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Abstract. The present paper is devoted to the study of linear maps preserving certain relations,
such as the sharp partial order and the star partial order in semisimple Banach algebras and C∗-
algebras.

1. Introduction and background

Let A be a Banach algebra. Recall that an element a ∈ A is regular if there is b ∈ A such that
aba = a. For a regular element a ∈ A, the set

a{1} = {x ∈ A : axa = a}
consists of all {1}-inverses or inner inverses of a. Notice that if x is a {1}-inverse of a, then ax
and xa are idempotents. A {1, 2}-inverse or generalized inverse of a, is a {1}-inverse of a that is a
solution of the equation xax = x, that is, it is an element b ∈ A such that aba = a and bab = b.

Note that the condition x ∈ a{1} ensures the existence of a generalized inverse of a: in such case,
b = xax fulfills the previous identities.

For an element a in A, let us consider the left and right multiplication operators La : x 7→ ax and
Ra : x 7→ xa, respectively. If a is regular, then so are La and Ra, and thus their ranges aA = La(A)
and Aa = Ra(A) are both closed. The unique generalized inverse of a that commutes with a is
called the group inverse of a, whenever it exists. In this case a is said to be group invertible and its
group inverse is denoted by a]. The set of all group invertible elements of A is denoted by A].

Even though regularity can be defined in general Banach algebras, this notion has been mostly
studied in C*-algebras. Harte and Mbekhta proved in [21] that an element a in a unital C*-algebra
A is regular if and only if aA is closed. Given a and b in a C∗-algebra A, we shall say that b is
a Moore-Penrose inverse of a if b is a generalized inverse of a and ab and ba are selfadjoint. It is
known that every regular element a in A has a unique Moore-Penrose inverse that will be denoted
by a† ([21]). We write A† for the set of regular elements in the C*-algebra A.

Let Mn(C) be the algebra of all n × n complex matrices. On Mn(C) there are many partial
orders, which have been well studied (see [18], [22], [23], [30], [31], [32]). The star partial order on
Mn(C) was introduced by Drazin in [18], as follows:

A ≤∗ B if and only if A∗A = A∗B and AA∗ = BA∗,

where as usual A∗ denotes the conjugate transpose of A. It was proved that A ≤∗ B if and only
if A†A = A†B and AA† = BA†. Baksalary and Mitra introduced in [5] the left-star and right-star
partial order on Mn(C) , as

A∗ ≤ B if and only if A∗A = A∗B and ImA ⊆ ImB,
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and

A ≤ ∗B if and only if AA∗ = BA∗ and ImA∗ ⊆ ImB∗,

respectively. Moreover, A ≤∗ B if and only if A∗ ≤ B and A ≤ ∗B.
Hartwig [22] introduced the rank sustractivity order on Mn(C):

A ≤− B if and only if rank(B −A) = rank(B)− rank(A).

He proved that

A ≤− B if and only if A−A = A−B and AA− = BA−,

where A− denotes a {1}-inverse of A. This partial order is usually named the minus partial order.
Later, Mitra used in [30] the group inverse of a matrix to define the sharp order on group invertible
matrices:

A ≤] B if and only if A]A = A]B and AA] = BA].

In this work, the author compared the star and the sharp order and provided many equivalent
formulations to these and other partial orders.

Let H be an infinite-dimensional complex Hilbert space, and B(H) the C∗-algebra af all bounded
linear operators on H. Having into account that an operator B(H) is regular if and only if it
has closed range, Šemrl [36] extended the minus partial order from Mn(C) to B(H), finding and
appropriate equivalent definition of the minus partial order on Mn(C) which does not involve {1}-
inverses. Following Šemrl’s approach, Dolinar and Marovt extended in [17] the star partial order
from Mn(C) to B(H). From [17, Theorem 5], for T, S ∈ B(H), T ≤∗ S if and only if, there exist

two selfadjoint idempotent operators P,Q ∈ B(H), such that Im(P ) = Im(T ), Ker(Q) = Ker(T ),
PT = PS, and TQ = SQ.

In [19] Guterman studied additive maps preserving the star, left-star and right-star orders between
real and complex matrix algebras. An additive map φ : Mn(C)→Mn(C) preserves the star partial
order, if A ≤∗ B implies that φ(A) ≤∗ φ(B). Additive maps preserving the left-star and right-star
partial order are defined in a similar way. Guterman shows, in particular, that every additive map
φ : Mn(C) → Mn(C) preserving the star partial order has one of the following forms: for every

A ∈ Mn(C), φ(A) = αUAV , φ(A) = αUAV , φ(A) = αUAtV or φ(A) = αUA
t
V where α ∈ C, U

and V are unitary matrices, Ā denotes the conjugate matrix of A and At its transpose.
In [36], Šemrl studied (non necessarily additive) bijective maps preserving the minus partial order.

For an infinite-dimensional complex Hilbert space H, a mapping φ : B(H) → B(H) preserves the
minus order if A ≤− B implies that φ(A) ≤− φ(B). The map φ : B(H) → B(H) preserves the
minus order in both directions whenever A ≤− B if and only if φ(A) ≤− φ(B). He proved that
a bijective map φ : B(H) → B(H) preserving the minus order in both directions has the form
φ(A) = TAS or φ(A) = TA∗S, for some invertible operators T and S (both linear in the first case
and both conjugate linear in the second one).

Let H be a separable infinite dimensional complex Hilbert space, and let K(H) be the closed
ideal of all compact operators on H. Dolinar, Guterman and Marovt, studied in [15] the bijective,
additive and continuous mappings on K(H) which preserve the star partial order in both directions.
Recently, the authors of [16] bring some results from [19] concerning left and right star partial orders
to the infinite-dimensional case, following some techniques from [36]. They show that every bijective
additive map φ : B(H) → B(H) preserving the left-star partial order in both directions has the
form φ(A) = UAS for all A ∈ B(H), where U is a unitary operator and S is bijective (note that
both U and S can be linear or conjugate linear). The expected conclusions are obtained also for
the right-partial order.

The paper is organized as follows. In Section 2 we study linear maps T : A → B preserving the
sharp relation when A is either a unital semisimple Banach algebra having essential socle or a unital
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real rank zero C∗-algebra. We introduce a new relation (R1) which extends the sharp relation to
the full algebra:

(R1) a ≤s b if and only if there exists an idempotent p ∈ A such that a = pb = bp.

we show in Theorem 2.7 that a bijective linear map preserving the sharp order from a unital
semisimple Banach algebra with essential socle into a Banach algebra is a Jordan isomorphism
multiplied by a invertible central element. A similar result is obtained for the relation (R1) (Theorem
2.16). When A is a unital real rank zero C∗-algebra, we prove in Theorem 2.9 that every bounded
linear map preserving the sharp order is an appropriate multiple of a Jordan homomorphism. Also
an analogous result is proved for the relation (R1) (Theorem 2.17).

