
Confluence and Strong Normalisation of the
Generalised Multiary λ-calculus

José Esṕırito Santo and Lúıs Pinto?

Departamento de Matemática, Universidade do Minho
4710-057 Braga, Portugal
{jes,luis}@math.uminho.pt

Abstract. In a previous work we introduced the generalised multiary
λ-calculus λJm, an extension of the λ-calculus where functions can be
applied to lists of arguments (a feature which we call “multiarity”) and
encompassing “generalised” eliminations of von Plato. In this paper we
prove confluence and strong normalisation of the reduction relations of
λJm. Proofs of these results lift corresponding ones obtained by Joachim-
ski and Matthes for the system ΛJ . Such lifting requires the study of how
multiarity and some forms of generality can express each other. This
study identifies a variant of ΛJ , and another system isomorphic to it, as
being the subsystems of λJm with, respectively, minimal and maximal
use of multiarity. We argue then that λJm is the system with the right
use of multiarity.

1 Introduction

In [2] we defined the generalised multiary λ-calculus λJm, an extension of the
λ-calculus where application is generalised in two directions: (i) “generality”, in
the sense of von Plato’s generalised eliminations [7]; and (ii) “multiarity”, i.e.
the ability of applying functions to lists of arguments. The original motivation
was to extend Schwichtenberg’s work on permutative conversions for intuitionis-
tic cut-free sequent calculus [6]. λJm comes equipped with a set of permutative
conversions for which the permutability theorem holds: two λJm-terms deter-
mine the same λ-term iff they are inter-permutable. We established confluence
and strong normalisation of these conversions.

In this paper we study confluence and strong normalisation for the reduction
rules of λJm. Our strategy is to use corresponding properties of the system ΛJ
of Joachimski and Matthes [4, 5] (the type-theoretic counterpart to von Plato’s
natural deduction system with generalised eliminations). This is a natural ap-
proach because ΛJ may be seen as a notational variant of a subsystem of λJm

called λJ.
We lift the results of ΛJ to λJm via a mapping ν whose idea is to express

multiarity by means of generality. To fully achieve this we also need another
? Both authors are supported by FCT through the Centro de Matemática da Univer-

sidade do Minho, and also by the thematic network APPSEM II; the second author
was also supported by the thematic network TYPES.

mapping µ, which expresses certain uses of generality by multiarity and which
calculates the normal forms for the reduction rule of λJm with the same name. It
follows that µ and ν are inverse bijections between µ-normal forms and terms of
λJ. We develop this idea and investigate how these mappings preserve reduction.
It turns out that a slight variant of λJ is isomorphic to the subsystem of λJm

determined by the µ-normal forms.
This emphasis on how multiarity and generality may express each other con-

trasts with that in [2], where multiarity and generality are studied as independent
features of λJm.

This paper is organised as follows: Section 2 reviews λJm and its subsystem
λJ; Section 3 studies mappings µ and ν and establishes the above mentioned
isomorphism; Section 4 proves various results of concluence and strong normal-
isation; Section 5 concludes.

Notations: Let R be a binary relation over an inductively defined set of expres-
sions. →R denotes the compatible closure of R. →+

R and →∗
R denote respectively

the transitive; and the reflexive and transitive closure of →R. Given relations
R and S, we write R, S and RS for R ∪ S and S ◦ R, respectively, whenever
convenient.

2 λJm: the generalised multiary λ-calculus

2.1 Expressions and typing rules

Let V denote a denumerable set of variables and x, y, w, z range over it. In the
generalised multiary λ-calculus λJm there are two kinds of expressions: terms
and lists.

Definition 1. Terms and lists of λJm are described in the following grammar:

(terms of λJm) t, u, v ::= x | λx.t | t(u, l, (x)v)
(lists of λJm) l ::= t :: l | []

The sets of λJm-terms and λJm-lists are denoted by ΛJm and LJm respectively.
A term construction of the form t(u, l, (x)v) is called a generalised multiary
application (gm-application for short) and t is called its head. In terms λx.v
and t(u, l, (x)v), occurrences of x in v are bound. The list [] is called the empty
list and lists of the form t :: l are called cons-lists. The notation [u1, . . . , un]
abbreviates u1 :: . . . ::un :: [].

Two definitions that play a special role in the following are:

Definition 2. A gm-application is called a cut if its head is not a variable.

Definition 3. A variable x is main and linear in a term t if t = x or t is of the
form x(u, l, (y)v) where x 6∈ u, l, v. We write mla(x, v) if v is a gm-application
and x is main and linear in v.

Formulas (= types) A, B, C, ... are built up from propositional variables
using just ⊃ (for implication) and contexts Γ are finite sets of variable : formula
pairs, associating at most one formula to each variable.

