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Abstract

This paper summarizes the processing and properties of bone-analogue composites aimed to be used in temporary or permanent
orthopaedic applications. The studied matrices were two biodegradable starch based blends (with ethylene-vinyl alcohol copolymer

or with cellulose acetate) and three high density polyethylene (HDPE) grades. Composites of these materials with hydroxyapatite
(HA—the main inorganic constituent of the human bone) were produced by extrusion compounding and subsequently injection
moulded. A non-conventional injection moulding technique known as shear controlled orientation in injection moulding
(SCORIM) was used deliberately to induce a strong anisotropic character to the processed composites. For the case of HDPE based

composites, an alternative reinforcement system based on carbon fibres (C fibres) was also studied. For that, a special moulding
technique that combines, in a single equipment, a compounding with an injection unit was used. Composites featuring a sandwich
like structure were also produced by mono-sandwich injection moulding. These composites combine a HDPE/HA outer layer and

HDPE/C fibre reinforced core. The aim is to produce composites with a mechanical behaviour matching that of human cortical
bone and simultaneously a strong bioactive (bone-bonding) character. For all the cases, the mechanical performance of the pro-
duced composites was assessed and the structure developed investigated and related to the processing conditions. It was possible to

produce, both biodegradable and bioinert matrix composites, with properties that might allow for their application in the ortho-
paedic field.
# 2002 Elsevier Science Ltd. All rights reserved.

Keywords: A. Polymers; A. Short-fibre composites; B. Mechanical properties; E. Injection moulding

1. Introduction

1.1. Bone as a composite material

Bone can be regarded as a very complex composite
material, composed by a polymer matrix (collagen
fibrils) and an inorganic reinforcement phase (mainly
hydroxyapatite crystals—HA) [1–3]. The composition,
structure and arrangement of its constituent elements, at
different scale levels, confer to bone unique mechanical
properties such as a high stiffness and strength, asso-
ciated to a strong anisotropy and an evident viscoelastic
behaviour [3–9]. The mechanical properties of human
bone strongly depend on the respective morphology and

consequently on a large range of bone features such as
type, location and personal patient characteristics [10–12].
In spite of this fact, indicative values of tensile modulus in
the bone longitudinal direction are in the range of 7–25
GPa [10–12]. When developing, hard tissue substitute
materials, the mechanical behaviour is a crucial aspect
since the stiffness of the implant defines the amount of load
carried by the healing/surrounding tissue [13,14]. It is
known that bone remodelling is strongly dependent on an
adequate loading of the bone that strictly relies on the
implant’s stiffness [13,14]. So, a bone-matchingmechanical
performance is essential to assure the proper load transfer
and the adequate healing of the bone.

1.2. The bone-analogue concept

The temporary or permanent replacement of hard tis-
sues in load bearing applications demands mechanically
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strong biocompatible materials. The attainment of such
bone-matching mechanical performance depends on the
technological ability to mimic the bone anisotropic
character. Polymer based composites can, in principle,
combine adequately stiffness and strength together with
a clear anisotropic and viscoelastic character. Bonfield
et al. [15–29] introduced the bone-analogue concept,
when proposed composites comprising a polymer duc-
tile matrix (polyethylene—PE) and a ceramic stiff phase
(hydroxyapatite—HA). The idea is to use a semi-crys-
talline material that can develop a considerable aniso-
tropic character by means of adequate orientation
techniques reinforced with a bone-like ceramic that
simultaneously assures the mechanical reinforcement
and the bioactive character of the implant [17,18,24].
Recently, the use of hydrostatic extrusion to process
PE/HA composites has shown to be successful route for
the production of composites with bone-matching
mechanical performance [25–29]. Values of tensile
modulus and tensile strength of 10.8 GPa and 79 MPa
respectively have been reported [25–27]. Nevertheless,
the geometry and dimensions of the processed compo-
sites are constrained by the limitations of the extrusion
process itself. In fact, it does not allow for the produc-
tion of very thick and geometrical complex parts.

1.3. Bioinert and biodegradable polymers

The use of implants in high load bearing applications
is dependent on the development of a material with
adequate mechanical performance that is clearly bio-
compatible. Polymers are a class of materials with great
potential within this field. In theory, the chemical
structure of the polymer matrix can be tailored in order
to tune adequately its degradation behaviour, making it,
under physiological conditions, bioinert or biodegrad-
able over a defined time frame. Based on these two dis-
tinct behaviours, polymers used in medicine can be
classified in two large groups: biodegradable and bioi-
nert. Two good examples of biodegradable polymers
employed in the orthopaedic area are the poly(lactic
acid) (PLA) and the poly(glycolic) acid (PGA), used in
pins, screws, bone fixation plates and more recently in
tissue engineering scaffolds [30–36]. Biodegradable
orthopaedic implants are aimed to present a balancedmix
of mechanical performance and degradation behaviour
and ideally, the products of their degradation should be
readily absorbed under normal metabolic conditions. As
the degradation occurs, the loss, at a controlled rate, of its
stiffness and strength occurs, which enables a progressive
transfer of stress to the healing tissue. This degradation
process ultimately ends with the total resorption of the
polymer [37]. Conversely to biodegradable polymers, bioi-
nert polymers are meant to be chemically and physically
unchanged during its application time. An example of a
polymer used with such aim is the ultra-high molecular

weight polyethylene (UHMWPE) employed in acetabular
cups and several kinds of joints [38–42].

