
1 INTRODUCTION 

In modern complex engineering systems the Prog-
nostic Health Management (PHM) reveals an in-
creasingly utmost importance in System Design and 
Development, Production and Construction, Opera-
tions, Logistics Support and Maintenance, Safety 
and Phase-out and Disposal (Sun et al. 2012, Rundle 
et al. 2012). Such importance is due to several fac-
tors summarized in Figure 1. Most of these factors 
are well discussed in the publications (Sun et al. 
2012, Rundle et al. 2012). The PHM approach com-
bines simultaneously several methods, tools and ap-
proaches, until quite recently used isolated. These 
characteristics have allowed PHM to continually 
achieved new application areas so far unfilled by 
any other approach, in energy efficiency programs 
(Welch & Rogers 2010), or as a decision support 
tool in prognostics-based product warranties and 
health monitoring based liability (Rundle et al. 2012, 
Ning, et al. 2013).  
 Many successful application examples have 
shown the PHM promising potential from this recent 
methodology, with technologies, methods and tools 
to solve problems associated with the reliability, 
availability and maintenance in Condition Based 
Maintenance (CBM) perspective (Sheppard et al. 
2009, Sun et al. 2012). 
 The use of operational and environmental condi-
tions in systems analysis modelling is being advan-
tageous for performance degradation and failure de-
tection, in order to avoid and manage undesired 

occurrences. In recent years many PHM cases stud-
ies were posted based mainly on the isolated use of 
Model-based, Data-driven approaches and Fusion or 
Hybrid approaches. However, other relevant issues 
remain unresolved, especially in regards to problems 
related to: data-fusion with multi-dimensional Con-
dition Monitoring (CM) input, development of mod-
els which can deal with multiple failure modes and 
the influence of external environmental variables, 
the treatment of dynamics and non-linearity of some 
degradation process with linear approaches (Si et al. 
2012), reliability prognostics over extended periods 
of time, detection of intermittent faults and the in-
clusion of software failures in degradation models. 
 The hybrid method development should be in-
creased with the inclusion of the uncertainty quanti-
fication, confidence levels quantification, methods, 
tools, metrics and standardization (Sun et al. 2012, 
Bird & Shao 2014). The influence of uncertainty 
sources on the accuracy and confidence levels in the 
PHM metrics reliability prognostics are still a key 
area development  (Pecht 2010, Sun et al. 2012, 
Lumme & Pylvänen 2012, Wang et al. 2013).  
 This paper is divided in next six sections: (2) 
PHM approaches. Describes the fundamental PHM 
approaches: Failure Modes Mechanisms and Effects 
Analysis (FMMEA), Based-model and fusion. The 
benefits and constraints of each approach or method 
are discussed. (3) PHM metrics. Describes the clas-
sification established for PHM metrics and the sev-
eral methods can be used in metrics calculation in- 
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Figure 1: PHM key benefits reviewed. 
 
cluding stochastic, statistical, Time series, Machine 
learning or Physics of Failure (PoF). (4) PHM stand-
ards reveal the most recent news about the PHM 
standardization developments. (5) PHM perspec-
tives. This section discusses the fundamental PHM 
gaps related with the unsolved problems. The inclu-
sion of uncertainty sources on the metrics accuracy 
and confidence levels and the inconsistencies for 
solving highly nonlinear problems involving linear 
approximations. (6) Future work. Exploring the re-
search opportunities present in some recent publica-
tions, are outlined guidelines for the actuation and 
contribution in the development, consolidation and 
acceptance of the PHM by the industry. (7) Conclu-
sions. This section gives an overview of the article 
highlights and the most significant aspects of the 
proposed work.  

2 PHM APPROACHES  

The FMMEA, Data-driven, Model-Based and Hy-
brid or Fusion approach are the most used approach-
es to perform PHM. Next sections summarize the 
key points, advantages and weaknesses of each one 
of these approaches. 

