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Abstract

In this paper, we introduce a new notion in a semigroup S as an extension
of Mary’s inverse. Let a, d ∈ S. An element a is called left (resp. right)
invertible along d if there exists b ∈ S such that bad = d (resp. dab = b)
and b ≤L d (resp. b ≤R d). An existence criterion of this type inverse is
derived. Moreover, several characterizations of left (right) regularity, left
(right) π-regularity and left (right) ∗-regularity are given in a semigroup.
Further, another existence criterion of this type inverse is given by means of
a left (right) invertibility of certain elements in a ring. Finally we study the
(left, right) inverse along a product in a ring, and, as an application, Mary’s
inverse along a matrix is expressed.
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1. Introduction

Throughout this paper, S is a semigroup. An element a ∈ S is (von
Neumann) regular if there exists x in S such that axa = a. Such x is called
an inner inverse of a. By a{1} = {x ∈ S : axa = a} we denote the set
of all inner inverses of a. An arbitrary element in a{1} is denoted by a(1).
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The element a is left (right) regular (see e.g. [2]) if there exists x such that
a = xa2 (a = a2x), and strongly regular if it is both left regular and right
regular. It is left (right) π-regular (see e.g. [2]) if there exists x such that
an = xan+1 (an = an+1x) for a positive integer n. If a is both left and right
π-regular, then a is strongly π-regular.

Let ∗ be an involution (anti-isomorphism of degree 2) on S, that is, the
involution satisfies (x∗)∗ = x and (xy)∗ = y∗x∗ for all x, y ∈ S. Let a ∈ S.
We call a left (right) ∗-regular if there is x such that a = aa∗ax (a = xaa∗a).
A ∗-semigroup S is called left (right) ∗-regular if all elements in S are left
(right) ∗-regular. If x satisfies axa = a and (ax)∗ = ax, then x is a {1, 3}-
inverse of a. If y satisfies aya = a and (ya)∗ = ya, then y is a {1, 4}-inverse
of a.

The standard notions of group, Drazin and Moore-Penrose inverse can
be referred to the literature [4, 9]. Following [4], an element a is Drazin
invertible if and only if it is strongly π-regular. In particular, a is group
invertible if and only if it is strongly regular. It is well known that a ∈ S is
Moore-Penrose invertible if and only if a ∈ aa∗S ∩ Sa∗a if and only if it is
both {1, 3} and {1, 4}-invertible. All these inverses, if they exist, are unique.
We denote by a#, aD and a† the group, Drazin and Moore-Penrose inverses
of a, respectively.

Mary [6] recently defined a new generalized inverse in a semigroup S
called the inverse along an element. Motivated by [6], we introduce in section
2 below a new notion. An existence criterion of this type inverse is derived.
Moreover, several characterizations of left (right) regularity, left (right) π-
regularity and left (right) ∗-regularity are given in a semigroup. Also, we
prove that a ∈ S is Moore-Penrose invertible if and only if it is left ∗-regular
if and only if it is right ∗-regular. In section 3, another existence criterion
of this type inverse is given by means of a left (right) invertibility of certain
elements in a ring, and as an application, the formula of the inverse along a
matrix is expressed.

2. One-sided inverse along an element in semigroups

Green’s preorders in a semigroup [5] are defined as followed (S1 denotes
the monoid generated by S)

a ≤L b⇔ S1a ⊆ S1b⇔ there exists x ∈ S1 such that a = xb.
a ≤R b⇔ aS1 ⊆ bS1 ⇔ there exists x ∈ S1 such that a = bx.
a ≤H b⇔ a ≤L b and a ≤R b.
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We next introduce a notion that is based on Green’s preorders in a semi-
group.

Definition 2.1. Let a, d ∈ S. An element a is left invertible along d if there
exists b ∈ S such that bad = d and b ≤L d.

Any b satisfying the conditions in Definition 2.1 is called a left inverse of
a along d.

Definition 2.2. Let a, d ∈ S. An element a is right invertible along d if
there exists b such that dab = d and b ≤R d.