1.4. Starch based polymers as alternative biodegradable
systems

It is already unquestionable the role of biodegradable
polymers as biomaterials [30–33,35,43–49]. The current
gold standards of biodegradable systems, in terms of
clinical application, are PLA, PGA and their copoly-
mers. Concerning the mechanical performance, PGA
typically exhibits values of tensile modulus and strength
of 6.5–7.0 GPa and 57–100 MPa respectively
[35,47,50,51]. In terms of degradation behaviour, the
respective weight loss is complete in a period between 60
to 80 days [35,47,49,50]. The inducement of anisotropy by
means of self-reinforcing (SR) techniques, such as sintering
self-reinforcing and fibrillation self-reinforcing, has further
enhanced the stiffness reported for this system. Values of
tensile modulus up to 13 GPa have been obtained for hot
drawn SR-PGA [31,35,47,50,51]. In spite of the good
mechanical performance exhibited by these systems, some
studies indicated that PLA/PGA implants can generate
inflammatory responses due to the leaching of low mole-
cular weight components and acidic products which con-
stitutes a major drawback for these systems [52–56].

In several studies, Reis et al. [57–62] proposed alter-
native biodegradable systems to be used in temporary
medical applications. These systems are blends of starch
with ethylene-vinyl alcohol copolymer (SEVA), cellu-
lose acetate (SCA) and polycrapolactone (SPCL) [57–
62]. They were proposed for a large range of applica-
tions such as temporary hard tissue replacement, bone
fracture fixation, drug delivery devices or tissue engi-
neering scaffolds [57–64]. These blends can be processed
as any ordinary thermoplastic by conventional melt
based processing techniques, namely extrusion and
injection moulding. Depending on their chemical con-
stitution (ethylene-vinyl alcohol copolymer, cellulose
acetate or polycrapolactone), these starch based blends
can present different mechanical behaviours ranging
from an almost rubbery like material (SPCL) to a stiff one
(SEVA and SCA). This range of mechanical performance
makes these blends potentially suitable to the substitution
of soft or hard tissues. Attempts to enhance the mechan-
ical performance of these systems in order to allow for
their use as hard tissue substitutes have partially relied on
the respective reinforcement with fillers such as HA
[60,65–67] and bioactive glasses [68–79] that are also
aimed to provide a bioactive character to the composite.

1.5. Non-conventional processing of bone-analogue
composites

The development of synthetic bone-analogues for
high load bearing applications with a mechanical
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biocompatible behaviour is dependent on the capacity
of inducing a high anisotropic degree. Unfortunately,
conventional melt processing techniques are not able to
induce levels of orientation enough to fulfil such ambi-
tion. As previously referred, the use of hydrostatic
extrusion with PE/HA composites [25–29] allowed for
the attainment of bone-matching properties, even
though such approach presented limitations in terms of
geometry and dimensions of the final processed compo-
sites. In the case of injection moulding, the structure
development of the polymer is determined by the shear
stress conditions and the solidification rate profile along
the part thickness under pressurized conditions. As a
result of this specific thermo-mechanical environment,
semicrystalline polymers, when conventionally injection
moulded, show a clear laminated morphology compris-
ing an orientated skin layer (close to the mould wall)
and a more or less isotropic core [70–72]. The control of
the structure development of the core is limited, since
the melt cools down in almost quiescent conditions and
under mild cooling rates. Such scenario constituted the
driving force for the development of shear controlled
orientation in injection moulding (SCORIM) by Allan
and Bevis [73–75]. In this case, the melt is continuously
displaced inside the mould during the solidification
course, which causes the application of a macroscopic
shear stress field to the material at the melt/solid inter-
face. The application of this processing technique has
proved to be a valid approach for the inducement of a
strong anisotropic character in both starch based blends
and high density polyethylene as well as in their respec-
tive composites with HA [60,76–78].

This paper has two objectives. The first one is to
summarize in a integrated manner the processing and
properties of starch based bone-analogue composites
with special emphasis to the structure development
during SCORIM of both the unreinforced and the HA
reinforced formulations. The second objective is to
describe additionally the SCORIM processing of HDPE
and HDPE/HA composites. However, for the HDPE
system, an alternative reinforcement strategy, based on
the use of carbon fibres (C fibres) is also presented. As a
consequence of the specific line of research followed for
this case, the use two non-conventional moulding tech-
niques is described. These are the compounding injec-
tion moulding (CIM) and the mono-sandwich injection
moulding techniques. For HDPE, the current research
aim is to produce a bi-composite moulding combining a
bioactive HDPE/HA outer layer and a very stiff HDPE/
C fibres core with adequate surface properties and
mechanical performance. For both systems (starch based
blends and HDPE), the main research purpose is to
develop bone-analogue composites featuring adequate
surface bioactivity and a bone-matching mechanical
performance during the respective time in service. So, the
structure arisen during processing for both systems is

investigated and the respective relationship with the
mechanical performance studied, in order to establish
valid structure/properties relationships that enable for
the development of composites that might be used in
load bearing applications.