Section 3 is concerned with linear maps between C∗-algebras preserving the star order. We
connected this problem with that of orthogonality preservers ([11, 12, 13]), and introduce a new
relation (R2), which is equivalent to the star order for a large class of C∗-algebras. We say that

(R2) a ≤ b if and only if a = pb = bq for some projections p, q ∈ A.

We prove in 3.7 that every bijective linear map preserving the sharp order, or equivalently the rela-
tion (R2), from a unital C∗-algebra with large socle into a C∗-algebra is a Jordan *-homomorphism
multiplied by an invertible element. If A is a real rank zero C∗-algebra, B is a C∗-algebra, and
T : A→ B is a bounded linear map preserving the relation (R2), then T is a linear map preserving
orthogonality (Theorem 3.10). The continuity assumption on T can be dropped when A is in fact
linearly spanned by its projections (Theorem 3.9).

2. Sharp partial order

Let A be a Banach algebra. Recall that an element a ∈ A is group invertible if there exists a
unique b ∈ A such that aba = a, bab = b and ab = ba. In this case, b is called the group inverse of
a and denoted by b = a]. Recall also that A] denotes the set of all group invertible elements in A.
Let a ∈ A] and b ∈ A. We write a ≤] b when a]a = a]b and aa] = ba]. This relation is a partial

order when restricted to A].
The following lemma collect some useful algebraic properties of the sharp relation.

Lemma 2.1. Let R be a unital (associative) ring. The following assertions hold:

(1) p ∈ R] is an idempotent if and only if p ≤] 1.

(2) The maximal elements respect to the partial order ≤] in R] are precisely the invertible
elements.

(3) Let a ∈ R], b ∈ R and u a group invertible element commuting with a and b. If a ≤] b then
ua ≤] ub.

Proof. The first assertion is clear.
Let a ∈ R]. It is straightforward to prove that a ≤] (a−1 + aa]). If a is a maximal element with

respect to ≤], then a = (a − 1 + aa]), which means that 1 = aa] = a]a. Reciprocally, if a ∈ R is
invertible and a ≤] b, we have 1 = a−1a = a−1b, which clearly implies that a = b.

Finally, pick a, b ∈ R and u ∈ R] with a ≤] b, ua = au and ub = bu. Since u also commutes with

a] and b], and (ua)] = u]a], it follows that

(ua)]ua = u]ua]a = u]ua]b = (ua)]ub.

Similarly we show that (ua)(ua)] = (ub)(ua)]. �

A linear map T : A→ B between Banach algebras is a Jordan homomorphism if T (a2) = T (a)2,
for all a ∈ A, equivalently T (a ◦ b) = T (a) ◦ T (b), for every a, b ∈ A, where ◦ denotes the usual
Jordan product a ◦ b = 1

2(ab+ ba) . If A and B are unital, T is called unital if T (1) = 1, where 1
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is used for the identity element of both A and B. It is well known that if T : A → B is a Jordan
homomorphism, then T is a Jordan triple homomorphism, that is

T ({a b c}) = {T (a)T (b)T (c)}, for all a, b, c ∈ A,
where {a b c} = 1

2(abc+ cba) is the Jordan triple product in A. A linear (additive) map T : A→ B
between Banach algebras preserves the sharp relation if a ≤] b implies T (a) ≤] T (b).

We begin this section by noticing that every Jordan homomorphism preserves the sharp relation.

Lemma 2.2. Let A and B be Banach algebras and T : A→ B a Jordan homomorphism. Then T
preserves the relation ≤].

Proof. Let a ∈ A] and b ∈ A such that a ≤] b. Let us prove that T (a) ≤] T (b). Recall that, by
[29, Theorem 2.1], if T is a Jordan homomorphism, then T strongly preserves group invertibility,
that is, T (x]) = T (x)] for every group invertible element x ∈ A. As part of the proof of this
result, Mbekhta showed that a Jordan homomorphism preserves the commutativity of {1}-inverses,
that is, if xyx = x and xy = yx, then T (x)T (y) = T (y)T (x). Having this facts in mind, since
T (aa] +a]a) = T (a)T (a])+T (a])T (a), we obtain T (aa]) = T (a)T (a)]. Moreover, as a] = a]ba] and
a]b = ba], the same arguments show that T (a]b) = T (a)]T (b). Consequently

T (a)]T (a) = T (a]a) = T (a]b) = T (a)]T (b).

The identity T (a)T (a)] = T (b)T (a)] can be obtained in the same way and, thus, T (a) ≤] T (b). �

From Lemmas 2.1 and 2.2 it is clear that every Jordan homomorphism multiplied by an invertible
element commuting with its range, also preserves the sharp relation. We address the question
whether the reciprocal result holds. First we will study linear preservers of the sharp relation in the
environment of semisimple Banach algebras with non zero socle. The socle of a semisimple Banach
algebra A, Soc(A), is the sum of all minimal left ideals of A, or minimal right ideals of A, if they
exists; otherwise it is zero. Recall that every minimal left ideal of A is of the form Ae for some
minimal idempotent e, that is, a non-zero idempotent with eAe = Ce.

An element u ∈ A is said to be of rank-one if u 6= 0, and u belongs to some minimal left ideal of
A, or equivalently, uAu = Cu 6= 0. Every element of the socle is a finite sum of rank-one elements,
that is to say that the socle coincides with the set of all finite rank elements. Moreover it is also
well known that every element of the socle is regular ([4, 7]).

Given u ∈ A a rank-one element, there exists τ(u) ∈ C such that u2 = τ(u)u. Moreover, τ(u) = 0
or τ(u) is the only non-zero point of the spectrum of u.

Thus, if τ(u) 6= 0 then τ(u)−1u is a minimal idempotent, and u = τ(u)(τ(u)−1u). Now, for
τ(u) = 0, let x ∈ A, and λ ∈ C be such that uxu = u and x− λ1 is invertible. Therefore, e1 = ux
and e2 = u(x−λ) are minimal idempotents satisfying u = λ−1(e1−e2). From this follows that every
element of the socle of a semisimple Banach algebra is a linear combination of minimal idempotents
(compare with Lemma 1.1 of [14]). Recall also that every rank-one element is single, that is, if u is
a rank-one element, for every a, b ∈ A, aub = 0 implies that au = 0 or bu = 0.

Remark 2.3. Notice that for every a ∈ A] and b ∈ A, ab = ba = 0 is equivalent to a ≤] (a + b).
Hence, given A,B Banach algebras and T : A→ B a linear map preserving the sharp relation, for
every a ∈ A] and b ∈ A, ab = ba = 0 implies that T (a)T (b) = T (b)T (a) = 0.

The initial step for the description of zero product preserving linear maps in [14] consists in
describing the behaviour of the mapping on Jordan products of minimal idempotents p, q ∈ A. In
this sense, our aim is to achieve the identities from [14, Lemma 2.5, Lemma 2.6], through rank-one
group invertible elements, that is, rank-one elements with non-zero trace.

Lemma 2.4. Let A and B be Banach algebras. Assume that A is unital. Let T : A→ B be a linear
map preserving the sharp relation. For every idempotent element p ∈ A, the following holds.