In [6], Mary defined a new generalized inverse in a semigroup as follows:
An element b is an inverse of a along d if bad = d = dab and b ≤H d.
This type inverse is unique, if it exists and denoted by a‖d. Mary showed
in particular that a#, aD and a† are the inverses of a along a, an and a∗

respectively ([6, Theorem 11]). In [3], Drazin introduced (b, c)-inverse in a
semigroup. It follows that (d, d)-inverse of a is an inverse of a along d (Mary’s
inverse). Hence, group inverse, Drazin inverse, Moore-Penrose inverse and
Mary’s inverse of a are instances of left or right inverse of a along d.

Next, we present an existence criterion of a left inverse along an element.

Theorem 2.3. Let a, d ∈ S. Then a is left invertible along d if and only if
d ≤L dad.

Proof. “⇒” Suppose that a is left invertible along d. Then there exists b
such that bad = d and b ≤L d. From b ≤L d, it follows that b = xd for some
x ∈ S1. Hence, d = bad = xdad, which implies d ≤L dad.

“⇐” d ≤L dad implies d = ydad for some y ∈ S. Take b = yd. Then
b ≤L d and bad = d. �

Dually, we can obtain an equivalence for the existence of a right inverse
along an element.

Theorem 2.4. Let a, d ∈ S. Then a is right invertible along d if and only
if d ≤R dad.

Applying Theorems 2.3 and 2.4 and [7, Theorem 2.2], we get the following
corollaries.
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Corollary 2.5. Let a, d ∈ S. Then a is invertible along d if and only if it is
left and right invertible along d.

Corollary 2.6. Let dl, dr and d be such that S1dl = S1d and drS
1 = dS1.

Then a is invertible along d if and only if it is left invertible along dl and
right invertible along dr.

We consider now the relations between left invertibility along d and left
invertibility, left regularity, left π-regularity and left ∗-regularity.

Theorem 2.7. Let a ∈ S.
(i) If S is a monoid, then a is left invertible along 1 if and only it is left

invertible.
(ii) a is left invertible along a if and only if it is left regular.
(iii) There exists n ∈ N such that a is left invertible along an if and only

if it is left π-regular.
(iv) If S is a ∗-semigroup, then a is left invertible along a∗ if and only if

it is left ∗-regular.

Proof. (i) Suppose that a is left invertible. Then there exists b ∈ S such
that 1 = ba. Also, as b = b ∗ 1, then b ≤L 1 and a is left invertible along 1.

Conversely, if a is left invertible along 1, then there exists b ∈ S such that
ba = 1 and a is left invertible.

(ii) Assume that a is left regular. Then exists b in S, a = ba2 hence
a = b2a3 and a ≤L a3. By Theorem 2.3, a is left invertible along a.

Conversely, if a is left invertible along a, then there is b in S such that
baa = a and a is left regular.

(iii) Let a be left π-regular. Then there exist b in S and an integer n such
that an = ban+1, and by induction an = b2an+2 = · · · = bn+1a2n+1. Hence
a ≤L a2n+1 and a is left invertible along an by Theorem 2.3.

The converse part is straightforward.
(iv) Assume that a is left ∗-regular. Then there exists x ∈ S such that

a = aa∗ax and hence a∗ = x∗a∗aa∗, which implies that a is left invertible
along a∗ by Theorem 2.3.

Conversely, if a is left invertible along a∗, it follows from Theorem 2.3
that a∗ ≤L a∗aa∗. Hence, a = aa∗ay for some y ∈ S and a is left ∗-regular.
�
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Applying Theorems 2.3 and 2.7, we give some characterizations of left
invertibility and left generalized invertibilities in the following corollary.

Corollary 2.8. Let a ∈ S. Then
(i) If S is a monoid, a is left invertible if and only if 1 ≤L a.
(ii) a is left regular if and only if a ≤L a3.
(iii) a is left π-regular if and only if am ≤L a2m+1, for a positive integer

m.
(iv) If S is a ∗-semigroup, then a is left ∗-regular if and only if a∗ ≤L

a∗aa∗.

Dually, we have the following result.

Theorem 2.9. Let a ∈ S. Then
(i) If S is a monoid, a is right invertible along 1 if and only it is right

invertible.
(ii) a is right invertible along a if and only if it is right regular.
(iii) a is right invertible along am if and only if it is right π-regular.
(iv) If S is a ∗-semigroup, then a is right invertible along a∗ if and only

if it is right ∗-regular.