Sequents of λJm are of one of the following two forms

Γ ;−` t :A
Γ ;B` l :C,

called term sequents and list sequents respectively. The distinguished position
in the LHS of sequents is called the stoup and may either be empty (as in
term sequents) or hold a formula (the case of list sequents). Read a list sequent
Γ ;B` l :C as “list l leads the formula B to its instance C in context Γ”. C is an
instance of B if B is of the form B1 ⊃ ... ⊃ Bk ⊃ C, for some k ≥ 0.

Definition 4. The typing rules of λJm are as follows:

x :A, Γ ;−`x :A Axiom

x :A,Γ ;−` t :B
Γ ;−`λx.t :A ⊃ B

Right

Γ ;−` t :A ⊃ B Γ ;−`u :A Γ ;B` l :C x :C, Γ ;−`v :D
Γ ;−` t(u, l, (x)v) :D

gm− Elim

Γ ;C` [] :C Ax

Γ ;−`u :A Γ ;B` l :C
Γ ;A ⊃ B`u :: l :C

Lft

with the proviso that x : A does not belong to Γ in Right and the proviso that
x :C does not belong to Γ in gm-Elim.

An instance of rule gm − Elim is called a generalised multiary elimination
(or gm-elimination, for short). [2] explains in which sense these typing rules
define a sequent calculus which extends with cuts Schwichtenberg’s multiary
cut-free sequent calculus [6]. It also explains how to interpret λJm in Herbelin’s
λ-calculus [3], where the key ideia is to interpret a gm-application t(u, l, (x)v) as
the combination v{x := t(u :: l)} of an head-cut and a mid-cut.

2.2 Reduction rules

Definition 5. The reduction rules for λJm are as follows:

(β1) (λx.t)(u, [], (y)v) → s(s(u, x, t), y, v)
(β2) (λx.t)(u, v :: l, (y)v′) → s(u, x, t)(v, l, (y)v′)
(π) t(u, l, (x)v)(u′, l′, (y)v′) → t(u, l, (x)v(u′, l′, (y)v′))
(µ) t(u, l, (x)x(u′, l′, (y)v)) → t(u,append(l, u′, l′), (y)v), x 6∈ u′, l′, v

where s(t, x, x) = t
s(t, x, y) = y, y 6= x

s(t, x, λy.u) = λy.s(t, x, u)
s(t, x, u(v, l, (y)v′)) = s(t, x, u)(s(t, x, v), s′(t, x, l), (y)s(t, x, v′))

s′(t, x, []) = []
s′(t, x, v :: l) = s(t, x, v) ::s′(t, x, l)

append([], u, l) = u :: l
append(u′ :: l′, u, l) = u ::append(l′, u, l)

A detailed motivation for the reduction rules can be found in [2]. In brief,
rules (β1), (β2) and (π) perform cut-elimination, i.e. they aim at reducing all
gm-applications in a term to the form where the head is a variable. Reduction
rule (µ) is structural and is used to eliminate gm-applications t(u, l, (x)v) such
that mla(x, v).

Consider the following grammar:

t, u, v ::= x | λx.t | t′(u, l, (y)v)
l ::= u :: l | []

The β, π-normal forms are generated by this grammar provided t′ is a variable.
The µ-normal forms are generated by this grammar provided that in the last
production for terms, not mla(y, v), i.e. if v is of the form y(u′, l′, (y′)v′), then
y must occur either in u′, l′ or v′. Finally β, π, µ-normal forms are generated by
this grammar provided the last production satisfies the two provisos above.

As observed in [2] subject reduction holds for →β,π,µ.

2.3 λJ: the generalised λ-calculus

We now introduce the cons-free subsystem of λJm, called λJ.

Definition 6. Terms and lists of λJ are as follows:

(λJ− terms) t, u, v ::= x | λx.t | t(u, l, (x)v)
(λJ− lists) l ::= []

ΛJ is used to denote the set of λJ-terms.

Since there is only one form of lists in λJ, every gm-application in λJ is of
the form t(u, [], (x)v), which we call a generalised application (or g-application,
for short). λJ-terms can simply be described as:

(λJ− terms) t, u, v ::= x | λx.t | t(u·(x)v) ,

where t(u·(x)v) is used as an abbreviation to t(u, [], (x)v). This expression can
be typed by the derived rule (called generalised elimination)

Γ ;−` t :A ⊃ B Γ ;−`u :A x :B,Γ ;−`v :C
Γ ;−` t(u·(x)v) :C

g − Elim ,
(1)

with proviso x :B does not belong to Γ . Such rule corresponds to an instance of
the rule gm− Elim where the penultimate premiss is an instance of Ax.