(1) T (p)2 = T (p)T (1) = T (1)T (p).
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(2) T (p) = T (1)T (1)]T (p) = T (p)T (1)]T (1)

Proof. Since 1 ≤] 1, T (1) ≤] T (1), which in particular implies that T (1) has group inverse.
The first identity follows from Remark 2.3. Indeed, as p(1 − p) = (1 − p)p = 0, we have

T (p)
(
T (1)− T (p)

)
=
(
T (1)− T (p)

)
T (p) = 0, which proves (1).

Now, by using that T (p)]T (p) = (T (p)]T (p))] = (T (p)]T (1))] = T (1)]T (p) we get

T (p) = T (p)2T (1) = T (p)T (1)]T (1) = T (1)T (1)]T (p).

�

Proposition 2.5. Let A be a unital semisimple Banach algebra with non-zero socle, B a Banach
algebra and T : A→ B a linear map preserving the sharp relation. Then

T (p ◦ q)T (1) = T (p) ◦ T (q),

for every minimal idempotents p, q ∈ A.

Proof. In order to simplify the notation, we write h = T (1).
Take minimal idempotents p, q ∈ A. Then pq is a rank-one element. We must consider different
cases:
Case 1 : (pq)2 6= 0, that is, τ(pq) = τ(qp) 6= 0.

If we assume that p = pq = qp, then p(1− q) = (1− q)p = 0 and, as we have noticed in Remark
2.3, T (p) (h−T (q)) = (h−T (q))T (p) = 0. This leads to T (p)h = T (p)T (q) and hT (p) = T (q)T (p),
which in particular gives T (p ◦ q)h = T (p) ◦ T (q).

Suppose now that either p 6= pq or p 6= qp. If τ(p(1 − q)) 6= 0 (for τ(q(1 − p)) 6= 0 the proof is
similar), then pq, p(1−q) and (1−q)p are rank-one group invertible elements. Since pq (1−q)(1−p) =
(1−q)(1−p) pq = 0, p(1−q) q(1−p) = q(1−p) p(1−q) = 0 and (1−q)p (1−p)q = (1−p)q (1−q)p = 0,
we obtain, respectively:

(2.1) T (pq)h = T (pq)T (p) + T (pq)T (q)− T (pq)T (qp),

(2.2) T (p)T (q) = T (p)T (qp) + T (pq)T (q)− T (pq)T (qp),

(2.3) T (q)T (p) = T (q)T (qp) + T (pq)T (p)− T (pq)T (qp).

From (2.1) and (2.2) it follows that

(2.4) T (pq)h+ T (p)T (qp) = T (p)T (q) + T (pq)T (p).

Analogously (2.1) and (2.3) gives

(2.5) T (pq)h+ T (q)T (qp) = T (q)T (p) + T (pq)T (q).

Note that in (2.1), (2.2) and (2.3), the roles of p and q can be exchanged. Thus, we can process
in this way in (2.5) to obtain

(2.6) T (qp)h+ T (p)T (pq) = T (p)T (q) + T (qp)T (p).

From (2.4) and (2.6) we get

(2.7) T (pq + qp)h+ T (p)T (pq + qp) = 2T (p)T (q) + T (pq + qp)T (p).

Using the other side identities of the zero product and proceeding similarly, it follows that

(2.8) hT (pq + qp) + T (pq + qp)T (p) = 2T (q)T (p) + T (p)T (pq + qp).

Finally, from (2.7) and (2.8) we get T (p ◦ q)h = T (p) ◦ T (q).
Now, suppose that τ(p(1− q)) = τ(q(1− p)) = 0 ( being τ(pq) 6= 0, and p 6= pq or p 6= qp). From

pq (1− q)(1− p) = (1− q)(1− p) pq = 0 and qp (1− p)(1− q) = (1− p)(1− q) qp = 0 we get

T (pq)h = T (pq)T (p) + T (pq)T (q)− T (pq)T (qp),

T (qp)h = T (qp)T (q) + T (qp)T (p)− T (qp)T (pq).
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As τ(p(1 − q)) = τ(q(1 − p)) = 0, we have p(1 − q)p = q(1 − p)q = 0, that is, pqp = p and
qpq = p. When p = pq (the case p = qp is similar), it follows that qp = q, and p ◦ q = 1

2(p+ q) is an
idempotent. Having into account Lemma 2.4,

T (p+ q)h = 2T (
1

2
(p+ q))h = 2T (

1

2
(p+ q))2

=
1

2
(T (p)2 + T (q)2 + T (p)T (q) + T (q)T (p)).

This yields
2T (p)h+ 2T (q)h = T (p)2 + T (q)2 + T (p)T (q) + T (q)T (p)

and, consequently, T (p ◦ q)h = 1
2T (p + q)h = T (p) ◦ T (q). Finally, suppose that pqp = p, qpq = q,

pq 6= q and qp 6= p. Then
(p+ pq)2 = 2(p+ pq),

(p+ qp)2 = 2(p+ qp),

(q + pq)2 = 2(q + pq),

(q + qp)2 = 2(q + qp).

Therefore

(p+ pq)] =
1

4
(p+ pq),

(p+ qp)] =
1

4
(p+ qp),

(q + pq)] =
1

4
(q + pq),

(q + qp)] =
1

4
(q + qp).

Arguing as above, the following identities are easily obtained:

(2.9) T (p+ pq)h = T (p)T (pq) + T (pq)T (p),

(2.10) T (p+ qp)h = T (p)T (qp) + T (qp)T (p),

(2.11) T (q + pq)h = T (q)T (pq) + T (pq)T (q),

(2.12) T (q + qp)h = T (q)T (qp) + T (qp)T (q).

Notice that, for an idempotent p and x ∈ A, such that pxp = 0, then

p (x− px− xp) = (x− px− xp) p = 0,

and thus
T (p) (T (x)− T (px)− T (xp)) = (T (x)− T (px)− T (xp))T (p) = 0.

Applying this fact to x = 1− q we have:

T (p)h− T (p)T (q) = T (p) (T (p(1− q)) + T ((1− q)p))
= 2T (p)2 − T (p)T (pq)− T (p)T (qp).

That is,

(2.13) T (p)h = T (p)T (pq) + T (p)T (qp)− T (p)T (q).

Similarly,

(2.14) hT (p) = T (pq)T (p) + T (qp)T (p)− T (q)T (p).

From (2.13) and (2.14), we obtain

(2.15) 2T (p)h = T (p)T (pq) + T (pq)T (p) + T (p)T (qp) + T (qp)T (p)− (T (p)T (q) + T (q)T (p)).
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The identities (2.15), (2.9) and (2.10), produce T (p ◦ q)h = T (p) ◦ T (q).

Case 2 : τ(pq) = τ(qp) = 0. In this case pqp = qpq = 0 and, since every rank-one element is single
it must be pq = 0 or qp = 0.