By Theorems 2.4 and 2.9, we have

Corollary 2.10. Let a ∈ S. Then
(i) If S is a monoid, a is right invertible if and only if 1 ≤R a.
(ii) a is right regular if and only if a ≤R a3.
(iii) a is right π-regular if and only if am ≤R a2m+1, for a positive integer

m.
(iv) If S is a ∗-semigroup, then a is right ∗-regular if and only if a∗ ≤R

a∗aa∗.

Remark 2.11. Let S be a non Dedekind finite ring with ab = 1 6= ba. Then
a is right invertible along a (an) by Theorem 2.4, but one can show that it
is not left invertible along a (an). However, in a ∗-semigroup, we prove that
every right ∗-regular element is left ∗-regular (see Theorem 2.16 below).

We present characterizations of {1, 3}-inverse, {1, 4}-inverse, left ∗-regularity
and right ∗-regularity of an element in a ∗-semigroup with an identity ele-
ment.

The conditions (i) and (ii) in Proposition 2.12 below were essentially
proved in [11, Lemma 2.2] in a ring with involution case.
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Proposition 2.12. Let S be a ∗-semigroup and let a ∈ S1. Then
(i) a has a {1, 3}-inverse if and only if S1a = S1a∗a.
(ii) a has a {1, 4}-inverse if and only if aS1 = aa∗S1.
(iii) a is left ∗-regular if and only if aS1 = aa∗aS1.
(iv) a is right ∗-regular if and only if S1a = S1aa∗a.

Remark 2.13. Proposition 2.12 does not hold in the case that there is no
identity element. Indeed, let S be a null semigroup (xy = 0, ∀x, y ∈ S)
distinct from {0}. Then 0 is the only von Neumann regular element but
(∀a ∈ S) Sa = 0 = Saa∗a = Sa∗a for instance.

Remark 2.14. If a is left ∗-regular, then a has a {1, 4}-inverse by Propo-
sition 2.12. But the converse does not necessarily hold. Let S = M2(C)
and the involution is the transpose. Take A = ( 1 0

i 0 ) and A∗ = ( 1 i
0 0 ). Then

AA∗S = AS, which implies that A is {1, 4}-invertible. However AA∗AS = 0.
So, A is not left ∗-regular.

Now, we construct a ∗-semigroup to illustrate various relations in Propo-
sition 2.12.

Example 2.15. Let A = {1, 2, 3}. Then every map from A to A can be

written as

(
1 2 3
i j k

)
, where i, j, k ∈ A. If S is a semigroup generated

by x =

(
1 2 3
2 3 3

)
and y =

(
1 2 3
1 1 3

)
, then S = {x, x2, y, xy, yx}. Set

x∗ = x, (x2)∗ = x2, y∗ = y, (xy)∗ = yx and (yx)∗ = xy, then ∗ is an
involution on S. Moreover, we get

(i) x is regular but neither {1, 3} nor {1, 4}-invertible.
(ii) y and x2 are projectors and hence Moore-Penrose invertible.
(iii) xy is {1, 4}-invertible but neither {1, 3}-invertible nor left ∗-regular.
(iv) yx is {1, 3}-invertible but neither {1, 4}-invertible nor right ∗-regular.

Theorem 2.16. Let S be a ∗-semigroup and let a ∈ S. Then the following
conditions are equivalent:

(i) a is Moore-Penrose invertible.
(ii) a is left ∗-regular.
(iii) a is right ∗-regular.
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Proof. (i)⇒(ii) Let a† be the Moore-Penrose inverse of a. Then a =
a(a†a)∗ = aa∗(a†aa†)∗ = aa∗aa†(a†)∗ and hence a is left ∗-regular.

(ii)⇔(iii) Assume that a is left ∗-regular. There exists x ∈ S such that
a = aa∗ax and hence a∗ = x∗a∗aa∗. Since (ax)∗a = (ax)∗aa∗(ax), it follows
that (ax)∗a = [(ax)∗a]∗ = a∗ax. Hence, we have a = aa∗ax = a(ax)∗a =
ax∗a∗a = (ax∗x∗a∗)aa∗a. So, a is right ∗-regular.