2.1 FMMEA approach 

The FMMEA was first put forward by the Universi-
ty of Maryland in Computer Aided Life Cycle Engi-
neering Centre (CALCE) in the early 1990s of 20th 
century (He & Ma 2012). The FMMEA is an evolu-
tionary fusion process of Failure Mode Effects 
Analysis (FMEA) with Failure Mode and Effects 
Cause Analysis (FMECA), mainly carried out by 
experience according to relevant standards. The 
FMMEA is an analytical method developed to iden-
tify, evaluate and prevent product and/or process 
failure modes, mechanisms and effects. The 
FMMEA compared with classical FMEA techniques 
is a very effective problem solving. Based on past 
experience, lays more emphasis on failure mecha-
nisms and can be more effective in controlling the 
risk of product failure by excavating the root cause 
of potential failures. Normally the FMMEA is an 
early stage of PHM process. The outcome of 
FMMEA is setting up a list of critical failure modes 
and failure mechanisms that allow the identification 
of the parameters to monitor. These parameters are 
the basis for accurate the PoF models used on prog-
nostic of life expectancy of the system, module, or 
component. The second FMMEA step is the risk 
analysis that provides the criteria for Risk Priority 
Number (RPN), which including estimating the de-



tection capability, severity and likelihood of the fail-
ure (Pei et al. 2012, Wang et al. 2013). 
 The revelead weakness of FEMMEA is the failure 
mechanism identification that is hard to implement. 
This difficulty comes from the non-standardized 
analysis processes, making FMMEA inefficiency, 
poor reliability and reuse (Wang et al. 2013, Liu et 
al. 2014). Recently the authors Liu et al. (2014) de-
veloped a new FMMEA method automation based 
with fuzzy cognitive map theory. It suggests a stand-
ardized description of the physical process of failure, 
and a standardized definition of function failure 
mode with property changes of output flow, which is 
an effective solution to nonstandard traditional 
FMMEA. 

2.2 Model-based approach 

The Model-Based approaches are domain expertise 
mathematical representations of the physical system 
by simultaneous usage of mathematical and PoF 
models of the system. Later through techniques of 
statistical estimation regularly improved on Kalman 
filter (KF), particle filter (PF) also   known  as   Se-
quential  Monte  Carlo   method (SMC), parity rela-
tionships, Bayesian approaches and Petri Nets, the 
residuals are calculated. With the residuals its possi-
ble obtains the system degradation model and the 
detection and isolation of faults (Han et al. 2012, 
Kulkarni et al. 2013).  
 Generally the PoF approach could be applied in 
prognostics with two methods: (1) monitoring the 
life cycle environmental and operational conditions 
of the product. Then, using this information in phys-
ics-based failure models they provide real-time or 
periodic estimates of Remaining Useful Life (RUL), 
based on the knowledge of the processes that cause 
deterioration and lead to the occurrence of systems 
failure; (2) using the design of canary device(s) 
based on the FMMEA that identify the end of useful 
life. The wear on each identified weak point is ob-
tained as a function of load conditions, depends of 
subsystem geometry and material properties. The 
purpose of the PoF approach in the PHM process is 
to calculate the accumulated damage by the different 
failure system mechanisms with operational envi-
ronment (Mathew et al. 2012). 

The model-based advantages are: damages esti-
mation that may occur during all stages of storage 
and transport, taking into account the degradation 
caused by environmental conditions, such as thermal 
loads, humidity, vibration and impact. The 
knowledge of the failure mechanisms coupled with 
the monitoring system loads and parametric data, al-
low the identification of the nature and extent of the 
fault (Kulkarni et al. 2013, Shao et al. 2014, 
Zhanyong & Xuegang 2014). The model-based ap-
proach also has a number of constraints: the specific 
and detailed knowledge of the system, geometry and 

material composition, and the physical processes 
that lead to failure are needed, which are not always 
available. In complex systems is difficult or impos-
sible to create models that represent the multiple 
physical processes occurring in the system, for ex-
ample the intermittent faults. The presence of anom-
alies in the database affects the system health stand-
ard definition and the resulting data declassification. 
The declassification leads to problems of a false in-
dication of anomalies, failure alarms and the indica-
tion of system abnormal operation (Pecht 2010, 
Shao et al. 2014). 

