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Abstract 

The survival of all microbes depends upon their ability to respond to environmental 

challenges. To establish infection, pathogens such as Candida albicans must support effective 

stress responses to counter host defenses while adapting to dynamic changes in nutrient status 

within host niches. Studies of C. albicans stress adaptation have generally been performed on 

glucose-grown cells, leaving the effects of alternative carbon sources upon stress resistance largely 

unexplored as well alterations in its virulence. 

In a previous work both copies of the RLM1 gene of C. albicans were deleted and phenotypic 

analysis of ∆rlm1/∆rlm1 mutants showed typical cell wall weakening phenotypes, such as 

hypersensitivity to Congo Red, Calcofluor White and caspofungin, showing its involvement in the 

cell wall remodelling. To understand the role of RLM1 under the influence of different carbon 

source, phenotypic characterization against cell wall damaging stress agents, modulation of 

virulence factors as well as their involvement in host-pathogen interaction was preformed in the 

present work. 

Candida albicans ∆rlm1/∆rlm1 mutant displayed phenotypes associated to cell wall 

deficiency such as, hypersensitivity to Congo red, caspofungin in glucose- and lactate- grown cells. 

However the RLM1 mutants were slight more resistant to Congo Red when grown in lactate. On the 

other hand lactate-grown cells were not able to growth al all in the presence of SDS and presented 

sensitivity to caffeine, in comparison with glucose-grown cells. The increased transcription of genes 

already reported to be involved in cell adhesion correlated well with adhesion and biofilm assays, in 

which RLM1 mutant presented greater biofilm formation than WT in both growth condition. 

However cell adapted to lactate adhered more and biofilm formation was more pronounced. The 

host-pathogen interaction was accessed by co-incubation with murine macrophages-like cell line 

(J774). In general, lactate-grown cells were less efficiently killed in comparison to glucose-grown 

cells. However the mutant presented distinct behaviors, they were more resistant when adapted to 

glucose than to lactate. The TNF-α and IL-10 were lower in response to Δrlm1/Δrlm1 mutant and 

the cellular toxicity, measured as extracellular lactate dehydrogenase activity, was significantly 

lower in comparison with the WT and complemented strains in glucose-grown cells. The effect 

observed before was reverted when C. albicans cells were grown on lactate.  

In conclusion, C. albicans cells adapted to different carbon sources behave differently, 

particularly in the interaction with macrophages, in which the RLM1 mutation plays a decisive 

effect since it affects the cell wall integrity. 
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Resumo 

Os microrganismos para sobreviver dependem da capacidade de responder aos desafios 

apresentados pelo ambiente onde estão inseridos. O sucesso da infecção por parte dos agentes 

patogénicos, tais como Candida albicans, assenta na capacidade de responder eficazmente a 

stresses causados pelas defesas do hospedeiro e à adaptação a alterações constantes dos 

nutrientes no hospedeiro. Alguns estudos indicam que o crescimento em fontes de carbono 

alternativas tem influência na resistência ao stress e alteram a virulência de C. albicans. 

Em trabalhos anteriores, o gene RLM1 de C. albicans foi deletado e a análise fenotípica dos 

mutantes Δrlm1/Δrlm1 revelou que estes apresentam hipersensibilidade ao Congo Red, 

Calcofluor white e Caspofungina, fenótipos típicos de fragilidade na parede celular. De forma a 

perceber o papel de RLM1 em células adaptadas a diferentes fontes de carbono, foi feita uma 

caracterização fenotípica usando agentes que perturbam a parede celular, avaliada a modulação 

de alguns fatores de virulência, bem como a interação hospedeiro-patogéno. 

Os mutantes Δrlm1/Δrlm1 de Candida albicans crescidos em glucose e láctico exibiram 

fenótipos associados a deficiências na parede celular, tais como, hipersensibilidade ao Congo Red 

e Caspofungina. No entanto, estas revelaram ser ligeiramente mais resistentes ao Congo Red 

quando crescidas em láctico. Por outro lado, as células crescidas em ácido láctico apresentaram 

maior dificuldade em crescer na presença de cafeína, não tendo sido detectado crescimento em 

SDS, contrariamente às células crescidas em glucose que não apresentaram sensibilidade a estes 

stresses. O aumento da expressão de genes envolvidos na adesão célular correlacionou-se 

diretamente com os ensaios de adesão e biofilme, em que os mutantes Δrlm1/Δrlm1 apresentam 

uma maior formação de biofilme em comparação com a estirpe selvagem em ambas condições de 

crescimento. Contudo, células crescidas em ácido láctico aderiram mais e a formação de biofilme 

foi mais evidente. A interação Candida-hospedeiro foi avaliada através da co-incubação com a linha 

celular de macrófagos J774. Em geral, as células crescidas em ácido láctico foram fagocitadas de 

forma menos eficiente em comparação com células crescidas em glucose. As estirpes mutante 

Δrlm1/Δrlm1 apresentaram comportamentos distintos quando crescidas em diferentes fontes de 

carbono; em glucose os níveis de produção de TNF-α e IL-10 foram mais baixos e a toxicidade 

celular, avaliada pela atividade da lactato desidrogenase, foi significativamente mais baixa, em 

comparação com as estirpes selvagem e complementadas. O efeito anteriormente observado foi 

totalmente revertido quando o mutante foi crescido em meio com ácido láctico. 

Em conclusão, células de C. albicans  a diferentes fontes de carbono apresentam 

comportamento diferentes, nomeadamente na interação com macrófagos, onde o gene RLM1 

parece ter um papel decisivo pois afecta a integridade da parede celular  
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1. Background 

1.1. Epidemiology of invasive fungal infection 

Over the last decades, invasive fungal infections, particularly fungal nosocomial infections 

(FNIs), have assumed a great importance. This phenomenon is essentially due to the increasing 

population at risk. People with human immunodeficiency virus (HIV) infection, recipients of solid 

organ or hematopoietic stem cell transplants (HSCT), patients with hematologic malignancies, 

burns or indwelling medical devices and low-birth weight infants are the most susceptible set of 

population to these kind of infections (Warnock 2007; Sabino et al. 2010).  In the United States of 

America (USA), from 5231 cases of sepsis in 1979 to 16042 cases in 2000 (207% raze) were 

caused by fungal infections as reported in the retrospective study of Martin and colleagues (Martin 

et al., 2003). The advances of medicine, surgery and transplantology is thus one of the major 

causes of the dramatic increase in the number of immunocompromised individuals who are more 

susceptible to FNIs, including aspergillosis, candidiasis, cryptococcosis, and zygomycosis (Warnock 

2007; Sabino et al. 2010). Currently, many of these patients die not because of their underlying 

illness but as a result of a deep-seated fungal infection (Tortorano et al. 2004). 

Since these infections are among the main cause of morbidity and mortality, leading to an 

increase in the hospitalization time and, consequently, high costs associated to patients’ treatment, 

the FNIs are indeed a serious public health problem (Lass-Florl 2009; Hota 2004; Gudlaugsson et 

al. 2003). 

Fungal infections can either be superficial, affecting the skin, hair, nails and mucosal 

membranes, or systemic, involving major body organs (Ruping et al. 2008). Besides, these kind of 

infections have been reported as great threat in the intensive care units (ICUs), where the 

incidence is much superior than in the general population of hospitalized patients (Bassetti et al. 

2006; Cheng et al. 2005; Vaz et al. 2011).   

In addition to factors related to the hospital unit and underlying disease involving the patient, 

factors related to the microorganism are of major importance to the progression of hospital 

acquired infections. In specific situations, such as under immunosuppression, microorganisms of 

the normal microbiot can be responsible for most of the nosocomial infections (Hota 2004; 

Eggimann et al. 2003). 

