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Curry-Howard for sequent calculus at last!
José Espírito Santo1

1 Centro de Matemática, Universidade do Minho, Portugal

Abstract
This paper tries to remove what seems to be the remaining stumbling blocks in the way to
a full understanding of the Curry-Howard isomorphism for sequent calculus, namely the ques-
tions: What do variables in proof terms stand for? What is co-control and a co-continuation?
How to define the dual of Parigot’s mu-operator so that it is a co-control operator? Answering
these questions leads to the interpretation that sequent calculus is a formal vector notation with
first-class co-control. But this is just the "internal" interpretation, which has to be developed
simultaneously with, and is justified by, an "external" one, offered by natural deduction: the se-
quent calculus corresponds to a bi-directional, agnostic (w.r.t. the call strategy), computational
lambda-calculus. Next, the duality between control and co-control is studied and proved in the
context of classical logic, where one discovers that the classical sequent calculus has a distortion
towards control, and that sequent calculus is the de Morgan dual of natural deduction.
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1 Introduction

Despite the anathema “From an algorithmic viewpoint, the sequent calculus has no Curry-
Howard isomorphism, because of the multitude of ways of writing the same proof” [9], more
than two decades of research have been dedicated to extend the Curry-Howard isomorphism
to the sequent calculus. In its purest form, this is the question: if systems of combinators
correspond to Hilbert systems, and the ordinary λ-calculus corresponds to natural deduction,
what variant of the λ-calculus does correspond to the sequent calculus? Many computational
aspects have been shown to be relevant: pattern matching [2, 19], explicit substitutions[1, 18],
abstract machines [4]. But we miss a clear-cut answer to the question in its pure form. The
textbook [18] says that the sequent calculus corresponds to explicit substitutions, but it
immediately admits “this is just the beginning of the story”, as we will see yet again.

We might dismiss the question as closed: maybe the sequent calculus is too complex
to admit such a clear-cut computational explanation. But we will not give up, because
of the following reason: there are very basic questions, at the bottom of any attempt
to understand the sequent calculus computationally, which remain barely uttered and
scandalously unanswered; these question we may now give an answer; and this answer opens
the way to the desired clear-cut interpretation of the sequent calculus. The questions are:
I. What does a variable stand for in a sequent calculus proof-term?
II. What is the related substitution operation?
III. What is co-control?
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2 Curry-Howard for sequent calculus at last!

What do we mean? Something very simple. Suppose the proof terms L2 and L3 represent
derivations of Γ ` A and Γ, y : B ` C respectively; and suppose we now infer Γ, x : A ⊃ B ` C
by left-introduction, building a derivation represented by some term L(x, L2, y.L3). What
does this x stand for? What can it be substituted for? Certainly not for a proof-term, as
L(L1, L2, y.L3) corresponds to no derivation.

Of course we can survive by avoiding (not answering) the questions. We may say
L(x, L2, y.L3) is a particular form 〈xL2/y〉L3 of “explicit substitution”, the general form
of which corresponds to cut, we can write cut-elimination rules with this syntax, many
of them consisting of permutations of substitutions, all this even without breaking strong
normalization [18]. Left introduction is reified with a cut that will to be eliminated, interpreted
as a substitution that will not be executed. After all this, we still don’t know what that x
stands for; and we are busy doing explicitly “substitution”, but we do not really know what
substitution we mean.

Variables in proof-terms correspond to formulas in the l.h.s. of sequents; and the explicit
handling of formulas in the l.h.s. of sequents is typical of the sequent calculus. Now, we have
a model of what the handling of formulas in the r.h.s. of sequents means computationally:
it is the λµ-calculus, which proves that the r.h.s. handling is related to control operation.
So, by mere formal duality, “co-control” operation has to be involved in the computational
interpretation of the sequent calculus. But what is co-control? This is question III.

Toward the system. Of course, our starting point for a co-control operator is the
µ̃-operator of the λµµ̃-calculus. But in λµµ̃: variables are (and stand for) proof-terms -
which allows one to represent left-introductions L(x, L2, y.L3) as certain cuts that cannot be
eliminated; and the operational meaning of µ̃ is given by a reduction rule that triggers an
ordinary term-substitution.

We propose to integrate the µ̃-operator in a system keeping the cut=redex paradigm,
where the treatment of variables is very much like in the λ-calculus [10]: variables are not
terms, but rather show in a construction that Herbelin writes xl and sees as corresponding to
the structural inference of contraction. We prefer to interpret this construction logically as
an inference that makes a formula passive on the l.h.s. of the sequent, and computationally
as the dual to the “naming” construction aM of the λµ-calculus. Additionally, in our system
the operational meaning of µ̃ is given by a rule that captures some sort of context, triggering
some sort of “structural substitution”, as in λµ. Variables will stand for that sort of context
(in the same way as names in λµ stand for evaluation contexts or continuations), and the
new “structural substitution” is the related kind of substitution. But what sort of context
and structural substitution? The co-control question sends us back to the questions I and II.

The answers come from recent work about the isomorphism between λµµ̃ and natural
deduction [17], where a context-like concept named co-context was introduced in the sequent
calculus side. Here we adapt the concept to our intuitionistic setting and rename it co-
continuation. This is the last ingredient of the sequent calculus we propose, named λµ̃. The
system is an extension of λ with first-class co-control.