Definition 7. The reduction rules for λJ are as follows:

(β1) (λx.t)(u·(y)v) → s(s(u, x, t), y, v)
(π) t(u·(x)v)(u′ ·(y)v′) → t(u·(x)v(u′ ·(y)v′))

where s(t, x, x) = x
s(t, x, y) = y, y 6= x

s(t, x, λy.u) = λy.s(t, x, u)
s(t, x, u(v ·(y)v′)) = s(t, x, u)(s(t, x, v)·(y)s(t, x, v′))

Comparatively to λJm, λJ drops all rules and clauses involving cons. Since
β2-redexes and µ-contracta fall outside ΛJ (notice that append([], u′, l′) is a
cons-list), the rules (β2) and (µ) are omitted.

The system thus obtained is no more than a notational variant of the ΛJ-
calculus of Joachimski and Matthes.

3 Relating generality and multiarity

Generality can express multiarity and multiarity is a shorthand for certain forms
of generality. In this section this idea is made precise and consequences of it are
extracted.

3.1 The bijection between terms of λJ and µ-normal forms

We start by explaining how to express multiarity in terms of generality. The basic
idea is to replace each cons by a g-application that introduces a fresh name. For
instance,

t(u, [u1, u2], (x)v) ; t(u·(z1)z1(u1 ·(z2)z2(u2 ·(x)v))),

where z1 and z2 are fresh variables. This idea is embodied in the following type-
preserving mapping.

Definition 8. The mapping ν is as follows.

ν : ΛJm −→ ΛJ
ν(x) = x

ν(λx.t) = λx.ν(t)
ν(t(u, l, (x)v)) = ν(t)(ν(u)·(z)ν′(z, l, x, ν(v))), z fresh

ν′(z, [], x, v) = s(z, x, v)
ν′(z, u :: l, x, v) = z(ν(u)·(w)ν′(w, l, x, v)), w fresh

Conversely, in t(u, l, (x)v), if v is a gm-application x(u′, l′, (y)v′) such that
x 6∈ u′, l′, v′, then v may be eliminated with the help of cons. In fact, the former
term can be reduced to t(u,append(l, u′, l′), (y)v′), where the append operation
generates u′ :: l′ and, if l is not empty, a further cons to concatenate l with u′ :: l′.
This is precisely reduction rule µ. The following type-preserving mapping reduces
the µ-redexes of a term in a innermost-first fashion.

Definition 9. The mapping µ is as follows.

µ : ΛJm −→ ΛJm

µ(x) = x
µ(λx.t) = λx.µ(t)

µ(t(u, l, (x)v)) =





µ(t)(µ(u),append(µ′(l), u′, l′), (y)v′),
if µ(v) = x(u′, l′, (y)v′) and x 6∈ u′, l′, v′

µ(t)(µ(u), µ′(l), (x)µ(v)), otherwise

µ′([]) = []
µ′(u :: l) = µ(u) ::µ′(l)

The results that follow show that the restriction of mapping µ to ΛJ and the
restriction of mapping ν to µ-normal forms are mutual inverses.

Lemma 1. t→∗
µ µ(t), for all t ∈ ΛJm.

Proof. Proved together with l→∗
µ µ′(l), for all l ∈ LJm, by simultaneous induc-

tion on t and l. ut

Lemma 2. If t→µ t′, then (i) µ(t) = µ(t′) and (ii) ν(t) = ν(t′), for all t, t′ ∈
ΛJm.

Proof. (i) is proved together with l→µ l′ implies µ′(l) = µ′(l′), for all l, l′ ∈ LJm,
by simultaneous induction on t→µ t′ and l →µ l′. (ii) is proved together with
l→µ l′ implies ν′(z, l, x, v) = ν′(z, l′, x, v), for all l, l′ ∈ LJm and all v ∈ ΛJ, by
simultaneous induction on t→µ t′ and l→µ l′. ut

Lemma 3. µ(t) is µ-normal, for all t ∈ ΛJm.

Proof. Proved together with µ′(l) is µ-normal, for all l ∈ LJm, by simultaneous
induction on t and l. ut

Proposition 1. (i) →µ is confluent.
(ii) →µ is strongly normalising.
(iii) µ(t) is the unique normal form of t w.r.t. →µ,

for all t ∈ ΛJm.

Proof. (i) follows from lemmas 1 and 2. In order to guarantee (ii), observe that
each µ-step reduces the number of µ-redexes. (iii) results from the combination
of lemmas 1 and 3 and confluence of →µ. ut

Lemma 4. ν(t)→∗
µ t, for all t ∈ ΛJm.