A significant cause of infection entails several species of Candida. More than 17 different 

species of Candida have been identified as etiologic agents of bloodstream infections (BSIs). 

However, approximately 95% of all Candida BSIs are caused by only four Candida species: Candida 
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albicans, Candida glabrata, Candida parapsilosis, and Candida tropicalis (Hajjeh et al. 2004; 

Ostrosky-Zeichner et al. 2003; Pfaller et al. 2004). Although C. albicans remains the most 

important cause of invasive candidiasis, the non-albicans Candida (NAC) species are gaining 

clinical importance once they constitute about 50% of the reported cases of candidemia (Krcmery 

and Barnes 2002). 

In Europe, fungal pathogens represent the major eukaryotic agents of serious infection, in 

which Candida albicans and other emergent Candida species have become the third most frequent 

cause of nosocomial blood stream infections (Perlroth et al. 2007; Pannanusorn et al. 2013). 

These yeasts may reside in the host as benign commensals however, they may take advantage of a 

locally or systemically debilitated immune system to proliferate and cause disease. Moreover, new 

extracorporeal reservoirs colonized by Candida species have been identified in recent years, as 

natural environments, inanimate surfaces, health professionals’ hands and hospital’s surface. This 

fact supports and clarifies some recent evidences of the epidemiological cycle of hospital infections 

caused by Candida species of exogenous origin (Vaz et al. 2011). In fact, some studies have 

showed that the hands of health professionals may be colonized by yeasts and also serve as 

reservoirs of nosocomial infections (NIs) (Vaz et al. 2011; Ferreira et al. 2013; Sabino et al. 2010). 

The use of catheters and other medical devices is also related to development of nosocomial 

infections (NIs) with Candida species via exogenous routes, because the high prevalence of 

Candida isolates in samples from catheter tips may have an important role in the spread, 

progression and persistence of NIs (Ferreira et al. 2013; Traore et al. 2002; Passos et al. 2005). 

However, the Candida species are not related exclusively to hospital candidemia, because 

hematogenous infections also occur in the community (Ferreira et al. 2013). 

In Portugal there are few studies regarding the epidemiology of candidiasis, but in 2010, a 

work developed by Sabino et al (Sabino et al. 2010) studied the incidence of candidemia in a 

Portuguese oncology hospital during 6 years. In this study, it was demonstrated that the most 

frequently species found were C. albicans followed by C. parapsilosis, C. tropicalis, C. krusei and 

C. glabrata. Furthermore, it was assessed that the mortality rate associated of candidemia was 

31,9% (Sabino et al. 2010). Given their increasing frequency and high morbidity and mortality 

rates, prevention of invasive fungal infections has become of paramount importance. Therefore, 

host-fungus interaction studies may contribute to understand the epidemiology and pathogenesis of 

these infections and help develop new strategies to fight fungal infections. 

 



THE IMPACT OF CARBON SOURCE IN CANDIDA ALBICANS VIRULENCE: PARTICIPATION OF RLM1 IN PATHOGEN HOST 
INTERACTION 

 

 

 5 

1.1.1. Candida albicans, the major model yeast of pathogenicity 

There are known approximately 200 species known in the genus Candida but only a few 

species have been identified as pathogenic. Macroscopically, colonies of Candida spp. are cream-

colored to yellowish. All species produces blastoconidia and many of them are dimorphic growing 

as budding yeast cells, pseudohyphae or true hyphae (Eggimann et al. 2003).  

Since the dawn of civilization the growth of the opportunistic fungal pathogen Candida 

albicans on the surface of human tissue was noted and described by Hippocrates in the fourth 

century B.C. (Kumamoto and Vinces 2005). 

Candida albicans is an ubiquitous and dimorphic fungus that exists as a commensal in warm-

blooded animals, including humans. It colonizes mucosal surfaces of the oral and vaginal cavities 

and the digestive tract. However, if the balance of the normal flora is disrupted or the immune 

defenses are compromised, C. albicans can switch from commensal to pathogenic, being capable 

of infecting a variety of tissues and causing fatal systemic diseases (Sampaio et al. 2010). 

The diploid C. albicans has eight pairs of homologous chromosomes, with a genome size of 

14.3 Mb, based on genome sequencing of SC5314 strain. The content of GC in C. albicans 

genome is about 33.5%, 6438 genes, an average gene size of 1,468 bp and an intergenic average 

size of 858 bp (Magee 1993; Butler et al. 2009). Another distinctive feature of C. albicans is an 

alteration in its genetic code in which the codon CUG encodes serine rather than leucine (Santos 

and Tuite 1995). It shares this property with a group of related species that are collectively known 

as the CUG clade (Butler et al. 2009). This clade includes other pathogenic yeast such as C. 

paropsilosis and C. tropicalis. This characteristic increases dramatically the number of different 

proteins encoded by the 6438 C. albicans genes and results in an extensive phenotypic variability 

considered as among others, an attribute of virulence (Gomes et al. 2007). 

 

1.1.1.1 Virulence factors of C. albicans 

Virulence can be defined as the capacity of some microorganism cause disease, and is highly 

regulated by many factors. In order to establish a variety of infections, pathogens have to evade the 

immune system, survive, divide in the host environment and spread to new tissues (Yang 2003). 

Thus, virulence describes the degree of pathogenicity, where some strains can be more or less 

virulent than the others. C. albicans can survive in several anatomically distinct sites and the 

putative success of conversion from an innocuous commensal organism to an opportunistic 

pathogen depends on several virulence factors (Jayatilake 2011; Calderone 2004; Gow et al. 
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2012). These attribute of virulence include adherence to host cells, morphogenesis, biofilm 

formation, phenotypic switching and secretion of degradative enzymes (Calderone and Fonzi 2001; 

Schaller et al. 2005; Chauhan et al. 2006; Lim et al. 2012). 

 

1.1.1.1.1 Adhesion 

The adhesion ability of Candida cells to the host cells or to medical-devices is an important 

trait to begin the cycle from colonization to the establishment of the infection. The level of adhesion 

is dependent on host, microbial and abiotic surface proprieties, such as cell wall composition or 

cell-surface hydrophobicity (Silva et al. 2011). 

In Candida species, adhesion is mediated by some well characterized adhesion factors such 

as the proteins Hwp1, Eap1, all members of the Als family, and others (Calderone and Fonzi 

2001). Several of these are glycosylphosphatidylinositol (GPI)-proteins (linked to cell wall glucan) or 

GPI-anchored proteins (linked to the cell membrane), which are exposed at the cell surface (Gow 

and Hube 2012b). Mutants lacking these adhesion genes display decreased adherence to host 

substrates in vitro as well as a corresponding virulence reduction in several in vivo experimental 

models of candidiasis (Sheppard et al. 2004). 

As previously referred, one of the most well-studied adhesins are the agglutinin-like sequence 

(Als) proteins family, encoded by eight ALS genes (ALS1-7 and ALS 9) (Yang 2003). Some 

differences in N-terminal domain among distinct Als proteins leads to differences in their function. 

In early stages of infection, Als1p has been reported to mediate binding to human vascular 

endothelial cells and epithelial cells, while Als5p is responsible for collagen, fibronectin, bovine 

serum albumin and laminin adhesion (Sheppard et al. 2004). 

C. albicans can express all eight ALS genes, but C. parapsilosis and C. tropicalis  express only 

five and three ALS genes, respectively (Silva et al. 2011). 
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1.1.1.1.2. Morphogenesis 

Another striking feature of C. albicans is its ability to grow as an unicellular budding yeast 

(blastopores) and as a filamentous form (hyphae or pseudohyphae) (Sudbery 2011). This ability, 

represented in Figure 1, is tightly regulated by signal transduction pathways in response to 

environmental stimuli such as pH, temperature, or different compounds such as N-

acetylglucosamine or proline. Perhaps the most critical criterion for pathogenicity is the induction 

of the mycelial form by serum and during the interaction with macrophage cells (Jacobsen et al. 