Computational interpretation. Having obtained the system, what is its computational
interpretation? First-class co-control is a part of the interpretation, but not the whole story -
it is only the story that goes beyond λ. Fortunately, all that is needed for the rest of the
story is already in place. Surprisingly, we can harvest not one but actually two clear-cut
interpretations. Amazingly, the alternative can be seen through the little construction xl.

The first interpretation, the external one, is through natural deduction. At the basis of
it is the idea, going back to [10], that l represents an evaluation context or continuation (a
concept derived from the λ-calculus or natural deduction syntax), and that xl represents a
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fill instruction: fill x in the hole of the continuation represented by l. This interpretation, if
developed along the lines of [7, 17], is the core of the isomorphism Θ between the system λµ̃

and the natural deduction system (named λlet) that is designed hand-in-hand with it.
Notice the isomorphism holds at the levels of syntax and rewriting. For this reason, Θ

is the ultimate term assignment, that completely side-steps the anathema cited above, and
the ultimate realization of the idea, going back to Prawitz [15], of sequent calculus as a
meta-system for natural deduction. But, more important, Θ is a computational interpretation,
because the target system λlet - we will see - has a clear computational meaning itself: it is
a computational λ-calculus [12, 16] agnostic w.r.t. the CBN vs CBV alternative.

The second interpretation, the internal one, is through the “structural substitution”
operation of λµ̃: xl is a fill instruction, but l is the stuff to be filled in the hole of the
co-continuation that will land at x. Here l is taken literally, as primitive syntax, not as
a continuation. So, we need a good word to describe l computationally. It could be “list”
[10] or “spine” [3], but the best is “vector”, to suggest the (informal) “vector notation” of
the λ-calculus [11]. This choice is part of a most needed re-interpretation of a 15-years-old
technical result: there is a fragment of λ, here renamed

−→
λ , that is isomorphic to the λ-calculus

[6, 3, 5], the isomorphism being essentially the map P from natural deduction to sequent
calculus introduced by Prawitz [15]. But someone has to say loudly that

−→
λ is a formal vector

notation. This is the re-interpretation.
Summarizing, we propose two computational interpretations of λµ̃: formal vector notation

with first-class co-control, developed in Section 3; and agnostic computational λ-calculus,
developed in Section 4. Section 5 looks closely at the duality between control and co-control
and extracts unforeseen consequences for logical duality and structural proof theory. Please
bear in mind that the words of this introduction just give an approximation of what we want
to say. Let the technical development that follows speak for itself.

2 Background

Outside Section 5, we just consider intuitionistic implicational logic. Formulas(=types) are
given by: A,B,C ::= X |A ⊃ B. In typing systems, contexts Γ are sets of declarations x : A
with at most one declaration per variable. In term languages, meta-substitution is denoted
with square brackets, as in [N/x]M .

2.1 Control operation

Parigot’s λµ-calculus [13] is our model for the management of formulas and (co-)variables in
the r.h.s. of sequents, when the possibility of a distingushed/active/selected formula exists -
a model we wish to “dualize” to the l.h.s. of sequents.

Still we diverge from the original. Let Q := [b]((µa.M)N1 · · ·Nm). In the original
formulation of λµ, the reduction of Q proceeds by m applications of “structural reduction”,
by which µ-abstraction consumes the arguments, one after the other, capturing contexts [·]Ni
and triggering a “structural substitution”. After m such reduction steps, the resulting term
[b]µa.M ′ is reduced by a renaming rule, producing [b/a]M ′. The same effect is obtained with a
single, long-step, reduction rule for the µ-operator. Consider the context C = [b]([·]N1 · · ·Nm),
hence Q = C[µa.M ]. Now apply the reduction rule C[µa.M ] → [C/a]M , where [C/a]M is

TLCA’15



4 Curry-Howard for sequent calculus at last!

Figure 1 The λµµ̃-calculus

(Terms) t, u ::= x |λx.t |µa.c
(Co-terms) e ::= a |u :: e | µ̃x.c

(Commands) c ::= 〈t|e〉

(β) 〈λx.t|u :: e〉 → 〈u|µ̃x.〈t|e〉〉
(µ̃) 〈t|µ̃x.c〉 → [t/x]c
(µ) 〈µa.c|e〉 → [e/a]c

context substitution, in whose definition the critical case reads:1

[C/a](aP ) = C[P ′] where P ′ = [C/a]P . (1)

In this formulation, the single reduction rule still says that the µ-operator captures C, while
the definition of context substitution says that aP is a fill instruction: fill the hole of the C
that lands here with P .

This style with a single reduction rule is - see [17] - the exact reflection in natural
deduction of the reduction rule for the µ-operator in the λµµ̃-calculus. We are calling the
latter reduction rule µ - see Fig. 1 - and so it is natural to call µ the corresponding natural
deduction rule 2. Beware that, sometimes, in λµ, µ names solely the “structural reduction”
- which we may see as the control operation proper. In the style with a single rule, µ
comprehends the whole control operation, and we will seek a single rule µ̃ to comprehend
the whole co-control operation - and find something different from the rule µ̃ of λµµ̃, despite
the compelling symmetry of the latter.