The converse part follows by a similar way.
(iii)⇒(i) Let a be right ∗-regular and hence left ∗-regular. We have a ∈

aa∗S ∩ Sa∗a. Thus, a is Moore-Penrose invertible. �

Recall that a semigroup S is called ∗-regular if all elements in S are
Moore-Penrose invertible. Hence, we get

Corollary 2.17. Let S be a ∗-semigroup. Then S is ∗-regular if and only
every element in S is left (right) ∗-regular.

The following lemma was given by Penrose in complex matrices (see [9,
p. 407]), it indeed holds in a ∗-semigroup.

Lemma 2.18. Let S be a ∗-semigroup and let a ∈ S. If axa = a = aya,
(ax)∗ = ax and (ya)∗ = ya for some x, y ∈ S. Then a is Moore-Penrose
invertible and a† = yax.

We now present the formula of the Moore-Penrose inverse of a left (right)
∗-regular element.

Theorem 2.19. Let S be a ∗-semigroup and let a ∈ S. If a = aa∗ax for
some x ∈ S, then a is Moore-Penrose invertible and a† = a∗ax2a∗.

Proof. If a = aa∗ax, then (ax)∗ is a {1, 4}-inverse of a according to [11,
Lemma 2.2]. By the proof (ii)⇔(iii) in Theorem 2.16, it is known that
a = (ax∗x∗a∗a)a∗a, and (ax∗x∗a∗a)∗ is a {1, 3}-inverse of a. By virtue
of Lemma 2.18, it follows that a is Moore-Penrose invertible and a† =
(ax)∗a(ax∗x∗a∗a)∗ = a∗ax2a∗. �

Dually, we have the following result.

Theorem 2.20. Let S be a ∗-semigroup and let a ∈ S. If a = yaa∗a for
some y ∈ S, then a is Moore-Penrose invertible and a† = a∗y2aa∗.
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We then recover and improve some known characterizations of generalized
invertibility in a semigroup.

Corollary 2.21. [6, Theorem 11] Let a ∈ S. Then
(i) a is invertible if and only if it is invertible along 1. In this case,

a−1 = a‖1.
(ii) a is group invertible if and only if it is invertible along a. In this case,

a# = a‖a.
(iii) a is Drazin invertible if and only if there exists an integer n, a is

invertible along an. In this case, aD = a‖a
n
.

(iv) a is Moore-Penrose invertible if and only if it is left (right) invertible
along a∗. In this case, a† = a‖a

∗
.

3. One-sided inverse along a product in rings

In this section, we present equivalent conditions for the existence of one-
sided inverse along a product in a ring R. In what follows, R is always an
associative ring with unity 1.

First, we begin with a well-known lemma.

Lemma 3.1. Let a, b, c ∈ R.
(i) If (1 + ab)c = 1, then (1 + ba)(1− bca) = 1.
(ii) If c(1 + ab) = 1, then (1− bca)(1 + ba) = 1.

It follows from Lemma 3.1 that 1+ab is (left, right) invertible if and only
if 1 + ba is (left, right) invertible and (1 + ba)−1 = 1 − b(1 + ab)−1a. This
result is known as Jacobson’s Lemma.

Let a ∈ R. By a−1l and a−1r we denote a left inverse and a right inverse of
a, respectively. Next, we present an existence criterion of a left inverse along
a product by means of one-sided invertibility of certain elements.

Theorem 3.2. Let p, a, q,m ∈ R with m regular. If m ≤L pm and m ≤R
mq, then the following conditions are equivalent:

(i) a is left invertible along pmq.
(ii) u = mqap+ 1−mm(1) is left invertible.
(iii) v = qapm+ 1−m(1)m is left invertible.
In this case, pu−1l mq is a left inverse of a along pmq.
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Proof. It follows from Lemma 3.1 that (ii)⇔(iii).
(i)⇒(ii) Suppose that a is left invertible along pmq. From Theorem 2.3,

we get pmq ≤L pmqapmq. Hence, there exists x ∈ R such that

pmq = xpmqapmq. (∗)

By m ≤R mq, there exists q′ ∈ R such that m = mqq′. Similarly, m ≤L pm
guarantees that m = p′pm for some p′ ∈ R. Multiplying the equation (∗) by
q′ on the right yields pm = xpmqapm. Set y = mm(1)p′xpmm(1) +1−mm(1),
we obtain y(mqapmm(1) + 1−mm(1)) = 1. Indeed, we have

y(mqapmm(1) + 1−mm(1))

= (mm(1)p′xpmm(1) + 1−mm(1))(mqapmm(1) + 1−mm(1))

= mm(1)p′xpmqapmm(1) + 1−mm(1)

= mm(1)p′pmm(1) + 1−mm(1)

= mm(1) + 1−mm(1)

= 1.