2012). 

 

  

 

 

 

 

 

 

 

 

Figure 1. Distinctive morphology of C. albicans. Representation of the three different 
morphologies that C. albicans can acquired. Differential interference contrast (DIC) images of cells with hyphae, 
pseudohyphae, and yeast morphologies adapted from (Kim and Sudbery 2011). 

 

Some studies suggest that budding yeast cells are suitable for dissemination while hyphae are 

essential for adaptation to different host environment conditions and also for tissue and organ 

invasion (Mavor et al. 2005; Lim et al. 2012). 

The ability of hyphae formation is observed in some species of Candida such as C. albicans, 

C. parapsilosis or C. tropicalis and is considered to be crucial for evasion of host defenses (Lim et 

al. 2012). C. glabrata is commonly known and described as unable to form hyphae and 

pseudohyphae but still is able to induce infection, indication that other virulence factors may take 

the lead (Odds et al. 1997; Lachke et al. 2002; Csank and Haynes 2000). 
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1.1.1.1.3. Extracellular hydrolytic enzymes 

C. albicans as well as other Candida species can secret hydrolytic enzymes. This feature is 

considered a virulence factor and required during Candida infections. Secreted aspartyl proteinases 

(Sap), phospholipases and lipases are the most important extracellular enzymes secreted by 

Candida species (Mavor et al. 2005; Jayatilake 2011). These enzymes are needed to degrade host 

cell surface molecules to invade host cells by digesting its membranes, to resist to host immunity 

by attacking immune system cells and molecules, such as heavy chains of IgG, C3 protein, keratin, 

collagen, albumin, fibronectin, hemoglobin among others, and for nutrient acquisition (Yang 2003; 

Trofa et al. 2008).  

The secreted aspartyl proteinases family is composed by 10 SAP genes that encode the Sap 

proteins. Some studies carried out by Schaller and co-workers (Schaller et al. 2001) demonstrated 

that SAPs are differentially expressed in yeast and hyphal form and in phenotypically switched 

states. For example, SAP1-3 is mainly expressed on cell wall and cytoplasm of blastopores, SAP4-6 

is restricted at the tips of hyphae and phenotypically switched cells express SAP1 and SAP3. 

Furthermore, SAP8 is mostly detected in yeast cells grown at 25ºC and SAP9 is preferentially 

expressed in later growth phases (Yang 2003). In this sense, the flexibility of SAP genes expression 

may be contribute to the success of Candida species as an opportunistic pathogen, by allowing the 

fungus to survive and to cause infections on different host tissues and different growth conditions 

(Naglik et al. 2003). 

 

Other hydrolytic enzymes responsible for conferring virulence to Candida species are 

phospholipases (PLs). These enzymes hydrolyze phospholipids to fatty acids and glycerol. The 

classification of these enzymes is based on the different ester bonds cleaved being classified as 

PLs A, B, C and D. However, it has been demonstrated that only proteins encoded by the 

phospholipase B family (PLB1-5) seem to be extracellular, particularly PLB1 that plays a key role in 

virulence in animal models of candidiasis (Calderone and Fonzi 2001; Silva et al. 2011). The 

expression of this enzymes family during infection could lead to host cell membrane impairment 

and Candida cells adhesion.  

Several studies demonstrated that PLs are differentially expressed. For example the PLs can 

be expressed at the tips of Candida hyphae and on the initial buds of C. albicans cells during 

invasion (Samaranayake et al. 2005; Jayatilake et al. 2005; Ghannoum 2000). These studies 

confirm PLs involvement in pathogenesis by enhancing tissue penetration. Other studies showed 
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that C. tropicalis and C. parapsilosis are also capable of producing extracellular PLs, although in 

much lower levels than C. albicans. PL activity was not so clear for C. glabrata and C. krusei.  

  

Lipases are involved in the hydrolysis and synthesis of triacylglycerols. Ten LIP genes (LIP1-

10) encode these enzymes, and studies confirmed that they are differentially expressed at different 

stages and sites of infection (Trofa et al. 2008). Only in C. albicans and C. tropicalis all ten LIP 

genes (LIP1-10) were detected. For C. parapsilosis, only two lipase genes, LIP1-2, have been 

reported (Trofa et al. 2008) and no studies regarding LIP genes expression in C. glabrata and C. 

krusei are available. Gácser and co-workers demonstrated that lipases are important for Candida 

virulence, by showing that with lipase inhibitors the tissue damage observed was significantly 

reduced during infection in reconstituted human tissue models (Gacser et al. 2007). 

 

1.1.1.1.4. Phenotype switching 

Candida species can undergo a phenomenon called phenotypic switching (Slutsky et al. 

1985). There are a number of different classes of switching; one of the most well-characterized is 

white-opaque switching (Slutsky et al. 1987). The most common forms of C. albicans colonies are 

smooth, white, and dome-shaped, these colonies are called “white”. When a suspension of white 

phase cells are plated out, about 1 in 1,000 colonies will have a different appearance being flatten 

and having a grey color. Within these new colonies, cells are larger and have an oblong rather than 

opaque appearance. Scanning electron micrographs show that the surface of these cells is covered 

in pimples. These cells are said to be in the “opaque” phase. Opaque cells will switch back to 

white again with a frequency of about 1:1,000 and this switching process is believed to be under 

epigenetic control (Kim and Sudbery 2011).  

Strain WO-1 of C. albicans is the most studied phenotypic switching to white-opaque phases. 

Studies involving ultra-structural observations of WO-1 white-opaque phenotypes have showed 

differences in cell shape, cell surface structures and growth at 37ºC, suggesting that phenotypic 

switching could affect the virulence behavior of the organisms (Kim and Sudbery 2011). 

This ability is also observed in C. glabrata, C. parapsilosis and C. tropicalis. Laffey and co-

workers (Laffey and Butler 2005) identified four main phenotypes in C. parapsilosis colonies, 

including the concentric, crepe, smooth and crater phases and confirmed their relation with 

biofilms formation. Also, they identified four phenotypes in C. glabrata (white, dark brown, very 

dark brown and light brown) and França and co-workers demonstrated the presence of also four 
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possible phenotypes in C. tropicalis (smooth, rough, ring, semi-smooth) (Franca et al. 2011; 

Lachke et al. 2002). Phenotypic switching in C. krusei has not been reported yet. 

 

1.1.1.1.6. Biofilm formation 

Biofilms are surface-associated communities of cells surrounded by an extracellular matrix  

and constitute an increasing problem in the clinical setting (Blankenship and Mitchell 2006). C. 

albicans can form biofilms on natural surfaces, such as teeth, and on foreign surfaces, such as 

implanted devices. Due to the resistance of these biofilms to the common antimicrobial therapy, 

treatment often requires removal of infected devices to avoid potentially fatal consequences (Nobile 

and Mitchell 2006; Blankenship and Mitchell 2006; Kojic and Darouiche 2004; Douglas 2003).  

In an initial stage, yeast cells adhere to the solid surface. Then, they undergo morphogenesis 

to produce a dense layer of cells of mixed morphology embedded in an extracellular matrix rich in 

secreted cell wall polymer ß-1,3 glucan. In vivo, it was shown that the biofilm can protects cells 

against host defenses (Nobile et al. 2009).  

