses, resulting from three nationwide surveys performed in

1992, 1996 and 2002.

Firstly, we begin with an exploratory descriptive analysis and an exploratory

spatial analysis of the data, using well known techniques of spatial inter-

polation. After, we propose to make a spatio-temporal prediction of heavy

metal concentration for the most recent survey, allowing to incorporate geo-

referenced explanatory covariates of the process under observation, calling

on an existing spatio-temporal prediction model. This model focuses on

the spatial dimension by defining random fields for the mean, the scale and

the residuals components, and incorporates the time dimension by means of

strictly temporal random fields, which work as corrections for the temporal

evolution of the process.

Motivated by the fact that the data set in use in dense in the spatial di-

mension but sparse in the temporal one, a novel model-based approach is

proposed for Gaussian data, corresponding to a saturated correlation model
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in the time dimension. The proposed model is derived in order to accommo-

date not exclusively geo-referenced covariates, but also covariates associated

to the temporal behavior of the process.

Regarding the results obtained in terms of predictive accuracy, a compari-

son of predictions from a purely spatial model with the ones from a spatio-

temporal model showed that the latter improve the accuracy of predicted

value. Moreover, if the comparison is restricted to the two spatio-temporal

models, the new model proposal provides better results.

Keywords: geostatistics, spatio-temporal modelling, sparse time dimen-

sion, environmental biomonitoring, mosses.
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Resumo

Modelação espaço-temporal de dados ambientais

Por monitorização ambiental entende-se uma descrição dos processos e ativi-

dades realizadas para caracterizar e monitorizar a qualidade do meio am-

biente. Apesar de diferentes estudos de monitorização ambiental poderem

diferir em termos de extensão espacial e temporal, de qualquer processo de

monitorização resultam dados que apresentam tanto uma dimensão espacial

como uma dimensão temporal.

Com este trabalho, pretende-se analisar a precisão das predições efectuadas

ao caracterizar os padrões espaço-temporais de deposição de metais pesados

em Portugal continental. A base de dados utilizada neste estudo consiste

em medidas de deposição de metais pesados em musgos, resultante de três

campanhas de amostragem a ńıvel nacional, realizados em 1992, 1996 e 2002.

Inicialmente será efectuada uma análise exploratória descritiva e uma análise

exploratória espacial dos dados, utilizando técnicas bem conhecidas de in-

terpolação espacial. De seguida, será desenvolvida uma previsão espaço-

temporal da concentração de metais pesados para a campanha mais recente,

permitindo incorporar variáveis geo-referenciadas explicativas do processo

sob observação. Para isso, iremos recorrer a um modelo de previsão espaço-

temporal existente. Este modelo incide sobre a dimensão espacial do pro-

cesso através da definição de campos aleatórios para a média, para a escala

e para os reśıduos, e incorporando a dimensão temporal por meio de campos

aleatórios estritamente temporais, que funcionam como correcções para a

evolução temporal do processo.

Motivados pelo fato de o conjunto de dados em uso ser denso na dimensão

espacial, mas escasso em termos temporais, é proposta uma abordagem
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model-based para dados Gaussianos, e que corresponde a um modelo de cor-

relação saturado na dimensão temporal. O modelo proposto é deduzido de

forma a acomodar não somente covariáveis geo-referenciadas, mas também

covariáveis associadas ao comportamento temporal do processo.

No que respeita à precisão dos valores de concentração de metais pesados,

a comparação das previsões obtidas por meio de modelos puramente es-

paciais com as obtidas por modelos espaço-temporais revelou um melhor

desempenho por parte destes últimos. É de realçar ainda que, se a com-

paração for restringida aos dois modelos espaço-temporais, a abordagem

model-based proporciona melhores resultados.

Palavras-Chave: geoestat́ıstica, modelação espaço-temporal, dimensão

temporal reduzida, bio-monitorização ambiental, musgos.
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1

Introduction

1.1 Understanding the problem

Although pollution had been known to exist for a very long time, it was after the indus-

trial revolution in the 19th century that its growth started to have global proportions.

Over the last decades the interest in the impacts over the public health attributed to

environmental pollution, namely the pollution caused by heavy metals, has increased.

Heavy metals are metallic elements that are present in natural environments, where

they occur at low concentrations, but also in contaminated environments, where high

concentrations are observed. Heavy metals may be released into the environment as

a consequence of human activities, e.g. from metal smelting and refining industries,

plastic and rubber industries, or from burning of waste containing these elements. Once

release to the air, the elements are deposited onto the soil, vegetation and water, and

may persist in the environment for many years poisoning humans through inhalation,

ingestion and skin absorption.

Worldwide, several projects have emerged on the subject of environmental pollution and

in the assessment of its impact on humans. Some examples are the Atmospheric Heavy

Metal Deposition in Europe, which has the objective of characterize qualitatively and

quantitatively the atmospheric deposition of heavy metals in northern Europe (Rühling

& Steinnes (1998)), the Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA

Air), a cohort study aiming at assessing the relationship between chronic exposure to

air pollution and the progression of sub-clinical cardiovascular disease (Lindstrom et al.

(2011)), the National Morbidity, Mortality, and Air Pollution Study (NMMAPS), aim-
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1. INTRODUCTION

ing to characterize the effects of airborne particles less than 10 µm in aerodynamic

diameter (PM10), alone and in combination with gaseous air pollutants (Samet et al.

(2000)).

Biomonitoring can be defined as the process in which plants are used to assess changes

in the environment, generally changes due to anthropogenic causes, and biomonitors

are organisms that contain information on the quantitative aspects of the quality of

the environment (Markert et al. (2003)).

Biomonitoring projects like the ones mentioned before, rely on the use of biomonitors,

as they have proven to be excellent tools providing information which can be used to

assess environmental quality, but also to investigate trends by monitoring systems, re-

peating measurements in time (Markert et al. (2003)). The use of plants as biomonitors

is frequent for ecosystem quality assessment due to their sensitivity to chemical changes

in environmental composition. The advantages of this use include, among others, low

costs, the possibility of long-term sampling, and high availability. Lower plant orga-

nisms, like mosses, are often used in analysis of atmospheric depositions, soil quality

and water purity, due not only to the mentioned sensitivity to chemical changes but

also to their capacity to accumulate and store heavy metals and other toxins (Gadza la-

Kopciuch et al. (2004)).

In Europe, mosses and lichens as biomonitors are widely used, where surveys that have

been performed led to geographical and longitudinal descriptive studies of airborne

metals (Sarmento (2012)).

1.2 Statistics and environmental studies

Statistical techniques are commonly applied in several areas in order to interpret, ana-

lyze, and understand data which may involve more than one type of measurement.

Multivariate statistics deals with problems where more than one dependent variable is

analyzed simultaneously with other variables.

Geostatistics is a branch of multivariate statistics that takes into account the spatial

distribution information to accurately predict and display correlations present in the

data. Within the field of geostatistics, interpolation methods are used to provide ac-

curate estimations of the variable of interest by using the correlation that results from
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1.3 Main objectives

known sample points and their geographic location relative to the point of estimation

(Milillo (2009)).

One interpolation method broadly used in geostatistics is Kriging, a technique aiming

at estimating values of the variable of interest at locations which have not been sam-

pled, weighting the surrounding measured values based on the distance between the

measured location and the not sampled one. If this interpolation technique refers to

data which is primarily transformed from continuous values to binary, it is designated

as Indicator Kriging.

In the literature one may find several studies applying geostatistics techniques to ana-

lyze biomonitoring data. Cocchi et al. (2007) use data of PM10 measurements from 11

spatial locations collected over 1096 days. Bruno et al. (2003) use a data set consisting

of daily ozone measurements made at 32 monitoring locations, for the period 1998-2002.

Mitchell et al. (2005) study the effect of high levels of CO2 on rice, using data from 13

spatial locations and 112 time points. These few examples share the common feature

of the number of time observations is larger than the number of spatial locations.

However, despite the easiness on gathering data enabled by modern technologies, there

are cases where, due to the intrinsic nature of the process of data acquisition, data are

collected over a large number of spatial locations but only a reduced number of time

periods. One of such cases is the one resulting from the Portuguese participation on the

Atmospheric Heavy Metal Deposition in Europe project, which yielded measurements

of heavy metal concentration in mosses collected at 146 spatial locations on three na-

tionwide surveys.

1.3 Main objectives

The last mentioned project illustrates the existence of an increasing interest in problems

dealing simultaneously with spatial and temporal relationships between observations.

To understand data collected not only across space at a given moment, but also along

time at each location, there is a growing need for models that can accommodate both

the spatial and the temporal dimension of data, usually known as spatio-temporal mo-

dels.

With this work, strongly motivated by environmental monitoring studies, we aim not
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1. INTRODUCTION

only to understand how important is to the prediction process to consider data from

the past, but also how the inclusion of variables explaining the process under obser-

vation can improve the accuracy of predictions. Therefore, our main goals are (i) to

propose an extension of an existing geostatistical spatio-temporal model, allowing for

considering explanatory covariates relevant to the process under observation, and (ii)

to propose a simple spatio-temporal model, suitable for studies with a reduced num-

ber of time observations and also accommodating the possible existence of explanatory

covariates. Moreover, for the latter model, the spatio-temporal covariance function

will be prepared to take into account different scale parameters for the spatial and the

temporal components, opposite to the most traditional interpretation of this function

as proposed in Rodriguez-Iturbe & Mejia (1974). These two models are applied to

the environmental biomonitoring data set resulting from the three available surveys of

the Portuguese participation on the Atmospheric Heavy Metal Deposition in Europe

project, in order to create prediction maps and error maps of heavy metal concentra-

tions all over the Portuguese mainland territory and for the most recent survey.

1.4 Geostatistical software

Geostatistics provides a set of mathematical tools that have been used to data analysis,

and to generate prediction maps from point observations together with the associated

uncertainty maps. To perform this task, an important piece is certainly the computer

program that implements the (geo)statistical algorithm that has been selected to pre-

dict the target variable (Hengl (2007), Fischer & Getis (2009)).

The increasing popularity of geostatistics has originated a substantial expansion of soft-

ware suitable to that purpose, providing several solutions in terms of price, operating

systems, user-friendliness, functionalities, graphical and visualization capabilities (Fis-

cher & Getis (2009)). Among all the available software, R (the open source version of

the S language for statistical computing, available at http://www.r-project.org/) is

today identified as one of the fastest growing and most comprehensive statistical com-

puting tools/communities (Hengl (2007)). It become even more attractive for geosta-

tistical analysis after the integration of the geostatistical tools geoR, which implements

model-based, likelihood-based and Bayesian geostatistical methods (Ribeiro & Diggle
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(2001)), and gstat, which offers univariate and multivariate geostatistical methods for

estimation and simulation, namely variogram modelling, simple, ordinary and universal

kriging, and spatio-temporal kriging (Pebesma (2004)).

When dealing with spatial data, these are typically classified according to three classes:

point-referenced data, which corresponds to the measurement of certain characteristic

over a finite set of known spatial locations, areal (or lattice) data, which corresponds to

measurements of certain characteristic over regions from a partition of some bounded

spatial domain, and point processes data, where the data identifies the random spa-

tial location where the measurement was made. Besides the aforementioned geoR and

gstat, suitable for point referenced data, some other available packages in R are geoR-

glm, which extends geoR for Binomial and Poisson processes (Christensen & Ribeiro

(2002)), RandomFields, offering tools for the simulation of different kinds of random

fields, model estimation and inference for regionalized variables and data analysis, and

model estimation for (geostatistical) linear (mixed) models (Schlather et al. (2013)),

geoCount, providing functions to analyze and model geostatistical count data with

generalized linear spatial models (Jing & de Oliveira (2015)), spatial, which provides

functions for kriging and point pattern analysis (Venables & Ripley (2002)), DCluster,

for the detection of spatial clusters of diseases (Gómez-Rubio et al. (2005)), or the R-

inla packages, to solve models using Integrated Nested Laplace Approximation (INLA),

which is a new approach to statistical inference for latent Gaussian Markov random

fields (Rue et al. (2009)).

The available resources for geostatistical spatial or spatio-temporal analysis are not

limited to R. For example mGstat, a geostatistical toolbox for Matlab, provides an

interface to R’s gstat, using Matlab as a scripting language. SGeMS, provides state

of the art geostatistical simulation algorithms. The web-page Geospatial Analysis,

http://www.spatialanalysisonline.com/software.html, contains a large number

of examples from different GIS and related software packages and tool sets. The re-

cent paper of E. Pebesma and co-authors, Pebesma et al. (2015), give an overview of

published works using geostatistical software, covering spatial analysis topics such as

visualization (micromaps, links to Google Maps or Google Earth), point pattern analy-

sis, geostatistics, analysis of areal aggregated or lattice data, spatio-temporal statistics,

Bayesian spatial statistics, and Laplace approximations.
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1.5 Thesis outline

This thesis is organized as follows. The initial concepts on the area of spatial geostatis-

tics are introduced in Chapter 2. A practical application of these concepts, focusing on

the Kriging and Indicator Kriging techniques, is proposed based on a data set consis-

ting of measurements of nitrate (NO3) concentration in water samples, collected in four

different moments independently of each other in a Portuguese river basin. Chapter 3

reveals the principal biomonitoring data set to be used to illustrate the usefulness of

the geostatistical spatio-temporal models to be proposed. First, an exploratory data

analysis of manganese (Mn) concentration and lead (Pb) concentration in mosses is

conducted and, after, the spatial behavior of this data is also studied. The inclusion of

covariates relevant to the process under observation is considered. The generalization

of the spatial geostatistics framework to spatio-temporal geostatistics is addressed in

Chapter 4. One particular spatio-temporal model, proposed to analyze interpolation

errors when considering data from repeated observations of monitoring networks, is

introduced. This model allows for the sampled number of spatial location to be larger

than the number of temporal observations. The concepts are illustrated by means of

the application of the mentioned model to the Mn and Pb data. In Chapter 5, a genera-

lization of the previous model is proposed, aiming to take into account the existence of

relevant covariates to the process under observation.

Departing from the particular characteristics of studies like the one originating the data

set revealed in Chapter 3, namely the fact that the time dimension is much smaller than

the spatial one, a new spatio-temporal geostatistical model is proposed in Chapter 6.

This model proposal assumes the separability between the spatial and the temporal

components. Moreover, complementing the most common interpretation of the covari-

ance structure, different spatial and temporal sources of variability are allowed and, as

a consequence of the reduced number of observations in time, the temporal correlation

corresponds to a saturated model. The model is applied to the Mn data. The model’s

good performance in predicting Mn concentration values is assessed by comparing the

predicted values with results obtained by using the spatio-temporal model introduced

earlier, which also assumes spatial and temporal separability and enables the use of

covariates.

Some conclusions and directions for future work are in Chapter 7.
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2

Spatial geostatistics

2.1 Introduction

One type of information that distinguishes environmental data from most other types

of data, is that the former always belong to some location in space and always was

collected at a given time.

In case this information of where and when takes part of the data to be interpreted, we

fall in the scope of geostatistics, a set of of numerical techniques that deal with the char-

acterization of spatial attributes (Olea (2012)). Geostatistics offers a way of describe

the spatial continuity of natural phenomena, adapting classical regression techniques

to take advantage of this continuity (Isaacs & Srivastava (1989)).

The development of this branch of statistics started in the beginning of 1950’s, with the

work of D. Krige (Krige (1951)), in the mining and petroleum industries. Latter on, in

a more formal way, the problem of spatial prediction was also addressed by Matheron

(1971). Geostatistics has since then been applied to many other fields, in or related to

the earth sciences. Some examples are applications related to environmental sciences

(Høst et al. (1995), Guttorp & Loperfido (2008), Cocchi et al. (2007)), meteorology

(Cressie & Huang (1999), Kyriakidis et al. (2001)) or hydrology (Rouhani & Wacker-

nagel (1990), Goovaerts (2000)).

Although initially the main focus of geostatistics was on spatial variables, over the past

years the conceptual viewpoint accommodated also a temporal dimension, addressing

variables that change both in space and time. Several books have been written focusing

on the subject of geostatistics, both in development of the mathematical and statistical
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theory (e.g., Cressie (1993), Cressie & Wikle (2011), Diggle & Ribeiro (2007)) and in

applications (e.g., Goovaerts (1997), Journel & Huijbregts (1997)).

In this chapter, our main objective is to present a concise review of the main charac-

teristics defining the concepts of spatial geostatistics.