2.2 Vector notation
The vector notation for the λ-calculus is the following definition of the λ-terms [11]:

M,N,P,Q ::= λx.M |x ~N | (λx.M)N ~N

According to this definition, λ-terms have three forms, which we call first, second and third
forms. The advantage of this notation is that the head variable/redex is visible, and the
β-normal forms are obtained by omitting the third form of terms in the above grammar.

This notation is informal, since many details are left unspecified. For instance: Are
vectors a separate syntactic class, or do the second and third forms correspond to families of
rules? How is substitution defined? Notice that, in the second form, it does not make sense
to replace x by another term.

Let us introduce the relaxed vector notation:

M,N,P,Q ::= λx.M |x ~N |M ~N

Some redundancy is now allowed, as the same ordinary λ-term can be represented in many
ways. By analyzing the third form, we find four cases. One corresponds to the third form of
the original vector notation, the other three may be simplified as follows:

(ε) M [] = M

(π1) (x~Q)N ~N = x( ~QN ~N)
(π2) (P ~Q)N ~N = P ( ~QN ~N)

1 Structural substitution is the particular case [a([·]N)/a]_ of context substitution.
2 In [17] both rules are called σµ.
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Figure 2 Typing rules of the λµ̃-calculus

Ax Γ|A ` [] : A Cut
Γ ` t : A Γ|A ` k : B

Γ ` tk : B Pass
Γ, x : A|A ` k : B
Γ, x : A ` x k̂ : B

L ⊃ Γ ` u : A Γ|B ` k : C
Γ|A ⊃ B ` u :: k : C R ⊃ Γ, x : A ` t : B

Γ ` λx.t : A ⊃ B Act
Γ, x : B ` v : B
Γ|A ` µ̃x.v : B

Here [] represents the empty vector. The simplifications were given names that will link them
with the reduction rules of sequent calculus.

The third form of the original vector notation is a β-redex and hence it means something
like “call the head function with the first argument of the vector”. The simplifications that
have arisen by relaxing the vector notation can be read as rules for vector bookkeeping:
garbage collect an empty vector (ε), or append chained vector (πi). Much more difficult is to
recognize in the second form x ~N an instruction for action on the vector ~N : this is visible in
a more general system with co-control, like the sequent calculus we are about to introduce,
where the base case for vectors is not just [].

3 Sequent calculus

3.1 The λµ̃-calculus
The proof-expressions of λµ̃ 3 are given by the following grammar:

(Terms) t, u, v ::= λx.t |x k̂ | tk
(Generalized vectors) k ::= [] | µ̃x.v |u :: k

The typing rules are in Fig. 2. They handle two kinds of sequents: Γ ` t : A and Γ|A ` k : B.
The distinguished formula A in the latter is not exactly a “stoup” or a focused formula, because
the operator µ̃x.t may select an arbitrary formula from the context Γ. The construction
x k̂ comes from the λ-calculus, but here it forms a pair with µ̃x.t: logically, these are a
activation/passification pair, in the style of the λµ-calculus, but acting on the l.h.s. of
sequents.

The notation µ̃x.t comes from λµµ̃ [4]; but here, contrary to what happens in λµµ̃,
the reduction rule that defines the behavior of µ̃ does not trigger a term-substitution, but
rather a context-substitution, in the style of the above presentation of the µ-operator. The
construction x k̂ is easily recognized as the accompanying fill-instruction, and what remains
is to pin down the right notion of context that µ̃ will capture. The notion is this:

H ::= x [̂·] | t([·]) |H[u :: [·]]

These expressions are called co-continuations. Later we will argue they are logically dual to
continuations.

The reduction rules of λµ̃ are in Fig. 3. Let π := π1 ∪ π2. The co-control rule µ̃ triggers
the context substitution [H/x]_, in whose definition the only non-routine case is:

[H/x](x k̂) = H[k′] with k′ = [H/x]k .

3 We would have adopted the name λµ̃ (to suggest λ+ µ̃), had it not been already in use [4].

TLCA’15
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Figure 3 Reduction rules of λµ̃

(β) (λx.t)(u :: k) → (u(µ̃x.t))k (ε) t[] → t

(µ̃) H[µ̃x.t] → [H/x]t (π1) (x k̂)k′ → x (̂k@k′)
(π2) (tk)k′ → t(k@k′)

This equation gives the meaning of x k̂: fill k in the hole of the H that will substitute x. The
πi-rules employ concatenation of generalized vectors k@k′, defined by the obvious equations
[]@k′ = k′ and (u :: k)@k′ = u :: (k@k′), together with (µ̃x.t)@k′ = µ̃x.tk′.

Rule µ̃ eliminates all occurrences of the µ̃-operator. The remaining rules eliminate all
occurrences of cuts tk. So the βµ̃επ-normal forms correspond to a well-known representation
of β-normal λ-terms. There is a critical pair generated by rules µ̃ and π. This is the
call-by-name vs call-by-value dilemma [4].

Two particular cases of the reduction rule µ̃ are:

(ρ) y (̂µ̃x.t)→ [y [̂·]/x]t (σ) u(µ̃x.t)→ [u([·])/x]t

We let τ := µ̃\(ρ ∪ σ). The particular case ρ may be called the renaming rule (as sometime
does the “dual” rule in the λµ-calculus). Indeed, the particular case [y [̂·]/x]t of context
substitution is almost indistinguishable from a substitution operation that renames variables,
since the critical case of its definition reads4

[y [̂·]/x](x k̂) = y k̂′ with k′ = [y [̂·]/x]k .

