
A
ut

ho
r’

s
m

an
us

cr
ip

t,
pu

bl
is

he
d

in
Fa

st
A

bs
tr

ac
to

ft
he

In
te

rn
at

io
na

lC
on

fe
re

nc
e

on
D

ep
en

da
bl

e
Sy

st
em

s
an

d
N

et
w

or
ks

,2
00

9

Self Tuning With Self Confidence∗

Miguel Matos
University of Minho

mm@lsd.di.uminho.pt

José Pereira
University of Minho
jop@di.uminho.pt

Rui Oliveira
University of Minho
rco@di.uminho.pt

1. Introduction

Recent research on managing complex computing sys-
tems has focused on the autonomic computing vision: Sys-
tems should manage themselves according to an high level
administrator’s goal [5]. As an example, system compo-
nents should monitor the enviroment and self-tune to meet
quality of service expectations, without requiring manual
intervention in the selection of concrete configuration op-
tions or in coordinating the reconfiguration process.

In a distributed system, the usual approach is to have
several alternative protocols for each key distributed system
function, each fit for a different performance tradeoff. De-
pending on the assessment of the environment and on the
policy set by the administrator, the ideal protocol is cho-
sen and configured. The result should be a simple feedback
control loop that provides the desired self-tuning capability.

This approach has however several disadvantages. First,
having multiple implementations, that may be seldom used,
increases the complexity of the system and has implications
in the reliability of the software. Second, the switchover
mechanism is itself complex and requires distributed agree-
ment, thus introducing a large overhead and often the need
to “stop the world” while in progress. Also, by switching
among a limited set of options, the system can cope only
with a limited number of scenarios. And finally, pratical im-
plementations often rely on a centralized coordinator com-
ponent, which is in itself an obstacle to dependability. In
short, all these issues combined make current systems fall
short of the autonomic computing vision.

In this paper we show how two fundamental building
blocks for dependable distributed systems – consensus and
reliable multicast – can be extended to support autonomic
principles. In fact, we point out that existing protocols [6, 1]
support decentralized decisions and fine grained adaptation
with a single algorithm thus surpassing the impairments
pointed above. Furthermore, the correctness of the algo-
rithm is always ensured in the given models thus guaranty-
ing that it behaves properly even if the adaptive decisions

∗This work was partially supported by project ”P-SON: Probabilisti-
cally Structured Overlay Networks” (POS C/EIA/60941/2004).

taken are not adequate. Finally, we speculate on realizing
actual systems based on this approach and on extending it
to other distributed systems building blocks.

2. Case Study: Consensus

The consensus problem [8] abstracts agreement by a set
of processes in a distributed system in the presence of faults.
This has been shown to be the key issue in many building
blocks for dependable distributed systems, such as the repli-
cated state machine, atomic multicast, or view synchrony.
Solving consensus efficiently has thus been the focus of a
number of research efforts.

As an example, a key performance factor in an asyn-
chronous message passing model is the way how votes are
collected to form a quorum. In certain protocols, the votes
are collected by a coordinator and the result broadcast after
a decision has been reached [2], thus minimizing bandwidth
used, while on others, votes are directly broadcast to all the
participants which independently count them [7], thus re-
ducing decision latency.

A particularly interesting tradeoff is achieved by the mu-
table consensus protocol [6]: The same protocol allows runs
in which votes are collected by a single coordinator, runs in
which votes are broadcast to all participants, as well as a
number of message exchange patterns in between. In fact,
different message exchange patterns can be induced by judi-
ciously chosen delays, and thus the protocol, assuming only
an asychronous system, is still correct regardless of the de-
lay configuration.

3. Case Study: Reliable Multicast

The reliable dissemination of information to a very large
number of destinations is at the core of distributed systems
middleware, such as publish/subscribe and media stream-
ing. The goal is to ensure that messages are reliably de-
livered according to some criteria, namely regarding how
different receivers get the same data, while making efficient
use of resources.



A
ut

ho
r’

s
m

an
us

cr
ip

t,
pu

bl
is

he
d

in
Fa

st
A

bs
tr

ac
to

ft
he

In
te

rn
at

io
na

lC
on

fe
re

nc
e

on
D

ep
en

da
bl

e
Sy

st
em

s
an

d
N

et
w

or
ks

,2
00

9

The usual approach is to build a spanning tree and then
use it to relay messages [4]. Collection of acknowledgments
and retransmissing to repair from losses, as required to meet
reliability criteria, are also performed along the tree. The
tree can also be optimized to make use of higher capac-
ity links and nodes, thus making better use of available re-
sources. The downside is that the cost incurred in setting up
and maintaining the structure is prohibitive when reconfig-
uration is frequent, such as, when nodes continually enter
and leave the system.