2.2 Spatial geostatistics

Let us consider a continuous spatial process (or random field)

{Z(s), s ∈ D} (2.1)

where s are locations within some spatial region D ⊂ IRd. Typically, d = 1, 2 or 3. The

characterization of the spatial process (2.1) is usually made by means of the cumulative

distribution function

Fs1,...,sn(z1, . . . , zn) = P
(
Z(s1) ≤ z1, . . . , Z(sn) ≤ zn

)
, n ≥ 1 (2.2)

which must observe the usual conditions of being symmetric and consistent:

• symmetry:

Fsi1 ,...,sin
(zi1 , . . . , zin) = Fs1,...,sn(z1, . . . , zn)

for any permutation si1 , . . . , sin of the indexes 1, . . . , n

• consistency:

Fs1,...,sn,sn+1,...,sn+k
(z1, . . . , zn,∞, . . . ,∞) = Fs1,...,sn(z1, . . . , zn)

When the joint cumulative distribution (2.2) is a multivariate Gaussian distribution,

the random field (2.1) is denoted as a Gaussian random field.

In general, we observe only one (partial) realization of the random field. That is, we

have a sample of size one which is a collection of n observations z(s1), . . . , z(sn) at the

known locations (s1, . . . , sn). In order to make possible to perform inferences about the

spatial process, some assumptions on the regularity of the process ought to be made,

which will now be presented.
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Moments

The moment of order k of the random field Z(s), defined at any location s ∈ D is

E
[(
Z(s)

)k]
=

∫
xkdFs(x) (2.3)

provided this integral exists.

Expected value

The expected value of a random field Z(s) is defined as the order-one moment,

µ(s) = E
[
Z(s)

]
(2.4)

for any location s ∈ D. In general, the expected value is allowed to depend on the

location s. In geostatistical applications, µ(s) is often referred to as the trend.

Variance and Covariance

The variance of a random field Z(s) is defined as the second-order moment about the

expected value µ(s),

Var
[
Z(s)

]
= E

[(
Z(s)− µ(s)

)2]
(2.5)

for any location s ∈ D. As for the expected value, the variance is generally dependent

on the location s. The covariance is defined by

Cov
(
Z(si), Z(sj)

)
= E

[(
Z(si)− µ(si)

)(
Z(sj)− µ(sj)

)]
(2.6)

for any locations si and sj in D, i, j = 1, . . . , n.

Strict stationarity

Given the set of n ≥ 1 spatial locations (s1, . . . , sn) in D and the vector h ∈ IRd such

that si+h ∈ D, i = 1, . . . , n, Z(s) is said to be strictly stationary if the distributions of(
Z(s1 +h), . . . , Z(sn+h)

)
and

(
Z(s1), . . . , Z(sn)

)
are identical, that is, any translation

of a set of locations does not alter the joint distribution,

Fs1+h,...,sn+h(z1, . . . , zn) = Fs1,...,sn(z1, . . . , zn), ∀h ∈ IRd.
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It is usual to consider, however, less restrictive conditions to caracterize a stationary

random field.

Second-order (or weak) stationarity

The random field Z(s) is said to be second-order stationary if it shows a constant first

order moment and the covariance between two given locations only depends on the

separation vector,

• E
[
Z(s)

]
= µ, ∀s ∈ D

• Cov
(
Z(si), Z(sj)

)
= C(si − sj), si, sj ∈ D

The function C(.) is usually known as the stationary covariance function or covari-

ogram.

In particular, if the spatial process Z(s) is such that C(0) > 0, the second-order

stationarity can also be stated by means of the correlation function or correlogram,

denoted by ρ(.),

Corr
(
Z(si), Z(sj)

)
=

Cov
(
Z(si), Z(sj)

)
C(0)

= ρ(si − sj), si, sj ∈ D (2.7)

Notice that ρ(si − sj) = ρ(sj − si) and ρ(0) = 1.

Intrinsic stationarity

If the spatial process Z(s) verifies that the first order moment is constant and the

variance of the difference between the observation at two locations only depends on the

difference between those locations, it is said to be intrinsically stationary,

• E
[
Z(s)

]
= µ, ∀s ∈ D

• Var
[
Z(si)− Z(sj)

]
= 2γ(si − sj), si, sj ∈ D

The functions 2γ(.) and γ(.) are usually known as the variogram and the semi-variogram,

respectively, although some authors use for the latter also the variogram. According

to Cressie (1993), the variogram is a model-based measure of the spatial statistical
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dependence in a geostatistical process.

Relationship between different definitions of stationarity

Variance’s properties state that

2γ(si − sj) = Var
[
Z(si)− Z(sj)

]
= Var

[
Z(si)

]
+ Var

[
Z(sj)

]
− 2Cov

(
Z(si), Z(sj)

) (2.8)

meaning that the knowledge of the variance of the random field Z(s) enables the iden-

tification of the variogram and reciprocally.

If Z(s) is a second-order stationary process, its variance is known and constant, say

σ2(s) = C(0), and consequently

2γ(si − sj) = 2
(

C(0)− Cov
(
Z(si), Z(sj)

))
γ(si − sj) = C(0)− Cov

(
Z(si), Z(sj)

)
γ(si − sj) = C(0)− C(si − sj)

(2.9)

that is, a second-order stationary process is intrinsically stationary, being the variogram

given by

γ(h) = C(0)− C(h) (2.10)

2.3 Variogram and covariogram properties

The (semi-)variogram and/or the covariogram are functions generally used to model

spatial dependency and, therefore, they must observe some properties.

2.3.1 Variogram properties

• The variogram is the expected value of the squared deviation between two obser-

vations, hence

γ(h) ≥ 0, ∀h ∈ IRd (2.11)

and γ(0) = 0.
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• Also by the definition, the variogram is an even function,

γ(-h) = γ(h) (2.12)

• When considering a continuous variable, one should expect the variogram to pass

through the origin at a distance ‖h‖ = 0. In practice, however, it is possible that

the variogram approaches a positive value as ‖h‖ approaches zero, suggesting a

discontinuous process,

lim
‖h‖→0

γ(h) = τ2 > 0 (2.13)

This discrepancy is known as the nugget variance. In this case, τ2 is labeled as

the nugget effect, as this discontinuity was identified in mining applications of the

first studies in Geostatistics. The nugget effect occurs as a result from small scale

variability between spatially correlated variables and/or measurement errors.

• Not all variogram functions are valid to perform inference or prediction. In order

to a variogram to be a valid one, it must verify that∑
i

∑
j

aiajγ(si − sj) ≤ 0 (2.14)

for any finite set of locations (s1, . . . , sn) and any set of real constants (a1, . . . , an)

such that
∑n

i=1 ai = 0. This condition is equivalent to say that the matrix Γ =[
γ(si − sj)

]
i,j

is negative semidefinite.

2.3.2 Some further characteristics of the variogram

The sill is the maximum height, if existing, of the variogram curve. As ‖h‖, the dis-

tance between any two spatial points, becomes larger, the correlation (and hence the

covariance) between the response at those points becomes negligible. That is, once

lim
‖h‖→∞

2γ(h) = lim
‖h‖→∞

Var
[
Z(s) − Z(s + h)

]
' C(0), the sill in the variogram curve

corresponds to the variance of the process.

The partial sill, denoted by σ2, is the difference between the sill and the nugget effect,

σ2 = C(0)− τ2.
It is common, in practice, that the correlation between Z(s) and Z(s+h) vanishes when

the distance ‖h‖ becomes too large. The range is the distance ‖h‖ such that pairs of

spatial locations further than this distance apart are negligibly correlated. When this
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condition holds, the variogram reaches the sill.

2.3.3 Covariogram properties

The covariogram share properties with the variogram, as it is valid, by (2.10), that

C(h) = C(0)− γ(h).

Therefore,

• C(0) = Var
[
Z(s)

]
≥ 0

• C(-h) = C(h) and, by Cauchy-Schwarz inequality, |C(h)| ≤ C(0)

• lim
‖h‖→0

C(h) = σ2

• lim
‖h‖→∞

C(h) = 0

•
∑
i

∑
j

aiajCov
(
Z(si), Z(sj)

)
≥ 0 for any finite set of locations (s1, . . . , sn) and

any set of real constants (a1, . . . , an) such that
∑n

i=1 ai = 0, that is, the matrix

Σ =
[
Cov

(
Z(si), Z(sj)

)]
i,j

is positive semidefinite.

2.3.4 Isotropy and anisotropy

The assumption of isotropy has the advantage of greatly simplify the modelling of the

spatial dependence. In many cases, there is no reason to expect that the spatial depen-

dency has the same behavior in all directions. However, the assumption of isotropy is

typically made out of convenience.

An intrinsically stationary spatial process Z(s) is said to be isotropic if the variogram

depends upon h = si − sj only through its length, not through its direction,

Var
[
Z(s)− Z(s + h)

]
= γ(‖h‖), ∀h ∈ IRd, s, s + h ∈ D. (2.15)

In opposition, in a stationary anisotropic process, the spatial association depends upon

the separation vector between locations both for its length and for its direction.

The condition of being an isotropic spatial process is not very demanding, since an

anisotropic process can be reduced to isotropy by a linear transformation of the coor-

dinates.
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2.4 Parametric models for isotropic variograms

In the same way as when dealing with random variables, variograms can also be iden-

tified according to the family that they belong. There exist various families of models

for variograms used in practice, some examples being listed next. In what follows, we

are representing the range by φ, the nugget effect by τ2 and the partial sill by σ2.

Spherical

The spherical model is in general suitable for modelling a spatial correlation which

decreases approximately linearly with the separation distance, being zero beyond a

certain distance.

γ(h) =


0 , h = 0

τ2 + σ2

(
3

2

h

φ
− 1

2

(
h

φ

)3
)

, 0 < h ≤ φ

τ2 + σ2 , h > φ

(2.16)
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Figure 2.1: Example of spherical model

Exponential

The exponential model shows a shape similar to the spherical model and reaches the

sill only asymptotically as ‖h‖ → +∞.

γ(h) =


0 , h = 0

τ2 + σ2
(

1− exp

(
−h

φ

))
, h > 0

(2.17)
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0 50 100 150 200
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Figure 2.2: Example of exponential model

Linear

The linear model does not reach a sill, so the use of σ2 is not appropriate, being replaced

by b ≥ 0. This model doesn’t correspond to a stationary process.

γ(h) =


0 , h = 0

τ2 + b‖h‖ , h > 0
(2.18)
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Figure 2.3: Example of linear model

Matérn

The Matérn family are highly flexible models, and so are suitable for modelling com-
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plicated behaviors.

γ(h) =


0 , h = 0

τ2 + σ2 (1− ρ(h)) , h > 0
(2.19)

where the correlation function ρ(.) is given by

ρ(h) =
(
2ν−1Γ(ν)

)−1(h

φ

)ν
Kν

(
h

φ

)
(2.20)

with ν > 0 and K(.) is the Bessel function of order ν.

In particular, if the order ν in (2.20) is 0.5, the Matérn model and the exponential

model coincide. Also, as a limit case, if ν → +∞, the Matérn model is also known as

the Gaussian model, where the correlation function is

ρ(h) = exp

(
−
(

h

φ

)2
)
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Figure 2.4: Example of Matérn model (left) and Gaussian model (right)

2.5 Parameter estimation and spatial predictions

In practical applications, after collecting a discrete set of observations {Z(si), si ∈
D, i = 1, . . . , n}, the inference process aims at estimating the parameters of the vario-

gram (or the covariogram) from the sample information.

Under second order stationarity assumption, the variogram function can be written as

γ(h) =
1

2
E
[(
Z(s)− Z(s + h)

)2]
(2.21)
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Replacing in (2.21) the expected value by its empirical counterpart is a way to use the

available data to estimate the variogram. The first proposal of an empirical variogram

estimator is due to Matheron, usually known as the classical estimator

γ̂(h) =
1

2|N(h)|
∑
N(h)

(
Z(si)− Z(sj)

)2
(2.22)

where N(h) = {(si, sj) : ‖si− sj‖ = h} and |N(h)| is the cardinality of N(h). The em-

pirical variogram is, then, the primary tool used for inference on the model parameters.

Having identified a covariance model of spatial dependence, one can proceed with pre-

dicting the spatially continuous process at an unsampled location s0. The process of

spatial prediction, eventually to the whole study area, is generally mentioned as Krig-

ing.

Kriging is a Linear interpolation method, since the estimated values are weighted linear

combinations of the observed data, Unbiased once the mean of the errors is zero, and

Best since it aims at minimizing the variance of the errors. That is, Kriging is a BLUE

method.

Depending on the knowledge about the mean of the process under observation, one can

have Simple, Ordinary or Universal Kriging. Simple Kriging assumes a known constant

trend throughout the study area, Ordinary Kriging assumes an unknown constant trend

and Universal Kriging assumes a varying, unknown trend.

According to Goovaerts (1997), given the n observations of the random process Z(s),

{z(s1), . . . , z(sn)}, the Kriging estimators are but variants of the linear regression esti-

mator Ẑ(s), defined as

Ẑ(s)− µ(s) =

n(s)∑
i=1

λi(s)
(
Z(si)− µ(si)

)
(2.23)

where λi(s) is the weight assigned to each datum z(si), i = 1, . . . , n(s). The number of

data involved in the estimator (2.23) is specific to each location, in particular only the

n(s) data points closest to the location s being estimated are considered.

The main objective is to minimize the estimation of error variance under the constraint

of unbiasedness,

min σ2(s) = Var
[
Ẑ(s)− Z(s)

]
subject to

E
[
Ẑ(s)− Z(s)

]
= 0

(2.24)
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The derivation of the Kriging equations for each of the Simple, Ordinary or Universal

cases, is well described in the literature. See, e.g. Goovaerts (1997), Chilès & Delfiner

(2012) or Isaacs & Srivastava (1989). The predicted value of the spatial process at the

unsampled location s0 is

Ẑ(s0) = µ(s0) + cT0 C−1Z
(
Z−µµµ

)
(2.25)

being the variance of the prediction given by

σ2(s0) = C0 − cT0 C−1Z c0 (2.26)

where c0 = Cov
(
Z(s0), Z(s)

)
, C0 = Var

[
Z(s0)

]
and CZ = Cov

(
Z(si), Z(si)

)
, si, sj ∈

D.

2.6 Case study: water quality monitoring

This section illustrates an application (Margalho et al. (2011)) of the mentioned con-

cepts to a real data set of measurements of NO3 concentration in water samples. The

data will be used just in this section with illustrative purposes, and no more elsewhere

in the text.

The NO3 concentration measurements were collected in four different moments in-

dependently of each other, at the Esposende-Vila do Conde aquifer, situated in the

Cávado river basin, on the northwest region of Portugal (Figure 2.5, black dots repre-

sent sampling locations). The area in question is labeled as vulnerable, therefore it is

important to know the behavior of water quality along time. The interest in a study like

this derives from the fact that groundwater quality is regulated by the European law

2006/118/CE concerning groundwater protection against pollution and, particularly in

Portugal for human purposes, by the Portuguese law 306/2007.

Exploratory Analysis of Nitrate Pollution Data

The following description is based on a set of 79 measurements of NO3 concentration,

performed over 25 different monitoring stations of groundwater quality during four dif-

ferent moments, Spring and Fall, of 2008 and 2009, although not every stations have
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Figure 2.5: Map of vulnerable zone (delimited by the red line) with sampling points

(black dots)

been monitored at all times. Table 2.1 shows some descriptive statistics related to these

measurements.

Table 2.1: Descriptive statistics related to NO3 measurements

NO3(mg/L) Spring’08 Fall’08 Spring’09 Fall’09

N 22 20 19 18

Min 5.50 2.00 2.10 2.20

Quart 1 48.43 35.15 64.25 50.75

Median 90.75 104.00 104.00 99.40

Quart 3 147.50 118.00 131.50 141.00

Max 229.00 382-00 331.00 277.00

Mean 101.70 102.60 112.60 109.00

St. Dev. 67.12 92.40 78.18 77.54

19



2. SPATIAL GEOSTATISTICS

For the four periods of observation, the mean values of NO3 concentrations are equiva-

lent, although 2008 present mean values lower than 2009. The minimum observed values

varies from 2 to 5.5 mg/L and the maximum values from 229 mg/L to 382 mg/L. The

lowest range, 223.5 mg/L, occurred on Spring of 2008. Figure 2.6 depicts graphically

the observed values. As stated before, Spring 2008 was the period with lowest range,

but this was also the period with largest interquartile range.

Shapiro-Wilk tests revealed that Fall 2008 and Spring 2009 data fail normality. How-

ever, by using the square-root transform, new data could be assumed to behave like

Gaussian. In the spatial analysis that follows, the square root transformed values will

be considered for the four moments.
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Figure 2.6: Boxplots of NO3 concentration measurements in different moments

Spatial analysis of nitrate pollution data

Figure 2.5 shows that the sampling locations are not distributed over the whole area.