Some of the genes involved in biofilm formation were identified, as being also required for 

hyphal formation, such as the transcription factor Efg1 and the kinase Yak1. Others are apparently 

specific to biofilm formation, the zinc finger transcription factor Zap1, that is thought to regulate the 

production of matrix polysaccharide components and the transcription factor Bcr1, that regulates 

the formation of adhesens that allow yeast cells to stick to the solid surface (Nobile et al. 2009).  

 

During disease establishment and progression, these virulence factors are assumed to be 

required in differing extents (Brown and Gow 1999; Huang 2012). Overall, the interaction between 

C. albicans virulence factors and host defense mechanisms plays a crucial role in determining 

whether colonization remains harmless or leads to infection of the epithelium and ultimately to 

systemic (Calderone and Fonzi 2001; Chauhan et al. 2006; Lim et al. 2012; Schaller et al. 2005). 

 

1.1.2. Host response to fungal infections 

The human host immune system is sophisticated and efficient being responsible for 

controlling and eliminating infectious microorganisms. The first line of defense for pathogenic 

agents like C. albicans is formed immediately by the innate immune system. However, the 

intervention of the adaptive immune system is required. 
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1.1.2.1. The role of innate immune 

The host innate immune system is responsible for a constant and repetitive response that is 

specific, highly complex, and usually also highly efficient. After pathogen recognition, the immune 

system is activated and generates effector functions in order to eliminate the infectious microbe, 

which normally is well succeeded. Providing the first line of immune defense, the innate immune 

system is both central and critical for the complete host immune response. The innate immune 

defense affords 3 major effector mechanisms, (1) the complement system, (2) antimicrobial 

peptides, and (3) immune cells that recognize and respond to foreign microbes. Therefore, in order 

to survive or invade an immunocompetent host, any pathogen needs to cross the multiple borders 

of innate immunity (Zipfel et al. 2007). 

The cellular mechanism will be further detailed in this thesis. 

 

1.1.2.1.1. A cellular-dependent response: Macrophages and Dendritic cells  

Monocytes, macrophages and dendritic cells are the cell types most commonly related with 

the innate immune response against C. albicans infection. Phagocytic cells have multiple receptors 

that recognize C. albicans cells. 

Phagocytosis is induced and regulated by the pattern recognition receptors (PRRs) on the 

surface of antigen presenting cells (APCs) that recognize pathogen associated molecular patterns 

(PAMPs) (Hoebe et al. 2004; Akira and Takeda 2004; Akira et al. 2001). The recognition of PAMPs 

leads to microbial uptake and, consecutively, to a modulation of gene expression to initiate an 

adaptive and target-oriented immune response (Gauglitz et al. 2012). So far, three major groups of 

PRRs have been distinguished: toll-like receptors (TLRs), C-type lectin receptors (CLRs) and 

nucleotide binding domain, leucine-rich repeat containing (NLR) protein family as shown in Figure 

2 (Gauglitz et al. 2012).  
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Figure 2. The major pattern-recognition receptors (PRRs) involved in the recognition of specific C. 
albicans pathogen-associated molecular patterns (PAMPs). Stimulation of host response by C. albicans at the 
cell membrane is mediated by toll-like receptors (TLRs) and C-type lectin receptors (CLRs) adapted from (Jouault et al. 
2003). 

 

The mannose receptor and dendritic cell-specific intercellular adhesion molecule 3-grabbing 

nonintegrin homolog (SIGN)-related 1 (SIGNR1) are two examples of these receptors (Cambi et al. 

2003; Marodi et al. 1991; Filler 2006). Dectin-1 is another known receptor for C. albicans (Brown 

et al. 2003). This receptor can be found on macrophages and dendritic cells, and recognizes β-

glucans, a component of the C. albicans cell wall. Even though, not being specific for macrophages 

binding to blastospores, this receptor is required for an optimal phagocytosis of C. albicans 

blastospores. Remarkably, when C. albicans cells produce hyphae, they do not express β-glucan 

on their surface and so binding to dectin-1 is limited. This evidence suggests that the β-glucans 

masking on the surface of hyphae may help preventing recognition (Filler 2006).  

Incubating macrophages with C. albicans blastospores, results in the blastospores 

phagocytosis and secretion of pro-inflammatory mediators. C. albicans blastospores binding to 

dectin-1 on macrophages results in the secretion of TNF-α and arachidonic acid, and in increased 

expression of COX2 (cyclooxygenase 2) (Brown et al. 2003; Suram et al. 2006), which result in a 

pro-inflammatory response. Interestingly, phagocyte response to C. albicans hyphae may be 

different than to blastospores and a complete anti-inflammatory outcome may be induced (Figure 

3). Moreover, members within one family of PRRs can trigger opposite signaling effects, indicating 

that the ultimate outcome of a pathogen-induced immune response depends on the pathogen 

signature and the PRRs involved (Gauglitz et al. 2012). 
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As depicted in Figure 3, each ligand–receptor system activates specific intracellular signaling 

pathways that lead to modulation of several components of the host immune response (Jouault et 

al. 2003).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Recognition of C. albicans blastospores and hyphae by monocytes and macrophages 
receptors. 

 

Reactive oxygen species (ROS) are produced by macrophages in response to blastospores 

phagocytosis in order to kill pathogens. However, under most in vitro experimental conditions, 

human macrophages have limited ability to kill C. albicans, even though they avidly phagocyte the 

microorganism. Newman et al. (Newman et al. 2005) discovered that one reason for this 

incomplete killing ability is that living C. albicans blastospores inhibit the phagolysosomal fusion in 

macrophages. The exact mechanism for this inhibition has not yet been determined. Interestingly, 

if macrophages are adherent to a collagen matrix the phagolysosomal fusion is not inhibited, 

suggesting that the exposed extracellular matrix proteins have an import role on C. albicans 

immune evasive strategies (Newman et al. 2005).  

 

1.1.2.2. The role of adaptive immune system 

Additionally, fungal cells induce the adaptive immune response which involves antigen-specific 

T and B cells (Zipfel et al. 2011). 

Three signals are crucial for effective stimulation of an adaptive immune response: (1) the 

presentation of antigens by APCs on the context of MHC molecules/T-cell receptor (TCR) on CD4+ 
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T-cell, (2) the up-regulation of co-stimulatory molecules, and (3) production of cytokines that 

determine differentiation of a certain type of helper T-cell (Th) response. Also, it is important to 

refer that the complete integrated response to a specific pathogen depends on the mosaic of PRRs 

and receptor complexes that are involved (Jouault et al. 2003; Netea and Marodi 2010). Co-

stimulation via multiple PAMPs–PRRs interactions may increase sensitivity and specificity of the 

immune recognition process as well as the type of adaptive immune response, as demonstrated in 

Figure 4 (Jouault et al. 2003).  

PRRs activation induces production of a cytokine environment that will induce an adaptive 

immune response directed towards a Th1, Th2 or Th17 phenotype (Kapsenberg 2003; Napolitani 

et al. 2005; Kubin et al. 1994). 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Modulation of T-cell responses by innate immune system. Engagement of pathogen 
associated molecular patterns (PAMPs) from Candida albicans by pattern recognition receptors (PRRs) lead to the 
induction of specific cytokine profiles regulating the differentiation of naïve CD4+ T-cells in to Th1 (T-helper 1), Th2 (T-
helper 2), Th17 (IL-17 secreting T-helper) or Treg (T-regulatory) cells. For activating naïve CD4+ T-cells, presentation of 
antigens on MHC class II to T-cell receptor (TCR) is necessary in combination. 
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1.1.2.2.1. Th1, Th2 a central paradox and the identification of a new subset of T 

cells: Th17 

After cell engulfment fungal antigens are processed by dendritic cells and transported to 

lymph nodes and presented to T helper (Th) and regulatory T cells (Brown 2011) that ultimately 

will induce the correct adaptive response. 