2.3 Data-driven approach 

The Data-driven approach could be used alternative-
ly to the PoF for the reliability prognostics, by moni-
toring the system operation, with its environmental 
data and performance parameters (power, current, 
voltage, temperature, humidity, vibration and acous-
tic noise, etc.) which will be observed by sensors. 
Then data filtering and normalization is made in or-
der to reduce noise and remove the effects of scale. 
The data are used to establish the health status of 
system and to identify performance deviations with 
the fault occurrence. The Data-driven approach is 
based on the assumption that the statistical charac-
teristics of a system data remain unchanged until the 
fault occurrence. The system failure is defined by 
fixing the limit values from the observed parameters. 
The trends provide a more thorough evaluation of 
the parameters progression of damage or malfunc-
tion over time, allowing the construction of a predic-
tion system (Sheppard et al. 2009, Gu et al. 2012, 
Tsui et al. 2014). The Data-driven approach can be 
applied on-line, when there are integrated data ac-
quisition devices on the systems to supervise, or may 
be applied off-line, when it is analysed historic in-
formation previously collected and stored in data-
bases to build the models instead (Chen & Pecht 
2012, Tsui et al. 2014).  

Data-driven approach can be divided into three 
different types according their usage: (1) If they 
have representative available data from healthy and 
unhealthy states of the system are applied supervised 
learning algorithms; (2) If a single class of data are 
available, such as related to the system healthy state 
is used a semi-supervised approach; (3) To the 
treatment of non-labelled data is applied the unsu-
pervised learning approach. The use of semi-
supervised or supervised learning techniques re-
quires the existence of reliable test data for non-
occurrence detection errors (Pecht 2010, Hu et al. 
2012).  

The data analysis techniques, most commonly 
used with the Data-driven tools are the Markov 
chains, stochastic processes and time series analysis. 
The strengths of the Data-driven approach can be 
described: It can be used as black-box models that 



can grasp the system behaviour based on monitored 
data without requiring specific knowledge of the 
system. To correlate the parameters it is also possi-
ble to use variations with interactions between sub-
systems and the effects of changes in environmental 
parameters using the local data acquisition system. 
The Data-driven tools are useful to the purposes of 
diagnostics, since they allow the standards recogni-
tion and the use of statistical techniques used in the 
detection of changes in the system parameters, al-
lowing the detection and analysis of intermittent 
faults (Pecht 2010, Tsui et al. 2014). The Data-
driven also have disadvantages: action may require 
the data system training with historical data to de-
termine the strength of correlations, set standards, 
and data evaluation indicators of degradation and 
failure occurrence. In most applications, the histori-
cal or operating data are insufficient and difficult to 
obtain. The same is also true for the diagnosis and 
the determination of trend thresholds for fault prog-
nosis, whereby in the case of products in storage, 
standby, non-operated systems and systems with oc-
currence of infrequent failures, which have never 
been subject to environmental wear conditions. The 
solution to this problem is the use of system models 
also called by Fusion or Hybrid models, such like 
PoF models combined with Data-driven models 
(Pecht 2010, Kulkarni et al. 2013), discussed in the 
next section.  

2.4 Fusion or hybrid approach 

The hybrid or fusion approach combines the Model-
based and Data-driven tools, taking full and direct 
double advantage of the benefits from both ap-
proaches in order to estimate the RUL under both 
types, operating and non-operating life-cycle condi-
tions, Figure 2.  
 The first step of the fusion process is the FMMEA 
to help determine in real-time system diagnostics. 
Generally it consists of all information available, in-
cluding operational and environmental loads, as well 
as performance parameters. For verification of mal-
functions existence, the observed data is compared 
with the parameters stored in the healthy database 
pattern, previously collected during the system oper-
ational phase. The database also contains other addi-
tional specifications and standards for the definition 
of faults. The most relevant parameters which con-
tribute significantly to the anomaly are isolated and 
used to determine PoF models of system degrada-
tion. Therefore, the databases provide information as 
fault thresholds for the system parameters, failure 
modes, degradation states, and labels for healthy or 
unhealthy operating conditions (Pecht 2010, 
Kulkarni et al. 2013). 
 In database detection parameters setting, machine 
learning techniques can be used or other probabilis- 