As a consequence of that, for the spatial analysis that follows a restriction to the region

containing sampled locations was considered.

After the computation of the empirical semivariogram for each period of observation,

several models of isotropic semivariograms were adjusted. Table 2.2 represents the

estimated parameters of spherical models (illustrated in Figure 2.7), obtained by the

weighted least squares method.
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2.6 Case study: water quality monitoring

Table 2.2: Estimated spherical semivariogram parameters obtained by

Weighted Least Squares Method

Spring’08 Fall’08 Spring’09 Fall’09

Nugget (τ2) 0.58 11.12 2.65 2.38

Partial Sill (σ2) 10.58 11.18 12.64 12.37

Range (φ) 700.00 700.00 700.00 700.00
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Figure 2.7: Empirical variograms for transformed NO3 data with spherical model adjusted

The existence of a model of spatial correlation enables the interpolation of measure-

ments to non observed locations, via Kriging methodology.

For each time period, predicted square root transformed values and the associated in-

terpolation errors, defined as the square root of the interpolation variance (2.26) are

summarized in Table 2.3. As for the sampled measurements, lower values for the mean

Table 2.3: Summary of square root predicted NO3 concentration and associated

interpolation error

Spring’08 Fall’08 Spring’09 Fall’09

NO3 Pred. Error Pred. Error Pred. Error Pred. Error

Min 3.11 1.20 5.18 3.99 3.14 2.15 3.43 2.09

Median 8.99 3.36 9.17 4.81 9.60 3.96 9.82 3.89

Max 14.87 3.50 13.69 4.89 16.14 4.09 15.25 4.02

Mean 9.03 3.21 9.17 4.74 9.62 3.83 9.83 3.77

St. dev. 1.18 0.38 0.76 0.17 1.04 0.33 1.13 0.32
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2. SPATIAL GEOSTATISTICS

and the median are registered in 2008. Also for this year, the range of predicted trans-

formed concentrations is lower than for 2009, being the predictions related to Fall of

2008 the ones exhibiting less spreaded values. In terms of interpolation error, the mean

and median values are of similar magnitude, except for Fall of 2008, where one can find

larger values.

Maps are a valuable tool to better understand the spatial distribution of predicted

concentrations across the study region. As can be observed in Figure 2.8 lower values

(represented by the green shades) occur on the northern part, probably due to the

proximity to a river. In the southern part, once there are no sampling locations nearby,

the expected NO3 concentrations exhibit no variation.
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Figure 2.8: Prediction maps of square root transformed NO3 concentration for each time

period

As a measure of accuracy of the predicted values, maps of interpolation errors (Figure

2.9) show, as was to be expected, that more accurate values are those near the sam-

pling locations. It is worthwhile to mention the fact that higher values of interpolation

error occur in the southern part of the region under consideration, where less sampling

locations are available.
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Figure 2.9: Interpolation error maps of square root transformed NO3 concentration for

each time period

Estimating the risk of exceeding regulatory thresholds

It may be the case that the primary objective of a given study is to predict the risk

of exceeding particular values, such as regulatory thresholds of environmental contami-

nation. For that, geostatistics is increasingly used to estimate and map that risk, as

one possible way of identifying polluted areas is mapping pollutant concentrations.

Interpretation of probability maps is based on a level of risk above which appropriate

actions should be taken.

For NO3 concentration, Portuguese law 306/2007 state that water with concentration

above 50 mg/L should not be used for human purposes. In a way similar to the one used

previously to construct prediction maps, risk maps are generated by Indicator Kriging.

This procedure computes, using the samples in the neighborhood, the probability of

data values in a given area being greater than the imposed threshold.

To do so, data values are transformed into indicator values: original values which

exceed the chosen threshold value are coded 1, and those below the threshold value are

coded 0. With these new indicator data, Indicator Kriging is conducted with the same
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2. SPATIAL GEOSTATISTICS

algorithm as Ordinary Kriging. The resulting risk maps are presented in Figure 2.10.
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Figure 2.10: Contamination by NO3 risk maps for each time period

By comparing these maps, we can see that for both years, Spring has a higher risk than

Fall, probably because observations were collected after land chemical preparation for

agricultural purposes. Also, for all observation periods, the risk of exceeding regulatory

threshold is higher in the southern area of the observed region, which is in the same

way as in the prediction maps. This is probably due not only to the existence of a

river in the northern part of the study region, which can help to remove some of the

groundwater pollution, but also to the reduced number of sampling locations in that

area.

As a consequence of this study, the identification of a spatio-temporal model for this

area would probably be a way to better understand the behavior over time of this

vulnerable zone. That will not be done here, once this application was developed only

for a illustrative purpose of a spatial analysis.
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3

Environmental biomonitoring in

mainland Portugal

3.1 Introduction

Among the pollutants affecting the environment, heavy metals belong to the most se-

rious ones. The international mapping project Atmospheric Heavy Metal Deposition

in Europe is surveying the atmospheric deposition of heavy metals using moss species

as biomonitors, with the aim of investigate the existence of correlations between heavy

metal concentrations in mosses.

Mosses are widely used as biomonitors of atmospheric heavy metal deposition. In Eu-

rope, they have been used since 1990, with the aim of map spatial and temporal patterns

of accumulation in ecosystems (Holy et al. (2009)). Some examples of studies related to

the use of moss samples are Diggle et al. (2010) using moss data from Galicia, northern

Spain, on the context of analyzing the effect of preferential sampling on prediction,

but not taking into account the temporal representativeness of data, Harmens et al.

(2010) considering data from several countries across Europe, Steinnes et al. (2003)

and Steinnes et al. (2011) concerning Norway data, Zechmeister et al. (2008) with data

from Austria.

Uyar et al. (2007) mentions several advantages of using moss samples: the vast geo-

graphical distribution and the abundant grow in various natural habitats; the non-

existence of epidermis or cuticle enabling their cell walls to be easily penetrable for

metal ions; as mosses have no root systems, they obtain minerals mainly from air and
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precipitation; the effect and contamination of soil by heavy metals is negligible for most

mosses, so they show the concentrations of the most metals correlated to the amount

of atmospheric deposition. The simple procedure of sampling and of cheap chemical

analysis also makes mosses especially suitable organisms for the purpose of monitoring.

Originally the biomonitoring network for the mapping project above mentioned, was

established in 1980 after a Swedish initiative. Since then, the number of participant

countries have increased, reaching twenty-eight European countries and over 6,000 sam-

pling sites in the 2005 survey. The responsibility for the coordination of the survey, since

2001, belongs to the International Cooperative Programme, Vegetation Programme Co-

ordination Centre at the Centre for Ecology and Hydrology (CEH), UK (Harmens et al.

(2010)).

Portugal was one of the participating countries in the Atmospheric Heavy Metal De-

position in Europe project, performing surveys every 5 years since the beginning of

the project in 1990. Moss samples of species Hypnum cupressiforme and Scleropodium

touretti were collected in three nationwide surveys across mainland Portugal, referred

to as the 1992, 1996 and 2002 surveys, and in an additional survey restricted to the

central part of mainland Portugal performed in 2006. Due to the fact that this last

survey was restricted to the center part of mainland Portugal and at different locations

from the previous, it was not included in what follows.

Although the number of sampling locations was not the same throughout the surveys,

146 of those were common to the first three surveys (Figure 3.1). Sampling locations

were selected in order to be representative of background areas, collected in a 30×30km

grid, although near large urban or industrial areas the sampling design was intensified,

being the grid adjusted to 10× 10km.

Chemical analysis yielded concentration measurements of Cadmium (Cd), Chromium

(Cr), Copper (Cu), Iron (Fe), Manganese (Mn), Nickel (Ni), Lead (Pb) and Zinc (Zn).

Further details on the sampling and analysis procedure can be found in Figueira et al.

(2002) or Martins et al. (2012).

As stated before, the sampling design was not uniform throughout the whole region

under study, opposite to the examples presented in Boquete et al. (2011) and Steinnes

et al. (2011). There are cases where sampling is intensified in subregions where a large

gradiente of the measured variable is expected (Diggle et al. (2010)). In fact, one possi-

ble aim of an air monitoring network might be to identify larger values of pollution, so
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sampling locations could be selected based on high values rather than randomly (Gut-

torp & Loperfido (2008)). Specifically, in the Portuguese case, sampling locations are in
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Figure 3.1: Map of Portugal showing the sampling locations shared among the three

surveys

a larger number at regions with high industrial or urban density, such as in the region

of Lisboa and Tejo valley, in the area between Porto and Aveiro, and near Sines oil

refinery. This motivates the use of a function of the sampling intensity as explanatory

variable when modelling air pollution data from Portugal.

The issue of using covariates in spatio-temporal models and testing for its significance

is addressed in Dı́az-Avalos et al. (2014) in the context of point processes. Particularly

in the applications that follow, the inclusion of this variable will be obtained by a spa-

tial kernel smoothing of the sampling locations density. As it should be expected, the

larger values of this smooth function, ranging from 3.14 to 27.48 and with mean value

equal to 11.62, occur in regions with higher sampling intensity (Fig. 3.2), where the

industrial or urban areas are located.

Next, a description of the Mn and Pb data is presented.
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Figure 3.2: Map of sampling locations intensity

3.2 Exploratory data analysis

Among the various heavy metals found in nature, manganese is one of the most abun-

dant and widely distributed, being found in waters, rocks and soils (Pinsino et al.

(2012)). The presence of this metal has not only a natural cause as a result of mine-

ral weathering and atmospheric deposition, but can also have anthropogenic origins,

such as municipal wastewater discharges, mining and mineral processing, combustion

of fossil fuels or emissions from the combustion of fuel additives (Howe et al. (2004)).

Although essential for humans, at higher levels of contamination manganese can be-

come toxic. Several studies relate chronic manganese excess with disturbances in the

central nervous system, with symptoms resembling those of Parkinsons disease (Perl &

Olanow (2007), Rocks & Levy (2008)).

Lead occurs naturally in the environment as well as in manufactured products. How-

ever, most lead concentrations that are found in the environment are a result of human

activities. The major sources of lead emissions have historically been from fuels and

industrial sources, such as mining and metal manufacturing, waste incinerators, battery
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3.2 Exploratory data analysis

recycling, among others. Airborne lead can be deposited on soil and water, thus reach-

ing humans via the food chain, causing several unwanted effects, such as anaemia, rise

in blood pressure, disruption of nervous systems, or diminished intellectual capacity in

children (Järup (2003)).

3.2.1 Distribution of the sample data

A preliminary descriptive analysis of both Mn and Pb concentration data for the three

considered surveys, with values expressed in units of mg(metal)/kg(moss), showed the

presence of outlier values. A Box-Cox transformation of data, with parameter λ = 0.15

for Mn, and λ = 0.06 for Pb, was carried out, in order to reduce the effect that these

values could cause in the estimation process.

Mn

The Mn concentrations in the original scale (Table 3.1) ranged from a minimum of

4.0mg/kg, recorded in the second survey, and a maximum value of 970.0mg/kg, which

occurred in the first survey. One can observe that the mean value has increased from

around 160mg/kg, in the first survey to almost 180mg/kg in the second survey, and

decreased to less than 150mg/kg in the third survey. A similar behavior occurred with

the median, and one can also observe that the variability of Mn concentration values

was always decreasing. It should be noticed the maximum recorded value for each

survey, particularly in the first one when the maximum was about six times the mean

value. This difference between the mean and the maximum value was not so marked in

the second and third surveys, although being also strong. Histograms for the original

data, for the Box-Cox transformed data and QQ-plots are in Figure 3.3, respectively on

the first, second and third row. As a consequence of outlier values, the distribution of

Mn data exhibits an asymmetry to the right. The first survey is strongly asymmetric,

but over time the asymmetry becomes not so marked.

After performing the Box-Cox transformation of data, the asymmetry has faded away

and the resulting distribution behaves like a Gaussian one (p-values in a Shapiro-Wilk

test for normality of 43.46%, 19.94% and 7.98%, respectively for the first, second and

third surveys.)
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Table 3.1: Data summary of Mn concentration (observed and Box-Cox trans-

formed values)

Survey

1992 1996 2002

Observ. Transf. Observ. Transf. Observ. Transf.

Min 16.00 3.39 4.03 1.54 23.14 3.96

Median 123.50 6.90 149.18 7.28 123.20 6.89

Max 970.00 11.63 685.55 10.73 503.11 9.97

Mean 161.62 6.88 178.62 7.13 147.12 6.85

St. dev. 147.97 1.69 136.01 1.65 99.28 1.41
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Figure 3.3: Histograms for the original (top row) and Box-Cox transformed Mn concen-

tration (middle row), and QQ-plots for transformed data
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Pb

In what respects the observed Pb concentrations (Table 3.2), the minimum value of

0.5mg/kg was recorded in the first survey and the maximum value, of over 191mg/kg,

was recorded in the second survey. For all the descriptive measures presented in Table

3.2, there was an increase from the first to the second survey and a broad decrease

from the second to the third survey. This was an effect probably caused by the more

frequent use of unleaded fuel, which was forced by Portuguese legislation at that time.

The variability of Pb concentration values also shared the same pattern of decreasing

values from the first to the third survey.

Table 3.2: Data summary of Pb concentration (observed and Box-Cox trans-

formed values)

Survey

1992 1996 2002

Observ. Transf. Observ. Transf. Observ. Transf.

Min 0.50 -0.67 2.00 0.71 0.68 -0.38

Median 13.00 2.78 15.70 2.99 3.11 1.17

Max 172.00 6.04 191.17 6.18 109.93 5.44

Mean 16.40 2.75 21.72 3.03 5.40 1.29

St. dev. 16.91 0.86 24.05 0.92 10.39 0.90

Histograms for data on the original scale, for the Box-Cox transformed data and QQ-

plots are in Figure 3.4, respectively on the first, second and third row. The presence of

outlier observations is even more notorious than was observed for Mn data, resulting

in right asymmetric distributions for the three surveys. The asymmetry, contrary to

what has been registered for Mn, persisted for the three surveys. In fact, one half of

the recorded measurements are under 3.11mg/kg for the third survey, while for the

first and the second surveys are, respectively, under 13.00 and 15.70mg/kg, indicating

that the asymmetry is even more notorious in the last period of observations. The

performed Box-Cox transformation of data mitigated the presence of outlier values,

nevertheless only for the second survey the resulting distribution has the behavior of

a Gaussian distribution (p-value of 5.23%). For this reason, in the application of the

spatio-temporal model to be introduced next in Chapter 6, derived in order to perform
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predictions of Gaussian data, the information about this heavy metal will not be con-

sidered.
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Figure 3.4: Histograms for the original (top row) and Box-Cox transformed Pb concen-

tration (middle row), and QQ-plots for transformed data

3.2.2 Spatial behavior of data

To better understand the spatial behavior of data, transformed concentration values

for both metals were predicted over a fine 300×100 grid covering mainland Portugal,

allowing to have a grid point at a distance of around 2 km from each other, and

interpolation errors were computed. The predicted concentration values were obtained

by using Ordinary Kriging (OK), as defined in Section 2.5. By (2.24) and assuming
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that the concentration Z(s), at location s, has constant but unknown expected value

E
[
Z(s)

]
= µ, the predicted concentration is given by

Ẑ(s0) =

146∑
i=1

λi(s0)Z(si) (3.1)

where s0 is any location goal of prediction and λi, i = 1, . . . , 146 are the Kriging weights

chosen to satisfy the constraint
∑146

i=1 λi = 1.

With this aim, parametric exponencial models for the spatial dependence structure of

Z(s), whose parameters are detailed in Table 3.3, were adjusted to empirical vario-

grams.

Table 3.3: Exponential model parameters for Z(s), regarding Mn and Pb data

and for each survey

1992 1996 2002

Mn

τ̂2 0.84 1.45 0.90

σ̂2 2.35 1.53 1.17

φ̂ 99106.80 75000.00 75000.00

Pb

τ̂2 0.06 0.56 0.39

σ̂2 0.73 0.33 0.48

φ̂ 6471.80 18576.09 38615.67

Larger values for both the nugget effect, τ2, and the partial sill, σ2, are found for Mn,

for all surveys, although the larger values of τ2 are found for the second survey while

the larger values for σ2 are the ones related with the first survey. Also for the radius

of influence φ, Mn data produce larger estimates than Pb data, being the larger value

of almost 100km for Mn for the 1992 survey, and the minimum value of around 6.5km

for Pb data also for the 1992 survey. Parameter estimates were obtained by maximum

likelihood for Mn, and by ordinary least squares method for Pb, as for this metal only

the second survey behaves according to a Gaussian distribution.