If we wanted a set of small step µ̃-rules, in the style of the original λµ-calculus, we would
have taken ρ and σ, together with u :: (µ̃x.t) → µ̃x.[x (̂u :: [·])/x]t. The particular case
[x (̂u :: [·])/x]t of context substitution gives a form of “structural substitution” dual to that
found in λµ.

3.2 The proof theory of vector notation
We consider notorious fragments of λµ̃. First we do a kind of reconstruction of λ. Next we
identify two subsystems of our version of λ that say something about vector notation.

The ρτ -normal-forms of λµ̃ are given by:

t, u, v ::= λx.t |x l̂ | tk k ::= l | µ̃x.t l ::= [] |u :: l

These are the λ-expressions, if we recognize t(µ̃x.v) as the “mid-cut”, and if we ignore
the other forms of explicit substitution or concatenation that are primitive in the original
formulation of λ. In terms of logical derivations, ρτ -normalization ends in the focused
fragment LJT [10] of the sequent calculus (the fragment corresponding to λ). In this sense
ρτ -reduction is a focalization process. See the focalization theorem below, saying that
ρτ -normal forms exist and are unique.

The µ̃-rule is now restricted to the σ-rule, but the critical pair with π remains. This
is solved by a syntactical trick, that chooses the call-by-name option: erase the case µ̃x.t
from k’s (so that there is no more a distinction between k’s and l’s, there is a single class of
vectors ranger over by l), but break the cut tk into the two cases tl (“head-cut”) and t(µ̃x.v).

4 We say “almost” because, don’t forget, variables are not expressions per se.
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A π-redex (x l̂)l′ or (tl)l′ is no longer a σ-redex, and a mid-cut (y l̂)µ̃x.v or (ul)µ̃x.v can
never be reduced by π (as it could in λµ̃). This concludes the reconstruction of λ.

This version of λ is equipped with β, σ, ε and π. We now consider the R-normal forms,
with R = σ or R = σ ∪ ε ∪ π.

In the first case, terms have the forms λx.t, x l̂ or tl, equipped with a rule β that
corresponds to λ’s β-rule followed by σ-normalization. The rules ε and π remain. Let us
call this system

↪→
λ .

In the second case, terms have the forms λx.t, x l̂ or (λx.t)(u :: l), equipped solely with
a rule β that corresponds to λ’s β-rule followed by σεπ-normalization. Let us call this
system

−→
λ .

Around 15 year ago [6, 3, 5], the system
−→
λ was identified and proved isomorphic to the

ordinary λ-calculus, with the isomorphism comprising a bijection between the sets of terms
and an isomorphism of β-reduction relations. In the author’s opinion, this little technical
fact has a tremendous importance for the Curry-Howard isomorphism that has never been
recognized. First,

−→
λ has a clear and revealing computational interpretation: it is a formal

vector notation. It is a concrete definition of the notation (it says what vectors are, how
substitution is defined, etc.) in perfect correspondence with a logical calculus. Second, we
can reconstruct from this interpretation the interpretation of full sequent calculus λµ̃ by
walking back the path that led from λµ̃ to

−→
λ . Clearly,

↪→
λ is a formalization of the relaxed

vector notation we introduced in Section 2; and, since
↪→
λ is the fragment of normal forms of

λµ̃ w.r.t. the co-control rule µ̃, λµ̃ can be interpreted as a formal, relaxed vector notation
with first-class co-control.

4 Natural deduction

The interpretation developed before is an internal and literal one: vectors are vectors; and
co-control is understood in a formal way, as dual to control. We now develop a natural
deduction system λlet that is isomorphic to λµ̃. The isomorphism gives a new, external
interpretation, which recovers the view that (some) vectors are “evaluation contexts”[10]; it
justifies the design of λµ̃, namely its notion of H and reduction rule µ̃; finally, it allows the
transfer of properties among the two systems.

4.1 The λlet-calculus
The proof-expressions of the calculus are given by:

(Terms) M,N,P ::= λx.M | app(H) | letx := H inP
(Heads) H ::= x | hd(M) |HN

Notice that variables x and applications HN are not terms. A head hd(M) is called a head
term.

The typing rules are in Fig. 4. They handle two kinds of sequents: Γ ` M : A and
Γ �H : A. Four rules are standard, with the appropriate kind of sequent determined by the
kind of expression being typed. The remaining two rules switch the kind of sequent, and
are called coercions. However, despite the superficial impression, the two coercions are quite
different, one being called weak and the other strong. Normalization will tell them apart
radically.

A normal derivation is one without occurrences of Let and SCoercion.