Proof. Proved together with t(u·(z)ν′(z, l, x, v))→∗
µ t(u, l, (x)v), for all t, u, v ∈

ΛJ and all l ∈ LJm s.t. z 6∈ l, v, by simultaneous induction on t and l. ut

Corollary 1. t→∗
µ µ(ν(t)), for all t ∈ ΛJm.

Proof. By Lemma 1, it suffices µ(ν(t)) = µ(t). From Lemma 1 (applied twice)
and Lemma 4, ν(t) reduces both to µ(ν(t)) and µ(t), which are µ-normal. Thus
by confluence, µ(ν(t)) = µ(t). ut

Proposition 2. (i) ν(t) = t, for all t ∈ ΛJ.
(ii) µ(t) = t, for all µ-normal t ∈ ΛJm.

Proof. (i) Follows by induction on t. (ii) Since t is µ-normal, Proposition 1
imposes t = µ(t). ut

Proposition 3. (i) ν(µ(t)) = t, for all t ∈ ΛJ.
(ii) µ(ν(t)) = t, for all µ-normal t ∈ ΛJm.

Proof. (i) From lemmas 1 and 2 we get ν(µ(t)) = ν(t), which is just t by the
proposition above. (ii) Lemmas 1 and 4 imply reduction of ν(t) to t and µ(ν(t))
respectively. Thus t and µ(ν(t)) are two µ-normal forms of ν(t), which by con-
fluence of →µ must be equal. ut

3.2 Preservation of reduction by mappings µ and ν

Preservation of reduction µ is considered in Lemma 2.

Lemma 5. (i) If t→β t′, then ν(t)→β ν(t′), for all t, t′ ∈ ΛJm.
(ii) If t→β t′, then µ(t) →β→∗

µ µ(t′), for all t, t′ ∈ ΛJm.

Proof. (i) is proved together with l→β l′ implies ν′(z, l, x, v)→β ν′(z, l′, x, v), for
all l, l′ ∈ LJm and all v ∈ ΛJ, by simultaneous induction on t→β t′ and l→β l′.
(ii) follows from the commutation in λJm between →β and →µ: if t→β t1 and
t→µ t2, there exists t3 such that t1→∗

µ t3 and t2→β t3. ut

In contrast to rule (β), one-to-one preservation of π-steps is problematic:
mapping ν needs several steps in λJ to simulate a single step in λJm and map-
ping µ does not even preserve π-steps. These mismatches, between rule (π) and
mappings ν and µ, are an obstacle to proving confluence of λJm along the lines
of the proof of Theorem 5, where we lift confluence of λJ. Such proof requires
preservation of (π) (as well as (β)) by mapping µ. We illustrate these mismatches
with an example.

Let t, u, u1, u2, u
′, v be µ-normal forms in λJ, hence invariant both for µ and

ν. Consider the following three terms in λJ

t0 = t(u·(z1)z1(u1 ·(z2)z2(u2 ·(x)x)))(u′ ·(y)v) ,
t1 = t(u·(z1)z1(u1 ·(z2)z2(u2 ·(x)x))(u′ ·(y)v)) ,
t2 = t(u·(z1)z1(u1 ·(z2)z2(u2 ·(x)x(u′ ·(y)v)))) ,

and the corresponding µ-normal forms

u0 = µ(t0) = t(u, [u1, u2], (x)x)(u′ ·(y)v) ,
u1 = µ(t1) = t(u·(z1)z1(u1, [u2], (x)x)(u′ ·(y)v)) ,
u2 = µ(t2) = t(u, [u1, u2, u

′], (y)v) .

Consider also
v1 = t(u·(z1)z1(u1, [u2], (x)x(u′ ·(y)v))) ,
v2 = t(u, [u1, u2], (x)x(u′ ·(y)v)) .

Observe that ν(u0) = t0, ν(u1) = t1 and ν(u2) = ν(v1) = ν(v2) = t2. Observe
also that there are the following reductions among these terms:

u0
¾¾ µ

t0

@
@

@
@

@
@

@

π

R

u1
¾¾ µ

t1

π
?

@@@π R
v1

µ
- v2 .

π

?

=½
½

½
½

½
½

½

µ

u2
¾¾ µ

t2

π

?

Notice that u0 →π v2 whereas ν(u0) requires three π-steps to reach ν(v2). In
general we have the following:

Lemma 6. If t→π t′, then ν(t)→+
π ν(t′), for all t, t′ ∈ ΛJm.