Mn

Table 3.4 show a summary of the predicted Mn transformed concentrations for each

survey and the resulting prediction map (left) and interpolation error map (right). One
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can find the larger range of predicted transformed values for the first survey, taking the

value of over 5mg/kg and the lower range, of less than 4mg/kg, for the third survey.

The mean predicted value slightly increases from the first to the second survey and

decreases in the third survey. The interpolation error is of similar magnitude for all

surveys, although the second survey presents values slightly larger.

Table 3.4: Predicted Mn transformed concentration for each survey and asso-

ciated interpolation error

Survey

1992 1996 2002

Predicted Error Predicted Error Predicted Error

Min 4.66 1.02 4.81 1.30 4.88 1.04

Median 7.31 1.36 7.44 1.54 6.99 1.26

Max 9.71 1.82 8.98 1.77 8.59 1.47

Mean 7.20 1.39 7.29 1.54 6.97 1.26

St. dev. 0.98 0.21 0.68 0.13 0.63 0.12

It is known that contamination by Mn is mainly associated with the soil typology

(Figueira et al. (2002)). In accordance to this, for each survey, higher predicted
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Figure 3.5: Predicted Mn transformed concentration map and the associated interpola-

tion error map for the 1992 survey
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Figure 3.6: Predicted Mn transformed concentration map and the associated interpola-

tion error map for the 1996 survey

values, marked with light pink color in Figures 3.5, 3.6 and 3.7, occur in eastern and
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Figure 3.7: Predicted Mn transformed concentration map and the associated interpola-

tion error map for the 2002 survey

south-western Portugal, regions with less forestry and hence with more soil erosion.
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Pb

Regarding the predicted Pb concentration, the values obtained for each survey are sum-

marized in Table 3.5. As was to be expected, the mean (and the median) value increases

Table 3.5: Predicted Pb transformed concentration for each survey and asso-

ciated interpolation error

Survey

1992 1996 2002

Predicted Error Predicted Error Predicted Error

Min 0.01 0.37 2.12 0.84 0.19 0.70

Median 2.68 0.89 2.96 0.95 1.19 0.88

Max 5.52 0.89 4.23 0.95 3.01 0.94

Mean 2.68 0.87 2.99 0.93 1.20 0.86

St. dev. 0.17 0.04 0.18 0.02 0.28 0.07

from the first to the second survey, but for the third survey, the mean value is quite

lower. Like for Mn, the largest range of predicted transformed values was registered in

the first survey, being over 5.5mg/kg.

For each survey, the graphical representation of predicted values and associated inter-

polation errors are in Figures 3.8, 3.9 and 3.10.Contamination by this heavy metal is

known to be mainly due to anthropogenic causes, particularly by emissions to ambient

air resulting from fuel combustion (Järup (2003)), thus larger predicted values, marked

with light pink color, are expected in areas where road traffic is more intense, near

major cities (Lisboa and Porto) or more densely industrialized (near Sines oil refinery).

This pattern is more notorious for the 2002 survey, where higher values are expected

to occur as well in the north-eastern area, near an important borderland with Spain.

It should be noticed the particular case of the interpolation errors map for the 1992

survey. From Table 3.3, it can be seen that the radius of influence for this survey

is under 6.5km, about one third of the value for the second survey, and even less if

comparing with the third survey. This is an indicatory sign for the pattern in the error

map, which can be also checked in the second column of Table 3.5, where the median

of errors equals the maximum error.
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Figure 3.8: Predicted Pb transformed concentration map and the associated interpolation

error map for the 1992 survey
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Figure 3.9: Predicted Pb transformed concentration map and the associated interpolation

error map for the 1996 survey
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Figure 3.10: Predicted Pb transformed concentration map and the associated interpola-

tion error map for the 2002 survey

3.3 Spatial prediction considering covariates

Once the aims of this work are centered in the spatio-temporal behavior of data, the

predictions to be made in the following chapters will be restricted to the most recent

survey. For that reason, in the present section predictions will also be made only for

the 2002 survey.

The effect of considering country specific information on predicted concentration values

and on interpolation error, is now analyzed. For the particular case of the Portuguese

data here considered, several covariates were tested for significance, namely location

coordinates themselves, as well as the intensity of sampling locations. Results showed

that only the later covariate was significant.

The spatial analysis using Ordinary Kriging, presented in Section 3.2.2, may now be

deepened. When considering the sampling location intensity as explanatory variable,

the expected value E
[
Z(s)

]
is a function µ(s) of the observed location. This way,

the interpolation procedure corresponds, according to Cressie (1993), to the Universal

Kriging (UK), or Kriging with external trend as Goovaerts (1997) defines. Details on

µ(s) modelling will be given latter in Chapter 5, when introducing an extension of an

existing spatio-temporal model.
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3.3 Spatial prediction considering covariates

To proceed with the interpolation task, parametric models for the spatial dependence

structure of Z(s)−µ(s) were fitted to empirical variograms, both for Mn and Pb, whose

parameters are detailed in Table 3.6. The nugget effect τ2 and the partial sill σ2 are

Table 3.6: Exponential model parameters for Z(s) − µ(s), restricted for 2002

data

τ̂2 σ̂2 φ̂

Mn 0.89 0.92 49999.90

Pb 0.33 0.44 26587.30

of similar magnitude for each metal, although the estimates for Pb are about half of

the corresponding estimates for Mn. This same behavior is present for the radius of

influence φ, about 50 km for Mn, but only around half of this value for Pb.

Figure 3.11 shows the empirical variogram with adjusted exponential covariance model.
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Figure 3.11: Empirical variogram with exponential fitted variogram, restricted for 2002

Mn (left) and Pb (right) transformed data, after removing the covariate information (given

by the sampling location intensity)

The identification of these covariance models allowed to obtain the predicted trans-

formed concentration for both metals, at unobserved locations placed over the same

grid as in the previous application. The resulting predicted concentration values are

summarized in Table 3.7.

A simple analysis of these values reveals a symmetric behavior of the predicted con-

centrations for the two metals under consideration. The mean and the median are of
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Table 3.7: Predicted Mn and Pb transformed concentration considering covari-

ates for the 2002 survey and associated interpolation error

Mn Pb

Predicted Error Predicted Error

Min 4.39 1.03 0.13 0.66

Median 7.57 1.25 0.89 0.85

Max 8.58 1.37 3.25 0.89

Mean 7.40 1.24 0.99 0.83

St. dev. 0.63 0.09 0.33 0.05

similar magnitude in each metal. However, while for Mn they are closer to the maxi-

mum predicted value, suggesting a left asymmetric distribution, for Pb the results show

the opposite.

Maps of predicted values, as well as the associated interpolation error, are in Figures

3.12 and 3.13. Like in the prediction maps obtained when not considering the covariate

information, for Mn the higher predicted values are expected in the eastern and south-

ern regions of mainland Portugal, while for Pb higher predicted values are identified to

occur near major cities and near the borderline already mentioned.
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Figure 3.12: Predicted Mn transformed concentration map for the 2002 survey (left) and

the associated interpolation error map (right)
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Figure 3.13: Predicted Pb transformed concentration map for the 2002 survey (left) and

the associated interpolation error map (right)

3.4 Comparison of spatial prediction results

In the previous sections, predictions at unobserved locations were obtained for the 2002

survey, both for Mn and for Pb, first without considering the existence of explanatory

covariates and, after, considering the possible existence of explanatory covariates for

the process under observation. Particularly, the explanatory covariate considered was

related with the sampling design used when collecting the data.

Comparing the prediction results obtained by the two processes for the most recent

survey, summarized in the last columns of Tables 3.4 and 3.5, and in Table 3.7, one

can register that the predicted Mn values are of larger magnitude when considering

the covariate, while for Pb the larger values are encountered when not considering the

covariate. This means that by incorporating this information in the prediction spatial

model, the effect that would result in predicted values by ignoring a sampling design not

evenly representative of the area under observation, was mitigated. In the application

to the Portuguese moss data, where areas with more sampled locations are related to

lower values of Mn, while for Pb the behavior is just opposite, the Mn concentration

was being under-estimated and the Pb concentration was being over-estimated.
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4

Spatio-temporal geostatistics

4.1 Introduction

Initially, the main focus of geostatistics was in the modelling of variables which are

distributed in space, named by Matheron as regionalized variables. However, more

recently the focus turned on to the modelling of variables varying in both space and

time. The idea behind this evolution is that when data are collected in locations within

a spatial region and at varying times, the locations and the time themselves may help

to explain the data variability.

The extension of spatial geostatistical techniques into the space-time domain is not

straightforward. Difficulties do not arise from the fact that there is one more dimen-

sion to be incorporated in the model, but as a consequence that the spatial and the

temporal dimensions are completely different. For example, temporal characteristics of

the process, such as seasonality, are usually known. However, in space such a periodic

behavior is not possible to consider.

A realistic geostatistical spatio-temporal model should be able to take into account the

inherent differences between variation in space and in time, being this done through

the covariance function.
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4.2 Spatio-temporal geostatistics

Generalizing from the spatial framework introduced in section 2.2, let us consider a

spatio-temporal random field {
Z(s, t), s ∈ D , t ∈ T

}
(4.1)

where s are locations within the observation region D ⊂ IRd, observed at times t ∈ T.
Typically, d = 1, 2 or 3, and often T is a subset of the positive integers, T ⊂ ZZ+. The

spatio-temporal process (4.1) is generally characterized by its cumulative distribution

function

Fs1,...,sn,t1,...,tm(z1, . . . , znm) = P
(
Z(s1, t1) ≤ z1, . . . , Z(sn, tm) ≤ znm

)
(4.2)

Moments

The moment of order k of the random field Z(s, t), defined at any spatio-temporal

location (s, t) ∈ D × T is

E
[(
Z(s, t)

)k]
=

∫
xkdFS,T (x) (4.3)

provided this integral exists.

Expected value

The expected value of a random field Z(s, t) is defined to be the order-one moment,

µ(s, t) = E
[
Z(s, t)

]
(4.4)

for any spatio-temporal location (s, t) ∈ D × T.

Variance and Covariance

The variance of a random field Z(s, t) is defined as the second-order moment about the

expected value µ(s, t),

Var
[
Z(s, t)

]
= E

[(
Z(s, t)− µ(s, t)

)2]
(4.5)
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4.2 Spatio-temporal geostatistics

for any location (s, t) ∈ D × T. The covariance is defined by

CovST
(
Z(si, tk), Z(sj , tl)

)
= E

[(
Z(si, tk)− µ(si, tk)

)(
Z(sj − tl)− µ(sj , tl)

)]
(4.6)

for any spatio-temporal locations (si, tk) and (sj , tl) in D × T.

Strict stationarity

One random field Z(s, t) is said to be strictly stationary if its spatio-temporal cu-

mulative distribution function is invariant by any translation (hS , hT ) ∈ IRd × IR, that

is,

Fs1+hS ,··· ,sn+hS ,t1+hT ,...tm+hT (z1, · · · , znm) = Fs1,...,sn,t1,...,tm(z1, · · · , znm) (4.7)

Second-order stationarity

One random field Z(s, t) is said to be second-order stationary if its moments up to

order two exist, and are such that

• the mean function is modeled as a constant,

E
[
Z(s, t)

]
= µ,∀(s, t) ∈ D × T

• the space-time covariance function depends only on the spatial and temporal lags

hS = sj − si and hT = tl − tk,

CovST
(
Z(si, tk), Z(sj , tl)

)
= CST (hS , hT )

The function CST (., .) is usually known as the spatio-temporal covariogram.

Intrinsic stationarity

As the second-order stationarity assumption may not be met in practical applications,

a weaker version, of intrinsic stationarity, is also available for spatio-temporal random
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fields.

Z(s, t) is said to be intrinsically stationary if the expected value and the variance

of the increments Z(s, t)− Z(s + hS , t+ hT ) exist and are such that

• E
[
Z(s, t)− Z(s + hS , t+ hT )

]
= 0

• Var
[
Z(s, t)− Z(s + hS , t+ hT )

]
= 2γ(hS , hT )

where the function 2γ(., .) is the spatio-temporal variogram function.

The correlogram

The correlogram, ρST (., .) is, like in the spatial framework, the standardized version of

the covariogram,

CorrST
(
Z(si, tk), Z(sj , tl)

)
=

CovST
(
Z(si, tk), Z(sj , tl)

)√
CST (0, 0)

= ρST (si − sj , tl − tk) (4.8)

Relationship between the covariogram, the variogram and the correlogram

In a similar way as in the purely spatial setting,

γ(hS , hT ) = CST (0, 0)− CST (hS , hT )

ρ(hS , hT ) = 1− γ(hS , hT )

CST (0, 0)

(4.9)

Separability and full symmetry

According to Gneiting et al. (2007), although prediction in the space-time context only

requires the appropriate specification of the covariance structure, simplifying conditions

of stationarity, separability, and full symmetry are needed for estimation and modelling.

The need for these simplifying conditions results from the fact that observations are

made on the joint spatio-temporal process, not on one spatial and one temporal separate

processes. Thus, a separable formulation of the covariance structure as the product of
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4.2 Spatio-temporal geostatistics

a purely spatial component by a purely temporal one, allows for a computationally

efficient way to proceed with the inference and estimation task. Namely, the covariance

matrix can be expressed as the Kronecker product of two smaller dimension matrices

which arise from the purely spatial and the purely temporal components, turning its

determinant and inverse more easily computed. As a consequence of the definition

of separability, separable covariance models are being used even in applications where

they are not physically justifiable (Cressie & Huang (1999)).

The random field Z(s, t) is said to have separable covariance structure if there exist

purely spatial and purely temporal covariance functions, CovS and CovT , such that

∀(si, tk), (sj , tl) ∈ D×T,CovST
(
Z(si, tk), Z(sj , tl)

)
= CovS(si, sj)×CovT (tk, tl) (4.10)

Furthermore if, for all spatio-temporal locations (si, tk), (sj , tl) ∈ D×T, the covariance

function is such that

Cov
(
Z(si, tk), Z(sj , tl)

)
= Cov

(
Z(si, tl), Z(sj , tk)

)
(4.11)

the space-time process Z(s, t) is said to have fully symmetric covariance structure.

It can be shown that a separable covariance must be fully symmetric, but fully sym-

metric covariances may not be separable ones.

To assess the appropriateness of separability of a spatio-temporal covariance model,

several procedures are available. Fuentes (2006), considering a spectral interpretation

of separability and only one realization of the spatio-temporal process, reduces the test

for separability to a simple two-way ANOVA procedure. Mitchell et al. (2006) propose

a likelihood ratio test of separability in the context of multivariate repeated measures,

decomposing the covariance matrix as a Kronecker product. Crujeiras et al. (2010)

propose a nonparametric test based on the additivity of the log-spectrum considered

as a regression function. Scaccia & Martin (2005) propose a spectral method to test,

first, axial symmetry, and then, if this hypothesis is not rejected, to test separability

for spatial lattice processes. Applications of these tests of separability, in each one of

the mentioned works, require repeated measures or a sufficiently large number of time

observations.

Although the use of separable models is computationally desirable, the assumption of

separability is not always easily justifiable. This difficulty has led to the development

of nonseparable models, allowing for a wider range of space-time correlation structures
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to be considered. Some examples are Cressie & Huang (1999), de Iaco et al. (2002),

Bruno et al. (2003), Kolovos et al. (2004).

4.3 Spatio-temporal covariance models

In a similar way to the purely spatial setting, in order to a covariance function to be

a permissible one, it must be nonnegative definite, which is equivalent to say that the

(semi)variogram function needs to be nonpositive definite.

Although being possible to propose a spatio-temporal model and test for its permis-

sibility, as will be proposed latter on, in practical applications it is often the case to

choose one model among a set of models that are known to be permissible. A large

number of spatio-temporal covariance models, both separable and non-separable, have

been proposed in the literature. See, e.g., Kyriakidis & Journel (1999), Sherman (2011),

Cressie & Huang (1999), de Iaco (2010), Stein (2005), or Gneiting (2002).

The next short list of spatio-temporal covariance models is, by no means, exhaustive.

In fact, the choice of the models to mention at this stage was related to the particular

application to perform later in Chapter 6.

Metric model

The metric spatio-temporal covariance model (Dimitrakopoulos & Luo (1994)) is given

by

CST (hS , hT ) = C
(
a1‖hS‖2 + a2|ht|2

)
(4.12)

where the coefficients a1, a2 ∈ IR enable the comparison between space and time. The

metric model assumes the same type of covariance structure for the spatial and temporal

covariances, with possible changes in the range, which makes this a restrictive model.

As this model can be thought of as a spatial covariance model with an extra temporal

dimension, the permissible spatial models already known are available for use in (4.12).