2. Materials and methods

2.1. Materials

The polymeric materials studied in this work were:

(1) Two biodegradable thermoplastic blends of corn
starch (50�2% by weight—wt.) with ethylene vinyl
alcohol copolymer (60/40 mol/mol) designated as
SEVA-C and of starch (50�2% wt.) with cellulose
acetate designated as SCA, both produced by Nova-
mont SpA (Italy).
(2) Three high density polyethylene (HDPE) grades,
namely two high molecular weight HDPE grades with
references HD8621 and GM 9255F produced respec-
tively by DSM research (The Netherlands) and Elenac
GmbH (Germany), and finally a HDPE, with the refer-
ence A6016, produced by Vestolen GmbH (Germany).

Composites of these materials have been produced
using two types of reinforcements: a bone-like ceramic
powder, hydroxyapatite (HA), and short carbon fibres
(C fibres). The HA powder used had an average particle
size of 10.1 mm and was supplied by Plasma Biotal Ltd
(UK). HA was used with two aims: i) assure the bioac-
tive behaviour of the composite (that defines its bone-
bonding ability) and ii) mechanically reinforce the
polymer matrix. C fibres were used exclusively as a
mechanical reinforcement and were studied exclusively
with HDPE matrices. Short fibre reinforced HDPE
composites were produced using a C fibre type HTA,
with 6 mm of length and a length/diameter ratio of 860,
from Tenax Fibers, GmbH & Co. (Germany).

2.2. Twin screw extrusion (TSE) compounding

All the composites produced (except when other
mentioned) were compounded by twin screw extrusion
(TSE) using a Leistritz AG-LSM 36/25D modular co-
rotating twin screw extruder. Compounds of SEVA-C
with 10, 30 and 50% wt. of HA were produced using a
temperature profile between of 140 (feeding zone) and
170 �C (die zone) and an output rate of 3.2 kg/h.

Composites of HDPE with 25 and 50% wt. HA were
compounded using a temperature profile between 160
and 190 �C and output rates respectively of 2.94 and 3.40
kg/h. The composite formulation for 50% wt. HA inclu-
ded 0.5% wt. (relative to the HA fraction) of a zirconate
coupling agent (NZ12, Kenrich Petrochemicals, Inc.,
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USA). In a previous study, the use of titanate and zir-
conate additives was found to improve considerably the
filler dispersion in HDPE/HA composites [79]. Similar
study by Vaz et al. [80] demonstrated that these coupling
agents (that exhibit a non-toxic behaviour) are successful
in the improvement of the degree of interfacial interac-
tion in starch based composites filled with HA.

For both composite systems, the cooling of the
extrudate was performed in air, being the subsequent
pelletizing assured by a rotating knife.

Short fibres reinforced composites of HDPE, using
25% wt. C fibres, were also compounded in the TSE
equipment, using a temperature profile between 160 and
210 �C. Separate polymer and fibre feeding ports were
used, in order to avoid the fibre breakage that would
eventually occur during the simultaneous conveying of
the solid pellets and the C fibres before the melting of the
polymer phase. The extrudate was chopped manually in
60 mm long segments for subsequent injection moulding.

2.3. Shear controlled orientation in injection moulding
(SCORIM)

The materials were moulded using a Demag D-150
NCIII-K (Germany) moulding machine equipped with
a SCORIM generation I device. SCORIM bases its
principle of operation on the application of a macro-
scopic shear stress field to the moving melt/solid inter-
face during the course of solidification during injection
moulding. The solidification of the material in an
extended state, as imposed by the shear stress applied,
results in an increase of the anisotropy degree of the
polymer with advantageous mechanical consequences.
A schematic diagram of a SCORIM generation I head is
presented in Fig. 1. In this version of SCORIM, the
device is attached to the injection barrel. The SCORIM
pistons are hydraulically actuated after filling of the
mould cavity during the holding pressure stage, using
three possible modes of operation. In mode A, both pis-
tons actuate out-of-phase causing the melt inside the
mould to be continuously sheared. Conversely, in mode B,
both pistons actuate in-phase, which causes the successive

compression and decompression of the molten material
inside the mould. Finally, in mode C, both pistons are
held down together causing the packing of the material
inside the mould. These operation modes can be com-
bined sequentially in several stages during injection
moulding, which enables the possibility of creating an
almost infinite number of processing programmes. The
relevant processing parameters of SCORIM include the
holding pressure, the frequency of piston movements,
the piston pressures and the duration of shear applica-
tion [76,77].

In the present work, the cavity pressure profiles (CPP)
during moulding were monitored, by piezo-electric
transducer measurements, in order to evaluate the
influence of different processing conditions applied in
moulding. Fig. 2 presents a typical CPP gained for a
HDPE grade during SCORIM together with the sche-
matic diagram of the moulding geometry employed. The
specimens moulded were axisymmetric tensile test bars
(5 mm of diameter). In the schematic diagram, the
arrow indicates the point of the pressure transducer
measurements. It is possible to distinguish three
sequential stages (1, 2 and 3) during the CPP. In stages 1
and 2, the cavity pressure oscillation results from the
mode A operation (out-of-phase) of the hydraulic pis-
tons. The use of a lower level of piston pressures in stage
2 is clearly visible by the decrease in intensity of the
peaks. Stage 3 consisted in the application of a packing
stage, mode C operation.