TLCA’15
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Figure 4 Typing rules of λlet

Γ, x : A� x : A Hyp
Γ �H : A Γ, x : A ` P : B

Γ ` letx := H inP : B Let
Γ �H : A

Γ ` app(H) : A WCoercion

Γ, x : A `M : B
Γ ` λx.M : A ⊃ B Intro

Γ �H : A ⊃ B Γ ` N : A
Γ �HN : B Elim

Γ `M : A
Γ � hd(M) : A SCoercion

Figure 5 Reduction rules of λlet

(beta) hd(λx.M)N → hd(letx := hd(N) inM)
(let) letx := H inP → [H/x]P

(triv) app(hd(M)) → M

(head1) hd(app(H)) → H

(head2) K[hd(letx := H inP )] → letx := H inK[hd(P )]

I Theorem 1 (Subformula property). Every formula (resp. every formula, including A)
occurring in a normal derivation of Γ `M : A (resp. Γ �H : A) is subformula of A or of
some formula in Γ (resp. is a subformula of some formula in Γ).

So, the weak coercion loses information regarding the subformula property, while the strong
coercion potentially violates that property.

The reduction rules of λlet are in Fig. 5. Rule let triggers ordinary substitution [H/x]P ,
while rule head2 employs certain contexts that we call continuations:

K ::= app([·]) | letx := [·] inP | K[[·]N ]

We single out two particular cases of let: ren, when H = x; and sub, when H = hd(M). We
put t := let\(ren ∪ sub). Let head := head1 ∪ head2. Notice that rules beta and head1 are
relations on heads. The normal forms w.r.t. all reduction rules are given by:

M ::= λx.M | app(H) H ::= x |HN

That is, these normal forms are characterized by the absence of occurrences of lets and hd().
Lets are eliminated by let whereas all the other rules concur to eliminate the coercion hd(). So,
beta, triv, let, head-reduction is normalization, that is, the reduction to a form corresponding
to normal derivations.

4.2 Isomorphism
See Fig. 6 for the map Θ : λµ̃ −→ λlet. There is actually a function Θ : λµ̃−Terms −→ λlet−
Terms, together with an auxiliary function Θ : λlet−Heads×λµ̃−V ectors −→ λlet−Terms.
Let Θ(t) = M , Θ(ui) = Ni and Θ(v) = P . The idea is to map, say, t(u1 :: u2 :: µ̃x.v) to
letx := hd(M)N1N2 inP , and x (̂u1 :: u2 :: []) to app(xN1N2): left-introductions are replaced
by applications, inverting the associativity of non-abstractions.

I Theorem 2 (Isomorphism). Map Θ is a sound bijection between the set of λµ̃-terms and
the set of λlet-terms (whose inverse Ψ is shown in Fig. 7). Moreover, let R be rule β (resp.
µ̃, ε, π) of λµ̃, and let R′ be rule beta (resp. let, triv, head) of λlet. Then, t→R t

′ in λµ̃ iff
Θt→R Θt′ in λlet.
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Figure 6 Map Θ : λµ̃ −→ λlet

Θ(λx.t) = λx.Θt Θ(H, []) = app(H)
Θ(x k̂) = Θ(x, k) Θ(H, µ̃x.t) = letx := H in Θt
Θ(tk) = Θ(hd(Θt), k) Θ(H,u :: k) = Θ(HΘu, k)

Figure 7 Map Ψ : λlet −→ λµ̃

Ψ(λx.M) = λx.ΨM Ψ(x, k) = x k̂

Ψ(app(H)) = Ψ(H, []) Ψ(hd(M), k) = (ΨM)k
Ψ(letx := H inP ) = Ψ(H, µ̃x.ΨP ) Ψ(HN, k) = Ψ(H, (ΨN) :: k)

The real action of the isomorphism happens in the translation of non-abstractions. Every
non-abstraction λlet-term has the form Θ(H, k), and ΨΘ(H, k) = Ψ(H, k). Every non-
abstraction λµ̃-term has the form Ψ(H, k), and ΘΨ(H, k) = Θ(H, k). So non-abstractions
have the form Θ(H, k) (natural deduction) or Ψ(H, k) (sequent calculus), and the isomorphism
action between them is just to interchange Θ and Ψ in these expressions.

Ψ can be extended to continuations, establishing a bijection with vectors: Ψ(app([·])) = [],
Ψ(letx := [·] inP ) = µ̃x.ΨP and Ψ(K[[·]N ]) = Ψ(N) :: Ψ(K). As we knew, continuations are
typed “on the left”: the sequent calculus rules for typing vectors are derived typing rules in
natural deduction for typing continuations.

Similarly, Θ can be extended to co-continuations, establishing a bijection with heads:
Θ(x [̂·]) = x, Θ(t([·]) = hd(Θt) and Θ(H[u :: [·]]) = Θ(H)Θu. This tells us how to type
co-continuations [17]: the natural deduction rules for typing heads are derived typing rules
in sequent calculus for typing co-continuations, and so co-continuations are typed “on the
right”.

Let us call Θ the inverse of the bijection between continuations and vectors. Then it is easy
to prove that Θ(H, k) = Θ(k)[H]. This tells us that non-abstractions in λµ̃ are fill instructions,
and that Θ executes these instructions. For instance, Θ(tk) = Θ(hd(Θt), k) = Θ(k)[hd(Θt)];
so tk means “fill hd(M) in the hole of continuation K”, with M = Θt and K = Θ(k); and
Θ(tk) is the result of such filling. Similarly, x k̂ means “fill x in the hole of K”. So Θ realizes
again the idea, going back to Prawitz [15], that sequent calculus derivations are instructions
for building natural deduction proofs.