Proof. Proved together with l→π l′ implies ν′(z, l, x, v)→+
π ν′(z, l′, x, v), for all

l, l′ ∈ LJm and all v ∈ ΛJ, by simultaneous induction on t→π t′ and l→π l′. ut

Going back to the example, observe that t0→π t1 but µ(t0) does not reduce
to µ(t1), it π-reduces to v2. However, making enough π-reductions from t1, one
reaches a term (t2 in the example) whose µ-normal form (u2 in the example)
is the same as the µ-normal form of v2. Making enough π-reductions means to
perform π-reductions as long as this generates π-redexes which hide µ-redexes.
For instance, observe that the head of t0 is a µ-redex. The reduction t0 →π t1
creates the π-redex z1(u1·(z2)z2(u2·(x)x))(u′·(y)v) which hides in t1 the mentioned
µ-redex. Since the reduction of this π-redex causes a descendent of the original µ-
redex to reappear, we perform it. Moreover, as another µ-redex becomes hidden,
this process continues. We introduce a new reduction rule in λJ to perform such
sequences of π-reductions in a single step.

Definition 10. The rule (π′) is the following:

(π′) t(u·(x)v)(u′ ·(y)v′) → t(u·(x)@′(x, v, u′, y, v′))

where

@′(x, t, u, y, v) =





x(u′ ·(z)@′(z, v′, u, y, v)),
if t = x(u′ ·(z)v′) and x 6∈ u′, v′

t(u·(y)v), otherwise

For instance, in the example before t1 →π′ t2. Observe that →π′⊆→+
π and that

a term is π′-normal if and only if it is π-normal.
We now see how the situation improved w.r.t. the preservation of π-steps.

Lemma 7. (i) If t→π t′, then ν(t)→π′ ν(t′),
for all t, t′ ∈ ΛJm such that t is µ-normal.

(ii) If t→π′ t
′, then µ(t) →π→∗

µ µ(t′), for all t, t′ ∈ ΛJ.

Proof. (ii) is proved by induction on t→π′ t
′. (i) is proved together with l→π l′

implies ν′(z, l, x, v) →π′ ν′(z, l′, x, v), for all l, l′ ∈ LJm and all v ∈ ΛJ, by
simultaneous induction on t→π t′ and l→π l′. ut

Now we turn to some basic results about rule (π′), leading to Corollary 2,
which shows how to perform a sequence of (β) and (π) reductions by means of
a sequence of (β) and (π′) reductions. The proof of confluence of the relation
→β,π,µ on λJm-terms, given in Section 4, uses this transformation and the lemma
above.

The mapping π in the definition below is considered in [4] and produces
π-normal forms.

Definition 11. The mapping π is as follows.

π : ΛJ −→ ΛJ
π(x) = x

π(λx.t) = λx.π(t)
π(t(u·(x)v)) = @(π(t), π(u), x, π(v))

where

@(t, u, x, v) =





t′(u′ ·(y)@(v′, u, x, v)), if t = t′(u′ ·(y)v′)

t(u·(x)v), otherwise

[4] observes that (i) t→∗
π π(t), for all t ∈ ΛJ; (ii) if t→∗

π t′ then π(t) = π(t′)
for all t, t′ ∈ ΛJ (and from these two follows confluence of →π); (iii) →π is
strongly normalising for all terms of λJ.

Next lemma establishes that rule (π′) suffices to reduce a term to its π-normal
form.

Lemma 8. t→∗
π′ π(t), for all t ∈ ΛJ.

Proof. Because →π′⊆→+
π and →π is terminating, →π′ is also terminating. Let

t′ be a π′-normal form of t. Since t′ is also a π-normal form, t→∗
π t′ and →π is

confluent, it follows that t′ = π(t). Thus t→∗
π′ π(t). ut

We establish now a kind of commutation between reduction→β and mapping
π, that uses next lemma.

Lemma 9. s(π(t), x, π(u))→∗
π π(s(t, x, u)), for all t, u ∈ ΛJ.

Proof. The proof is by induction on u. It uses the fact that, for all t, t0, u0, v0 ∈
ΛJ, s(t, x, @(t0, u0, y, v0))→∗

π @(s(t, x, t0), s(t, x, u0), y, s(t, x, v0)), proved by in-
duction on t0 ut

Proposition 4. If t→β u, then π(t)→∗
β,π′ π(u), for all t, u ∈ ΛJ.

Proof. By induction on t→β u. The base case uses the lemma before. ut

Corollary 2. If t→∗
β,π u, then π(t)→∗

β,π′ π(u), for all t, u ∈ ΛJ.

Proof. Follows by induction on the number of steps in the reduction sequence.
The case corresponding to a β-step uses the proposition before and the case
corresponding to a π-step uses invariance of →π w.r.t. mapping π. ut

3.3 Two isomorphic subsystems of λJm

Some of the preservation results obtained above can be put together so that the
bijection between µ-normal forms and terms of λJ becomes an isomorphism,

provided those two sets of terms are equipped with appropriate reduction rela-
tions.