Suppose that pq = 0 and qp 6= 0. As

p
(
q(1− p)

)
=
(
q(1− p)

)
p and q

(
(1− q)p

)
=
(
(1− q)p

)
q = 0,

we obtain, respectively

T (p)T (q) = T (p)T (qp), T (q)T (p) = T (qp)T (p),

T (q)T (p) = T (q)T (qp), T (p)T (q) = T (qp)T (q).

As pq = 0, p+q−qp is an idempotent element. Hence by Lemma 2.4, T (p+q−qp)2 = T (p+q−qp)h,
that is

T (p)2 + T (q)2 + T (p)T (q) + T (q)T (p) + T (qp)2 − T (p)T (qp)− T (q)T (qp)

−T (qp)T (p)− T (qp)T (q) = T (p)h+ T (q)h− T (qp)h.

Having in mind the previous identities we deduce that

T (qp)h = T (p)T (q) + T (q)T (p)− T (qp)2.

It only remains to prove that T (qp)2 = 0. To this end, we will prove that, for every rank-one
element u ∈ A with τ(u) = 0, we have T (u)2 = 0. As we know, given x ∈ A and λ ∈ C such that
uxu = u and x − λ1 is invertible, e1 = ux and e2 = u(x − λ) are minimal idempotents such that
λu = e1 − e2, e1e2 = e2 and e2e1 = e1. Therefore

λ2T (u)2 = T (e1 − e2)2 = T (e1)2 + T (e2)2 − T (e1)T (e2)− T (e2)T (e1)

= T (e1 + e2)h− (T (e1)T (e2) + T (e2)T (e1)).

As e1e2 = e2 and e2e1 = e1, then (e1 + e2)] = 1
4(e1 + e2) and

T (e1 + e2)h = T (e1e2 + e2e1)h = T (e1)T (e2) + T (e2)T (e1).

Hence, T (u)2 = 0 as wanted. �

Since every element of the socle is a linear combination of minimal idempotents, once we have
obtained Lemma 2.4 and Proposition 2.5, it can be checked that the rest of calculations shown in
Lemma 2.5, Lemma 2.6 and Theorem 2.7 in [14] still work for our setting.

Proposition 2.6. Let A and B be Banach algebras. Assume that A is unital, with non-zero socle.
Let T : A → B be a linear map preserving the sharp relation. Let h = T (1). For a ∈ A and
x, y ∈ Soc(A), the following identities hold.

(i) T (x)h = hT (x).
(ii) T (a ◦ x)h = T (a) ◦ T (x).
(iii) T (x)hT (a) = T (x)T (a)h, and T (a)hT (x) = hT (a)T (x).
(iv) {T (x), T (a), T (y)} = T ({x, a, y})h2.
(v) {T (x), T (a)2, T (y)} = T ({x, a2, y})h3.

Recall that a non-zero ideal I of A is called essential if it has non-zero intersection with every
non-zero ideal of A. For a semisimple Banach algebra A this is equivalent to the condition aI = 0,
for a ∈ A, implies a = 0. It is well known, that if a ∈ A verifies xax = 0 for all x ∈ Soc(A), then
xa = ax = 0 for every x ∈ Soc(A).Thus if Soc(A) is essential, from xax = 0 for all x ∈ Soc(A), it
follows that a = 0.

Theorem 2.7. Let A and B be unital Banach algebras, A having essential socle. Let T : A → B
be a bijective linear map. Then, the following conditions are equivalent:

(1) T preserves the sharp relation,
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(2) T is a Jordan isomorphism multiplied by a central invertible element.

Proof. Assume that T preserves the sharp relation. Taking into account the preceding proposition,
we argue as in [14, Theorem 2.7].

Let us first make an easy observation: we know from Lemma 2.4 that T (p) = hh]T (p) = T (p)h]h,
for every minimal idempotent p ∈ A, where h = T (1). By linearizing, the same holds for every
elements in the socle, that is

(2.16) T (x) = T (x)h]h

for all x ∈ Soc(A). Let a ∈ A, and x ∈ Soc(A). By the surjectivity of T , there exists b ∈ A such
that T (b) = T (a)h−hT (a). From Proposition 2.6 (iii), it follows that T (xbx)h2 = 0, or equivalently
(multiplying by h]), T (xbx)h = 0. From Equation (2.16) we deduce that T (xbx) = 0. Since T is
injective, it follows that xbx = 0, for all x ∈ Soc(A), and thus, b = 0. This proves that

T (a)h = hT (a), for every a ∈ A.
Similarly, since T (x)h]hT (a) = T (x)T (a), and T (x)hT (a2)T (x) = hT (x)T (a2)T (x) = h3T (xa2x) =
T (x)T (a)2T (x), for every x ∈ Soc(A), we can prove that

T (a) = T (a)h]h and T (a2)h = T (a)2,

for every a ∈ A (compare if necessary with the proof of [14, Theorem 2.7]). By the surjectivity of
T , it is clear that h is invertible, and that h−1T is a Jordan isomorphism.

The reciprocal statement follows from Lemmas 2.1 and 2.2. �

Recall that a C∗-algebra A is of real rank zero if the set of all real linear combinations of orthogonal
projections is dense in the set of all hermitian elements of A (see [9]). Notice that every von Neumann
algebra, and, in particular, the algebra of all bounded linear operators on a complex Hilbert space
H is of real rank zero.

The following observation has become a standard tool in the study of Jordan homomorphisms
(see [3] or [24]).

Lemma 2.8. Let A be a real rank zero C*-algebra, B a Banach algebra and T : A→ B a bounded
linear mapping sending projections to idempotents. Then T is a Jordan homomorphism. Moreover,
if B is a C*-algebra and T sends projections to projections, it is in fact a *-Jordan homomorphism.

Theorem 2.9. Let A and B be unital Banach algebras. Assume that A has real rank zero C*-
algebra. Let T : A→ B be a bounded linear map. The following conditions are equivalent:

(1) T preserves the relation ≤],
(2) T = T (1)S where S is a Jordan homomorphism, T (1) is group invertible and it commutes

with S(A).

Proof. Let h = T (1). Suppose that T preserves the sharp relation. Since 1 ≤] 1, we have h ≤] h
and, thus, h is group invertible. From Lemma 2.4 we know that

T (p)2 = T (p)h = hT (p)

and
T (p) = hh]T (p) = T (p)h]h,

for every idempotent p ∈ A. As every selfadjoint element in A can be approximated by real
linear combinations of (orthogonal) idempotents, and T is bounded, we get hT (x) = T (x)h, and
T (x) = hh]T (x) for every selfadjoint element x ∈ A. Moreover, since for every x ∈ A there
exists x1, x2 ∈ A selfadjoint elements such that x = x1 + ix2, it is clear that hT (x) = T (x)h and
T (x) = hh]T (x) for every x ∈ A.

Now, from hT (p) = T (p)2, multiplying by
(
h]
)2

and taking into account the commutativity of h

(which implies the commutativity of h]), we deduce that h]T (p) =
(
h]T (p)

)2
. Let : A→ B be the
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map defined as S(x) := h]T (x), for all x ∈ A. The previous identity gives S(p) = S(p)2, for every
idempotent p ∈ A. Lemma 2.8 guarantees that S is a Jordan homomorphism. Finally, note that
T = hh]T = hS.