In 1995, studies in mucosal candidiasis using the mouse model of gastric Candida infection 

showed that both, IFN-γ and IL-5 producing CD4+ T cells found in Peyer’s Patches and mesenteric 

lymph nodes, were correlated to Th1 and Th2, respectively. Additionally, neutralization of IL-4 

resulted in amplified IFN-γ production and boosted yeast clearance (Cenci et al. 1995; Hernandez-

Santos and Gaffen 2012).  

Other studies in oropharyngeal candidiasis (OPC) mouse model demonstrated that T cell-

deficient mice were susceptible to infection, but could be protected by transferring CD4+ T cells 

(Farah et al. 2002). Cytokines related to Th1 cells, including IFN-  and TNF- , but not Th2 

cytokines in the oral tissue, consistent with a Th1-based response. These results indicated that Th1 

cells confer protective antifungal immunity, even though hallmark cytokines of both lineages, Th1 

and Th2, were produced during infection (Hernandez-Santos and Gaffen 2012; Cenci et al. 1995; 

Cenci et al. 1998). However, depletion of CD8 or CD4 T cells in a susceptible mouse strain did not 

intensify oral colonization with Candida in the oropharyngeal candidiasis (OPC) mouse model 

(Ashman et al. 2003; Hernandez-Santos and Gaffen 2012), Therefore, T cells were involved in 

immunity to OPC, even though the specific subset and cytokines were still not well elucidated 

(Hernandez-Santos and Gaffen 2012). 

In 1986 the Th1/Th2 paradigm was first described, and immune responses, whether 

infectious or autoimmune, were considered into these categories for approximately two decades. 

Over time, it became clear that this model was fraught with discrepancies.  

A central paradox was that the signature Th1 effector cytokine, IFN-γ, was significantly less 

important in various disease settings than was IL-12, the key Th1 inductive cytokine (Steinman 

2007). A significant renovation in the prevailing paradigm of CD4-mediated immunity occurred with 

the identification of Th17 cells, which settled many of these discrepancies. Subsequent studies 

showed that Th17 cells arise from inductive signals from TGF-β, IL-6, and IL-1b, while IL-23 is an 

essential maintenance and pathogenic factor for Th17 cells (Stockinger and Veldhoen 2007; 

McGeachy and Cua 2007). 
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Moreover, understanding the facts that regulate whether Th-response adopts a predominantly 

a Th1, Th2 or a Th17 type is crucial to prevent fungal infections (Chaplin 2006).  

Knowing how pathogen and its host interact with each other is a crucial step for future fungal 

infections therapies.   

 

1.1.3. Cell wall, first barrier or interface for host immune cells 

The frontline of the pathogen–host interaction or contact is the fungal cell wall. Cell walls of 

fungal pathogens have an enormous importance in several biological processes. Being a dynamic 

structure, fungal cell wall is of great importance once (1) it protects from hostile environments, (2) 

it confers physical rigidity to maintain cell shape but also control morphogenesis during different 

stages of the fungus development, (3) it is responsible for the host immune recognition and for 

immune-avoidance, and (4) it maintains cellular integrity essential for cell growth (Kapteyn et al. 

2000; Gow and Hube 2012a).  

The fungal cell wall composition differs from each fungal species. In C. albicans example, two 

major layers constitute its cell wall, a skeletal inner layer (glucan and chitin) and a fibrillar outer 

layer (mannoproteins) (Bowman and Free 2006; Klis et al. 2001). The percentage of each C. 

albicans cell wall component is around 1–5 % chitin, 60–65 % glucan, and 35–40 % 

mannoproteins (per dry wall weight) (Klis et al. 2001; Munro et al. 1998) (Figure 5). 

 

 
 
 
 

 

 

 

 

 

 

Figure 5. The structure of the Candida albicans cell wall. The schematic shows the major components 
of the cell wall and their distributions. β-(1,3)-glucan and chitin (poly-β-(1,4)-N-acetylglucosamine) are the main 

structural components, and these are located towards the inside of the cell wall. The outer layer is enriched with cell 
wall proteins (CWP) that are attached to this skeleton mainly via glycosylphosphatidylinositol remnants to β-(1,6)-

glucan or, for mannoproteins with internal repeat domains (Pir-CWP), via alkali-sensitive linkages to β-(1,3)-glucan. The 

insets show the structure of the glucan and mannan components. Adapted from (Netea et al. 2008)  
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Hexose sugars such as glucose, mannose and galactose are used by C. albicans as 

preferential carbon source to produce energy and to synthesize the main components of cell wall 

the polysaccharides glucans, mannan and chitin (Lee and Munro 2014).  

About a third of the total cellular biomass is constituted by cell wall, but fungal cells have to 

extremely coordinate the production of new cell wall material to allow cell growth. Several studies 

have demonstrated the influence of niche-specific metabolic regulation on cell wall remodeling in 

C. albicans, which implicates alterations in host-pathogen interactions and significant sensitivity to 

antifungal agents (Ene and Brown 2014; Ene et al. 2012a; Brock 2009). 

According to Walker and colleagues, during Candida systemic infections in a rabbit model, 

transcriptional profiling shown alterations in the expression of genes associated with alternative 

carbon source metabolism, glucose assimilation, sugar transporters and cell wall surface 

remodeling (Walker et al. 2009). Genes associated with gluconeogenesis and the glyoxylate cycles 

are up-regulated when C. albicans and C. glabrata are exposed to human blood or neutrophils 

(Hube 2006; Fukuda et al. 2013; Lee and Munro 2014). Other studies suggest that starvation is 

relevant in vivo, for example, fluorescent reporter constructions have shown that the metabolic 

status of individual C. albicans cells within kidney lesions from a murine infection model can differ 

with some cells undergoing gluconeogenesis and others glycolysis (Barelle et al. 2006). 

But still, the cell wall composition can be adaptably changed under stress conditions such as 

in response to certain environments or even when exposure to anti-fungal drugs. Several genes that 

involved in cell wall biosynthesis, remodeling and regulation have been shown to be vital for cell 

growth viability and pathogenicity (Lee and Munro 2014; Delgado-Silva et al. 2014). 
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1.1.4. The RLM1 gene importance 

The cell wall is a dynamic structure since it changes with alterations of the surrounding growth 

conditions and is remodeled as the cell increases in size and during morphogenetic processes 

such as mating, sporulation, or pseudohyphal growth. Upon cell wall damage, cells activate the cell 

wall integrity (CWI) mitogen-activated protein (MAP) kinase pathway (also known as the PKC 

pathway) so that the cell wall is repaired and cell integrity maintained. This response involves 

several processes (Figure 6).  

 

 

Figure 6. Main elements of the MAPK signal transduction network in C. albicans. Genes are 
represented in normal characters where deletion and/or phenotypic characterization of the corresponding strain has 
been carried out in C. albicans or, alternatively, in italic, where their position and role are just presumed based on the 
S. cerevisiae model and/or inspection of the genome. The existence of additional putative elements that may play a 
role in the activation of the corresponding MAPK is shown as question marks. The stimuli leading to the 
activation/repression of the pathways are shown either as stimulating (R) or inhibitory (--|) arrows. It is important to 
note that the arrows do not establish whether the interaction/crosstalk takes place through a direct or an indirect 
mechanism. The role of each MAPK in the physiological response is highlighted, but it must be taken into account that 
the interaction between pathways extends their indicated roles and generates a proper balanced response in the fungal 
cell. Adapted from (Monge et al. 2006) 

 

The targets of the CWI pathway activation are the transcription factor heterodimer complex 

SBF (composed by Swi4 and Swi6), and the MADS-box transcription factor RLM1 that activates 

genes involved in cell wall reinforcement and remodeling in response to cell wall stress (Lipke and 
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Ovalle 1998). Sampaio et. al showed that C. albicans RLM1 presents a high allelic diversity, with 

many variants of the encoded proteins found in surveys of clinical isolates and that isolates with 

different RLM1 allelic combinations presented different phenotypic characteristics (Sampaio et al. 