In terms of the spatio-temporal variogram, the metric model is represented, by (4.9)
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and (2.10), as

γST (hS , hT ) = γ
(
a1‖hS‖2 + a2|ht|2

)
(4.13)

where γ(.) is an isotropic spatial variogram.

Product model

The product (or separable) space-time covariance model (Rodriguez-Iturbe & Mejia

(1974), de Cesare et al. (2001)) is given by

CST (hS , hT ) = k · CS(hS) · CT (ht) (4.14)

where k ∈ IR, and CS and CT are admissible spatial and temporal covariance models,

which can be combined in product form to give spatio-temporal covariance models.

This model separates the spatial dependence from the temporal one. The parameter k

is computed using (4.14) by setting both hS and hT equal to zero,

k =
CST (0, 0)

CS(0) · CT (0)

Opposite to the metric model, the product model allows for different spatial and tem-

poral covariance structures.

This model can be proposed in terms of the spatio-temporal variogram γST (hS , hT ) as

γST (hS , hT ) = CT (0)γS(hS) + CS(000)γT (hT )− γS(hS)γT (hT ) (4.15)

being γS and γT , respectively, spatial and temporal variograms, and CS and CT , res-

pectively, spatial and temporal covariances.

Casal (2003) considers, as a particular case of this model, the separable exponential

semivariogram
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γST (hS , hT ) =


τ2 + σ2

(
1− exp

{
− hT

a
− hS

b

})
, hS 6= 0 ∨ hT 6= 0

0 , hS = 000 ∧ hT = 0

(4.16)

with τ2 ≥ 0 the nugget effect, a ≥ 0 a temporal scale parameter, b ≥ 0 a spatial scale

parameter and σ2 > 0 the partial sill.

Product-sum model

The product-sum space-time covariance model is an extension of the product model

(4.14), including an additional component involving the product of the spatial and the

temporal covariance models. The product-sum model (de Cesare et al. (2001)) is given

by

CST (hS , hT ) = k1 · CS(hS) · CT (ht) + k2 · CS(hS) + k3 · CT (ht) (4.17)

where k1 > 0, k2 ≥ 0 and k3 ≥ 0, for the model to be permissible. The product-sum

model allows for the specification of different types of covariance models for the spatial

and temporal components and, also, provides a mechanism for the interaction of the

space and time components, thereby offering more flexibility than the metric or the

product models (Denham (2012)).

As in the product model, also the product-sum model can be rewritten in terms of the

spatio-temporal variogram,

γST (hS , hT ) =
[
k2+k1CT (0)

]
γS(hS)+

[
k3+k1CS(000)

]
γT (hT )−k1γS(hS)γT (hT ) (4.18)

4.4 Spatio-temporal parameter estimation and prediction

To estimate the parameters of the covariogram, similar methods to spatial correlation

estimation may be applied here. The semi-variogram for a stationary spatio-temporal
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process is

γST (hS , hT ) =
1

2
E
[(
Z(s, t)− Z(s + hS , t+ hT )

)2]
(4.19)

The corresponding empirical spatio-temporal semi-variogram estimator is the primary

tool for inference and is defined by

γ̂ST (hS , hT ) =
1

2|N(hS , hT )|
∑

N(hS ,hT )

(
Z(si, tj)− Z(si + hS , tj + hT )

)2
(4.20)

where the set N(hS , hT ) consists of the points that are within spatial distance hS and

time lag hT of each other.

Once having identified a spatio-temporal covariance model, one can estimate the con-

tinuous process under observation at an unsampled space-time location (s, t). Generali-

zing the spatial setting (2.23) introduced in Section 2.5, the spatio-temporal kriging

technique produces estimates over a weighted linear combination of a subset of the

available data {z(si, tj), i = 1, . . . , N, j = 1, . . . , T}, or more specifically, a subset of

the residuals {z(si, tj) − µ(s, t), i = 1, . . . , N, j = 1, . . . , T}, which are dependent on

the specification of the mean function. he data to be considered in such a weighted

linear combination are selected according to the spatial and temporal distance from the

estimation datum, and the weights are computed by taking into account the proximity

of each observation to the prediction location.

Spatio-temporal kriging has the same principle of interpolation as the spatial kriging

has, that is, its a BLUE method.

As in the spatial setting, the objective of the estimator is to minimize the error variance

under the constraint of unbiasedness,

min σ2(s, t) = Var
[
Ẑ(s, t)− Z(s, t)

]
subject to

E
[
Ẑ(s, t)− Z(s, t)

]
= 0

(4.21)

where the estimator Ẑ(s, t) is defined by
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Ẑ(s, t)− µ(s, t) =

n(s,t)∑
i=1

λi(s, t)
(
Z(si, ti)− µ(si, ti)

)
(4.22)

which varies depending on the chosen covariance model adjusted to the empirical semi-

variogram.

Typically the spatio-temporal random field Z(s, t) is decomposed as the sum of a trend

component µ(s, t) and a stationary, zero mean random field residual component R(s, t),

with covariance function CR(hS , hT ),

Z(s, t) = µ(s, t) +R(s, t) (4.23)

and such that E
[
Z(s, t)

]
= µ(s, t).

Simple Kriging

The Simple Kriging technique assumes the mean component known and constant,

µ(s, t) = µ, ∀(s, t) ∈ D × T, meaning that this technique does not adapt to local

trends. This allows to rewrite the estimator (4.22) as

Ẑ(s, t) =

n(s,t)∑
i=1

λi(s, t)
(
Z(si, ti)− µ

)
+ µ

=

n(s,t)∑
i=1

λi(s, t)Z(si, ti) + µ ·
[
1−

n(s,t)∑
i=1

λi(s, t)Z(si, ti)
] (4.24)

The weights are computed in order to satisfy the minimization problem (4.21), using

the system of equations given by

n(s,t)∑
j=1

λj(s, t) CR(si − sj , ti − tj) = CR(si − s, ti − t), i = 1, . . . , n(s, t) (4.25)

considering the residual covariance between observations, and the residual covariance

between observations and the location goal of prediction. The resulting minimum error
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variance is

σ2 = CR(0)−
n(s,t)∑
i=1

λi(s, t) CR(si − s, ti − t) (4.26)

Ordinary Kriging

Ordinary Kriging accounts for cases where the mean component is unknown but cons-

tant, being this component estimated simultaneously with the residual component.

Similarly to the Simple Kriging, the estimator (4.22) can be written as

Ẑ(s, t) =

n(s,t)∑
i=1

λi(s, t)
(
Z(si, ti)− µ(s, t)

)
+ µ(s, t)

=

n(s,t)∑
i=1

λi(s, t)Z(si, ti) + µ(s, t) ·
[
1−

n(s,t)∑
i=1

λi(s, t)Z(si, ti)
] (4.27)

where the weights are forced to sum to 1. Thus, (4.27) is equivalent to

Ẑ(s, t) =

n(s,t)∑
i=1

λi(s, t)Z(si, ti) with

n(s,t)∑
i=1

λi(s, t) = 1 (4.28)

The system of equations to solve the minimization problem (4.22) is



n(s,t)∑
j=1

λj(s, t) CR(si − sj , ti − tj) + µOK(s, t) = CR(si − s, ti − t), i = 1, . . . , n(s, t)

n(s,t)∑
i=1

λi(s, t) = 1

(4.29)

where µOK is a Lagrange parameter that accounts for the constraint on the weights.
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The resulting minimum error variance is

σ2 = CR(0)−
n(s,t)∑
i=1

λi(s, t) CR(si − s, ti − t)− µOK(s, t) (4.30)

4.5 One particular spatio-temporal model

The previous sections presented particularities in the modelling of spatio-temporal pro-

cesses. Many models have been proposed in the literature, however the interest in

choosing a particular one focuses on its behavior in the prediction task.

This section describes one of those spatio-temporal models, introduced in Høst et al.

(1995). Authors proposed a framework to accurately represent interpolation errors

when data are available from repeated observations of monitoring networks. This frame-

work takes into account that the use of different interpolation methods may provide

similar predicted values, but the inherent interpolation errors may be not comparable.

With this model description, the main goal is to assess the gain achieved in the predic-

tive accuracy at unsampled locations, when comparing with predictions based only on

the spatial information.

4.5.1 The model

The mentioned model states that the response variable value Z(s, t) at location s and

time t can be written as

Z(s, t) = µ(s, t) + ω(s, t)ε(s, t) (4.31)

where µ(s, t), ω(s, t) and ε(s, t) are space-time mutually independent random fields

representing mean, scale and residuals. This general formulation, for practical purposes,

is usually decomposed between spatial and temporal effects in the following way:

µ(s, t) = M1(s) +m2(t), (4.32)
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the sum of a purely spatial component M1(s), modelling the spatial mean variation,

and m2(t), a temporal modulation at discrete times, which corresponds to consider an

additive separability in the mean field µ(s, t). Moreover, one may assume multiplicative

separability in the scale field,

ω(s, t) = S1(s)s2(t), (4.33)

that is, rewrite ω(s, t) as the product of a purely spatial S1(s) component and a purely

temporal s2(t) component. In practical terms, M1(s) represents a mean random effect

in space and m2(t) the associated time correction, being approximately equal to zero.

In a similar way S1(s) represents a scale random effect in space and s2(t) the associated

time correction being approximately one. The random component ε(s, t) identifies the

remaining space-time interactions not captured by the foregoing components.

This model aims to be simple, appealing and, mainly, it may cover a wide range of

practical situations, where it is reasonable to assume time and space separability.

M1(s) and S1(s) are considered as realizations of second-order stationary random

fields, with the first-order moments of fields M1 and S1 such that E
[
M1(s)

]
= µ and

E
[
S1(s)

]
= ν, and furthermore E

[
ε(s, t)

]
= 0 and Var

[
ε(s, t)

]
= 1.

It is of interest to note that, once the space-time mean random field is mainly decom-

posed by a spatial mean component, added with a time correction, this model becomes

suitable for cases where observations are in a larger number in space than in time.

4.5.2 Variance of predictions

In Høst et al. (1995), the authors also propose how to compute the interpolation error,

defined as the interpolation standard deviation, at an unmonitored location s0 and a

monitored time ti,

Var
[
Z(s0, ti)− Ẑ(s0, ti)

]
= Var

[
M1(s0)− M̂1(s0)

]
+

s22(ti) ν
2 Var

[
ε(s0, ti)− ε̂(s0, ti)

]
+

s22(ti)σ
2
S1

[
1− Corr

(
S1(s0), Ŝ1(s0)

)
Corr

(
ε(s0, ti), ε̂(s0, ti)

)]
(4.34)

denoting σ2S1
the variance of the scale field, and, from here, some special cases depending

on the particular mean, scale and residual fields obtained from the data. Among these,
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authors refer the cases where

(a) there is a known spatial mean field and a constant space scale field,

Var
[
Z(s0, ti)− Ẑ(s0, ti)

]
= s22(ti) ν

2 Var
[
ε(s0, ti)− ε̂(s0, ti)

]
or

(b) there is no structure in the spatial scale field,

Var
[
Z(s0, ti)− Ẑ(s0, ti)

]
= Var

[
M1(s0)− M̂1(s0)

]
+ s22(ti)

(
ν2 + σ2S1

)
Var
[
ε(s0, ti)− ε̂(s0, ti)

]
or

(c) the scale field variance is negligible,

Var
[
Z(s0, ti)− Ẑ(s0, ti)

]
= Var

[
M1(s0)− M̂1(s0)

]
+ s22(ti)ν

2Var
[
ε(s0, ti)− ε̂(s0, ti)

]
or

(d) the scale field variance and residual field variance are negligible,

Var
[
Z(s0, ti)− Ẑ(s0, ti)

]
= Var

[
M1(s0)− M̂1(s0)

]
(4.35)

The predicted value Ẑ(s0, ti) at an unsampled location s0 and an observed time ti, i =

1, . . . , T according to (4.31), is

Ẑ(s0, ti) = M̂1(s0) + m̂2(ti) + Ŝ1(s0)̂s2(ti)ε̂(s0, ti) (4.36)

where M̂1(s0) =
∑n

j=1 λjM1(sj), being M1(sj) the mean value of the temporal obser-

vations collected at location sj and λj the Kriging weights associated to the mean field;

m̂2(ti) =
∑n

j=1 λj
(
Z(sj , ti)−M1(sj)

)
; Ŝ1(s0) =

∑n
j=1 θj

√
S2(sj), being S2(sj) the es-

timated variance at each sampled location sj , and θj the Kriging weights associated to

the scale field; and, at last, ε̂(s0, ti) =
∑n

j=1 αji ε(sj , ti), being αji the Kriging weights

associated to the residuals field. Stated another way: M̂1(s0), Ŝ1(s0) and ε̂(s0, ti) rep-

resent the Ordinary Kriging estimates at s0 for fields M1, S1 and ε; m2(ti) and s2(ti)

represent the corresponding time corrections at time ti.
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4.6 Spatio-temporal prediction of manganese and lead data

Section 4.5 introduces one spatio-temporal model, allowing to make predictions at un-

observed locations and taking into account the temporal information of the random

field under study.

This model will now be considered to obtain the prediction map, as well as the inter-

polation error map, of manganese and lead concentration for the most recent survey.

4.6.1 Inference on model components

To obtain predicted concentration values, each component of Z(s, t) described in (4.31),

was estimated according to the details presented in Høst et al. (1995). For that, as

required by the characterization of this particular model, the independence of model

components was checked by inspection of pairwise scatterplots of estimated M1, S1 and

ε fields. Additionally, it is reasonable to assume separability in space and time in many

practical cases. As mentioned in Cressie & Huang (1999), separable models are often

chosen for convenience rather than for their ability to fit the data well.

For each of the mean, scale and residuals fields, parametric covariance models were

fitted to empirical variograms (Figure 4.1). In Table 4.1, we can find the resulting

parameters estimates. The estimated values for both the nugget effect and the partial

sill in the scale field are the lowest. As expected, the smallest radius of influence φ,

is found in the residuals field, pointing to a smaller spatial correlation. The estimated

values for the nugget effect in the mean field and the scale field for Mn are about

two times the correspondent ones for Pb, but the residuals field does not share this

Table 4.1: Exponential model parameters estimates for fields M1 (mean), S1

(scale) and ε (residuals)

Mn Pb

τ̂2 σ̂2 φ̂ τ̂2 σ̂2 φ̂

Mean 0.69 1.32 87469.40 0.30 0.18 50000.00

Scale 0.15 0.04 50000.00 0.08 0.05 50000.00

Residuals 0.74 0.30 15000.00 0.85 < 0.01 822.80
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Figure 4.1: Empirical mean (left), scale (center) and residuals (right) field variogram

with exponential parametric model, for Mn (top panel) and Pb (bottom panel)

same pattern. For σ2, the scale field presents similar values for both metals, but for

the mean field and the residuals field the estimated values for Mn are higher than for

Pb. It should be mentioned an approximately null value for the partial sill σ2 for the

residuals field of Pb, leading to an almost flat semivariogram (Figure 4.1, bottom right

panel).

The nugget effect τ2 can be attributed to measurement errors, or to small scale spatial

variability. Comparing estimates of this parameter for Mn, either the mean field and the

residuals field show values more than four times larger than the scale field, suggesting

more variability for the former fields. In case of Pb, the difference in values of small scale

variability is even more notorious, where the residuals field presents a value of τ2 ten

times larger than the scale field. Regarding the radius of influence, in the mean field of

Mn data are correlated up to a distance of almost 90km, whereas at the residuals field,

autocorrelation is detected up to 15km. For Pb, it is also in the case of the residuals

field that the shortest distance, of less than 1km, for autocorrelated data is detected.
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4.6 Spatio-temporal prediction of manganese and lead data

From here, estimated mean, scale and residual field maps (Figures 4.2 and 4.3) were

obtained over the prediction grid, based on the Ordinary Kriging approach as explained

before. Regarding the mean field prediction map for Mn and Pb, we can find a behavior

as in the prediction maps in Figures 3.12 and 3.13, revealing higher predicted Mn values

in regions with more soil erosion, and higher predicted Pb values in regions with more

urban or industrial intensity. Once the variogram for the Pb residuals field suggested

a pure nugget effect model, consequence of the nearly null estimative for σ2, it was

expected to obtain approximately constant values for this field. This pattern was not

observed for Mn, once the partial sill σ2 in the residuals field presents a much higher

value than for Pb, leading to more variability in estimated values.
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Figure 4.2: Estimated mean (left), scale (center) and residuals (right) maps for Mn

4.6.2 Spatio-temporal prediction

The identification of the components of model (4.31) allowed to compute the predicted

transformed concentration values for the 2002 survey, which are summarized in Table

4.2. Comparing results with the ones obtained previously (right most columns in Tables

(3.4) and (3.5)), one can find similarity between predicted values by means of a spatial

model or a spatio-temporal model. It is worthwhile noticing that the spatio-temporal
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Figure 4.3: Estimated mean (left), scale (center) and residuals (right) maps for Pb

model provides predicted transformed concentrations with lower amount of interpola-

tion error than the spatial one. A detailed interpretation of these error values will be

given latter in Chapter 5, when comparing results from a full set of prediction models.