The optimisation of the processing parameters (fol-
lowing a maximum stiffness and strength criteria) is
essential to assure the best mechanical behaviour of the
moulded part. For starch based blends, the optimum
processing conditions should additionally avoid any
thermo-mechanical degradation that can eventually
occur for these thermo-sensitive blends. The optimisa-
tion of the processing parameters in SCORIM for both
SEVA-C and HDPE was based on the combined use of
design of experiments (DOE) and analysis of variance
(ANOVA) [77,78]. The importance of each processing
parameter on the variation of mechanical performance
observed was quantified and an optimum processing
window was defined for each case. The SCORIM oper-
ating conditions employed for SEVA-C/HA and
HDPE/HA composites were defined based on the
results of these preliminary optimisation studies for the
respective matrices.

2.4. Compounding injection moulding (CIM)

In order to assess the reinforcement efficiency of C
Fibres, composites of HDPE with 25% wt. C fibres were
compounded and moulded into dumb-bell tensile test
specimens with rectangular cross section (4�9 mm2) in a
single processing stage, using a compounding injection
moulding (CIM). This device combines a co-rotatingFig. 1. Schematic diagram of a SCORIM generation I device.
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twin-screw extruder with an injection moulding unit
machine, from Dassett Processing Engineering Ltd
(UK), was used. Fig. 3 presents the schematic diagram
of the CIM equipment. The main advantages of com-
pounding injection moulding for the processing of ther-
moplastic based composites as compared to the
traditional approach (based on separated compounding
and injection mouldings stages) are the single heat his-
tory, the reduction of molecular degradation (for the
case of thermo-sensible materials), the superior main-
tenance of fibre morphology and the reduction of fibre
damage due to the elimination of extra handling granu-
lation step. In order to minimise fibre breakage during
the compounding step, the feeding of the C fibres was
performed using a separate port after melting of the
HDPE pellets.

2.5. Mono-sandwich injection moulding

Bi-composite mouldings of composites of HDPE with
50% wt. of HA and 20% wt. C fibres were also moulded

in a two-component injection moulding K-85 Ferroma-
tik-Milacron (Germany) machine using the mono-sand-
wich technique. The mouldings produced were dumb-bell
tensile test bars with rectangular cross section (4�10
mm2) and impact test bars with rectangular cross sec-
tion (9�13 mm2) comprising a HDPE/HA outer layer
and a HDPE/C fibres core.

2.6. Tensile testing

The tensile mechanical performance of the processed
matrices and the respective composites was assessed on
an Instron 4505 universal testing machine fitted with an
Instron 2630 resistive extensometer with 10 mm of
gauge length. The tensile test bars were tested in order
to determine the tangent modulus (Et), the ultimate
tensile strength (UTS) and the strain at break ("f). The
tests were performed in a controlled environment (23 �C
and 55% RH) with a cross-head speed of 5 mm/min
(8.3�10�5 m/s) until 1.5% strain, to determine accu-
rately the modulus, and then increased to 50 mm/min
(8.3�10�4 m/s) until rupture.

2.7. Impact testing

Impact tests were conducted in a instrumented falling
weight impact machine Rosand Type 5. The tests were
performed at a test speed of 3 m/s, according to a
charpy flexural scheme, using a support with 32 mm
anvil span and 25 kg impact mass. For each test the
force at peak (Fp), the peak energy (Up) and the failure
energy (Uf) were determined.

2.8. Microhardness

Microhardness experiments were carried out in order
to investigate the mechanical performance variation

Fig. 2. Typical cavity pressure profile (CPP) during SCORIM used to process the moulding geometry presented. The CPP shows distinguishably the

three consecutive SCORIM stages employed during moulding: Stage 1—mode A (out of phase oscillation of the pistons); Stage 2—mode A and

Stage 3—mode C (both pistons are held down simultaneously).

Fig. 3. Schematic diagram of the compounding injection moulding

equipment combining a twin screw extruder with an injection mould-

ing unit.

R.A. Sousa et al. / Composites Science and Technology 63 (2003) 389–402 393



along the part thickness in selected injection moulded
samples. The measurements were made at room tem-
perature along the cross section thickness, in a Leica
VMHT30A equipment, using a load of 0.3 kgf and a
dwell time of 5 s.

2.9. Wide angle X-ray diffraction (WAXD) and X-ray
diffraction (Debye) patterns

The structure developed during processing was stud-
ied by X-ray diffraction and patterns using Cu Ka

radiation. The patterns were used to assess the preferred
orientation of the mouldings. The Debye patterns were
obtained at 1.5 mm from the edge of the mouldings. An
aperture of 100 mm diameter was used to define the
position and cross section of the incident X-ray beam.
The diffraction data was obtained at a scanning rate of
0.02� 2�/s and over a Brag angle range of 0�<2�<50�.
The samples were cut parallel to the flow direction with
a thickness of 1 mm.

2.10. Optical light microscopy

The morphology of the mouldings was observed by
optical microscopy. The respective samples for were
obtained by cutting several cross section regions of the
tensile and impact test specimens, followed by the
respective immersion in an epoxy resin. After the resin
cure, the immersed zones were: i) carefully polished in
order to obtain a surface quality suitable for observa-
tion by both optical reflectance and stereo light micro-
scopy; or ii) cut using a stainless steel blade in 15 mm
thick slices to be observed by polarized light microscopy
(PLM).