Let λJ′ denote the system obtained from λJ replacing rule (π) by rule (π′).
Let λJm

µ denote the subsystem of µ-normal forms of λJm obtained by closing
relation →β,π for mapping µ. More precisely, in λJm

µ the one step relations →βµ

and →πµ are given by:

t→βµ
t′ if t→β t′′ and t′ = µ(t′′), for some t′′ ∈ λJm;

t→πµ t′ if t→π t′′ and t′ = µ(t′′), for some t′′ ∈ λJm.

Notice that in λJm
µ there is no need for a µ-reduction.

Theorem 1. (i) t→βµ
t′ iff ν(t)→β ν(t′), for all µ-normal forms t, t′.

(ii) t→πµ t′ iff ν(t)→π′ ν(t′), for all µ-normal forms t, t′.
(iii) t→β t′ iff µ(t)→βµ

µ(t′), for all t, t′ ∈ ΛJ.
(iv) t→π′ t

′ iff µ(t)→πµ µ(t′), for all t, t′ ∈ ΛJ.

Proof. We just show the “only if” statements since the “if” statements follow
from these and the fact that ν and µ are mutual inverses. (i) follows from lemmas
1, 2 and 5. (ii) follows from lemmas 1, 2 and 7. (iii) and (iv) hold by lemmas 5
and 7 respectively. ut

Now confluence and strong normalisation of relation →β,π on λJ are used to
obtain corresponding properties for λJ′ and thus for its isomorphic system λJm

µ .

Theorem 2. →β,π′ in λJ′ is confluent.

Proof. Assume t→∗
β,π′ t1 and t→∗

β,π′ t2. Then, since→π′⊆→+
π , also t→∗

β,π t1 and
t→∗

β,π t2. Using confluence of→∗
β,π for λJ, there exists t3 such that t1→∗

β,π t3 and
t2→∗

β,π t3. So, using Corollary 2 followed by Lemma 8, one obtains t1→∗
β,π′ π(t3)

and t2→∗
β,π′ π(t3). ut

Theorem 3. There is no infinite →β,π′-reduction starting at a typable term of
λJ′.

Proof. If there was, since →π′⊆→+
π , one could build an infinite sequence of β, π-

steps, starting at a typable term of λJ, contradicting strong normalisation of
λJ. ut

4 Results of confluence and strong normalisation for λJm

This section studies confluence and strong normalisation for the notions of re-
duction in λJm resulting from all possible combinations of rules (β), (π) and
(µ). The proofs of confluence presented here follow one of two directions: (i)
for notions of reduction involving only rules (β) and (π), arguments are simple
extensions of those used in [4]; (ii) for notions of reduction including µ, argu-
ments are built in a modular way, using essentially properties of presevation of

reduction by mappings µ and ν, together with confluence results for λJ. Strong
normalisation of →β,π,µ for all typable terms of λJm is obtained from the strong
normalisation of →β,π for λJ’s typable terms, with the help of results of preser-
vation of reduction by mapping ν. Strong normalisation of typable terms for
all the other relations follows, since they are included in →β,π,µ. In fact, for
relations not involving rule (β), strong normalisation holds for all terms.

4.1 Confluence

Firstly we tackle confluence of relations→π,→β and→β,π in λJm. The following
definition extends Definition 11.

Definition 12. The mapping π is as follows.

π : ΛJm −→ ΛJm

π(x) = x
π(λx.t) = λx.π(t)

π(t(u, l, (x)v)) = @(π(t), π(u), π′(l), x, π(v))

π′([]) = []
π′(u :: l) = π(u) ::π′(l)

where

@(t, u, l, x, v) =





t′(u′, l′, (y)@(v′, u, l, x, v)), if t = t′(u′, l′, (y)v′)

t(u, l, (x)v), otherwise

Lemma 10. π(t) is π-normal, for all t ∈ ΛJm.

Proof. Proved together with π′(l) is π-normal, for all l ∈ LJm, by simultaneous
induction on t and l. ut
Lemma 11. t→∗

π π(t), for all t ∈ ΛJm.

Proof. Proved together with l→∗
π π′(l), for all l ∈ LJm, by simultaneous induc-

tion on t and l. ut
Lemma 12. If t1→∗

π t2, then π(t1) = π(t2), for all t1, t2 ∈ ΛJm.