2009). These studies indicated that RLM1 is required for in vitro viability of C. albicans under 

caspofungin, and that inactivating this gene renders a described virulent strain completely avirulent 

(Delgado-Silva et al. 2014). Furthermore, an increase of cell adhesion binding proteins involved in 

biofilm formation was observed in C. albicans cells lacking RLM1 gene (Delgado-Silva et al. 2014). 

The higher expression of adhesion proteins in the mutant strain raised a particular interest on the 

protein profile of C. albicans wild-type strain in comparison with the mutant that lacks this RLM1 

gene (Delgado-Silva et al. 2014).  

 

1.2. Metabolism as a platform for Candida albicans pathogenicity 

A few years ago, Brown and Gow suggested that a mechanistically link between the regulation 

of metabolism and virulence in C. albicans could exist (Brown and Gow 1999; Brown et al. 2000). 

It was thought that in response to the new microenvironments it encounters during disease 

establishment and progression, these links might allow this pathogen to adjust its metabolism in 

parallel with its set of virulence factors (Nowrousian 2014). 

A fundamental aspect of infection is the ability of the pathogenic microorganism to assimilate 

and utilize essential nutrients from the host-niches. For instance, C. albicans that normally thrives 

as a relatively innocuous commensal organism within diverse niches like the skin, the oral cavity, 

and the gastrointestinal (GI) and urogenital tracts of most healthy individuals, must have a 

metabolic flexibility to assimilate and utilize the available nutrients in these distinctive niches 

(Nowrousian 2014; Brown et al. 2014a; Odds 1988; Calderone and Clancy 2012). 

The study of C. albicans metabolism was initiated over fifty years ago (Van Neil and Cohen 

1942) and in the 60’s, enzymes of central carbon metabolism were characterized by Rao et al. 

(Rao et al. 1960).  

Either directly or indirectly, studies about C. albicans metabolism have focused on virulence 

attributes or this in the mechanisms of action of antifungal drugs (Odds 1988). A good example is 

the attention that has been paid to the pathways involving ergosterol biosynthesis and cell wall 

biogenesis, both of them are antifungal targets (Sanglard et al. 2003; Shapiro et al. 2011).  

Central and amino acid metabolism have been agreed as potential antifungal targets by many 

gene deletion studies in C. albicans (Roemer et al. 2003) and by transcript profiling studies (Lorenz 



 THE IMPACT OF CARBON SOURCE IN CANDIDA ALBICANS VIRULENCE: PARTICIPATION OF RLM1 IN PATHOGEN HOST 
INTERACTION 

 

 20 

and Fink 2002, 2001). The main goal of the antifungal therapy is to kill the pathogen fungus rather 

than making it avirulent. Thus, metabolic process involving growth and survival in the host-niches 

represent a putative antifungal target and its study is of highly importance (Brock 2009). However, 

the validity of such targets and efficacy of potential drugs that hit these targets will depend on the 

extent of cross-reactivity with the host. Pathogenic microbes as C. albicans display a great flexibility 

in its metabolic program, which will enable it to adapt to different host microenvironments with 

different nutritional availabilities. So, an increase understanding about this field could provide 

crucial information that should facilitate the improvement of existing therapies and possibly the 

development of new therapeutic approaches.  

Over the last years, significant efforts have been made to understand the metabolic 

requirements of C. albicans during infection. However, additional studies are crucial to appreciate 

the wide-ranging metabolic toolbox that contributes to the fitness of this pathogen and the extent to 

which metabolic adaptation is coordinated with the regulation of virulence attributes (Calderone 

and Clancy 2012).  

Up until know, Saccharomyces cerevisiae has provided a reasonable metabolic paradigm for 

C. albicans. Even though, many metabolic pathways are conserved between S. cerevisiae and C. 

albicans, these organisms display significant differences in their metabolic programmes, which the 

most obvious is related to their patterns of sugar utilization (Askew et al. 2009; Nowrousian 2014; 

Brown et al. 2009). It is possible that the higher complexity and plasticity in the regulatory 

mechanisms that control metabolic processes reflects the evolutionary adaption of yeast to their 

respective niches and, in the case of C. albicans, to the diverse microenvironments it faces in the 

host during colonization and disease progression (Nowrousian 2014). These microenvironments 

are characterized as being complex, dynamic and frequently glucose-limited. The glucose levels are 

maintained at around 0.06–0.1% (3–5 mM) in the bloodstream, and are around 0.5% in vaginal 

secretions (Barelle et al. 2006; Owen and Katz 1999).  C. albicans induces glycolytic, tricarboxylic 

acid cycle, and fatty acid β-oxidation genes during mucosal invasion (Zakikhany et al. 2007; Wilson 

et al. 2009). During renal infection and in the bloodstream, C. albicans populations are 

heterogeneous, and so, individual cells displays glycolytic activity (hexose catabolism) or 

gluconeogenic activity (hexose anabolism), depending upon their nearby microenvironments 

(Barelle et al. 2006; Fradin et al. 2003; Fradin et al. 2005). After phagocytosis by macrophages 

and neutrophils, C. albicans cells exhibit expression patterns that suggest carbon starvation, 

activating enzymes involved in fatty acid β-oxidation, the glyoxylate cycle, and gluconeogenesis 
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(Fradin et al. 2005; Lorenz et al. 2004; Rubin-Bejerano et al. 2003). In the GI colonization lactic 

acid metabolism is essential and this non-fermentable carboxylic acid is present at significant 

concentrations in the vagina (≈0.4%: 45 mM) (Ueno et al. 2011; Owen and Katz 1999). Hence, C. 

albicans thrive in host-niches that contain contrasting carbon sources and this metabolic 

adaptation is controlled by complex transcriptional networks in C. albicans (Ene and Brown 2014; 

Askew et al. 2009). In a certain way, metabolic adaptation within host-niches is linked to all other 

virulence factors of the fungus in these niches and metabolic adaptation is integral to C. albicans 

commensalism and pathogenicity (Brown et al. 2014a).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 THE IMPACT OF CARBON SOURCE IN CANDIDA ALBICANS VIRULENCE: PARTICIPATION OF RLM1 IN PATHOGEN HOST 
INTERACTION 

 

 22 

1.2.1. Integration of Carbon Metabolism with Virulence 

The generation of new biomass is manly obtained by carbon assimilation (i.e. growth). So, in 

the immunocompromised host the rapid growth of C. albicans depends on the efficient uptake of 

available carbon sources in vivo. Moreover, the fungal cells must adapt its metabolic programme 

as it encounters new microenvironments in the host. Various studies have indicated that the 

regulation of carbon metabolism is intimately linked to the control of virulence in C. albicans 

(Nowrousian 2014; Ene and Brown 2014) (Figure 7).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Central carbon metabolism in Candida albicans cells occupying different host niches. 
The right side of the figure indicates central carbon metabolism, with the main pathways highlighted. Glycolysis and 
glucose are highlighted in blue. Gluconeogenesis, the glyoxylate and tricarboxylic acid (TCA) cycles, and fatty acid b-
oxidation are highlighted in red, as are the alternative carbon sources lactate, amino acids and fatty acids. Adapted 
from (Ene and Brown 2014) 
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1.2.1.1. Carbon adaptation modulates stress resistance 

Metabolism is indirectly related with the virulence of C. albicans by improving stress 

adaptation to different microenvironments. Resistance to stress is required for C. albicans virulence 

promoting the increase of fungal cells survival in host-niches by reducing their vulnerability to local 

environmental stresses and to phagocytic killing (Brown et al. 2012; Arana et al. 2007; Patterson 

et al. 2013). 