2.11. Scanning electron microscopy (SEM)

Scanning electron microscopy was used for fracto-
graphic analysis and was carried out on selected sets on
a Leica Cambridge equipment. All the surfaces were
mounted on a copper stub and coated with Au/Pd alloy
prior to examination.

3. Results and discussion

3.1. Structure development of starch based blends during
injection moulding

Temporary implant materials are aimed to be com-
pletely or at least fully resorbed at the end of their
intended lifetime. So, in this case the bulk properties
(namely cytotoxicity, biocompatibility, bioactivity) of
the material are more relevant than for the case of bioi-
nert materials, since during the degradation of the
material and subsequent osteointegration, the inner

regions of the implant will be progressively exposed to
the organic fluids. The strategy followed for the
enhancement of the mechanical performance should not
compromise these bulk properties requirements. So, the
development of structure anisotropy by means of
orientation techniques, should avoid any thermo-
mechanical degradation of the material that may alter
its cytotoxicity and biocompatibility due to the leaching
of low-molecular weight components. Furthermore, the
use of bioactive reinforcements should not only assure
adequate surface properties (bioactivity of the implant),
but also promote the progressive tissue ingrowth upon
the degradation of the matrix.

The use of SCORIM for the processing of SEVA-C
results in the enhancement in both the stiffness and the
strength as compared to conventional injection mould-
ing. In fact, the typical values of tangent modulus (Et)
and ultimate tensile strength (UTS) for this blend when
conventionally injection moulded are 2.2 GPa and 41
MPa respectively. The application of SCORIM (under
optimised conditions) results in an enhancement in
stiffness up to 31% and in strength up to 19%. The
combined use of design of experiments (DOE) with
analysis of variance (ANOVA) allowed for the identifi-
cation of the relevant processing parameters concerning
the mechanical performance variation of injection
moulded parts [76]. The stiffness of SCORIM mould-
ings was found to be very dependent on parameters
such as holding and pistons pressures during shear
application, which define the cavity pressure level of the
molten material inside the mould. Furthermore, the
frequency of pistons oscillation and the time of shear
application were also found to be relevant parameters
concerning stiffness variation. Nevertheless, the influ-
ence of these parameters was observed to be very
dependent on both the range of variation of the proces-
sing parameters and mould design. Stiffness of SEVA-C
seems to be favoured by high holding and pistons pres-
sures, long durations of shear application and inter-
mediate frequencies of piston oscillation [76].

Fig. 4 plots the variation of stiffness (in terms of the
tangent modulus—Et) as a function of both the holding

Fig. 4. Variation of tangent modulus (Et) for SCA as a function of the

holding pressure (Phold) and frequency of pistons oscillation.
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pressure and the frequency of piston movements for
SCA mouldings. For the processing window analysed,
both the processing parameters presented a positive
influence on stiffness. Although SCA is a very low crys-
tallinity blend, its mechanical performance is sensitive
to the thermo-mechanical environment generated dur-
ing the moulding cycle. Nevertheless, the optimisation
of the thermo-mechanical environment of the starch
based blends, for physical property enhancement,
should consider the thermo-sensible character of these
materials that are prone to processing induced degra-
dation. Such susceptibility to degradation is further
enhanced with the inclusion of particulate fillers such as
hydroxyapatite (HA) that cause a sharp reduction of the
processing window of the blend.

The enhancement of stiffness and strength with the
application of shear is a direct consequence of the
inducement of an anisotropic structure during injection
moulding. Fig. 5 presents the scanning electron micro-
scopy (SEM) photographs of the typical tensile failure
surfaces of unreinforced SEVA-C processed by conven-
tional injection moulding (Fig. 4 a) and SCORIM using
low (2.6 MPa) and high (3.9 MPa) levels of holding

pressure (Figs. 4b and c respectively). Conventionally
injection moulded SEVA-C presents a planar brittle
fracture surface. On the contrary, both SCORIM frac-
ture surfaces present a highly orientated pattern of the
failure surfaces, evidencing a skin/core morphology as a
result of the molecular alignment caused by the applied
shear field. The more defined skin/core morphology in
Fig. 5c results exclusively from the higher level of hold-
ing pressure used in this case.

The observed morphological development is asso-
ciated with a simultaneous increase in the anisotropic
character of the blend as suggested by the X-ray
diffraction patterns also shown in Figs. 5a and c.
The Debye rings observed in the X-ray pattern for
conventional moulding (Fig. 5a) give rise, with
SCORIM application, to discontinuous arcs (Fig. 5b)
which results from the development of structural
anisotropy. Wide angle X-ray diffraction (WAXD)
spectra gained for SCORIM specimens showed also
an improvement in the crystalline peak intensity as
compared to conventional moulding samples which is
an indication of a simultaneous increase in SEVA-C
crystallinity.