Consequently, mqapmm(1) + 1−mm(1) is left invertible. Again, Lemma 3.1
ensures that mqap+ 1−mm(1) is left invertible.

(ii)⇒(i) Suppose now that u is left invertible. Then there is u′ such
that u′u = 1. Since um = mqapm, it follows that m = u′mqapm. Also,
by m ≤L pm, there exists p′ ∈ R such that p′pm = m and hence pmq =
pu′mqapmq = pu′p′pmqapmq. Take b = pu′p′pmq, then b ≤L pmq, that is, a
is left invertible along pmq.

Hence, b = pu−1l mq is a left inverse of a along pmq. �

As a special corollary of Theorem 3.2, we get

Corollary 3.3. Let a,m ∈ R with m regular. Then the following conditions
are equivalent:

(i) a is left invertible along m.
(ii) u = ma+ 1−mm(1) is left invertible.
(iii) v = am+ 1−m(1)m is left invertible.
In this case, u−1l m is a left inverse of a along m.

Dually, we have
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Theorem 3.4. Let p, a, q,m ∈ R with m regular. If m ≤L pm and m ≤R
mq, then the following conditions are equivalent:

(i) a is right invertible along pmq.
(ii) u = mqap+ 1−mm(1) is right invertible.
(iii) v = qapm+ 1−m(1)m is right invertible.
In this case, pmv−1r q is a right inverse of a along pmq.

Corollary 3.5. Let a,m ∈ R with m regular. Then the following conditions
are equivalent:

(i) a is right invertible along m.
(ii) u = ma+ 1−mm(1) is right invertible.
(iii) v = am+ 1−m(1)m is right invertible.
In this case, mv−1r is a right inverse of a along m.

An involution ∗ in a ring R is an anti-isomorphism of degree 2 which
satisfies (a∗)∗ = a, (ab)∗ = b∗a∗ and (a+ b)∗ = a∗ + b∗, for all a, b ∈ R.

Let S be a ring with involution in Theorem 2.16. We have

Corollary 3.6. Let R be a ring with involution and let a ∈ R. Then
(i) a is left ∗-regular if and only if it is right ∗-regular.
(ii) R is ∗-regular if and only if every element in R is left (right) ∗-regular.

Recall that a ring R is called strongly π-regular if each element a ∈ R is
left (right) π-regular (see e.g. [1]). In particular, R is called strongly regular if
each element a ∈ R is left (right) regular. We next give new characterizations
of strongly (π-) regular rings, ∗-regular rings, by one-sided invertibility along
an element.

Corollary 3.7. Let a ∈ R. Then
(i) R is a strongly regular ring if and only if every element a is left (right)

invertible along a.
(ii) R is a strongly π-regular ring if and only if every element a is left

(right) invertible along an for some positive n.
(iii) R is a ∗-regular ring if and only if every element a is left (right)

invertible along a∗.

We have seen that a is both left and right invertible along pmq if and
only if it is invertible along pmq. Moreover, the inverse of a along pmq is
unique (Corollary 2.5). Hence we have
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Corollary 3.8. ([10, Theorem 2.2] Let p, a, q,m ∈ R with m regular. If
m ≤L pm and m ≤R mq, then the following conditions are equivalent:

(i) a‖pmq exists.
(ii) u = mqap+ 1−mm(1) is invertible.
(iii) v = qapm+ 1−m(1)m is invertible.
In this case,

a‖pmq = pu−1mq = pmv−1q.

By taking p = q = 1 we get

Corollary 3.9. ([7, Theorem 3.2] and [8, Theorem 1.3]) Let m ∈ R be reg-
ular. Then the following are equivalent:

(i) a is invertible along m.
(ii) u = ma+ 1−mm(1) is invertible.
(iii) v = am+ 1−m(1)m is invertible.
In this case,

a‖m = u−1m = mv−1.