The converse can be checked straightforwardly combining Lemmas 2.2 and 2.1. �

One may think whether the above result is true for general C∗-algebras.

Example 2.10. Let A = C([0, 1]), B = M2(C) and T : A→ B the map given by

T (f) =

(
f(0) f(1)

0 0

)
.

Notice that A] = A−1 ∪ {0}. Hence 0 ≤] g for every g ∈ A and for f ∈ A−1, f ≤] g if and only
if f = g. Trivially, T fulfills T (0) ≤] T (f) for every f ∈ A. To see that T (f) ≤] T (f) for every

f ∈ A] it is enough to show that T sends invertible functions to group invertible matrices. This last
assert follows from the fact that every matrix(

a b
0 0

)
with a 6= 0 has group inverse (

a−1 a−2b
0 0

)
for every b ∈ C. Finally, T = T (1)]T and it can be easily seen that T is not a Jordan homomor-
phism. However, it can be checked that TT (1)] is a Jordan homomorphism.

Remark 2.11. Let A and B be unital semisimple Banach algebras and T : A→ B be a surjective
linear map. Notice that, in view of Lemma 2.1 (3), if T preserves the sharp relation in both
directions, that is,

a ≤] b if and only if T (a) ≤] T (b),

then T preserves invertibility in both directions. Obviously, T is injective, cause T (a) = 0 implies
that a ≤] 0 and hence a = 0. Therefore, the mapping S = T (1)−1T is a unital bijective linear map
preserving invertibility in both directions. In this case, it is well known that, if A has essential socle
([8]) or A has real rank zero ([3],[24]), then S is a Jordan isomorphism.

Let R be a (unital associative) ring. The sharp relation a ≤] b makes sense only when a is group

invertible. Note that, from a]a = a]b = ba], we get a = aa]b = ba]a, that is, a = bp = pb where
p = aa] = a]a is an idempotent element. So it make sense to extend the sharp relation to the whole
ring, in the following way.

Definition 2.12. Let A be a (unital associative) ring and let a, b ∈ A. We say that

(R1) a ≤s b if and only if there exists an idempotent p ∈ A such that a = pb = bp.

This last definition provides a natural extension of ≤] in the following sense: if a ≤s b and
a is group invertible, then a ≤] b. Indeed, if a = bp = pb for some idempotent p ∈ A, then

a = ap = pa. As a is a group invertible element, we get a] = pa] = a]p. Thus, a]a = a]pb = a]b
and, similarly, aa] = ba]. Observe also that a ∈ A is group invertible element if and only if a ≤s u
for some invertible element u. Indeed, if a is group invertible, then a − 1 + aa] is invertible and
a ≤s (a − 1 + aa]). Reciprocally, if if a ≤s u for some invertible element u, then a = pu = up, for
certain idempotent element p ∈ A. Therefore, a] = u−1p. Notice also that for every a, b ∈ A, and
u ∈ A commuting with a and b, if a ≤s b then ua ≤s ub. Indeed, let p be an idempotent in A such
that a = bp = pb =. It follows that ua = u(bp) = (ub)p and ua = au = (pb)u = p(bu) = p(ub).

In the next lemma, we prove that every Jordan homomorphism preserves the relation (R1);
whence so does every Jordan homomorphism multiplied by an element commuting with its range.
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Lemma 2.13. Let A and B be Banach algebras and T : A → B a Jordan homomorphism. If
a ≤s b, then T (a) ≤s T (b).

Proof. For every idempotent p ∈ A, T (p) = T (p)2 holds. Let a, b ∈ A and suppose that a ≤s b, that
is, there exists an idempotent element p ∈ A such that a = bp = pb. As a = ap = pa, we get

2T (a) = T (pa+ ap) = T (p)T (a) + T (a)T (p).

Multiplying this last equation by T (p) on the left and on the right, respectively, and combining
their results, it can be obtained that T (a)T (p) = T (p)T (a), which yields T (a) = T (p)T (a). From
a = bp = pb we can also write

2T (a) = T (bp+ pb) = T (b)T (p) + T (p)T (b).

We multiply this expression by T (p) on the right, to produce

2T (a) = 2T (a)T (p) = T (b)T (p) + T (p)T (b)T (p).

Since T preserves triple products, it follows

2T (a) = T (b)T (p) + T (pbp) = T (b)T (p) + T (a),

which finally gives T (a) = T (b)T (p). The identity T (a) = T (p)T (b) can be obtained similarly. This
proves that T (a) ≤s T (b) as desired. �

It is a natural question to ask if multiples of Jordan homomorphisms arise from linear maps
preserving the relation (R1). We focus on the two settings that we are already dealing with, that
is, unital semisimple Banach algebras with large socle and real rank zero C∗-algebras.

Lemma 2.14. Let A and B be Banach algebras and T : A→ B a linear map preserving the relation
(R1). Then, for every a ∈ A], b ∈ B, the condition ab = ba = 0 implies T (a)T (b) = T (b)T (a) = 0.

Proof. Take a ∈ A], b ∈ B. Then it is clear that

ab = ba = 0 if and only if a]b = ba] = 0 if and only if a ≤s a+ b.

Therefore, if ab = ba = 0, then T (a) ≤s T (a) + T (b), that is,

T (a) = pT (a) = T (a)p = p(T (a) + T (b)) = (T (a) + T (b))p

for some idempotent p ∈ B. In particular, pT (b) = T (b)p = 0, which gives T (a)T (b) = T (a)pT (b) =
0 and T (b)T (a) = T (b)pT (a) = 0, as desired. �

Remark 2.15. Let A and B be Banach algebras and T : A→ B a linear map preserving the relation
(R1).We assume that A is unital. Let p be an idempotent element in A.The previous lemma implies,
in particular, that

T (p)2 = T (p)T (1) = T (1)T (p).

Moreover, since T (p) ≤s T (1), there exists an idempotent q ∈ B such that T (p) = T (1)q = qT (1).
If we assume moreover that T (1) is group invertible, then it is clear that

T (p) = T (1)T (1)]T (p) = T (p)T (1)]T (1).

From Lemma 2.14 it follows that the conclusions in Propositions 2.5 and 2.6 still hold. Having
in mind these facts and the previous remark, the proof of the next theorem runs in the same way
as that of Theorem 2.7.

Theorem 2.16. Let A and B be unital Banach algebras, A having essential socle. Let T : A→ B
be a bijective linear map. Assume that T (1) has group inverse. Then, the following conditions are
equivalent:

(1) T preserves the relation (R1),
(2) T is a Jordan isomorphism multiplied by a central invertible element.
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To conclude this section, we consider a continuous linear mapping defined on a unital real rank
zero C∗-algebra that preserves the relation (R1).

Theorem 2.17. Let A be a unital real rank zero C∗-algebra and B be a Banach algebra. Let
T : A→ B be a continuous linear map. Assume that T (1) is group invertible. Then, the following
conditions are equivalent:

(1) T preserves the relation (R1),
(2) T = T (1)S where S is a Jordan homomorphism, and T (1) commutes with S(A).