Table 4.2: Predicted transformed concentration values obtained according to

model 4.31 for the 2002 survey and associated interpolation error

Mn Pb

Predicted Error Predicted Error

Min 4.87 0.92 0.67 0.59

Median 7.21 1.16 1.15 0.66

Max 8.72 1.45 2.16 0.70

Mean 7.03 1.17 1.16 0.66

St. dev. 0.73 0.14 0.19 0.03

The spatial pattern identified previously in Figures 3.7 and 3.10 is also captured by

this spatio-temporal model: higher predicted values in eastern territory for Mn, and

near major cities or industrialized regions for Pb.
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Figure 4.4: Predicted Mn concentration map for the 2002 survey (left) and the associated

interpolation error map (right)
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Figure 4.5: Predicted Pb concentration map for the 2002 survey (left) and the associated

interpolation error map (right)
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5

Extension of Høst model

5.1 Introduction

Preferential sampling refers to situations for which the sampling design process is

stochastically dependent of the spatial process. In such a situation, the geostatistical

modelling of the process under observation should take into account the information

about the sampling design (Diggle et al. (2010)).

Previously, in Chapter 3, the monitoring network concerning the Portuguese contri-

bution to the project Atmospheric Heavy Metal Deposition in Europe was introduced.

The network, approximately kept the same along the three surveys, was not equally

distributed over the observation region, as more data were collected close to industri-

alized areas. This is revealing of the presence of preferentially sampled locations or,

stated another way, means that the sampling design doesn’t conform to a complete

spatial randomness, according to Diggle (2003). This is an example of a feature specific

of this country’s surveys which should be considered when modelling data pollution.

The non randomness of sampling site selection is an issue still raising debate, originating

several publications on the subject. Menezes et al. (2008) suggest a kernel correction

dependent on the neighborhood density for the specific case of the variogram esti-

mation. Brus & de Gruijter (1997) present a comparison on some basic notions and

terminology of the design-based and the model-based approaches for spatial prediction.

Bruno et al. (2013) develop a conceptual design-based framework which emphasizes the

use of geographical information on population sites of the location where a value has

to be predicted from all other locations in the population. Shaddick & Zidek (2012)
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continue the work of Diggle et al. (2010) on preferential sampling, extending it to the

spatio-temporal domain. Gelfand et al. (2012) state that major differences can be found

in spatial prediction if using preferentially chosen or random sampled locations. The

issue of the choice of the sampling design is also addressed in Mateu & Müller (2012),

where a comprehensive state-of-the-art is presented for network designing and plan-

ning for spatial and spatio-temporal data acquisition, giving some detail on the choice

of a particular design criterion reflecting the purpose of the study, and mentioning

environmental application examples of spatio-temporal monitoring network design.

5.2 Extension of Høst model

Margalho et al. (2014) propose an extension of model (4.31)

Z(s, t) = µ(s, t) + ω(s, t) · ε(s, t)

= M1(s) +m2(t) + S1(s) · s2(t) · ε(s, t)
(5.1)

which consists in the expansion of the spatial component M1(s) of the mean field µ(s, t),

as a linear combination of spatial effects defined by a suitable number p of functions f,

M1(s) =

p∑
i=1

βifi(s) (5.2)

This extension is intended as a generalized regression model in the spatio-temporal con-

text, with regression coefficients βi, i = 1, . . . , p, allowing to take into account the exis-

tence of country specific relevant covariates explaining the survey process, for instance

the longitude or the latitude of sampling sites, or some index of industrialization. The

effect of the inclusion of these environmental covariates, occurring through the spatial

trend component, can be estimated in terms of the corresponding regression coefficients

βi. Note that by (5.2), the use of smoothing functions in the linear predictor is enabled.

When proceeding with prediction at an unobserved location and monitored time, the

estimation of each component of the proposed extension should occur as described for

equation (4.36). This approach relies on the Kriging interpolation technique, which is

known to provide linear and unbiased estimators.

64



5.3 Simulation study

5.3 Simulation study

With the purpose of validating the results of prediction obtained by means of the pro-

posed extension, we proceed with a simulation study where different prediction models

are applied to simulated data.

Two scenarios are considered, next identified as reduced number of times and large num-

ber of times. First, in a context similar to that of the real data set described in Chapter

3, where observations are available from three surveys, we simulate three data sets, one

per each survey, represented by n = 100 locations in the square [0, 10] × [0, 10] ⊂ IR2.

Second, using n = 70 locations, the number of data sets was augmented to thirty six,

allowing for the presence of a seasonal behavior. The latter scenario illustrates the

situation where one has monthly surveys happening along a total of three years.

For each scenario, a total of four models are under comparison. Two of such models

correspond to perform Ordinary Kriging for the latest survey data, not considering

explanatory covariates information, and to Universal Kriging, considering explanatory

covariates. The other two models are the one given in (4.31) and its proposed extension

(5.1)including covariates. From now on, these four models are referred to as: (i) spa-

tial model without covariates, (ii) spatial model with covariates, (iii) spatio-temporal

model without covariates and (iv) spatio-temporal model with covariates. The inclu-

sion of such covariates is performed according to the generalized additive model (5.2)

for the mean of the process.

Initially, we started by generating one stationary gaussian random field Z(s), with ex-

pected value equal to 5. The covariance function was assumed to be given by a spherical

or an exponential model with partial sill equal to 2.25, a range equal to 4, and assuming

the nugget effect τ2 null or equal to 0.1.

The sampling locations were elected aiming to reproduce the situation in which sample

data are collected where higher values of pollution are expected to be found. At this

stage, for each combination of the theoretical covariance model and nugget value, one

has a sample data set identifying the latest survey.

The location goal of prediction was defined as the central point of the observation re-

gion, that is, the point with coordinates (5,5), for the most recent survey.

65



5. EXTENSION OF HØST MODEL

Reduced number of times

Having one data set, two other data sets were generated according to an auto-regressive

model of order 1, AR(1), which corresponds to a total of three surveys happening at

the same locations. Hence, the application of spatio-temporal models was enabled, as

we have observed values at 100 spatial points along three time points.

For each model given above from (i) to (iv), a total of 100 independent replicates

were generated, each of which returning an estimate of Z(s), if the model is restricted

to space, or Z(s, t), if the model involves space-time data, for the last survey, at the

spatial point goal of prediction. The covariate included in this simulation study was the

intensity of the sampling design. For the spatio-temporal models, the estimated value

Z(s0, t) , where s0 = (5, 5) and t = 3, was determined according to the description

given in (4.36).

As a measure of accuracy, the absolute prediction error (APE)

APE = |Z(s0)− Ẑ(s0)| or APE = |Z(s0, t)− Ẑ(s0, t)| (5.3)

the absolute difference between the observed and the predicted value, was computed.

As a result, a set of sixteen values of the mean absolute prediction errors (MAPE) be-

came available, once four prediction models, two covariance functions and two nugget

values were considered. This measure of accuracy is one of the scoring functions men-

tioned in Gneiting (2011), which are suggested to be used to evaluate point forecasts.

Table 5.1 presents the results from this simulation study. The prediction models under

comparison including the considered covariate exhibit lower values for MAPE, when

compared with the models not including the covariate.

For each covariance function and for each value of τ2, bold identifies the minimum

MAPE value, which is attained by the spatio-temporal model with covariates. More-

over, the lowest values of the standard deviation of APE are also attained by the same

model. This is an indicator outcome of the gain, in terms of accuracy of predictions,

that results by including in the prediction model not only the historical information of

the process, but also the information provided by the given covariate in use.
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Table 5.1: Mean (and standard deviation) APE in the simulation study with a reduced

number of times, based on 100 replicates

Spatial Model Spatio-temporal Model

without with without with

τ2 covariate covariate covariate covariate

Sph 0 0.84 (0.67 ) 0.71 (0.52) 0.85 (0.67) 0.70 (0.51)

0.1 0.92 (0.71) 0.82 (0.62) 0.94 (0.71) 0.80 (0.60)

Exp 0 0.61 (0.46) 0.52 (0.37) 0.62 (0.47) 0.51 (0.36)

0.1 0.63 (0.40) 0.55 (0.34) 0.64 (0.39) 0.54 (0.33)

Large number of times

Under this second scenario, the goal was again to obtain predicted values for the last

survey at the spatial location s0 = (5, 5), considering the same four prediction models

as previously.

For each location s, selected after generating a stationary random field in the same

manner as previously, a time series of length 36 was generated according to the process

Z(s, t) = 0.2 cos
((π

6

)
t
)

+ 0.95Z(s, t− 1) + εt

with εt ∼ N(0, 0.7).

The process to obtain the predicted value by each model under comparison was, for the

possible combinations of covariance function and nugget value, as described before.

When analyzing the values of mean and standard deviation APE from the simulation

study (Table 5.2), one can register a better performance if an exponential model for

the covariance structure is considered, except in case of the spatio-temporal model

including covariates with a non-null nugget effect, for which the model with a spheri-

cal covariance structure provided the lowest value of MAPE. These results follow the

same direction as in the reduced number of times scenario, that is, the prediction model

including not only the temporal information but also an explanatory variable leads to

the lowest values of MAPE and corresponding standard deviation.

67



5. EXTENSION OF HØST MODEL

Table 5.2: Mean (and standard deviation) APE in the simulation study with a large

number of times, based on 100 replicates

Spatial Model Spatio-temporal Model

without with without with

τ2 covariate covariate covariate covariate

Sph 0 1.31 (1.10) 1.15 (1.01) 1.94 (1.38) 0.99 (1.00)

0.1 1.13 (0.74) 0.98 (0.67) 1.44 (0.96) 0.60 (0.46)

Exp 0 0.90 (0.69) 0.81 (0.63) 1.33 (0.99) 0.73 (0.49)

0.1 0.94 (0.64) 0.84 (0.58) 1.38 (0.88) 0.78 (0.52)

5.4 Spatio-temporal prediction of manganese and lead data

considering covariates

5.4.1 Inference on model components

With the aim of obtain interpolated concentrations at non-observed locations for the

most recent survey, spatio-temporal Mn and Pb data was complemented with country

specific information. The procedure adopted here was similar to the procedure adopted

in the application developed in Chapter 4, but including the selected covariate through

the spatial component M1(s) of the mean spatio-temporal random field µ(s, t).

The inclusion of this covariate was done by a generalized additive model as in (5.2),

M1(s) = β0 + β1f1(s)

being f1(s) a spline of the covariate sampling intensity. Table 5.3 presents the related

regression coefficients which, for each metal, were significant. The coefficients for Mn

are larger than for Pb. Therefore, the baseline coefficient β0 is capturing this different

scale of values. The effect of the covariate in the response variable is negative for Mn,

which suggests an under-estimation when not considering this covariate and for Pb, the

results show the opposite behavior.
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Table 5.3: Regression coefficients associated with the covariate sampling inten-

sity

Mn Pb

Estimate St. error p-value Estimate St. error p-value

β̂0 8.12 0.26 4× 10−66 2.17 0.14 5× 10−31

β̂1 -0.11 0.02 2× 10−7 0.05 0.01 1× 10−5

In Table 5.4 one finds estimates for the parameters of covariance models fitted to the

mean, the scale and the residuals fields. The graphical representation of these empirical

variograms with the respective fitted parametric covariance models is omitted, once it

is equivalent to the one in Figure 4.1. We expect to obtain more precise estimates,

Table 5.4: Exponential model parameters estimates for fields M1, S1 and ε,

when considering covariates (spherical model parameters estimates for ε field

in case of Pb)

Mn Pb

Mean Scale Residuals Mean Scale Residuals

τ̂2 0.50 0.15 0.81 0.32 0.04 0.91

σ̂2 0.97 0.03 0.24 0.10 0.06 0.01

φ̂ 50000.00 50000.00 15000.00 50000.00 25000.00 5000.00

as the influence of a non-democratic sampling design was removed with the inclusion

of the covariate. Here we can verify, as was noticed previously in Table 4.1, that the

smallest radius of influence φ, occurs for the residuals field in both metals. For Pb,

the estimated partial sill σ2 has a value almost null in the residuals field, suggesting

a pure nugget effect model. Regarding the nugget value τ2, the behavior follows the

same pattern as before, the mean field and the scale field with higher values for Mn,

residuals field with lower value for Mn.

The selected covariance models allowed for the estimation of the mean, scale and resi-

duals model components given in (4.31), and for the construction of the corresponding

maps, which are presented in Figures 5.1 and 5.2.

When comparing these maps with the ones in Figures 4.2 and 4.3, the effect of in-
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Figure 5.1: Estimated mean (left), scale (center) and residuals (right) maps for Mn,

considering covariates

cluding country specific information seems to be almost negligible in the mean field

for the Mn element, while for Pb the mean field map presents values that are more

discretized across the prediction region. Also for Pb, the radius of influence φ in the

residuals field is higher when considering the sampling intensity as covariate, hence the

predicted values are not as constant as before when not considering this covariate.

5.4.2 Spatio-temporal prediction

Values obtained according to the prediction model defined in (4.36) are summarized

in Table 5.5 and the corresponding maps are in Figure 5.3. When comparing the va-

lues in Table 5.5 with the ones in Table 4.2, one may observe that for Mn the range

of predicted concentration is larger when not considering covariates. However, both

the median and the mean of the predicted concentration are larger if the covariate is

considered. Regarding the predicted Pb concentration values, the range of predicted

values is also larger when not considering the covariate, being this same pattern shared

for both the mean and the median.
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Figure 5.2: Estimated mean (left), scale (center) and residuals (right) maps for Pb,

considering covariates

Table 5.5: Predicted transformed concentration obtained according to model

(4.31) for the 2002 survey and associated interpolation error, when considering

covariates

Mn Pb

Predicted Error Predicted Error

Min 4.30 0.80 0.61 0.59

Median 7.53 1.07 0.87 0.63

Max 8.93 1.18 2.00 0.65

Mean 7.37 1.06 0.94 0.63

St. dev. 0.66 0.12 0.25 0.02

5.5 Comparison of results obtained so far

So far, predicted transformed concentration values for the 2002 survey were already

obtained via four different prediction models,

• two purely spatial models, corresponding to Ordinary Kriging and Universal Kri-

ging

• two spatio-temporal models, the one defined by (4.31) and the proposed extension

detailed in (5.1) and (5.2) considering covariates
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Figure 5.3: Predicted transformed concentration map for the 2002 survey (left) and the

associated interpolation error map (right), for Mn (top panel) and Pb (bottom panel),

when considering covariates

Table 5.6 synthesizes the values presented in Tables 3.4 and 3.5 (right-most columns),

3.7, 4.2 and 5.5. One may observe that the median and the mean predicted concen-

trations are larger for Mn when considering covariates, both in the spatial and the

spatio-temporal models. In what respects the Pb predicted concentration, although

the standard deviation of predicted values is of similar magnitude for the four models,
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Table 5.6: Summary of predicted transformed concentration for the 2002 sur-

vey, via four different prediction models

Spatial model Spatio-temporal model

without with without with

covariate covariate covariate covariate

Mn

Min 4.88 4.39 4.87 4.30

Median 6.99 7.57 7.21 7.53

Max 8.59 8.58 8.72 8.93

Mean 6.97 7.40 7.03 7.37

St. dev. 0.63 0.63 0.73 0.66

Pb

Min 0.19 0.13 0.67 0.61

Median 1.19 0.89 1.15 0.87

Max 3.01 3.25 2.16 2.00

Mean 1.20 0.99 1.16 0.84

St. dev. 0.28 0.33 0.19 0.25

the median and the mean take lower values when predictions are made considering

covariates.

These results underline the importance of considering the information about the sam-

pling design as a covariate. Otherwise, predicted values would be underestimated in

case of Mn, and overestimated in case of Pb.

5.5.1 Cross validation of sample data

As one may observe in the summary Table 5.6, different prediction methodologies lead

to different predicted concentration values. Cross validation, with the aim of comparing

different prediction methodologies, has been used in spatial statistics for the analysis of

prediction errors (Olea (2012)). In the application under consideration, to understand

the accuracy of the interpolated values obtained for the most recent survey, when using

each one of the methods described so far, an exercise of cross-validation was performed.