Figure 2. Fusion approach PHM based reviewed. 

 
tic approaches such as parametric or distribution 
analysis. It is very important to identify the parame-
ters indicators of changes presence in system per-
formance. The isolation of parameters for PoF mod-
els can be accomplished using a variety of 
techniques, such as, Principal Components Analysis 
(PCA), Least Squares Estimation (LSE), Expectation 
Maximization (EM) and Maximum Likelihood Es-
timation (MLE). Based on information collected in 
the critical parameters of isolation phase, the most 
relevant degradation models are selected to identify 
the type of faults or failure degradation mechanisms 
that drove the system to a potential failure. The PoF 
models are used to calculate the RUL of the system, 
based on environmental parameters and data relating 
to the material properties and specifications of the 
system. The knowledge concerning the failure 
mechanisms and their representative models are 
used to extract information about the fault identifica-
tion from the measured parameters, failure modes, 
degradation states, and labels for the healthy or un-
healthy conditions. The alarms can be armed to warn 
the operating system failure eminence, based on the 
value of the RUL reported. It can be timely provided 
the system repair or replacement, depending on the 
critical application index (Shao et al. 2014, 
Zhanyong & Xuegang 2014). The authors Lui et al. 
(2011) propose a recognition condition of complex 
systems based on Multi-fractal Analysis and Demp-



ster-Shafer evidence theory to extract and utilize the 
multi-source fusion information implied in monitor-
ing highly non-linear data properly the industrial 
safety systems, or equipment with highly non-linear 
load conditions. The work published by Rotshtein et 
al. (2012) purposes to apply the innovative approach 
of chaos theory to the reliability modelling, by in-
serting the information about the causes of failures 
and establishing the connection with the elements 
(temperature, humidity, voltage, load condition, etc.) 
of their origin.  
 The Fusion approach takes advantages from both 
PoF and Data-driven approaches. Allows the detec-
tion of intermittent faults, identifies the failure pre-
cursors, detects deviations from the normal opera-
tion and enables the construction of degradation 
models to estimate the RUL or the End of Life 
(EOL). It also allows the effective maintenance 
planning and identification of processes causing 
eventual system failure, establishing the extent and 
nature of the failures and adopts effective mainte-
nance strategies. Most of the studies published up to 
now used either alone Data-driven or PoF approach-
es. The Fusion approach takes advantages from both 
PoF and Data-driven approaches but few studies are 
posted. To improve and optimize this approach is 
required to intensify its diversification across a larg-
er number of case studies. 

3 PHM METRICS 

The prognostics metrics classification is divided into 
two classes: user's requirements and functionality. 
The metrics categories about the end-user require-
ments fall into operational, engineering and regula-
tory metrics. The functional classification is based 
on the information type that these metrics can pro-
vide. Until now are identified and listed in detail five 
broad categories of metrics: algorithm performance, 
computational performance, cost-benefit-risk, ease 
algorithm certification (Saxena et al. 2010, Gu et al. 
2012), and cost-benefit metrics (Sun et al. 2012, 
Chang et al. 2013).  
 In the current context of the systems based health 
management, the prognostics is defined as the detec-
tion of failure precursors from sensor data or 
maintenance historic data-base, predicting the RUL 
or the EOL by generating a current state estimate 
and using expected future operational conditions for 
a specific system. The estimation of RUL or EOL it 
is a prediction/ forecasting/ extrapolation process 
(Saxena et al. 2010). The authors Saxena et al. 
(2010), Si et al. (2012) & Vasan et al. (2013) define 
the RUL of a system or component as the duration 
from the current time to the EOL.  The RUL is fun-
damental to access condition and health monitoring 
information of components or systems and is con-
sidered a key factor in CBM, on the planning of 