Proof. From Remark 2.15 we know that

T (p)2 = T (p)h = hT (p),

and
T (p) = hh]T (p) = T (p)h]h,

for every idempotent p in A. For every real linear combination of mutually orthogonal idempotents
x =

∑n
k=1 λkpk, we have

hT (x2) = hT

(
n∑

k=1

λ2
kpk

)
=

n∑
k=1

λ2
khT (pk) =

n∑
k=1

λ2
kT (pk)2 = T (x)2.

Since A has real rank zero and T is continuous, it is clear that

T (a)h = hT (a), T (a) = hh]T (a),

and
hT (a2) = T (a)2,

for every selfadjoint element a in A. Since for every element a ∈ A , there exists selfadjoint elements
x, y ∈ A such that a = x+ iy and

a2 = (x+ iy)2 = x2 − y2 + i
(
(x+ y)2 − x2 − y2

)
,

we have
T (a)h = hT (a), T (a) = hh]T (a),

and
hT (a2) = hT ((x+ iy)2) = hT

(
x2 − y2 + i

(
(x+ y)2 − x2 − y2

))
= T (a)2.

From these identities, it is clear that S(x) = h]T (x) is a Jordan homomorphism, and T (x) = hS(x)
for every x ∈ A (compare with Theorem 2.9). �

3. Star partial order and orthogonality

Recall that every C*-algebra A can be endowed with Jordan triple product defined by

{a, b, c} :=
1

2
(ab∗c+ cb∗a).

An element e ∈ A satisfying {e, e, e} = e is called tripotent or partial isometry. Every tripotent e
in A gives rise to the so-called Pierce decomposition of A:

A = A2(e)⊕A1(e)⊕A0(e),

where A2(e) = ee∗Ae∗e, A1(e) = (1 − ee∗)Ae∗e ⊕ ee∗A(1 − e∗e) and A0(e) = (1 − ee∗)A(1 − e∗e).
The Pierce subspace A2(e) admits a structure of a unital JB*-algebra with unit e, product given
by x • y = {x, e, y} and involution given by e� = {e, x, e} (see [20]).

For each element a in a von Neumann algebra W there exists a unique partial isometry r(a) in

W such that a = r(a)|a|, and r(a)∗r(a) is the support projection of |a|, where |a| = (a∗a)
1
2 . It is

also known that r(a)a∗r(a) = {r(a), a, r(a)} = a (see [35, §1.12] for details). The element r(a) will
be called the range partial isometry of a.
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Two elements a, b in a C∗-algebra A are called orthogonal (denoted by a ⊥ b) if ab∗ = b∗a = 0.
For a subset S of A, we write

S⊥
A

:= {y ∈ A : y ⊥ x, ∀x ∈ S}.

A linear mapping T : A → B between C∗-algebras is said to be orthogonality preserving if
T (a) ⊥ T (b) whenever a ⊥ b. The map T is biorthogonality preserving if T (a) ⊥ T (b) if and only if
a ⊥ b. A linear mapping T : A→ B between C∗-algebras preserves the star order if a ≤∗ b implies
that T (a) ≤∗ T (b).

Notice that given a, b in a C∗-algebra A, a ≤∗ b if and only if a ⊥ (a + b), so the problem of
preserving star partial order is in fact equivalent to that of preserving orthogonality.

The study of orthogonality preserving bounded linear maps between C∗-algebras began with the
work of W. Arendt [1] in the setting of unital abelian C∗-algebras. Orthogonality preserving linear
operators between general C∗-algebras were first considered by M. Wolff in [37]. He proved that
every orthogonality preserving bounded symmetric linear map between C∗-algebras is a multiple
of a Jordan ∗-homomorphism. Recall that a linear map T : A → B is called selfadjoint (or
symmetric) if T (a∗) = T (a)∗, for every a ∈ A. Selfadjoint Jordan homomorphisms are named
Jordan ∗-homomorphism.

Under continuity assumptions, orthogonality preserving (bounded) linear maps between general
C∗-algebras completely described in [11] and [12]:

Theorem 3.1. [11, Theorem 17 and Corollary 18] Let T : A → B be a bounded linear mapping
between two C*-algebras. For h = T ∗∗(1) and r = r(h) the following assertions are equivalent.

a) T is orthogonality preserving.
b) There exists a unique Jordan ∗-homomorphism S : A → B∗∗2 (r) satisfying that S∗∗(1) = r and
T (z) = hr∗S(z) = S(z)r∗h for all z ∈ A.

c) T preserves zero triple products, that is, {T (x), T (y), T (z)} = 0 whenever {x, y, z} = 0. �

In [13], J. Garcés, A. Peralta and the first author of this note proved that every biorthogonality
preserving surjective linear map between compact C∗-algebras or von Neumann algebras is auto-
matically continuous. As every symmetric linear mapping between C∗-algebras is orthogonality
preserving whenever it preserves zero products, it follows that every symmetric biseparanting linear
map between von Neumann algebras is automatically continuous. In [10] it is proved that every
biorthogonality preserving surjective linear map T : A→ B, from a unital C∗-algebra having essen-
tial socle to a general C∗-algebra is automatically bounded and a Jordan ∗-isomorphism multiplied
by an invertible element.

Note that in the setting of complex matrix algebras the star partial order can be stated as follows:

A ≤∗ B if and only if A = PB = BQ,

for some selfadjoint idempotent matrices P,Q. This characterization is still true for the more general
context of Rickart C*-algebras, [27]. A C∗-algebra is called Rickart C*-algebra if the left annihilator
(respectively, right annihilator) of any element a ∈ A is generated by a projection. It is well known
that every von Neumann algebra is a Rickart C∗-algebra, and that every Rickart C∗-algebra has
real rank zero ([6],[35]). If A is a Rickart C∗-algebra, then for every element a ∈ A, there exists a
unique projection p such that

annl(a) = {x ∈ A : xa = 0} = A(1− p).

We denote it by p = lp(a). Similarly, we denote by q = rp(a) the unique projection such that

annr(a) = {x ∈ A : ax = 0} = (1− q)A.

If a and b are elements in a Rickart C∗-algebra A, such that a ≤∗ b, or equivalently a ⊥ (a+b), then
(a+ b)∗ ∈ annl(a) and (a+ b)∗ ∈ annr(a), which show that (a+ b)∗lp(a) = 0 and rp(a)(a+ b)∗ = 0.
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Having in mind that a = lp(a)a = arp(a), we conclude that a = lp(a)b = brp(a). (Compare with
[27, Theorem 1].)

Motivated by the previous characterization, we will study the following relation.