This means that one omits at each time one sampled location and interpolates the value

at that location as a function of the observed values at all other locations, resulting

in a set of 146 cross-validated values. Then, at each monitoring location, the APE,
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as defined in (5.3), was used as a discrepancy measure between the observed and the

predicted value.

The results obtained when comparing the mentioned methods are given in Table 5.7.

As it was to be expected, the lowest values of mean APE (MAPE) are produced by the

Table 5.7: Mean and standard deviation of the APE

Spatial Model Spatio-temporal Model

without with without with

covariates covariates covariates covariates

Mn

MAPE 0.95 0.93 0.94 0.92

Sd(APE) 0.65 0.65 0.64 0.65

Pb

MAPE 0.61 0.59 0.57 0.56

Sd(APE) 0.63 0.62 0.63 0.63

most informative model, i.e., the spatio-temporal model with covariates. We can also

observe that when comparing the spatial models with the spatio-temporal models, lower

values of MAPE are provided by the cases where covariates are considered. Values of

the standard deviation of the APE (Sd(APE)) are similar for the four models compared.

5.5.2 Assessing interpolation errors

Considering now the assessment of interpolation error for each one of the four models

previously mentioned, the resulting interpolation errors obtained when predicting Mn

and Pb concentrations for the most recent survey were compared.

At each unobserved location goal of prediction, the estimated interpolation error is de-

fined as the kriging standard deviation, if the prediction is made by means of a model

considering only spatial data, or as the positive square root of (4.34) or any of its par-

ticular cases, when considering spatio-temporal data. For the data concerning both Mn

and Pb concentrations, the interpolation error was estimated according to the specific

case of (4.35), which is suitable when the variances for the scale and the residuals fields

are negligible. Specifically, the values for the scale field variance and residual field
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variance were, when not considering covariates, 1.5 × 10−3 and 1.8 × 10−2 and, when

considering covariates, 1.64 × 10−1 and 1.17 × 10−2. For Pb the same procedure was

adopted to estimate the interpolation error, as the scale field variance and residual field

variance were 8.72×10−3 and 2.48×10−12 or 1.18×10−1 and 3.02×10−7, respectively

when considering or nor considering covariates.

Table 5.8 summarizes, from the information in Tables 3.4 and 3.5 (right-most columns),

3.7, 4.2 and 5.5, the obtained interpolation error values, for the same grid 300×100 un-

der consideration covering mainland Portugal, which is composed by 30.000 grid points

at a distance of around 2 km from each other. It shows a decrease both in the central

Table 5.8: Interpolation error values summary when predicting 2002 Mn and

Pb concentrations

Spatial Model Spatio-temporal Model

without with without with

Interpolation Error covariates covariates covariates covariates

Mn

Min 1.04 1.03 0.92 0.80

Median 1.26 1.25 1.16 1.07

Max 1.47 1.37 1.45 1.18

Mean 1.26 1.24 1.17 1.06

St. dev. 0.12 0.09 0.14 0.12

Pb

Min 0.70 0.66 0.59 0.59

Median 0.88 0.85 0.66 0.63

Max 0.94 0.89 0.70 0.65

Mean 0.86 0.83 0.66 0.63

St. dev. 0.07 0.05 0.03 0.02

tendency and in the dispersion measures for the interpolation error, with exception for

the standard deviation, from the ”worst” scenario (spatial model without covariates)

to the ”best” scenario (spatio-temporal model with covariates). Comparing the spatial

with the spatio-temporal model, less dispersion is found if covariates are taken into

account.

In summary, if the emphasis is put on the prediction accuracy rather than on the pre-

diction itself, these results emphasize that the most informative model, i.e. the one
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using explanatory covariates together with temporal information, leads to the lower

amount of prediction error.
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6

A multivariate spatio-temporal

model

6.1 Introduction

Nowadays, due to technology developments and worldwide policies, environmental mo-

nitoring networks are providing large amounts of data exhibiting a spatial and a tem-

poral correlated nature, and as a consequence a large number of models and techniques

to analyze this sort of data has emerged. Some references on the subject of spatio-

temporal modelling are Kyriakidis & Journel (1999) reviewing stochastic models in-

volving the extension of spatial analysis tools to include the time dimension, de Cesare

et al. (2001) with a discussion on some classes of models and the introduction of the

so-called product-sum model, Sahu & Mardia (2005) with a review on methods for

modelling spatio-temporal point referenced data, Sherman (2011) with a brief survey

of several types of spatio-temporal covariance models, Huang et al. (2007) comparing

four spatio-temporal models covering the situations of separability and non-separability,

Cameletti et al. (2011) with a comparison of six alternative spatio-temporal models be-

longing to the class of Bayesian hierarchical models and providing criteria to choose

among them.

In environmental sciences, typically data are collected through monitoring stations.

Shaddick & Wakefield (2002) uses daily pollution data collected at eight monitoring

sites within London, measuring the pollutants particulate matter PM10, carbon mono-

xide, nitrogen oxide and sulphur dioxide over the period from 1994 to 1997, Fanshawe
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et al. (2008) models PM4 levels in the United Kingdom, using data routinely collected

from 20 monitoring stations between 1961 and 1992, Lindstrom et al. (2011) considers

data from 20 sites in and around Los Angeles from an Air Quality System network

measuring ambient concentrations of air pollutants collected at a 2-week timescale,

from the beginning of 1999 until September 2009, Cameletti et al. (2011) models PM10

concentration in Piemonte region, analyzing daily data collected during 182 day from

24 sites.

However, data may also be collected through biomonitoring surveys covering extensive

areas. Some examples of studies involving moss samples as biomonitors of atmospheric

heavy metal deposition are Aboal et al. (2006) and Diggle et al. (2010) with data from

Galicia, northern Spain, Harmens et al. (2010) considering data from several countries

across Europe, Steinnes et al. (2003) and Steinnes et al. (2011) concerning Norway

data, Zechmeister et al. (2008) with data from Austria.

The aim of these different studies, however, is basically the same: to predict one at-

tribute of interest at an unmonitored location or time. The task of modelling such

data, with the concern for the accuracy of predictions, has to account for both spatial

and temporal interactions. To deal with this dependencies, different approaches can be

considered:

(i) a spatial-temporal data analysis with methods for random fields in IRd+1,

(ii) a multivariate spatial analysis for each time point, if the spatial dimension is

larger than the temporal, or

(iii) a multivariate temporal analysis for each location, if the temporal dimension is

larger than the spatial.

Although the first approach is less appropriate since space, which has not past, present,

or future, and time are not directly comparable, one can identify drawbacks also for

the second and the third approaches. Namely the fact that with the later, a possibly

existing temporal correlation can not be incorporated in predictions, and the fact that

with the former, predictions made for the last time point don’t take into account his-

toric data. Moreover, once the interpolation of observations in a continuous space-time

process should take into account the interaction between the spatial and the temporal
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components and allow for predictions both in unmonitored time and/or space, to per-

form separate analysis in time allows for predictions in space only, and reciprocally.

It is common to have studies, such as the ones mentioned before related to monitoring

stations, involving environmental spatio-temporal data containing a dense time dimen-

sion but only a sparse spatial one, as a result of the easiness of gathering data enabled

by modern technologies. That is not the case of the biomonitoring data being used in

this work, where measurements of heavy metal concentrations were made at 146 spatial

locations in only 3 surveys.

Our aim is to propose a naive spatio-temporal framework which incorporates into the

model both time and space correlations, capable to fit spatio-temporal data containing

a reduced number of time observations. Due to this particular characteristic of having

few temporal records, and under the hypothesis of separability of the correlation struc-

ture, it may be the case that the number of parameters to estimate in the temporal

correlation function equals the number of temporal observations, which corresponds

to have a saturated correlation model in the time dimension, i.e., a model perfectly

reproducing the data.

6.2 The model

We propose a spatio-temporal model for Gaussian data, collected at location s ∈ IR2

and time t ∈ IN, defined as

Y (s, t) = µ(s, t) + Z(s, t) + ε(s, t) (6.1)

Considering N locations observed at T surveys, the mean component µ(s, t), depending

on possibly observed covariates f(s, t), indexed in space or in time, will be considered

as

µ(si, tk) =

p∑
j=1

βjfj(si, tk) (6.2)

where E [Y (si, tk)] = µ(si, tk), i = 1, . . . , N, k = 1, . . . , T. Under matrix notation, one
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has

YYY = µµµ+ZZZ + εεε (6.3)

with

µµµ = M · βββ (6.4)

the product of the NT × (p + 1) design matrix M (being p the number of considered

covariates), and βββ, the vector of regression coefficients in the mean component (6.2).

The non-observed spatio-temporal process Z(s, t) is such that

ZZZ ∼MVN
(
0,Σ

)
(6.5)

and ε(s, t) represents Gaussian space-time measurements errors,

εεε ∼ N
(
0, τ2INT

)
(6.6)

with INT the identity matrix of order NT .

In the spatio-temporal process (6.5), Σ is a NT ×NT symmetric matrix, which can be

interpreted as a T × T block matrix such that for k, l = 1, . . . , T, the element on line i

and column j is

Σi,j,k,l = CovST
[
Z(si, tk), Z(sj , tl)

]
, i, j = 1, . . . , N. (6.7)

The proposed model assumes an isotropic and separable covariance structure, so we de-

fine purely spatial and purely temporal covariance functions, CovS and CovT , resulting

in

Σi,j,k,l = CovS (‖si − sj‖)× CovT (|tk − tl|)

= CovS (hS)× CovT (hT ) .
(6.8)

Section 4.2 introduces a brief review on available tests for space-time separability. The

definition of separability, according to (Bruno et al. (2003)), satisfies the two following

statements:

(i) the spatial covariance function is constant in time, so that

Cov
[
Z(si, tk), Z(sj , tk)

]
= Cov

[
Z(si, tl), Z(sj , tl)

]
for all (tk, tl), si, sj ∈ IR2, and
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(ii) the temporal covariance function is the same at all monitoring locations, regard-

less of the displacement between locations,

Cov
[
Z(si, tk), Z(si, tl)

]
= Cov

[
Z(sj , tk), Z(sj , tl)

]
for all (si, sj), tk, tl = 1, . . . , T.

6.2.1 Inference on model parameters

Under the assumption of second order stationarity, we allow two different interpre-

tations for the covariance function. The most common one (e.g., Rodriguez-Iturbe

& Mejia (1974), Sherman (2011)) considers a scale parameter σ2total representing the

overall variance, being the covariance matrix given by

Σ = σ2totalRS ⊗RT (6.9)

⊗ is the Kronecker product of matrices, and RS and RT are, respectively, the N ×N
spatial correlation matrix and the T×T temporal correlation matrix. As an alternative,

we propose to take into account different scale parameters for the spatial and the

temporal components,

Σ = σ2SRS ⊗ σ2TRT (6.10)

being σ2S the spatial variance and σ2T the temporal variance. Basically, this corresponds

to perform a re-parametrization of the overall variance, decomposing it as the product

of a spatial variance by a temporal one.

Regarding the spatial correlation matrix, and if a member of the exponential spatial

correlation function is considered, the element on line i = 1, · · · , N and column j =

1, · · · , N is [
RS(φS)

]
ij

=

[
exp

{
− 1

φS
‖si − sj‖

}]
(6.11)

Having in mind that only a reduced number of time observations is available, the

temporal correlation model is saturated, meaning that RT is a T × T matrix whose

elements, denoted by ρT |tk− tl| = ρk,l, k, l = 1, . . . , T, measure the association between

observations at time tk and tl.

Denoting by CY the covariance matrix of Y (s, t), which depends on the parameters τ2
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and θθθ =
(
σ2total, φS , ρk,l

)
or θθθ =

(
σ2S , σ

2
T , φS , ρk,l

)
, (ρk,l are T×(T−1)

2 parameters, with

l > k), we have

CY (τ2, θθθ) = Σ(θθθ) + τ2INT

Following standard results from the Gaussian distribution theory, the log-likelihood

function is

log L(τ2, θθθ) =− NT

2
log(2π)− 1

2
log
(
det
(
CY (τ2, θθθ)

))
−

− 1

2

(
YYY −M βββ

)t
C−1Y (τ2, θθθ)

(
YYY −M βββ

) (6.12)

being the Maximum Likelihood Estimator for βββ given by

β̂ββ =
(
M tC−1Y (τ2, θθθ)M

)−1
M tC−1Y (τ2, θθθ)YYY (6.13)

The log-likelihood function (6.12) depends on 6 + (p+ 1) parameters, if one considers

(6.9), or 7 + (p + 1) in case of (6.10). The advantage resulting from the knowledge of

an analytic estimator for the parameter vector βββ is a reduction on the computational

effort required for the parameter estimation.

The difference on the number of parameters in the log-likelihood function results from

the re-parametrization of the overall variance σ2total in (6.9) by (σS · σT )2 . Hence, it

should be expected to find an estimate σ̂2total close to the product σ̂2S · σ̂2T .

6.2.2 The theoretical semi-variogram

The space-time semi-variogram γ(hS , hT ) of the non-observed spatio-temporal process

Z(s, t) is

γ(hS , hT ) =
1

2
Var
[
Z(s, t)− Z(s + hS , t+ hT )

]
(6.14)

The relationship

γ(hS , hT ) = CovST (0, 0)− CovST (hS , ht)
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under the second order stationarity conditions, between γ(hS , hT ) and the space-time

covariance function is well known (see, e.g., Cressie & Wikle (2011), Sherman (2011)),

and was previously indicated in (4.9).

If the covariance structure (6.9) is considered, then

CovST (0, 0) = Var [Z(s, t)]

= σ2total

and

CovST (hS , ht) = σ2total · ρS(hS) · ρT (hT )

where ρS(hS) = ρS(‖si − sj‖) and ρT (hT ) = ρT (|tk − tl|) represent, respectively, the

elements of the spatial and temporal correlation matrices.

Hence, assuming an exponential spatial model,

γ(hS , ht) = σ2total −
(
σ2total · ρS(hS) · ρT (hT )

)

=


0 , hS = 0 ∧ hT = 0

σ2total

(
1− exp

{
− 1

φS
hS

}
· ρT (hT )

)
, hS 6= 0 ∨ hT 6= 0

(6.15)

Equivalently, if (6.10) is assumed, one has

γ(hS , hT ) =


0 , hS = 0 ∧ hT = 0

σ2Sσ
2
T

(
1− exp

{
− 1

φS
hS

}
· ρT (hT )

)
, hS 6= 0 ∨ hT 6= 0

(6.16)

Again, these two versions for the semi-variogram are analogous, only differing on the

re-parametrization of the variance. The resulting advantage of considering this decom-

position comes from the capacity to assign different magnitudes to the spatial and the

temporal variability, which is not allowed in (6.15).
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6.2.3 Prediction at unsampled locations

The model described in (6.1) assumes that the hidden process Z(s, t) and the mea-

surement error ε(s, t) are Gaussian ((6.5) and (6.6)). It is well known (e.g. Cressie &

Wikle (2011)), that for a non-observed location s0 and a time t0, the joint distribution

of Y (s0, t0) and YYY is

[
Y (s0, t0)

YYY

]
∼ MVN

([
µ(s0, t0)

µµµ

]
,

[
C0,0 cT0
c0 CY (τ2, θθθ)

])
(6.17)

where µ(s0, t0) =
∑p

i=1 β̂ifi(s0, t0) and µµµ is defined by (6.2), C0,0 = Var [Y (s0, t0)] ,

c0 = Cov [Y (s0, t0),YYY ] , and CY (τ2, θθθ) = Σ(θθθ) + τ2INT with Σ(θθθ) as in (6.7).

The predicted value Ŷ (s0, t0) at an unsampled location can be obtained from (6.17),

being given by

Ŷ (s0, t0) = E
[
Y (s0, t0)|YYY

]
= µ(s0, t0) + cT0 C−1Y (τ2, θθθ)

(
YYY −µµµ

)
(6.18)

The variance of the prediction, also resulting from (6.17), is

σ2(s0, t0) = E
[
Y (s0, t0)− Ŷ (s0, t0)

]2
= C0,0 − cT0 C−1Y (τ2, θθθ) c0 (6.19)

In particular, if an exponential spatial model is assumed, c0 is the concatenation of T

vectors c1, c2, . . . , cT , each with dimension N × 1, where

ci = σ̂2total

(
exp
(
− 1

φ̂S
‖s0 − s1‖

)
ρ̂T (|ti − t0|), . . . , exp

(
− 1

φ̂S
‖s0 − sN‖

)
ρ̂T (|ti − t0|)

)t

or

ci = σ̂2S σ̂
2
T

(
exp
(
− 1

φ̂S
‖s0 − s1‖

)
ρ̂T (|ti − t0|), · · · , exp

(
− 1

φ̂S
‖s0 − sN‖

)
ρ̂T (|ti − t0|)

)t
with i = 1, 2, . . . , T, depending on assuming the covariance structure in (6.9) or in

(6.10).
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6.3 Simulation study

For model validation purposes, a simulation study was conducted. Gaussian data spa-

tially correlated, with zero mean, was generated on a set of N = 50 randomly chosen

locations considered in the square [0, 1]2, and at T = 3 time points according to an

AR(2) model, in order to be representative of a strong temporal correlation among the

three time points. To replicate the behavior of the real data set described in Chapter

3, having a region with more intensified sampling density, 15 of those locations belong

to the square [0.45, 0.55]2.