The response of C. albicans to environmental stress is dependent on the pre-adapted 

metabolic state of these fungal cells, and also upon the availability of nutrients encountered in host 

microenvironment. The analysis of C. albicans stress responses has been achieved on cells 

cultured on rich, glucose-containing media that differ significantly from host microenvironments 

which are often glucose-limited (Brown et al. 2012). 

Recent data indicates dramatic effects upon the stress resistance of C. albicans by changing 

carbon source utilized (Ene et al. 2012a; Rodaki et al. 2009). 

When C. albicans is transiently exposed to glucose some genes involved in oxidative stress 

adaptation are expressed, which will enhance cellular resistance to acute oxidative stress (Rodaki 

et al. 2009). This process is regulated by glucose-sensing pathways and possibly reflects the 

adaptive prediction (Mitchell et al. 2009), whereby C. albicans has ‘learnt’ over evolutionary time to 

anticipate the attack of phagocytic cells following entry to the bloodstream (Brown et al. 2014b). 

Resistance to osmotic stress and antifungal drugs is also affected by carbon adaptation (Ene 

et al. 2012a; Ene et al. 2012b). These effects are mediated partly through PKA signaling and may 

relate to metabolic adaptation upon cellular abundances of osmolytes such as glycerol, and 

antioxidants such as glutathione and trehalose (Rodaki et al. 2009; Gonzalez-Parraga et al. 2003; 

Gonzalez-Parraga et al. 2010; Giacometti et al. 2009). For example, some short metabolic 

branches of the glycolytic pathway are used for synthesize glycerol and trehalose. Though, these 

effects can also be involved in cell wall remodeling of C. albicans (Ene et al. 2012b; Ene et al. 

2012a). Growth on different carbon sources promotes changes in C. albicans cell wall both 

architecturally and biophysically. In this sense, the cell wall of C. albicans suffered a pre-

adaptation, which confers to C. albicans cells different abilities to survive the imposition of osmotic 

and cell wall stresses (Brown et al. 2014a). 

Recent studies comparing cells grown on glucose and on lactate showed that yeast cells 

grown on lactate presented higher resistance to osmotic stress, amphotericin B, and caspofungin, 

and reduced resistance to an azole antifungal drug (Miconazole) (Ene et al. 2012a). These studies 
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suggest that the metabolic adaptation of C. albicans cells to the availability of nutrients 

encountered in host-niches have an impact in their ability to overcome local environmental stresses 

and resist antifungal drug therapy (Brown et al. 2014a).  

  

1.2.1.2. Carbon adaptation triggers dynamic changes in the C. albicans cell wall  

The dynamic and complex structure of polysaccharides and proteins that constitutes cell wall 

of C. albicans suffers remodeling of both composition and architecture depending not only on the 

growth phase but also on developmental stage and in response to various external signals and also 

in response to the carbon sources present in the surrounding media (Ene et al. 2012a; Ene et al. 

2013; Bowman and Free 2006; Chaffin et al. 1998). As already described above the cell wall 

structure comprises a relatively thick inner matrix of β-glucan and chitin that is decorated with a 

dense coat of mannan fibrils (Gow and Hube 2012a; Hall and Gow 2013). These mannans 

represent heavily N- and O-glycosylated proteins, many of which are covalently crosslinked to the 

carbohydrate infrastructure (de Groot et al. 2004; Hall et al. 2013). This structure has been 

defined for C. albicans cells grown on glucose. 

In fact, the assimilation of alternative carbon source in vitro, such as lactate, by C. albicans 

results in alterations in cell wall architecture, and ultimately changes in the host’s immune 

responses (Ene et al. 2013; Ene et al. 2012b; Ene et al. 2012a). These data shows that C. 

albicans cell wall is extremely influenced by the cell’s metabolic status, which is depending upon 

the availability of nutrients within host-niches. And so, this leads to the adjustment of host-pathogen 

interactions (Lee and Munro 2014). 

The relative portions of cell wall components are alike for glucose- and lactate-grown cells 

(Brown et al. 2014a). Nevertheless, cell wall biomass is significantly reduced after growth on 

lactate, and the cell walls of lactate-grown cells are thicker than glucose-grown cells (Figure 8) (Ene 

et al. 2012a).  
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Figure 8. The impact of different carbon sources in cell wall architecture. Transmission electron 

micrographs of the Candida albicans cell wall from lactate-grown cells and glucose grown cells are shown on the left 
(Ene et al. 2012a). On the right, illustration of the structure of the C. albicans cell wall. Reviewed and adapted form 
(Brown et al. 2014a).  

These dynamic changes have still not been described; perhaps depend upon the construction 

of new cell wall. The mechanisms by which carbon source influences C. albicans cell wall 

architecture remains unclear, but it seems to involve a combination of metabolism and signaling 

(Brown et al. 2014a).  

Regardless of the mechanisms by which they occur, the effects of carbon source upon cell 

wall architecture that have been proved in vitro seems to be of extreme relevance in host niches 

because these changes in cell wall structure were observed in blood cultivation and under vaginal 

simulating conditions (Sosinska et al. 2008; Lowman et al. 2011). Thus, in host-niches the 

available carbon sources must have a strong effect on the architecture and functionality of the C. 

albicans cell wall (Brown et al. 2014a).  
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1.2.1.3. Metabolic adaptation influences virulence factors 

In addition to promoting cell wall remodeling and stress resistance there are some evidences 

in longstanding reports that showed influences of metabolic adaptation in pathogenicity of C. 

albicans by modulating the expression of key virulence features (Figure 9) (Brown et al. 2014a). 

Figure 9. Nutrients influence the expression of key virulence factors in Candida albicans. Adapted 
from (Brown et al. 2014a) 

For instance, glucose is one of the many stimuli that can induce hyphal morphogenesis, and 

glycolytic genes are expressed during the transition between yeast budding form to hyphal form 

(Hudson et al. 2004; Maidan et al. 2005). During the white–opaque phenotypic switch, the white 

cells up-regulate glycolytic genes while opaque cells up-regulate genes involved in respiratory 

metabolism (Lan et al. 2002). It is known that the expression of SAPs is regulated in response to 

available nitrogen and carbon sources (Hube et al. 1994). For example, SAP2 is expressed at high 

levels when C. albicans cells are grown on glycerol, at medium levels on glucose or galactose, and 

at low levels when grown on ethanol (Hube et al. 1994). The ability of adhesion and biofilm 

formation of C. albicans cells is also influenced by the growth on different dietary sugars 

(Samaranayake and MacFarlane 1982; Critchley and Douglas 1985; Jin et al. 2004). 
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This metabolic adaptation seems to be actively managed with the regulation of important 

virulence factors via complex networks. For example, carbon metabolism (in part via Tye7) as well 

as yeast–hypha morphogenesis, white–opaque phenotypic switching, and stress resistance are 

controlled by adenylyl cyclase–PKA–Efg1 signaling axis (Giacometti et al. 2009; Doedt et al. 2004; 

Harcus et al. 2004; Zordan et al. 2007; Morschhauser 2010). The reinforcement of the idea that 

metabolism actively modulates other C. albicans virulence attributes is supported by at least two 

essential observations: (1) mutations that disrupt key aspects of metabolism also affect cell wall 

integrity, stress sensitivity, virulence factors, and pathogenicity (Pande et al. 2013; Brega et al. 