Proof. Proved together with the fact that l1→∗
π l2 implies π′(l1) = π′(l2), for all

l1, l2 ∈ LJm, by simultaneous induction on t→∗
π t′ and l→∗

π l′. ut
Proposition 5. →∗

π has the triangle property w.r.t. mapping π.1

Proof. If t1→∗
π t2, from the two lemmas above, t2→∗

π π(t2) = π(t1). ut
Definition 13. Reduction⇒β is inductively defined on terms of λJm as follows:

1 A relation → has the triangle property w.r.t. a function f if a → b implies b → f(a)

x⇒β x;
λx.t⇒β λx.t′ if t⇒β t′;
t(u, l, (x)v)⇒β t′(u′, l′, (x)v′) if t⇒β t′, u⇒β u′, l⇒β l′, v⇒β v′;
(λy.t)(u, [], (x)v)⇒β s(s(u′, y, t′), x, v′) if t⇒β t′, u⇒β u′, v⇒β v′;
(λy.t)(u, u0 :: l, (x)v)⇒β s(u′, y, t′)(u′0, l

′, (x)v′) if
t⇒β t′, u⇒β u′, u0⇒β u′0, l⇒β l′, v⇒β v′;

[]⇒β [];
u :: l⇒β u′ :: l′ if u⇒β u′, l⇒β l′.

Observe that ⇒β is reflexive and →β⊆⇒β⊆→∗
β .

Definition 14. The mapping β is as follows.

β : ΛJm −→ ΛJm

xβ = x
(λx.t)β = λx.tβ

t(u, l, (x)v)β =





s(s(uβ , y, tβ1), x, vβ),
if t = λy.t1 and l = []

s(uβ , y, tβ1)(uβ
1 , lβ

′
1 , (x)vβ),

if t = λy.t1 and l = u1 :: l1
tβ(uβ , lβ

′
, (x)vβ), otherwise

[]β
′
= []

(u :: l)β′ = uβ :: lβ
′

Proposition 6. ⇒β has the triangle property w.r.t. β.

Proof. By induction on ⇒β . It uses parallelism of ⇒β , i.e. the fact that if t⇒β t′

and u⇒β u′ then s(t, x, u)⇒β s(t′, x, u′), as well as simple inversion principles
for ⇒β . ut
Lemma 13. If t ⇒β t1 and t →π t2, then t1 →∗

π t3 and t2 ⇒β t3, for some
t3 ∈ ΛJm.

Proof. Proved together with the fact that if l⇒β l1 and l→π l2, then there exists
l3 ∈ LJm such that l1→∗

π l3 and l2⇒β l3, for all l, l1, l2 ∈ LJm, by simultaneous
induction on t⇒β t1 and l⇒β l1. This proof uses parallelism of →∗

π. ut
Corollary 3. ⇒β and →∗

π commute.

Proof. Follows from the previous lemma by a simple diagram chase. ut
Proposition 7. ⇒β→∗

π has the triangle property w.r.t. π ◦ β.

Proof. Follows from the triangle properties of →∗
π and ⇒β w.r.t. π and β, to-

gether with commutativity between the two relations. ut
Theorem 4. →π, →β and →β,π are confluent.

Proof. Confluence of a relation can be obtained from a triangle property, as
shown in Lemma 1 of [4]. (Confluence of →π can also be obtained immediately
from lemmas 11 and 12.) As to confluence of→β,π, observe that→∗

β,π is confluent
and that the reflexive and transitive closure of ⇒β→∗

π is equal to →∗
β,π, since

→β,π⊆⇒β→∗
π⊆→∗

β,π. ut
Now we consider confluence in the presence of rule µ. The method used before

still works when one adjoins rule µ, because: (i) →∗
π,µ has a triangle property

(w.r.t. µ ◦ π); and (ii) →∗
µ commutes with ⇒β . However, in the presence of rule

µ, one can lift confluence results of λJ.

Theorem 5. →β,π,µ, →β,µ and →π,µ are confluent.

Proof. Let R be relation β (resp. π or β ∪π) and let R′ be β (resp. π′ or β ∪π′).
Assume t →∗

R,µ t1 and t →∗
R,µ t2. Then, by lemmas 2, 5 and 6 it follows that

ν(t)→∗
R ν(t1) and ν(t) →∗

R ν(t2). Now confluence of R in λJ guarantees the
existence of t3 such that ν(t1)→∗

R t3 and ν(t2)→∗
R t3. So, using Lemma 8 and

Corollary 2, ν(t1)→∗
R′ π(t3) and ν(t2)→∗

R′ π(t3), which in turn, by lemmas 5
and 7, implies µ(ν(t1))→∗

R,µ µ(π(t3)) and µ(ν(t2))→∗
R,µ µ(π(t3)). Then, from

Corollary 1, it follows t1→∗
µ µ(ν(t1)) and t2→∗

µ µ(ν(t2)) and thus t1 and t2 have
µ(π(t3)) as common reduct. ut

4.2 Strong Normalisation

Theorem 6. There is no infinite→β,π,µ-reduction sequence starting at a typable
term of λJm.