Fig. 5. Scanning electron microscopy (SEM) photographs of the tensile failure surfaces and the respective Debye patterns of SEVA-C produced by

(a) conventional injection moulding (CM), (b) SCORIM—low holding pressure and (c) SCORIM—high holding pressure.
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3.2. Mechanical performance of starch based composites

The inducement of a anisotropic character in injection
moulded parts, through proper control of the structure
development, combined with an adequate reinforcement
strategy is a route for the development of implants with
higher load bearing capacity. This is in fact, a similar
strategy as that proposed by Bonfield et al for HDPE
based bone-analogue composites [15–29]. Fig. 6 presents
the variation of Et as a result of hydroxyapatite (HA)
reinforcement for both conventional and SCORIM
processed SEVA-C/HA composites. HA particles are
mainly used to assure a bioactive behaviour of the
implant, i.e. the capacity of inducing, under physi-
ological conditions, the growth of a calcium/phosphate
(Ca/P) layer at the implant surface that favours the
respective in-situ osteointegration and avoids fibrous
encapsulation. Besides this purpose, HA particles are
employed with a mechanical reinforcement objective in
order to assure high stiffness values. For conventionally
injection moulded SEVA-C/HA composites, it is possi-
ble to produce mouldings (with a rectangular cross sec-
tion of 8 mm2) with Et up to 6.5 GPa for a HA amount
of 50% wt. The use of SCORIM further extends the
stiffness range of SEVA-C/HA composites. For 50%
wt. HA, it is possible to produce composite moulded
parts with a thicker cross sections (circular cross section
with 20 mm2) and superior stiffness values—Et of 7
GPa, in the bounds of the values reported for human
cortical bone [10–12].

For the case of SCA, the processing strategy, based
on the combination of SCORIM, under optimised con-
ditions, with HA reinforcement, allowed for the pro-
duction of a composite, based in a biodegradable
matrix, with a value of stiffness (Et) of 8.6 GPa.

3.3. Structure development of HDPE during injection
moulding

The use of SCORIM to mould high crystallinity
materials such as polyethylene has profound con-
sequences in terms of the structure and properties
exhibited after processing [77]. Fig. 7 presents the
WAXD spectra for conventional and SCORIM mould-
ings together with the respective Debye patterns gained
at 1.5 mm from the mould wall. The higher crystallinity
of the SCORIM processed samples is evident as seen by
the increase in intensity of the (110) and (200) reflec-
tions. Furthermore, the X-ray diffraction pattern
acquired for SCORIM shows clear signs of c-axis
orientation parallel to the main direction of flow
(MDF), which is a sign of the development of a strong
anisotropic character. The increase in crystallinity
observed following SCORIM application has been also
observed by differential scanning calorimetry (DSC)
measurements [77]. The heating scans of SCORIM pro-
cessed HDPE specimens revealed the existence of an
additional melting peak endotherm at higher tempera-
tures (not observed for conventional moulding) that is
an indication of a shear induced morphology designated
as shish-kebab [77]. The shish-kebab consists of a cen-
tral group of highly orientated fibrils (shish) from which
thick lamella crystals have grown (kebabs) during crys-
tallization process. The combination of the high aniso-
tropy of these row nucleated structures with the
interlocking of the respective kebabs with adjacent ones
explains the mechanical performance enhancement
observed in SCORIM moulded HDPE. This strong

Fig. 6. Variation of the modulus of SEVA-C/HA composites as a

function of the HA weight percentage for conventional injection

moulding—rectangular cross section with 8 mm2 (&) and SCORIM—

circular cross section with 20 mm2 (�).

Fig. 7. Wide angle X-ray diffraction (WAXD) spectra and the

respective Debye patterns gained for samples produced by conven-

tional injection moulding (CM) and SCORIM.
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anisotropic character results in improvements of stiff-
ness up to 400% as compared to conventional injection
moulding. Values of Et and UTS respectively of 7.2 GPa
and 155 MPa were attained following a suitable opti-
misation of the SCORIM process [77].

3.4. Morphology and properties of HDPE/HA composites

It is also possible to confer a similar anisotropic
mechanical character to HDPE/HA composites through
the application of SCORIM [78,79]. However, the
incorporation of a filler with a limited reinforcing capa-
city (such as particulate HA) results in limited stiffness
improvements relative to unreinforced HDPE. A max-
imum value of Et of 7.4 GPa has been reported for a
HA amount of 30% wt. Further increase in the filler
weight amount leads to a stiffness decrease. The smaller
improvement of stiffness observed in HDPE with HA
reinforcement as compared with a lower crystallinity
material such as SEVA-C, results from the much higher
dependence of the structure development on the
thermo-mechanical environment for the former matrix.
The substitution of a high crystallinity phase, such as
polyethylene with a self-reinforcement capability under
suitable thermo-mechanical conditions, by a low aspect
ratio reinforcement, such as HA particles, leads to lim-
ited stiffness improvements.

Fig. 8 presents the variation of microhardness along
the cross section diameter for conventionally injection
moulded and SCORIM processed HDPE/HA compo-
sites together with the respective polarized light micro-
scopy (PLM) photographs of the cross sections.
Conventional mouldings are composed by a thin skin
layer and a large core region (see the PLM photograph

for conventional moulding). The anisotropic skin cor-
responds to a rapidly cooled zone on which the shear
induced orientation was frozen in. Conversely, the
almost isotropic core corresponds to a slowly cooled
region crystallized under a reduced shear stress envir-
onment. This skin/core morphology gives rise to an
almost flat microhardness profile variation along the
part diameter. SCORIM processed HDPE/HA compo-
sites exhibit a clear layered morphology (see the PLM
photograph for SCORIM). The application of a con-
trolled macroscopic shear stress field during the solidifi-
cation of the material induces the development of
concentric layers with a shear induced crystallized
structure. The microhardness measurements in
SCORIM samples shows the existence of a M-pattern
hardness profile in which it is possible to distinguish
three regions: a low crystalline skin (in the vicinity of
the frozen layer), a highly crystalline transition layer
(associated with a clear laminated morphology) and a
less crystalline core (central zone of the cross section).
The hardness reaches its maximum in the transition
layer, being, as expected, minimum at the core region.
The hardness evolution across the part thickness reveals
the materials morphology heterogeneity, as a result of
the local thermo-mechanical environment imposed.