We finally give some applications of the inverse along a product by its
existence criterion. More results on the inverse along a matrix can be referred
to references [8, 10]. By the symbol R2×2 we denote the ring of 2×2 matrices
over a ring R.

Let A =

[
a c
b d

]
, D =

[
d1 d3
d2 d4

]
∈ R2×2 with D regular and assume that

d4 in matrix D is invertible. Then we have the following decomposition

D =

[
d1 d3
d2 d4

]
=

[
1 d3d

−1
4

0 1

] [
s 0
0 d4

] [
1 0

d−14 d2 1

]
=: PMQ,

where s = d1 − d3d−14 d2 is the Schur complement of d4 in the matrix D. It
is well known that D is regular if and only if M is regular. Similarly, if d1 is
invertible, d4 − d2d−11 d3 is called the Schur complement of d1 in the matrix
D.

According to Corollary 3.8, it is known that A‖D exists if and only if U =

MQAP + I −MM (1) is invertible. One can get I −MM (1) =

[
1− ss(1) 0

0 0

]
by a direct calculation.
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We also get that MQAP =

[
sa α

d2a+ d4b β

]
, where

α = s(ad3d
−1
4 + c),

β = (d2a+ d4b)d3d
−1
4 + d2c+ d4d.

Hence, it follows that U =

[
u α

d2a+ d4b β

]
, where u = sa+ 1− ss(1).

If a‖s exists, applying Corollary 3.9, it follows that u is invertible.
Using the Schur complement, we have

U =

[
u α

d2a+ d4b β

]
=

[
1 0

(d2a+ d4b)u
−1 1

] [
u 0
0 ξ

] [
1 u−1α
0 1

]
,

where ξ = β − (d2a + d4b)a
‖s(ad3d

−1
4 + c). Moreover, U is invertible if and

only if ξ is invertible.
In this case,

U−1 =

[
1 −u−1α
0 1

] [
u−1 0
0 ξ−1

] [
1 0

−(d2a+ d4b)u
−1 1

]
.

Thus, A‖D exists if and only if ξ = β − (d2a + d4b)a
‖s(ad3d

−1
4 + c) is

invertible. Moreover, we get

A‖D = PU−1MQ =

[
x1s+ x3d2 x3d4
x2s+ ξ−1d2 ξ−1d4

]
, where

x1 = u−1 + (u−1α− d3d−14 )ξ−1(d2a+ d4b)u
−1,

x2 = −ξ−1(d2a+ d4b)u
−1,

x3 = d3d4ξ
−1 − u−1αξ−1.

Remark 3.10. Even if a‖s does not exist, A‖D may exist. For instance,

take A =

[
a c
b d

]
=

[
0 1
1 0

]
, D =

[
d1 d3
d2 d4

]
=

[
1 0
0 1

]
∈ R2×2. Since s =

d1 − d3d
−1
4 d2 = 1, it follows that sa + 1 − ss(1) = 0. Hence, a‖s does not

exist by Corollary 3.9. However, A is invertible along D since they are both
invertible.
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We close this section with some further remarks:

(i) In Theorem 3.2, since v−1l (1 + (qap − m(1))m) = 1, it follows that
1−mv−1l (qap−m(1)) is a left inverse of u by Lemma 3.1. Hence, we can give
the representation of a left inverse of a along pmq by v−1l .

(ii) We give another proof for Corollary 3.6(i). Assume that a is left ∗-
regular (we have a = aa∗ax for some x ∈ R). Then it is left invertible along
a∗ according to Theorem 2.7. Moreover, a is regular, and (ax)∗ is an inner in-
verse (indeed a {1, 4}-inverse) of a. Indeed, it follows that [(ax)∗a]∗ = a∗ax =
(ax)∗a and a(ax)∗a = aa∗ax = a since a∗ax = (aa∗ax)∗ax = (ax)∗aa∗ax =
(ax)∗a. By Corollary 3.3, u = a∗a+ 1− a∗(a∗)(1) = a∗a+ 1− (a(1)a)∗ is left
invertible. Hence, we can pick an inner inverse (ax)∗ of a such that a(1)a is
symmetric. Then u = u∗ is right invertible, and by Corollary 3.5, it follows
that a is right invertible along a∗.
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