Proof. Suppose there is such an infinite reduction sequence S. It cannot contain
infinitely many β, π-steps. Otherwise, since (i) µ-reduction is invariant under ν
(Lemma 2), (ii) each β, π-step in λJm originates under ν one or more β, π-steps
in λJ (lemmas 5 and 6) and (iii) ν preserves typability, one could build in λJ an
infinite sequence of β, π-steps starting at a typable term, contradicting strong
normalisation of λJ. Therefore beyond a certain point in sequence S there are
solely µ-steps, necessarily in infinite number, which is also impossible due to
strong normalisation of →µ (Proposition 1). ut
Theorem 7. There is no infinite →π,µ-reduction sequence in λJm.

Proof. Similar to the one above showing strong normalisation of →β,π,µ. Addi-
tionally, one just needs to observe that →π in λJ is strongly normalising. ut

5 Conclusion

This work shows that the reduction relations of λJm enjoy strong normalisation
of typable terms and confluence. As such λJm is a well-behaved extension of
the λ-calculus and we intend to explore its potential in functional programming.
On the other hand, as shown in [2], λJm captures as subsystems, not only the

system ΛJ of Joachimski and Matthes, but also the multiary λ-calculus λPh
[1], as well as a notational variant of λ-calculus. So, we consider λJm a useful
tool for the computational interpretation of successively stronger fragments of
sequent calculus, deserving further study in this direction.

Our investigations of the relationship between generality and multiarity iden-
tify two isomorphic subsystems of λJm: (i) a variant of λJ, which is the subsys-
tem with minimal use of multiarity (i.e. no use); (ii) the subsystem of µ-normal
forms, which is the subsystem with maximal use of multiarity (i.e. uses cons
for expressing generality whenever possible). Think of t ∈ λJ and of all its µ-
reduction sequences, leading to µ(t). In a sense, all the terms involved in these
reduction sequences are representations of the same term, ranging from the term
t with minimal use of multiarity to the term µ(t) with maximal use of multiarity,
going through intermediate terms that do not belong to the subsystems: t and
µ(t) are canonical representations whereas the intermediate terms are a redun-
dancy allowed in λJm. Thus the two isomorphic subsystems are non-redundant
opposite extremes w.r.t. the use of multiarity.

However both subsystems have shortcomings because of this extreme nature.
In the former, multiarity is not available as a shorthand. In the latter, it is a
simple definition of expressions and reduction that is not available, because un-
constrained gm-application, as well as β- and π-reduction, can create µ-redexes,
i.e. do not preserve maximal multiarity. Although exhibiting some redundancy,
λJm does not suffer from the drawbacks of these subsystems. Therefore it seems
to be the system with the right use of multiarity.

Acknowledgment: Diagram in Subsection 3.2 was produced with Paul Taylor’s
macros.

References

1. J. Esṕırito Santo, An isomorphism between a fragment of sequent calculus and
an extension of natural deduction, in: M. Baaz and A. Voronkov (Eds.), Proc. of
LPAR’02 , 2002, Springer-Verlag, LNAI vol. 2514, 354–366.

2. J. Esṕırito Santo and L. Pinto, Permutative conversions in intuitionistic multiary
sequent calculus with cuts , in: M. Hoffman (Ed.), Proc. of TLCA, 2003, Springer-
Verlag, LNCS vol. 2701, 286–300.

3. H. Herbelin, A λ-calculus structure isomorphic to a Gentzen-style sequent calculus
structure, in: L. Pacholski and J. Tiuryn (Eds.), Proceedings of CSL’94 , 1995,
Springer-Verlag, LNCS vol. 933, 61–75.

4. F. Joachimski and R. Matthes, Standardization and confluence for a Lambda Cal-
culus with generalized applications , in: L. Bachmair (Ed.), Proc. of RTA, 2000,
Springer-Verlag, LNCS vol. 1833, 141–155.

5. F. Joachimski and R. Matthes, Short proofs of normalisation for the simply typed λ-
calculus, permutative conversions and Gödel’s T, Archive for Mathematical Logic,
42 (2003) 59–87.

6. H. Schwichtenberg, Termination of permutative conversions in intuitionistic
Gentzen calculi , Theoretical Computer Science, 212 (1999) 247–260.

7. J. von Plato, Natural deduction with general elimination rules , Archive for Math-
ematical Logic, 40 (2001) 541–567.