The mean component (6.2) includes the covariates intensity of sampling locations,

int(s), and the specific contribution of a given survey, vi(t), resulting in

µ(s, t) = β0 + β1int(s) + β2v2(t) + β3v3(t) (6.20)

where

vi(t) =


1 if t = i

i = 2, 3
0 otherwise

(6.21)

The reason to consider the covariate sampling intensity was previously detailed in

Chapter 4. The covariates v1 and v2 intend to accommodate situations in which, for

instance, a change in policies is expected to modify some outcome. That is the case,

as mentioned in Chapter 3, of the observed reduction on the scale of Pb measurements

at the 2002 survey, which could probably be attributed to new legislation forcing the

use of unleaded fuel.

The two different space-time covariance functions described in (6.9) and (6.10) (from

now on, called Scenario 1 and Scenario 2) were compared. The particular choice of the

parameter values for the mean component (6.20) were: β0 = 0, which indicates that the

expected value for the first survey is zero; β1 = 1, once the inclusion of the covariate

sampling intensity in the design matrix M in (6.2) was made by subtracting the mean

intensity of all locations to the intensity of each location, thus an unitary coefficient

turn the contribution of the covariate to the mean dependent on the sign of that dif-

ference; β2 = β3 = 0, which means that the diference between the expected values of,

respectively, the second and the first survey, and the third and the first survey, is zero.

The parameters for the covariance function were ρT (|t1 − t2|) = ρT (|t2 − t3|) = 0.857

and ρT (|t1 − t3|) = 0.814, obtained from the autocorrelation function of an AR(2)
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model with φ1 = 0.6 and φ2 = 0.3; σ2S = 5, representing the mean of spatial variances

along time and σ2T = 0.75 representing the mean of temporal variances at each sample

location; σ2 = 4, representing the variance of all observations along time and space;

τ2 = 0.25; φ = 0.3, being approximately 30% of the maximum distance between two

sampled locations.

For each scenario 100 replicates were computed. For each replicate, the estimates of

β′s were computed according to (6.13) and the optimization method L-BFGS-B of the

function optim in R was used to obtain estimates for the other parameters. To assess

the predictive performance of each scenario, the mean and the standard error of the

estimates were computed. Results on the estimation of the model parameters may be

found in Tables 6.1 and 6.2.

Table 6.1: Estimates for the model parameters when considering the space-time covari-

ance function in (6.9)

True Param. Mean Std. Error

β0 = 0 0.042 0.102

β1 = 1 0.998 0.007

β2 = 0 -0.015 0.051

β3 = 0 -0.012 0.064

ρT (|t1 − t2|) = 0.857 0.838 0.006

ρT (|t1 − t3|) = 0.814 0.810 0.006

ρT (|t2 − t3|) = 0.857 0.844 0.005

log(σ2) = 1.386 1.078 0.029

log(τ2) = −1.386 -1.530 0.031

log(φ) = −1.203 -1.564 0.035

Although with no major differences, these estimates show lower values of standard er-

rors for the majority of the parameters if one considers separately the spatial and the

temporal variance contribution.

6.4 Application to environmental data

The model previously described in Section 6.2 will now be used to obtain predicted

values of heavy metal concentration at each point of the grid covering mainland Por-
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Table 6.2: Estimates for the model parameters when considering the space-time covari-

ance function in (6.10)

Param Mean Std. Error

β0 = 0 -0.043 0.096

β1 = 1 0.992 0.009

β2 = 0 -0.054 0.049

β3 = 0 -0.032 0.053

ρT (|t1 − t2|) = 0.857 0.847 0.005

ρT (|t1 − t3|) = 0.814 0.835 0.005

ρT (|t2 − t3|) = 0.857 0.853 0.006

log(σ2
S) = 1.609 1.465 0.015

log(σ2
T ) = −0.287 -0.432 0.015

log(τ2) = −1.386 -1.498 0.027

log(φ) = −1.203 -1.645 0.035

tugal, as in the previous application in Section 4.6 of Chapter 4, which corresponds to

have a prediction point every 2km. The development of this model was done assuming

data from a Gaussian distribution, hence predictions for the most recent survey will

be made only for Mn, as for Pb the Box-Cox transformed concentrations don’t fit this

distribution.

For this application, the assumption of separability considered in the definition of the

model will now to be assessed.

6.4.1 Assessing the separability assumption

An importante assumption in the model definition is the separability of the covariance

structure. This is a simplifying assumption frequently considered in environmental

modelling, as considerable computational benefits arise from this convenient property.

For the application under consideration, due to the reduced number of time obser-

vations, a formal test to ascertain the separability of the covariance structure is not

possible to perform.

Alternatively, we use the aid of the empirical spatio-temporal semivariogram to adjust

a spatio-temporal separable model (4.14), a metric model (4.12) and a product-sum

model (4.17). For each model, the resulting parameter estimates are in Table 6.3. By

87



6. A MULTIVARIATE SPATIO-TEMPORAL MODEL

default, exponential models were assumed in the covariance functions to obtain these

estimates.

Table 6.3: Parameter estimates for the adjusted variograms in Figure 6.1 (φ̂S

in meters and φ̂T in years)

Model Component τ̂2 σ̂2 φ̂

Separable Spatial 0.41 0.59 53108.81

Temporal 0.24 0.76 2.69

Joint — 2.45 —

Metric Joint 1.13 0.91 —

ProductSum Spatial — 1.58 69065.92

Temporal — 1.94 2.04

Joint 0.99 3.49 —

If a comparison is made with, for instance, the parameter estimates obtained for the

mean field in model (5.1)1, represented in the left-most column of Table 5.4, one can

find more similarity in the estimates for the nugget and the range of the spatial com-

ponent of the separable model.

There are some graphical differences between these several adjusted theoretical mo-

dels, which are being represented in Figure 6.1. The separable model captures more

precisely the behavior shown by the empirical semivariogram, detecting an increase of

variances from the first to the second survey, and a decrease for the third. Cressie &

Huang (1999) state that separable models are often chosen for convenience rather than

for their ability to fit the data well, so the assumption of separability will be assumed

for the Mn data.

As stated before, the definition of separability satisfies the statements (i) and (ii) in

page 80. In our application case, (ii) reinforces the fact of having a saturated temporal

correlation model. On the other hand, (i) means that the spatial structure is the same

for all surveys. Figure 6.2 shows in the left the empirical semivariograms related with

each survey and, in the right, cross semivariograms for time lags of 0, 1 and 2 surveys.

1The reason to choose this model is that it also considers the inclusion of covariates and the

separability on the correlation structure.
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Figure 6.1: Empirical (top left), separable (top right), Metric (bottom left) and Prod-

uctSum (bottom right) spatio-temporal semivariograms for Mn transformed data

The structure revealed by the cross semivariograms is similar independently of the lag

being considered, corroborating the assumption of equality of spatial structure for the

performed surveys.

6.4.2 Maximum likelihood estimates of the parameters

The parameter estimates of model (6.1), considering the covariance functions defined by

(6.9) and by (6.10), are given in Table 6.4. In particular, one can observe that, in either

case, the baseline effect estimate β0 is above seven units, being of similar magnitude

to the mean of the transformed Mn concentration. The inclusion of the covariate sam-

pling intensity, as detailed in the simulation study, was done considering the difference

between the intensity of each location and the mean of the intensity for all locations.

This way, the estimate of β1 resultant from (6.10) reflects more precisely the fact that

larger values of Mn concentration occur in regions with low urban or industrial density,
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Figure 6.2: Empirical semivariograms (left) and cross semivariograms for lags 0, 1 and 2

(right) for Mn transformed data

which corresponds also to regions with lower sampling locations intensity. The con-

tribution of the second and of the third surveys are estimated to be of different signs,

namely the second survey with a positive contribution and the third with a negative

one. However, the estimate of β3 for the covariance function described in (6.10) rein-

forces the contribution of the third survey to the decrease of predicted concentrations.

As was to be expected, the parameters related to the temporal correlation are equal in

either approach, denoting data strongly time correlated. Similarly, the nugget effect is

estimated equally by either approach. The covariance function given by (6.10) assumes

different spatial and temporal variances, contributing as a product to the covariance of

the process. It is worthwhile to notice that the product of the estimates of these pa-

rameters equals the overall variance estimate for (6.9). The estimates for the radius of

influence φ are also of similar magnitude for either approach, being approximately 55.5

km. The computation of the standard errors was made via Monte-Carlo simulation.

6.4.3 Prediction of Mn concentration for the most recent survey

These parameter estimates, together with (6.18) and (6.19), allowed to predict, for

the most recent survey, the Box-Cox transformed Mn concentration values and the

associated interpolation errors. This corresponds to adopt plug-in estimates of the

parameters that define the mean and the covariance structure of the Mn variable to

proceed with prediction. A brief summary of those predicted values is in Table 6.5. One
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Table 6.4: Model (6.1) parameter estimates with standard errors

Covariance function in (6.9) Covariance function in (6.10)

Parameter Estimate St. Error Estimate St. Error

β0 7.39 0.04 7.45 0.04

β1 -0.01 <0.01 0.01 <0.01

β2 0.21 0.01 0.15 0.01

β3 -0.14 0.02 -0.24 0.02

ρT (|t1 − t2|) 0.97 0.01 0.97 0.01

ρT (|t1 − t3|) 0.91 0.01 0.91 0.01

ρT (|t2 − t3|) 0.96 0.01 0.96 0.01

σ2
total 1.45 0.03 — —

σ2
S — — 0.98 0.01

σ2
T — — 1.48 0.02

τ2 1.02 0.01 1.02 0.01

φ (m) 58596.89 1421.10 58624.08 1470.20

can observe that the range of predicted values, in either situation, is similar, although

with larger predicted values when considering spatial and temporal scale parameters. In

fact, all the measures, with exception of the standard deviation, of the predicted values

according to (6.10) are larger than the ones obtained considering (6.9). Comparing

these results with the ones resulting from the extension of Høst model (Table 5.5), one

can register that model 6.1 produces lower median and mean values, even though either

the minimum and the maximum predicted Mn transformed concentration considering

separate spatial and temporal scale parameters, are larger. If predictions are computed

considering an overall variance, one can register that the minimum value, the median

and the mean are the lowest of all.

Figure 6.3 represents, on the left panel, the Mn predicted concentration map, while

the associated prediction error is in the right panel. As was to be expected, once

contamination by Mn is more associated to parameters describing soil typology and

sampling site conditions, and less related to anthropogenic contamination sources, the

higher predicted contamination values occur in the eastern part of mainland Portugal.

This spatial structure is captured by either approach for the covariance function.
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Table 6.5: Predicted Mn concentration for the 2002 survey and interpolation error values

Covariance function in (6.9) Covariance function in (6.10)

Parameter Predicted Error Predicted Error

Min 4.05 0.23 4.53 0.41

Median 7.10 0.72 7.21 0.79

Max 9.05 1.19 9.16 1.19

Mean 6.92 0.78 7.09 0.85

St. dev. 0.92 0.23 0.74 0.19

6.4.4 Cross validation study

Similarly to what was performed before in Section (5.5.1), an exercise of cross-validation

of results was developed to assess the accuracy of the predicted concentrations obtained

considering the two approaches for the covariance structure in (6.9) and in (6.10). The

technique in use for this cross-validation study was the same as before, that is, to leave

out at each time one sampled location and interpolate the value at that location as a

function of all other locations .

The APE was again considered to measure the discrepancy between the observed and

the interpolated value at each location. Results revealed the value 1.02 for the mean

APE, with a standard deviation of 0.81, no matter which approach for the covariance

function is considered.

This is not a surprising result, once the two sets of predicted values were obtained from

the same model, only with a different parametrization of the separable spatio-temporal

covariance structure. In fact, this finding reinforces the advantage of being able to iden-

tify two distinct parameters for variability, one for the spatial dimension and the other

for the temporal dimension, without compromising the accuracy of predicted values.
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Figure 6.3: Prediction map for the 2002 survey (left) and the associated interpolation

error map (right) for Mn transformed data, considering the covariance function given in

(6.9) (top row) or (6.10) (bottom row)
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7

Conclusions and future work

7.1 Conclusions

The main objectives of this work were centered in assessing the gain achieved in terms

of spatial prediction accuracy, when incorporating into the prediction model not only

the temporal dimension of data but also the information provided by explanatory vari-

ables of the process under observation. The motivation for this assessment resulted

from the need to apply spatio-temporal prediction techniques to data sparse in the

time dimension.

Typically, to deal with a reduced number of time observations, the temporal dimension

is treated as a covariate, or by interpreting the response random variable as resulting

from a multivariate spatial process. This work proposed to search for alternative ways

of incorporating in the modelling the temporal correlation itself. As a result of this

search, two different approaches were identified.

After introducing the fundamental concepts of spatial geostatistics, a practical illustra-

tion of them was performed by considering data related to water quality monitoring,

gathered along four different time periods. Results suggested the need to incorporate

in the prediction model the time dimension, to better understand the behavior of water

quality in the whole sampling region.

The fundamental concepts of spatio-temporal geostatistics, introduced in Chapter 4,

were also illustrated by means of an existing spatio-temporal prediction model. This

model focuses on the spatial dimension by defining random fields for the mean, the

scale and the residuals components, and incorporating the time dimension by means of
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strictly temporal random fields, which work as corrections for the temporal evolution

of the process. When geo-referenced information about the process under observation

is available, it could be incorporated in the mean field component, as pointed in Chap-

ter 5. The application of the mentioned model allowed to derive the predicted spatial

pattern of pollution by heavy metals over mainland Portuguese territory. Specifically,

data concerning concentrations of manganese and lead in moss samples, collected at

146 locations in three nationwide surveys, were used in the prediction procedure. Lat-

ter, the sampling locations intensity was considered as covariate, as the sampling was

intensified near urban or industrialized areas.

This application also allowed to compare, first, the effect induced by the inclusion of

the proposed covariate in the predicted concentrations and, second, the accuracy of

predicted values. When comparing predictions obtained considering the covariate with

the ones obtained when not considering, we have concluded that the inclusion of this

covariate corrected the predicted values in opposite directions, as the pollution by Mn

was being underestimated and by Pb was being overestimated, when the information

of the sampling intensity was not taken into account. In what respects the accuracy

of predictions, Table 5.8 is illustrative of the gain achieved not only by considering the

temporal information, but also the information related to the covariate in use.

Chapter 6 proposed a model-based approach, assuming the separability of the Gaussian

process under observation, in a way that the reduced number of time observations led

to a saturated temporal correlation model. The proposed model was derived in order to

accommodate not exclusively geo-referenced covariates, but also covariates associated

to the temporal behaviour of the process.

The data set considered to illustrate the application of the model was the one concerning

heavy metal concentration biomonitoring. Once the model requires the Gaussianity of

data, only Mn data was used. The predicted concentration values for the most recent

survey obtained by both approaches were similar, being the same conclusion valid for

the spatial pattern. However, in what respects the accuracy of predictions, the model-

based approach revealed to perform better.

In summary, the main contributions of this work reside in the extension of the model

proposed in Høst et al. (1995), allowing to accommodate relevante information for

the process under observation, and in the model-based approach which allows to in-

corporate, under the assumption of separability of the correlation structure, different
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parameters for spatial and for temporal variability.

7.2 Future work

The spatio-temporal model introduced in Chapter 6 was developed considering a re-

duced number of time observations. In the application of this model, the separable

spatio-temporal correlation function was factored by a purely exponential spatial cor-

relation function, and a purely temporal correlation function corresponding to a satu-

rated correlation function.

In the future, it would be of interest to apply this same model to predict concentrations

of other heavy metals, as well to investigate different spatial models rather than the

exponential for the spatial dependence structure.

It is also our concern to analyze the possibility of use different temporal correlation

models rather than a saturated one.

The data giving rise to the applications in Chapters 4 and 6 were originated by biomo-

nitoring studies. It is also of our interest to proceed with spatio-temporal modelling of

Portuguese environmental data from monitoring stations, with several observations in

time and incorporating information about the sampling process over time.
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