4.3 Forgetfulness

The forgetful map | · | translates λlet-expressions to λ-terms by erasing occurrences of the
coercion hd(·), forgetting the distinction between terms and heads, de-sugaring let-expressions
(i.e. translating them as β-redexes), and mapping |app(H)| = I|H|, where I = λx.x. The
following results about λµ̃ are proved through the analysis of this simple translation of the
isomorphic calculus λlet.

I Theorem 3 (Strong normalization). Every typable term of λµ̃ (resp. of λlet) is βεµ̃π-SN
(resp. beta triv let head-SN).

I Theorem 4 (Focalization). Every term of λµ̃ has a unique ρτ -normal form, which is a
λ-term (representing a LJT -proof).
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4.4 Computational interpretation
We argue that λlet is a bidirectional, agnostic, computational λ-calculus. The word “bi-
directional” comes from [14], where the organization of a typing system for λ-terms with two
kinds of sequents (for synthesis, like Γ `M : A, and for checking, like Γ �H : A) is already
found. The word “agnostic” comes from [19] and means coexistence or superimposition of
call-by-name (CBN) and call-by-value (CBV).

Let us go back to Fig. 5. Rule β generates a let-expression, which can be executed by the
separate rule let. Let-expressions enjoy “associativity”: the particular case of head2 where
K = let y := [·] inQ reads let y := hd(letx := H inP ) inQ → letx := H in let y := hd(P ) inQ.
In addition, there is a pair of reduction rules to cancel a sequence of two coercions. So
we might view λlet as a sort of computational λ-calculus [12, 16] where rule let does not
require the computation of a value prior to substitution triggering, and where a pair of
trivial reduction rules (triv and head1) eliminates odd accumulations of coercions caused by
a clumsy syntax.

However, this is not the right view. head1 works together with head2 to reduce every
non-abstraction term to one of the forms K[x] or K[hd(λx.M)]. This is a hint of what we see
next: all reduction rules of λlet have quite clear roles in CBV and CBN computation, and
through these roles we will understand how different rules triv and head1 are.

Let us make a technical point. Rule head1 is a relation on heads. As with all other
reduction rules, head1 generates by compatible closure a relation→head1 on heads and another
on terms. The relation →head1 on terms would have been the same, had we taken the rule
head1 as the relation on terms K[hd(app(H))]→ K[H]. A similar remark applies to beta. In
the discussion of CBN and CBV that follows, we take head1 and beta in their alternative
formulation, so that it makes sense to speak about head1- or beta-reduction at root position
of a term.

CBN and CBV are defined through priorities among reduction rules [4]:
CBV strategy: reduction at root position of a closed, non-abstraction term with priority
given to head.
CBN strategy: reduction at root position of a closed, let-free, non-abstraction term with
priority given to triv.

We will give an alternative characterization of these strategies. For CBN we need the
rule K[hd(λx.M)N ]→ K[hd([hd(N)/x]M)], which we call CBN − beta, and is obtained by
beta followed by let.

I Theorem 5 (Agnosticism). The following is an equivalent description of the CBN and
CBV strategies. In this description, “reduction” means root-position reduction of a closed,
non-abstraction term. We assume additionally that the initial term is let-free.

CBV. Do head-reduction as long as possible, until the term becomes either a beta, let, or
triv redex. In the two first cases, reduce and restart; in the last case, reduce to return the
computed abstraction.
CBN. Do head-reduction as long as possible, until the term becomes either a beta or triv
redex. In the first case, reduce (with CBN − beta) and restart; in the last case, reduce to
return the computed abstraction.

This description is not in terms of priorities, but rather reveals the shared organization
of the computation and the roles of the different reduction rules, which are the same in both
strategies - see Fig. 8. The shared organization, in turn, shows how “superimposed” CBV
and CBN are in the system, in other words, how agnostic the system is.
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Figure 8 Agnosticism: the shared organization of CBN and CBV strategies

CBV CBN
iteration pre-processing head1 + head2 head1

of the computation cycle real computation beta + let beta; let
return triv triv

Figure 9 The sequent calculus/natural deduction mirror.
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4.5 Epilogue

An easy consequence of the isomorphism Θ is that the space of calculi in the sequent calculus
format has a mirror image in natural deduction. See Fig. 9 for a roadmap. The λ-calculus is
displayed in the “imperfect world” - the terminology is inspired in Remark 2.1. of [4].

The two computational interpretations of sequent calculus are collected in Fig. 10. The
external interpretation works like this: in Fig. 10 the shown interpretation is that of λlet;
λµ̃ is a language of instructions for λlet (recall Section 4.2); the behavior of t ∈ λµ̃ is the
isomorphic behavior of Θt ∈ λlet written in the language of instructions.