3.5. Alternative strategies for the development of
biomedical HDPE matrix composites

As it was previously shown, the mechanical reinfor-
cement of HDPE accomplished with HA powders is
very limited. Such limitation arises from both the
reduced aspect ratio of the particles and the poor inter-
facial interaction between HA and the polyolefin matrix
[79]. The selective replacement of the HA particles in the
bulk of moulded parts, where its use is not needed or
advantageous, by a very stiff filler, such as short fibres,
is a possible approach for the development of mechani-
cally biocompatible composites. In order to follow such
aim, the processing and properties of carbon fibres (C
fibres) reinforced composite mouldings have been
assessed. Within this line of research, a compounding
injection moulding machine that combines a co-rotating
twin-screw extruder with an injection moulding unit
machine has been used. This preliminary investigation,
reported in greater detail in reference 81, has shown that
values of Et up to 10 GPa were obtained for a fibre
weight amount of about 20% wt. Nevertheless, the
range of stiffness obtained with such reinforcement
strategy is still limited by a pronounced variation of the
C fibres orientation along the part thickness. Fig. 9
presents the variation of the C fibres orientation in
terms of the second order tensors a11, a22 and a33 along
half thickness of a tensile test bar (rectangular cross
section of 4�9 mm2). A high level of orientation of the
fibres in the MDF is associated with values of a11 close

Fig. 8. Microhardness variation along the cross section diameter and

the respective polarized light microscopy (PLM) photographs for

HDPE/HA composite mouldings produced by conventional injection

moulding (CM) ^ and SCORIM ^.
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to 1. Based on the values of the second order ten-
sors, it is possible to distinguish two distinct zones
along the part thickness: i) a shell zone close to the
mould wall where fibres are predominantly aligned
parallel to MDF (high a11) and a ii) a core zone
where fibre orientation is mainly perpendicular to the
MDF (high a22). This shell/core morphology is dis-
closed upon fracture of the mouldings as it can be seen
in the SEM photographs of both the shell and core
regions in a HDPE/C fibres composite after tensile test-
ing, presented in Fig. 10. The relative dimensions of the
shell and core regions and final fibre length were found
to be dependent on the rheological behaviour and
moulding conditions used during processing [81]. Very
high viscosity HDPE grades are associated with a thin
skin, large core dimensions and low average fibre
length.

The strategy followed for the development of HDPE
matrix load bearing implants with complex geometry,

specific tailored chemical properties and controlled
mechanical behaviour is based on the production of a
sandwich moulding featuring two composite systems.
Efforts have been made to develop sandwich mouldings
comprising a HDPE/HA composite outer layer and a
HDPE/C fibres composite core. The HDPE/HA outer
layer is intended to assure specific surface properties
(namely bioactivity), and the HDPE/C fibres core aims
to guarantee the mechanical performance of the part
within a desired range of stiffness. Tensile test bars
(rectangular cross section of 4�10 mm2) moulded with a
sandwich-like morphology exhibited 5.6 GPa of Et and
35.5 MPa of UTS [82]. The low strength of the sandwich
mouldings as compared to HDPE/C fibres composites
(UTS in the range of 67–73 MPa] can be partially
attributed to the existence of a thick and heavily filled
skin. In terms of impact performance, sandwich mould-
ings (rectangular cross section of 9�13 mm2) exhibited a
similar impact behaviour to HDPE/C fibres composite
mouldings. Nevertheless, the values of energy absor-
bed during the crack initiation (Up) and propagation
stages (Uf) for the bi-composite materials were still
below those obtained for single HDPE/C fibres com-
posites.

Fig. 11 presents the evolution of the average outer
layer thickness along the flow length for the impact
test bars. An increase of the HDPE/HA composite
layer thickness occurs, as it would be expected from
the advancement of the progressively cooler melt
front during the filling stage. The HDPE/C fibres
composite core evidences two distinct zones: a shell
region, where the C fibres are mainly parallel to the
main direction of flow (MDF); and a central region
where the C fibres are predominantly perpendicular to
MDF. The shell region of the HDPE/C fibres core is
located in the vicinity of the HDPE/HA outer layer and
is the main responsible for the stiffness exhibited by the
these mouldings.

Fig. 9. Fibre orientation along the half thickness (ri/r) of the tensile

test bar for HDPE/C fibre composites produced by compounding

injection moulding (CIM)—ri/r of 1 corresponds to the mould wall

and ri/r of 0 corresponds to the moulding core.