maintenance activities, spare parts provision, opera-
tional performance, and the profitability on assets. 
On green manufacturing the RUL assumes signifi-
cance, in the management of product reuse and recy-
cle which impacts on energy consumption, raw ma-
terial use, pollution and landfill and others 
requirements of the environmental protection stand-
ards. The RUL is characterized as a random variable 
with dependence of the asset age, operational envi-
ronment and the health information from CM. The 
RUL can be calculated or estimated by Data-driven, 
Model-based or Fusion approaches. The data analy-
sis methods, associated with the Data-driven ap-
proaches are the statistical and machine learning 
methods (Sun et al. 2012). The authors Si et al. 
(2012) propose following classification for the Data-
driven statistical methods, Table 1. First the statisti-
cal based models are divided into two subgroups, 
namely, on directly observed state processes (online) 
and the indirectly observed state processes (offline). 

Table 1. Data-driven approach statistical methods 
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 In the online statistical based models there are the 
regression-based models, namely, coefficient regres-
sion, auto-regressive (AR) linear, auto-regressive 
moving average (ARMA) (Chen & Pecht 2012), 
non-parametric regression method (Fang et al. 
2012), the Wiener process (Wei et al. 2013), Gamma 
processes (Xu & Wang 2012) and Markovian-based 
models (Tobon-Mejia et al. 2012, Tsui et al. 2014). 
 In the offline statistical based models can be 
found the stochastic non-linear filtering-based mod-
els, namely, non-linear filtering, Kalman filtering 
(KF) (Celaya et al. 2012, Zhang & Pisu 2014), Mon-
te Carlo (MC) (Chen & Pecht 2012, Xing et al. 
2012, Sustrino et al. 2012, Wei et al. 2013), Particle 



filter (PF) (Xing et al. 2012, Lau et al. 2012, Celaya 
et al. 2012, Chen & Pecht 2012), the covariate based 
hazard models (Ghodrati et al. 2012), Hidden Mar-
kov Model (HMM) and Hidden Semi-Markov model 
(HSMM) (Lau et al. 2012, Medjaher et al. 2012). 
 Concerning the machine learning methods, Table 
2, further disseminated in RUL estimations are Arti-
ficial neural network (ANN) (Lau et al. 2012, Fang 
et al. 2012), Neuro-fuzzy (NF), (Chen & Pecht 2012, 
Lau et al. 2012, Medjaher et al. 2012), Support Vec-
tor Machine (SVM) (Vasan et al. 2013), Hidden 
Markov Model (HMM), (Lau et al. 2012, Medjaher 
et al. 2012) and Dynamic Bayesian Networks (Si et 
al. 2012, Medjaher et al. 2012). 
 

Table 2. Data-driven machine learning methods ap-

proach. 
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Artificial neural network (ANN) 

Neuro-Fuzzy (NF) 

Support Vector Machine (SVM) 

Hidden Markov Model (HMM) 

Dynamic Bayesian Networks  

 In the context of role concepts standardization, 
definitions and metrics, it is important to develop 
online metric performance evaluation algorithms, 
such as robustness and sensitivity. The current per-
formance evaluation methods ignore the effects of 
future load conditions in the useful life consumption 
rate, the maintenance operations and fault tolerance 
characteristics of some systems. The development of 
these new metrics should be associated with the best 
methods of management and representation of un-
certainty. The incorporation of risk, cost-benefit and 
parsing analysis it should also be considered (Saxena 
et al. 2010, Sun et al. 2012).  