Why is co-control almost invisible in natural deduction? Why does it boil down to the
low-profile rule let, which is just a substitution triggering rule? The explanation is in the
good old associativity of “applicative terms” [10]. In natural deduction, the control operator
shows up in the hidden part of an applicative terms, like (µa.M)N1 · · ·Nm. Since we want
to get to this M , we collect the outer stuff in the context-like structure K = [·]N1 · · ·Nm and
trigger a context-substitution [K/a]M . But, in natural deduction, the co-control operator
is disguised in let-expressions letx := HN1 · · ·Nm inP = Θ(HN1 · · ·Nm, µ̃x.P ), and so is
already at the surface. So we may proceed by ordinary substitution [HN1 · · ·Nm/x]P .
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Figure 10 Curry-Howard for sequent calculus

sequent calculus λµ̃ internal interpretation external interpretation

t
λ-term in formal vector notation
with first-class co-control

bi-directional, agnostic,
computational λ-term

right intro. λx.t λ-abstraction λ-abstraction

contraction x k̂
2nd form of vector notation
fill k in the co-continuation x K[x]

cut tk 3rd form of vector notation K[hd(M)]

k generalized vector continuation K
axiom [] empty vector app([·])

left selection µ̃x.t co-control operator letx := [·] inP
left intro. u :: k vector constructor K[[·]N ]

cut elim. +
+ focalization red. rules

key-step β function call function call
left-sel. elim. µ̃ co-control operation subst. triggering (let)
focalization τ co-control operation proper subst. triggering (t)
focalization ρ subst. triggering (renaming) subst. triggering (ren)
right-perm. σ subst. triggering subst. triggering (sub)
right-perm. ε erasure of empty vector return (triv)
left-perm. π append of iterated vectors re-associate (head)

5 Duality

Let us check that co-control, as formulated in λµ̃, is dual to control. We will expand λµ̃ to a
self-dual system where control and co-control are each other’s dual. This is achieved with
three steps.

First step: to unify λµ̃ and λlet. Some hints are at the end of Section 4.2, the idea comes
from [7]. Every non-abstraction term of λµ̃ has the form Ψ(H, k). So we unify x k̂ and tk as
Ψ(H, k) and allow in λµ̃ a new syntactic class H ::= x | hd(t). Every non-abstraction term
of λlet has the form Θ(H, k). Se we unify app(H) and letx := H inP as Θ(H, k) and allow in
λlet a new syntactic class k ::= [] | µ̃x.P . Next let us unify Ψ(H,K) and Θ(H, k) as χ(H|k).
After this we realize that λµ̃ and λlet are partial views of the same system (the former
lacks HN , the latter lacks u :: k). So let t and M range over the same set of proof terms.
Continuations are internalized and coincide with vectors, co-continuations are internalized
and coincide with heads, context-substitution is internalized as ordinary substitution. We
work modulo χ(HN |k) = χ(H|N :: k), which abstracts the single difference between λµ̃ and
λlet.

Second step: to add control. We introduce the class of “commands” c ::= χ(H|k), and
a non-abstraction term is now µa.c. Continuations are now given by k ::= a | µ̃x.c |u :: k.
Sequents have full r.h.s’s: for instance, Γ|k : A ` ∆. Logically, we moved to classical logic.

Third step: to complete the duality. We add the dual implication A−B, and the class
of co-terms r ::= λ̃a.r | µ̃x.c. The place left vacant in the grammar of continuations by the
move of µ̃x.c is occupied by the new construction h̃d(r). The full suite of sequents is:

Γ ` t : A|∆ Γ|r : A ` ∆ Γ �H : A|∆ Γ|k : A� ∆ c : (Γ ` ∆)



J. Espírito Santo 13

Figure 11 The unified calculus

(Terms) t, u,M,N ::= λx.t |µa.c
(Co-terms) r, s ::= λ̃a.r | µ̃x.c

(Co-continuations) H ::= x | hd(M) |HN |H :̃: r
(Continuations) k ::= a | h̃d(r) | r k̃ |u :: k

(Commands) c ::= χ(H|k)

(β) χ(hd(λx.t)|u :: k) → χ(hd(u)|h̃d(µ̃x.χ(hd(t)|k)))
(β̃) χ(H :̃: s|h̃d(λ̃a.r)) → χ(hd(µa.χ(H|h̃d(r)))|h̃d(s))
(µ) χ(hd(µa.c)|k) → [k/a]c
(µ̃) χ(H|h̃d(µ̃x.c)) → [H/x]c

(∼=) χ(HN |k) = χ(H|N :: k)
(∼=) χ(H :̃: r|k) = χ(H|r k̃)

We now easily write the constructors for the inference rules relative to A−B, just by dualizing
those of implication: the already seen λ̃a.r (left introduction), the co-continuation H :̃: r
(right introduction), and the continuation r k̃ (elimination, on the left!). The full system is
given in Fig. 11. The typing rules are omitted due to space limitations, but writing them
down is now just routine.

The classical, de Morgan/Gentzen duality is the duality between hypotheses and con-
clusions, l.h.s. and r.h.s. of sequents, conjunction and disjunction (if these were present),
A ⊃ B and B −A. Gentzen praised LK for its exhibiting of this duality [8]. Let us denote
it by (̃·), justement. At the level of types ˜A ⊃ B = B̃ − Ã and vice-versa. Co-terms are dual
of terms, and vice-versa. The same for co-continuations and continuations. The notation of
constructions and the naming of reduction rules self-explains how (̃·) operates. Commands
are self-dual: ˜χ(H|k) = χ(k̃|H̃). The unified system is self-dual, at the level of typing and
reduction. For instance, Γ ` t : A|∆ iff ∆̃|t̃ : Ã ` Γ̃, etc.