A radically different approach is provided by gossip-
based or epidemic multicast [3]. Although the basic proto-
col is disarmingly simple – each node relays each message
to a small random subset of neighbors – it can be shown
that all destinations receive it at least once with high prob-
ability. Besides avoiding the cost of setting up and main-
taining the spanning tree, the inherent load balancing and
redundancy make it highly resilient to reconfiguration and
message loss. On the other hand, it fails to take advantage
of links and nodes with higher capacity as each node is cho-
sen randomly and thus over time each node will process
approximately the same number of messages. Furthermore,
as each message is transmitted multiple times this approach
leads to a large bandwidth consumption.

It has however been shown that by judiciously schedul-
ing the transmission of message payload in epidemic mul-
ticast, it is possible to combine the advantages of both ap-
proaches [1]. In detail, when relaying messages each node
may omit the payload and transmit it later only upon re-
quest. This ensures the desirable resilience properties of
epidemic multicast. However, depending on the policy used
to schedule payload transmission, it can be observed that
redundant retranmissson of payload can be entirely avoided
without negative impact in end-to-end latency and that some
nodes and links contribute with much higher probability
of payload transmission: The result is thus a probabilistic
structure that emerges from the operation of the gossip pro-
tocol itself (based on efficiency criteria) instead of being
imposed by construction.

4. Discussion

The protocols discussed in previous sections [6, 1] share
a number of desirable features for self-tuning systems. In
detail:

Single Protocol. Proof of correctness and correct imple-
mentation of the protocol needs to be done only once, since
a single protocol is able to deliver a wide range of perfor-
mance tradeoffs.

Out-of-Model Tuning. Tuning for performance is done
by adjusting parameters which have been abstracted in the
system model used for designing for correctness, resp. de-
lays in an asynchronous system and packet scheduling in

an epidemic. This separation of concerns can easily be en-
forced even in implementations by validating the output of
the policy module.

Local Adaptation. Since protocol corretness is oblivious
to tuning, the protocol will still be correct if each participant
independently adjusts local parameters with no global coor-
dination whatsoever. This reduces overhead and obviates
the need for a switching mechanism.

Progressive Adaptation. Even if there are only a few
configurations, tradeoffs in-between can still be achived if
different amount of nodes choose different configurations
or if nodes alternate between different configurations.

Low Adaptation Latency. Since adaptation is local and
progressive, the feedback control loop has low latency and
fine grained control over the system, and is thus much more
likely to achieve stable configurations.

There are however some outstanding challenges in real-
izing a dependable distributed autonomic system using the
suggested approach. The first is to derive the performance
of the proposed protocols in a wide range of environments
and configurations. The second is to determine to what ex-
tent can effective global performance be achieved based on
strictly local tuning decisions. Finally, whether the pro-
posed approach is applicable to other distributed systems
problems.

References

[1] N. Carvalho, J. Pereira, R. Oliveira, and L. Rodrigues.
Emergent structure in unstructured epidemic multicast. In
IEEE/IFIP Intl. Conf. Dependable Systems and Networks
(DSN), 2007.

[2] T. D. Chandra and S. Toueg. Unreliable failure detectors for
reliable distributed systems. J. ACM, 43(2):225–267, 1996.

[3] P. Eugster, R. Guerraoui, A.-M. Kermarrec, and L. Massoulie.
From epidemics to distributed computing. Computer, May
2004.

[4] S. Floyd, V. Jacobson, C.-G. Liu, S. McCanne, and L. Zhang.
A reliable multicast framework for light-weight sessions and
application level framing. IEEE/ACM Trans. Networking,
5(6), Dec. 1997.

[5] J. Kephart and D. Chess. The vision of autonomic computing.
Computer, 36(1):41–50, 2003.

[6] J. Pereira and R. Oliveira. The mutable consensus protocol. In
IEEE Intl. Symp. Reliable Distributed Systems (SRDS), 2004.

[7] A. Schiper. Early consensus in an asynchronous system with a
weak failure detector. Distrib. Comput., 10(3):149–157, 1997.

[8] J. Turek and D. Shasha. The many faces of consensus in dis-
tributed systems. Computer, pages 8–17, 1992.