3.1 Quantification and uncertainty management 

One of the biggest PHM current challenges is the 
uncertainty measurement and management. Predic-
tions of the RUL or time to failure over extended 
time periods increase the inaccuracy due to the vari-
ous sources of uncertainty. The most common 
sources of uncertainty are the sensors errors, uncer-
tainty measurement on operating unplanned loading 
regimes, models assumptions and inconsistencies, 
loss of information due to the reduced amount of da-
ta and prognostics under no circumstances corre-
sponding to the data used for tuning, data acquisition 
system as the amount of available data increases etc. 
(Pecht 2010, Sun et al. 2012, Lumme & Pylvänen 
2012, Wang et al. 2013). For these reasons, deci-
sions regarding the state of the system (maintenance, 
repair and replacement activities) should take into 
account the uncertainties described. It is necessary to 

develop methods for delimiting the uncertainty (up-
per and lower limits) and confidence levels for the 
metrics used. Recently the authors Du et al. (2014) 
propose an innovative method for reliability sensi-
tivity analysis on quantifying the influence of the 
uncertainty change model inputs on the reliability 
model. Also the researchers Lau et al. (2012), Vasan 
et al. (2013), Tsui et al. (2014) & Zhicai et al. (2014) 
have put forward the Dempster-Shafer theory, 
Bayesian probability theory, fuzzy logic and the 
Weibull model algorithms to provide RUL estima-
tion in the form of probability distribution functions 
(PDF). This method is suitable for the development 
of state models and as solution to the problem of the 
uncertainty. 

4 PHM STANDARDS 

The PHM is an engineering discipline is still climb-
ing up the learning curve, which is why it is not uni-
versally accepted as a research methodology. One of 
the biggest current difficulties, relates to establish in 
the scientific community a set of prognostic con-
cepts definitions, metrics and standard universal 
methods that allow the comparison of results and 
performance measurement methods and tools to 
avoid ambiguous and inconsistent interpretations 
(Saxena et al. 2010, Gu et al. 2012, Liu & Sun 
2014).  
 The work published by (Sheppard et al. 2009) 
makes a survey of methods and standards already 
standardized by IEEE in the areas of diagnostics and 
maintenance, with special focus on CBM, which can 
be applied or adapted to the PHM. The work done 
by Saxena et al. (2010), proposes a number of terms 
and definitions for the prognostics, categorizes, clas-
sifies and review the prediction applications in dif-
ferent fields, including aerospace, electronics, nucle-
ar, medicine, finance, weather and automobile. More 
recently PHM Society is endeavouring in the estab-
lishment of common work committees to the study 
and establishment of PHM taxonomy. But, much 
more hard work remains to be done with the aggra-
vating circumstance due to the lack of skilled human 
resources and training programs in PHM are also 
difficult tasks to overcome (Tobon-Mejia et al. 2012, 
Bird & Shao 2014). 

5 PHM PERSPECTIVES 

Present PHM challenges include the uncertainty 
analysis and investigation of techniques to match an 
estimated RUL and other metrics from multiple 
sources in order to provide unique combinations of 
RUL values. Some of the suggested techniques are 
the Dempster-Shafer regression, fuzzy algorithms 
and information Model-Based fusion techniques. 



The challenges in the uncertainty analysis lead to the 
identification and quantification of all sources that 
contribute to erroneous predictions, as measurement 
noise, uncertainties models, and loss or unavailabil-
ity of pattern data. It is also required the research 
and development of models and Data-Driven ap-
proaches take into consideration the uncertainty of 
the predictions made. Providing estimates in the 
form of PDFs are more informative and realistic for 
maintenance and logistical decisions. Another major 
challenge of PHM is to establish a set of prognostic 
concepts definitions, metrics and standard universal 
methods that allow the comparison of results and 
performance measurement methods and tools to pre-
vent ambiguous and inconsistent interpretations 
among the scientific community. As part of the con-
cepts standardization, definitions and metrics, it is 
important to develop online metrics performance al-
gorithms evaluation.  The current performance eval-
uation methods ignore the effects of future load con-
ditions in the consumption rate of the useful life, the 
maintenance work and fault tolerance characteristics 
of some systems. In the development of these new 
metrics should be associated the uncertainty man-
agement methods, risk analysis, cost-benefit analysis 
and requirements analysis. 