Given the process of construction of the unified system, it is clear the latter has a fragment
that is a sequent calculus: forbid HN and H :̃: r and get rid of class H ::= x | hd(t) by
expanding the two cases of commands: x k̂ := χ(x|k) and tk := χ(hd(t)|k). The result
SC is not a self-dual system: its dual is the natural-deduction fragment ND of the unified
system, obtained thus: forbid u :: k and r k̃ and get rid of k’s by expanding the two cases of
commands: aH := χ(H|a) and the new χ(H|h̃d(r)). In other words: de Morgan/Gentzen
duality transforms sequent calculus SC into natural deduction ND, and vice-versa; and this
is just a partial view of the self-duality of the unified system. Notice that the duality between
SC and ND links HN with r k̃ (and H :̃: r with u :: k), whereas the isomorphism between
the two systems (internalized as equations in the unified system) links HN with N :: k (and
H :̃: r with r k̃).

So SC is not self-dual, but λµµ̃ seemingly is [4]. This is a symptom of something. Look
again at Fig. 1. Despite its compelling symmetry, λµµ̃ (like SC) has a huge distortion towards
control. Why? Commands in λµµ̃, we may say, have the form 〈H|e〉 with H ::= hd(t).
Hence, the constructors for e’s have no dual in the class of H’s: the class of e’s is fully
there, the class of H’s is residually there. We seem to see a duality between terms t and
“co-terms” e, but here the word “co-terms” is a misnomer. “Co-terms” e’s are continuations,
rightly captured by the µ-operator; then, either we see terms as the “dual” of continuations,
and let them be captured by the µ̃-operator, but then the latter, although “dual” to the
µ-operator, is not a co-control operator; or the µ̃-operator, if it is to be a co-control operator,
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should capture, not terms, but co-continuations, a missing kind of expression, which is also
typed “on the right”; and the true co-terms are another missing kind of expressions typed
“on the left”. Notice that the distortion in λµµ̃ has nothing to do with the fact that the
dual of implication is not included in Fig. 1; if it were, one would add one constructor to
the grammar of terms and its “dual” to the grammar of “co-terms”, preserving the original
“duality” [4], but still failing to achieve true duality, for the same reasons.

What did we learn? There is nothing wrong with SC or λµµ̃, in their not being self-dual.
What happens is that the classical sequent calculus, despite its symmetry, is unable to
capture the duality between control and co-control, because the latter requires the full extent
of the de Morgan/Gentzen duality, which also involves natural deduction, and is captured
only in the unified system.

6 Conclusions

Contributions. On a higher-level, this paper has two main contributions. The first is
the intended one, about the Curry-Howard isomorphism for sequent calculus. If systems
of combinators correspond to Hilbert systems, and the ordinary λ-calculus corresponds to
natural deduction, what variant of the λ-calculus does correspond to the sequent calculus?
We propose a clear-cut answer, which turns out to be a coin with two faces: sequent calculus
corresponds to a formal vector notation with first-class co-control; and to a bi-directional,
agnostic, computational λ-calculus.

The second contribution concerns structural proof theory. We knew from our past
experience [7, 17] that sequent calculus has to be developed hand-in-hand with natural
deduction. And this was confirmed here in many ways. For instance, co-continuations
correspond to a primitive syntactic class in natural deduction, from where one can import, say,
the typing rules. Also, things look very different in the other side of the sequent-calculus-vs-
natural-deduction mirror, different to the point of un-recognizability. For instance, co-control
is almost invisible in natural deduction.

The surprise came when we considered the classical, unified, self-dual system, where we
learned three things: (i) the de Morgan/Gentzen duality comprehends the duality between
control and co-control, as long as we unify sequent calculus and natural deduction; (ii)
sequent calculus and natural deduction are de Morgan dual, and this duality is a partial view
of the self-duality of the unified system; (iii) the classical sequent calculus (the champion of
symmetry) is biased towards control - because it is just a sequent calculus.

On the technical level, the main contribution is the formulation of co-control. The
formulation is entirely based on the identification of the concept of co-continuation. This
is the entity variables in sequent calculus proof terms stand for, and with which one may
formulate the µ̃-operator as a co-control operator, dualizing the behavior of the µ-operator.
We showed the meaning of co-control in natural deduction, and how co-control subsumes
a form of focalization. Finally, it is also noteworthy: (i) The analysis contained in the
agnosticism theorem of the superimposition of CBN and CBV present in λlet (and λµ̃); (ii)
The treatment of the logical operation A−B contained in the unified system.

Related and future work. The author apologizes for the title of this paper, if the
reader finds it exaggerated. True, the author believes something simultaneously new and
very basic was said here about the computational interpretation of the sequent calculus. On
the other hand, this contribution corresponds a small step from the wisdom accumulated
before. Specifically, our proposal starts from the following ingredients: the λ-calculus [10],
the µ̃-operator [4], the vector notation [11], the technical result about formal vector notation
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[6, 3, 5], together with the previous work by the author [7, 17].
It is clear why co-control has been unnoticed in the theory and practice of programming:

in a syntax with the natural deduction format, co-control control corresponds to a low-profile
substitution triggering rule. Co-control, as such, is only visible in a syntax with the sequent
calculus format. Now, such kind of syntax is usually regarded as a machine representation.
Therefore, it is natural to ask whether co-control is relevant in the theory and practice of
functional languages implementation. This question deserves further investigation.
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