Definition 3.2. Let A be a C*-algebra. We define

(R2) a ≤ b if and only if a = pb = bq for some projections p, q ∈ A.
Even for non Rickart C∗-algebras, the notion just presented is deeply related to the star partial

order. As a matter of fact, if a = pb = bq for some projections p, q ∈ A, then a∗a = b∗ppb = b∗pb =
a∗b and aa∗ = bqqb∗ = bqb∗ = ba∗. As consequence, a ≤∗ b. Reciprocally, if a ∈ A is regular and
a∗a = a∗b, then it can be checked that a†a = a†b. Hencefore a = aa†a = aa†b, where p = aa† is
a projection. Similarly, from aa∗ = ba∗ we get a = ba†a, where q = a†a is a projection. We have
proved the following:

Lemma 3.3. Let A be a C∗-algebra. Then a ≤ b implies a ≤∗ b. If a is regular, a ≤∗ b implies
a ≤ b.

The previous lemma shows that, for a regular element a in a C∗-algebra A, a ⊥ b if and only if
a ≤ (a+ b).

Cause every element in the socle C∗-algebra A is regular, we can employ the techniques on
orthogonality preserving maps on C∗-algebras with large socle in order to determine the structure
of linear maps preserving the relation (R2), due to the crucial role played by the regular elements
within our proofs.

Lemma 3.4. Let A and B be C∗-algebras. Assume that A is unital with non-zero socle. Let
T : A → B be a linear map preserving the relation (R2). Let h = T (1). For every a ∈ A and
x, y ∈ Soc(A), the following identities hold:

(1) T (x)h∗ = hT (x∗)∗ and h∗T (x) = T (x∗)∗h,
(2) T (ax+ xa)h∗ = T (a)T (x∗)∗ + T (x)T (a∗)∗ and

h∗T (ax+ xa) = T (x∗)∗T (a) + T (a∗)∗T (x),
(3) T (x)h∗T (a) = T (x)T (a∗)∗h, and

T (a)h∗T (x) = hT (a∗)∗T (x),
(4) {T (x)T (a)T (y)} = T ({x a y})h∗h,
(5) {T (x) {T (a)hT (a)}T (y)} = {h {hT ({x a2 y})h}h}.

Proof. Let a be a regular element in A and a ⊥ b. As we have pointed out, a ≤ (a + b). By
hypothesis, T (a) ≤ T (a) + T (b), and hence T (a) ⊥ T (b). That is, T sends mutually orthogonal
elements into mutually orthogonal elements, when one of them is regular. A quickly inspection of the
proof of [10, Lemma 2.1], allows us to see that one of the elements appearing in all the orthogonality
relations is always regular. Hence, the identities obtained there hold when orthogonality is replaced
by the relation (R2). Thus (1), (2) and (3) are clear. We deduce (4) and (5) from them arguing as
in [10, Proposition 2.2]. �

Proposition 3.5. Let A and B be C∗-algebras. Assume that A is unital with non-zero socle. Let
T : A → B be a linear map preserving orthogonality or the relation (R2). Then, for x ∈ Soc(A),
the condition T (x) ⊥ T (1) implies T (x) = 0.

Proof. For the sake of simplicity, let us denote h = T (1). Pick x ∈ Soc(A) satisfying T (x) ⊥ T (1).
By [10, Lemma 2.1], if T preserves orthogonality, or by the previous lemma if T preserves the
relation (R2), we get

0 = T (x)h∗ = hT (x∗)∗,

0 = h∗T (x) = T (x∗)∗h,

and hence T (x∗) ⊥ h. Moreover

T (xx∗ + x∗x)h∗h = T (x)T (x)∗h+ T (x∗)T (x∗)∗h = 0,
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or equivalently T (xx∗ + x∗x)h∗ = 0. This leads us to

T (x)T (x)∗ + T (x∗)T (x∗)∗ = 0,

which clearly implies that T (x) = T (x∗) = 0. �

Proposition 3.6. Let A and B be C*-algebras, where A is unital and has essential socle. Let
T : A → B be an injective linear map preserving orthogonality or preserving the relation (R2).
Then T (A) ∩ {T (1)}⊥ = {0}.

Proof. Let a ∈ A be such that T (a) ⊥ h. We claim that, for every x ∈ Soc(A), we have:

(1) T (a ◦ x) ⊥ h,
(2) T (a) ⊥ T (x).

Indeed, given x ∈ Soc(A), taking into account [10, Lemma 2.1] or Lemma3.4, we obtain

T (ax+ xa)h∗h = T (a)T (x∗)∗h+ T (x)T (a∗)∗h

= T (a)h∗T (x) + T (x)h∗T (a) = 0.

Similarly, hh∗T (ax+ xa) = 0, which proves (1).
In order to show that (2) holds, let p be a minimal projection in A. From (1)

0 = T (ap+ pa)h∗h = T (a)T (p)∗h+ T (p)T (a∗)∗h = T (a)T (p)∗h.

In the same way, we prove hT (p)∗T (a) = 0. Now, as T (p)T (p)∗ = T (p)h∗ = hT (p)∗ and T (p)∗T (p) =
T (p)∗h, it follows that

T (a)T (p)∗T (p) = T (p)T (p)∗T (a) = 0,

and by cancellation, T (a) ⊥ T (p). Since Soc(A) is linearly spanned by its minimal projections, we
get (2).

Finally, take a ∈ A such that T (a) ⊥ h. Again by [10, Lemma 2.1] (respectively, Lemma3.4)

hh∗T ({x, a, y}) = T ({x, a, y})h∗h = T (x)T (a)∗T (y)+T (y)T (a)∗T (x) = 0, for every x, y ∈ Soc(A).

That is, T ({x, a, y}) ⊥ h for every x, y ∈ Soc(A). By the previous proposition, T ({x, a, y}) = 0,
and since T is injective, {x, a, y} = 0 for every x, y ∈ Soc(A). The essentiality of the socle of A
gives a = 0 and finishes the proof. �

The next result improves the main conclusion of [10, Theorem 3.2]. Notice that one we have
shown in Proposition 3.6 that the orthogonal of {T (1)} does not contains elements of the image of
T , the rest of the proof of Theorem 3.2 in [10] runs in the same way.

Corollary 3.7. Let A and B be C*-algebras. Suppose that A is unital and has essential socle. Let
T : A→ B be a bijective linear map preserving orthogonality or the relation (R2). Then B is unital
and T is a Jordan *-homomorphism multiplied by an invertible element.

In order to describe linear preservers of the relation (R2), we consider under what circumstances
we can obtain a bounded linear map preserving orthogonality, so that [11, Theorem 17 and Corollary
18] can be used to conclude its description.

Lemma 3.8. Let A and B be C*-algebras, where A is unital, and T : A → B a bounded linear
map. Suppose that

(1) T (x)h∗ = hT (x∗)∗,
(2) T (xy + yx)h∗ = T (x)T (y∗)∗ + T (y)T (x∗)∗,

for every x, y ∈ A, where, h = T (1). Then T is bounded and preserves orthogonality.
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Proof. Indeed, it is clear that T is bounded: From the second identity, if follows that

T (x2)h∗ = T (x)T (x∗)∗ (x ∈ A).

Therefore, the linear mapping S : A→ B, given by S(x) = T (x)h∗, is positive, and hence continu-
ous. So T is also bounded.