6 FUTURE WORK 

The future work will focus two the main aspects of 
PHM approach weakness: (i) nonlinearity of the 
failure degradation models, and (ii) little knowledge 
in fusion approaches. Nonlinearity exists extensively 
in the failure degradation process of components or 
systems, by the fact that the degradation may accel-
erate at a late stage, the degradation process. In this 
way the linear models or linear assumptions cannot 
trace the dynamics of such degradation processes. 
However the nonlinearity remains complex and dif-
ficult to modelling (Si et al. 2012, Zhang & Pisu 
2014). Fusion approaches are the combination of 
PoF and Data-driven models, but very few studies 
have been reported (Xing et al. 2012, Wang et al. 
2013, Chen & Pecht 2012).  
 The study of phenomenon's with nonlinear behav-
iour it is not an exclusive engineering problem. For 
instance in medicine the fractals are been used to 
study and extract information from non-linear dy-
namics vital health signals (Goldberger 1999).  The 
work published by Yanqing et al. (2011) demon-
strates that multi-fractal analysis in the form of Mul-
ti-fractal Detrended Fluctuation Analysis (MF-DFA) 
has significant advantage than conventional methods 
to extract non-linear features in industrial complex 
systems for condition recognition. The paper dis-
cusses the chaos theory in the general context of re-
liability theory with relevance to the reliability of 
Wireless Sensors Network (WSN) in a PHM system.  

Recently the authors Rotshtein et al. (2012) in a pre-
liminary study consider that the chaos theory is a 
convenient methodology for systems reliability dy-
namics observation of parameters connected with a 
failure. There is a deadlock to finding of a solution 
for the nonlinearity failure degradation modelling 
and the fusion approach optimization.  
 Within this framework of thought, our future stud-
ies in this work must focus the development and in-
tegration of fractals and chaotic algorithms in the pa-
rameter fault isolation and Fusion degradation 
models processes, identified in the Fusion approach 
model in Figure 2. 

7 CONCLUSIONS 

We are currently witnessing the PHM development 
and expansion on the reliability prognostics in vari-
ous engineering areas. There are three basic ap-
proach tools to allow the RUL estimation in compo-
nents or systems, when subjected to a variety of 
environmental conditions and functional loads, 
namely, Data-driven approach, Model-based or PoF 
approach and fusion or hybrid approach.  
 The Model-based and Data-driven approaches 
currently in use by PHM have advantages and limi-
tations. The Model-based approach limitation is that 
it does not detect intermittent faults. The Data-
driven approach is useful when the system infor-
mation does not exist. The strength of this approach 
is the diagnostics, detection of intermittent faults, 
and reduction of the number of failures per detect. 
However, it has some constraints, including the dif-
ficulty in determining the RUL without historical da-
ta and the rules gap for establishing the failure 
thresholds used to calculate the RUL.  
 Current studies are focused on search means for 
effectively provide a PHM fusion system, which is a 
mix of Model-based approaches with technical Data-
driven diagnosis and prognosis for dynamic RUL 
prognostics. In the studies published until now many 
fundamental questions still remain to solve: the re-
lated problems with the reliability prognostics over 
extended periods of time, detection of intermittent 
faults, inclusion of software failures in degradation 
models, data-fusion with multi-dimensional CM in-
put, the influence of external environmental varia-
bles modelling, development of models which can 
deal with multiple failures and the treatment of dy-
namics and non-linearity of some degradation pro-
cess with linear approaches, and the influence of un-
certainty sources on the accuracy and confidence 
levels in the PHM metrics. 
 Concerning the difficulty to deal with multiple 
failures RUL estimation and the nonlinearity prob-
lem of failure degradation processes, the fractals and 
dynamics chaotic theory, similarly to other areas of 
science with similar problems, could be helpful.  In 



this perspective future work shall focus the integra-
tion of fractals and chaos theory in the fusion ap-
proach model.   
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