Fig. 10. Scanning electron microscopy (SEM) photographs of HDPE/C fibre composites produced by compounding injection moulding (CIM): (a)

shell zone and (b) core region.
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4. Concluding remarks

It was possible to develop bone-analogue composites
based on the HA reinforcement of blends of starch and
high density polyethylene with a mechanical performance
that may allow for their application in the orthopaedic
field. For both cases, SCORIMwas successfully employed
to induce a strong anisotropic character in the processed
composites and enhance their respective mechanical per-
formance. The reinforcement of HDPE with C fibres
was studied as an alternative to particulate HA. Two
moulding techniques were employed to process this
composite system: i) compounding injection moulding
and ii) mono-sandwich injection moulding. Using this
latter moulding technique it was possible to produce
composites featuring a sandwich like structure that com-
bine a HDPE/HA outer layer and a HDPE/C fibre rein-
forced core. As a consequence of the research strategy
adopted, several conclusions were attained regarding the
mechanical performance and structure development of
the several composite systems investigated.

4.1. Mechanical performance of starch based composites

Table 1 summarizes the reference mechanical proper-
ties (quasi-static tensile tests) in terms of tangent mod-
ulus (Et), the ultimate tensile strength (UTS) and the

strain at break ("f) for SEVA-C, SCA and their compo-
sites with HA processed by conventional injection
moulding and SCORIM. For these cases, it was possible
to produce, by injection moulding, bone-analogue com-
posites combining a biodegradable character with a
mechanical performance comparable to human cortical
bone. The observed increase of mechanical anisotropy
reported in this study for these blends and composites, as
compared to the conventional injection moulding, is jus-
tified by the development of an orientated morphology.

4.2. Mechanical performance of HDPE based
composites

Table 2 summarizes the tensile test properties of HDPE
based composites. The larger improvement of mechanical
performance achieved with SCORIM for unreinforced
HDPE, as compared to starch based blends, results from
both the superior crystallinity and the much higher
dependence of the structure development on the thermo-
mechanical environment during processing for the for-
mer polymer matrix. The high values of tensile strength
(25–100 MPa) that are presented for conventional
injection moulding, are achievable through the use of
very small cross section mouldings (diameter of 1.5
mm), where the relative thick skin determines most of
the mechanical behaviour of the mouldings. The strong
anisotropic character of SCORIM processed HDPE
results from the crystallization under shear of row-
nucleated structures that act as reinforcement agents.

4.3. HA and C fibre reinforcement of starch blends and
HDPE

For both type of polymer matrices investigated, the
combined use of HA fillers with the SCORIM applica-
tion enables the production of bone-matching (mechan-
ical performance) composites. Nevertheless, the

Table 1

The reference mechanical properties in terms of tangent modulus (Et),

the ultimate tensile strength (UTS) and the strain at break ("f) for

SEVA-C, SCA and their composites filled with HA processed by con-

ventional injection moulding and SCORIM (different moulding geo-

metries apply)

HA wt. Conventional SCORIM

(%) Et

(GPa)

UTS

(MPa)

"f(%) Et

(GPa)

UTS

(MPa)

"f(%)

SEVA-C 0 1.8–3.1 40–48 12–30 2.2–3.0 41–49 7–48

SEVA-C/HA 30 4.5–5.2 36–40 1–2 4.5–7.2 40–43 1–2

SCA 0 2.0–3.2 35–70 3–5 4.0–5.8 55–99 5–9

SCA/HA 30 4.9 60 4.1 8.6 65 3.1

Table 2

The reference mechanical properties in terms of the tangent modulus

(Et), the ultimate tensile strength (UTS) and the strain at break ("f) for

HDPE/HA, HDPE/C fibres and HDPE/HA and HDPE/C fibres

sandwich composites

Filler wt.

(%)

Conventional SCORIM

Et

(GPa)

UTS

(MPa)

"f(%) Et

(GPa)

UTS

(MPa)

"f(%)

HDPE 0 1.2–1.5 25–100 13–17 3.0–7.1 55–155 12–21

HDPE/HA 25–50 1.6–4.0 35–39 6–35 5.9–7.5 74–91 19–31

CIM

HDPE/C

fibres

20 8.5–10.1 6872 7–9 – – –

Sandwich

moulding

HDPE/HA 50 – – –

HDPE/C

fibres

25 5.6 35 3

Fig. 11. Variation of the outer layer thickness along the flow path for

HDPE/HA/C fibre composites (0 mm corresponds to the gate point).
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particulate nature of the HA powder (low aspect ratio)
act as a severe constrain to the enhancement of stiffness
for both cases. The use of alternative reinforcement like
C fibres for HDPE, proved to be a valid approach for
extending the respective stiffness range. However, the
HDPE/C fibres mouldings exhibit a shell/core mor-
phology with very distinct orientation patterns at both
these regions, which constrains the mechanical perfor-
mance exhibited.

4.4. Selective HA and C fibre reinforcement of HDPE

The use of mono-sandwich injection moulding allowed
for the production of bi-composite mouldings featuring a
HDPE/HA outer layer, aimed to assure the bioactive
behaviour of the implant, and a HDPE/C fibres compo-
site core, which mostly determines the mechanical prop-
erties exhibited. At this stage of research, it was not
possible yet to control adequately the structure devel-
opment of both composites in final moulded part. The
final aim is to apply controlled thermo-mechanical
environment (by means of shear application) in order to
manipulate the structure development of both the
HDPE/HA outer layer and the HDPE/C fibres core and
achieve the desired mechanical performance range.
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