Let us write k = h∗h. For every x, y, z in A,

2T
(
(x ◦ y∗) ◦ z

)
k =

(
T (x ◦ y∗)T (z∗)∗ + T (z)T (x∗ ◦ y)∗

)
h

= T (x ◦ y∗)h∗T (z) + T (z)T (x∗ ◦ y)∗h

=
1

2

(
T (x)T (y)∗T (z) + T (y∗)T (x∗)∗T (z)

+ T (z)T (x∗)∗T (y∗) + T (z)T (y)∗T (x)
)

= {T (x), T (y), T (z)}+ {T (y∗), T (x∗), T (z)}.
Similarly

2T ((z ◦ y∗) ◦ x) k = {T (x), T (y), T (z)}+ {T (y∗), T (z∗), T (x)},
2T ((x ◦ z) ◦ y∗) k = {T (x), T (z∗), T (y∗)}+ {T (z), T (x∗), T (y∗)}.

From these equalities we get

T ({x, y, z})k = T
(
(x ◦ y∗) ◦ z + (z ◦ y∗) ◦ x− (x ◦ z) ◦ y∗

)
= {T (x), T (y), T (z)},

for x, y, z ∈ A.
It is clear now that T preserves zero triple products or, equivalently, orthogonality (Theorem

3.1).
�

In many C∗-algebras, every element can be expressed as a finite linear combination of projections:
the Bunce-Deddens algebras, the irrotational rotation algebras; simple, unital AF C*-algebras with
finitely many extremal states; UHF C*-algebras; unital, simple C∗-algebras of real rank zero with
no tracial states; properly infinite C∗- and von Neumann algebras;... (see [26], [28], [34], and the
references therein).

In the next Theorem, we show that if A is one of these kind of C∗-algebras, and T : A → B
preserves the relation (R2), then T satisfies the conditions in Lemma 3.8 and hence T preserves
orthogonality. In particular, from [13, Theorem 14], T is automatically bounded.

Theorem 3.9. Let A be a unital C*-algebra linearly spanned by its projections, B a C*-algebra and
T : A→ B be a linear map preserving the relation (R2). Then T preserves orthogonality.

Proof. For any projections p, q ∈ A, it is easy to show that

qp ≤ qp+ (1− q)(1− p) and q(1− p) ≤ q(1− p) + (1− q)p.
By hypothesis,

T (qp) ≤ T (qp) + T ((1− q)(1− p)) and T (q(1− p)) ≤ T (q(1− p)) + T ((1− q)p).
In particular

T (qp) ⊥ T ((1− q)(1− p)) and T (q(1− p)) ⊥ T ((1− q)p).
With these identities in mind, we can argue as in [13, Theorem 14] to obtain

(1) T (x)h∗ = hT (x∗)∗,
(2) T (xy + yx)h∗ = T (x)T (y∗)∗ + T (y)T (x∗)∗,

for every x, y ∈ A. The conclusion follows by applying Lemma 3.8.
�
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It is not difficult to realize that if A is not linearly spanned by its projections but it has enough
projections, in the sense that A has real rank zero, and the map T is assumed to be continuous,
then the previous line of arguments provides the following result.

Theorem 3.10. Let A be a unital real rank zero C*-algebra, B a C*-algebra and T : A → B a
bounded linear map preserving the relation (R2). Then T preserves orthogonality.

Remark 3.11. Let A be a von Neumann algebra, B a C*-algebra and T : A→ B a bijective linear
map preserving the relation (R2). As every von Neumann algebra is a Rickart C*-algebra, the
relations (R2) and ≤∗ are equivalent in A. Hence, T preserves orthogonality. From [33, Corollary
4.6] T is automatically bounded. Hence Theorem 3.1 implies that T is an appropriate multiple of a
Jordan ∗-homomorphism.
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[8] M. Brešar, A. Fošner, and P. Šemrl, A note on invertibility preservers on Banach algebras. Proc. Amer. Math.

Soc. 131 (2003), 3833?3837.
[9] L. G. Brown, G. K. Pedersen, C*-algebras of real rank zero, J. Funct. Anal. 99 (1991) 131-149.
[10] M. Burgos, Orthogonality preserving linear maps on C*-algebras with non-zero socles, J. Math. Anal. Appl. 401

(2013) 479–487.
[11] M. Burgos, F.J. Fernández-Polo, J.J. Garces, J. Martinez Moreno, A.M. Peralta, Orthogonality preservers in

C*-algebras, JB*-algebras and JB*-triples, J. Math. Anal. Appl. 348 (2008) 220–233.
[12] M. Burgos, F.J. Fernández-Polo, J.J. Garcs, A.M. Peralta, Orthogonality preservers revisited, Asian-Eur. J. Math.

2 (2009) 387–405.
[13] M. Burgos, J. Garcés, A. Peralta, Automatic continuity of biorthogonality preservers between compact C*-algebras

and von Neumann algebras, J. Math. Anal. Appl. 376 (2011) 221–230.
[14] M. Burgos, J. Sánchez-Ortega, On maps preserving zero products, Lin. Mult. Alg. 61 (3) (2013) 323–335.
[15] G. Dolinar, A. Guterman, J. Marovt, Automorphisms of K(H) with respect to the star partial order, Operators

and Matrices, 7 (1) (2013) 225–239.
[16] G. Dolinar, A. Guterman, J. Marovt, Monotone transformations on B(H) with respect to the left-star and the

right-star partial order, Math. Ineq. Appl. 17 (2) (2014), 573-589.
[17] G. Dolinar, J. Marovt, Star partial order on B(H), Linea Algebra Appl. 2011 (2011), 319-326.
[18] M. P. Drazin, Natural structures on semigroups with involution, Bull. Amer. Nath. Soc. 84 (1978) 139–141.
[19] A. E. Guterman, Monotone additive transformations on matrices, Mat. Zametki 81 (2007) 681–692.
[20] H. Hanche-Olsen, E. Størmer, Jordan Operator Algebras, Monogr. Stud. Math. 21 (1984), Pitman (Advanced

Publishing Program), Boston, MA.
[21] R. Harte, M. Mbekhta, On generalized inverses in C*-algebras, Studia Math. 103 (1992) 71–77.
[22] R. E. Hartwig, How to partially order regular elements, Math. Japon. 25 (1980), 1–13.
[23] R. E. Hartwig, G. P. H. Styan On some characterizations of the ”star”partial ordering for matrices and rank

substractivity, Linear Algebra Appl. 82 (1986) 145–161.
[24] I. Kovacs, Invertibility-preserving maps of C*-algebras with real rank zero, Abstr. Appl. Anal. Volume 2005,

Number 6 (2005) 685–689.
[25] L. Lebtahi, P. Patricio, N. Thome, The diamond partial order in rings, Lin. Mult. Alg., 62(3) (2014), 386–395.
[26] Y.-F. Lin and M. Mathieu, Jordan isomorphism of purely infinite C∗-algebras, Quart. J. Math., 58, 249-253

(2007).
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