2004; Lorenz and Fink 2001; Martinez and Ljungdahl 2005; Noble et al. 2010; Dagley et al. 2011; 

Nobile et al. 2012); (2) regulatory networks that are required for GI colonisation or systemic 

infection include metabolic components (Perez et al. 2013).  

The expression of virulence factors can also be indirectly influenced by metabolism, when a 

longer-term relationship between host-niches and pathogen are established. In the absence of 

glucose, for instance, C. albicans cells use amino acids as a carbon source, excreting the excess 

nitrogen in the form of ammonia, which results in the raises of ambient in pH of the local 

environment, thereby triggering hyphal development (Vylkova et al. 2011). This phenomenon might 

prevent the macrophage killing of C. albicans cells by inhibiting acidification of the phagolysosome, 

and promoting morphogenesis in other host niches (Losse et al. 2011).  

  

1.2.1.4. Carbon adaptation modulates immune surveillance  

The immune surveillance is also modulated by metabolic adaptation, which influences C. 

albicans pathogenicity. Phagocytic cells (primarily macrophages and neutrophils) are important in 

the prevention of C. albicans infection (Brown 2011). These cells of the innate immune system 

attempt to recognize C. albicans cells initially via PRRs that detect specific PAMPs on the fungal 

cell surface. These initial PAMP–PRR interactions activate phagocyte intracellular signaling 

pathways, for example via the Dectin-1/SYK/CARD9 and TLR4/TRIF–MYD88 pathways. This 

triggers induction of antimicrobial effector mechanisms such as the respiratory burst, as well as 

the release of a variety of pro-inflammatory cytokines, chemokines, and lipids that stimulate other 

leukocytes and attract them to the site of infection (Brown 2011). 

Following phagocytosis process, the fungal cell is trapped within the phagosome, which then 

undergoes maturation and lysosomal fusion to create the phagolysosome (Fernandez-Arenas et al. 

2009). The outcome of the fight between fungus and host, which depends upon numerous 
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individual skirmishes, has a major impact upon disease outcome. Thus, growth conditions that 

physiologically favor the fungus over the phagocytic cells may tip the balance, reducing phagocytic 

efficacy. The interaction between fungus and host immune cells is affected by the metabolic 

environment at the local of infection. C. albicans cells grown on lactate are less visible to the 

immune system than cells grown on glucose (Figure 10). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Changes in carbon source impact on immune surveillance. Alteration in the recognition 
of Candida albicans cells by innate immune cells and by reducing the susceptibility of the fungal cells to phagocytic 
killing via elevated oxidative stress resistance. Adapted from (Brown et al. 2014a) 

 

Lactate-grown cells of C. albicans are less visible to the immune system than cells grown on 

glucose (Figure 10) (Ene et al. 2013). In the same study, Ene et al. observe that C. albicans cells 

grown on lactate stimulate the production of more interleukin-10 (IL-10) and less IL-17 by human 

peripheral blood mononuclear cells from healthy volunteers, than glucose-grown cells (Ene et al. 

2013). It was also reported that lactate-grown C. albicans cells are also phagocytized less 

efficiently by murine macrophages and those lactate-grown C. albicans cells that are engulfed by 

the macrophages are better able to kill and escape from macrophages (Figure 10)(Ene et al. 

2013). These interesting reports suggest that growth on a non-fermentable secondary carbon 

source confers reduced visibility of C. albicans cells to the immune system, and are less easy to kill 

than glucose-grown cells (Ene et al. 2013).  This reduced immune visibility of lactate-grown C. 

albicans cells probably is due to the changes that cell wall experience in that microenvironment. 

Many of the key PAMPs involved in immune recognition are located in the cell surface wall, and 
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changes in cell wall structural components are known to affect immune recognition (Lowman et al. 

2011; Lewis et al. 2012; Netea et al. 2006; Adams et al. 2008; Lowman et al. 2014). Further 

observations link metabolic adaptation with cell wall structure and immune recognition. The 

clearance of C. albicans cells during systemic infection is mediated by Dectin-1, and differences in 

that receptors have been shown to relate to the differential activation of cell wall biosynthetic 

functions in vivo within renal microenvironments (Marakalala et al. 2013).  

A crucial role was recently proposed for glucose metabolism in the activation of immune cells. 

This role lies on the ‘Warburg effect’, which means that in the normal way naïve and resting cells 

metabolize glucose mainly via oxidative phosphorylation but switching to aerobic glycolysis 

(‘Warburg effect’) is crucial for proliferating lymphocytes (Delgoffe et al. 2011), and subsequently 

for important anti-Candida mechanisms such as the deployment of a T helper 17 (Th17) response 

(Kim et al. 2013). Furthermore, recent studies have shown that glycolysis and succinate play key 

roles in modulating the capacity of the innate immune system to mount a proper inflammatory 

response (Tannahill et al. 2013).  

A recent hypothesis has come up that glucose also may have impact in modulation of 

antifungal host defense (Moyes et al. 2014). This hypothesis, which needs further study, has been 

recently reinforced by the observation that in epithelial cells mTOR (a key regulator that integrates 

nutrient inputs and energy levels to control cell growth and proliferation) is central for protection 

against C. albicans-induced cell damage (Moyes et al. 2014). Another example of metabolic 

modulation of immune responses is provided by endogenous tryptophan catabolism in the GI 

mucosa, which promotes IL-22 production by innate lymphoid cells, which in turn enhances 

intestinal immunity and protection against C. albicans (Zelante et al. 2013). 

Altogether, the local metabolic environment of the host and the metabolic adaptation of C. 

albicans contribute to the efficacy or failure of local immune surveillance mechanisms (Brown et al. 

2014a). 
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1.3. Objectives and outline of the thesis 

The present work lies on previous studies that observed that C. albicans deleted in both 

copies of RLM1 gene (∆rlm1/∆rlm1) showed typical cell wall weakening phenotypes, such as 

hypersensitivity to Congo Red, Calcofluor White and caspofungin, and that the cell wall of the 

mutant showed significant increase in chitin (213%) and reduction in mannans (60%), comparing 

with wild type (WT) strain (Delgado-Silva et al. 2014).  

This and other studies of C. albicans stress adaptation have generally been performed on 

glucose-grown cells, leaving the effects of alternative carbon sources upon stress resistance largely 

unexplored. Thus, the main objective of this work is to understand the role of RLM1 in the 

manifestation of C. albicans important virulence factors and in the interaction of with phagocytes 

under the influence of different carbon source, namely lactate.. 

First, the growth rate and growth metabolites were quantified in order to compare cells growth 

on glucose or lactate. Then, several virulence factors were evaluated, in cells grown on lactate or 

glucose, such as the ability to grow under cell wall damaging stress agents, filamentation, adhesion 

and biofilm formation. Finally, the involvement of RLM1 in host-pathogen interaction was evaluated 

by using murine macrophage-like cell line J774, with cells adapted to different carbon source, 

lactate and glucose.  

The work presented was developed in the Centre of Molecular and Environmental Biology 

(CBMA) University of Minho, Braga, Portugal. 
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2. Methods and Materials 

 

2.1. Carbon source impacts in C. albicans virulence factors 

 

2.1.1. Strains and growth conditions 

Five Candida albicans strains were used during this study, the wild-type strain SC5314 from 

(Gillum et al. 1984), two RLM1 mutant strains, SCRLM1M4A and SCRLM1M4B (Δrlm1/Δrlm1) 

(Delgado-Silva et al. 2014) and two RLM1 complemented strains, SCRLM1K2A and SCRLM1K2B 

(Δrlm1/Δrlm1+RLM1) (Delgado-Silva et al. 2014). All strains were stored as frozen stocks with 

30% (v/v) glycerol and cultured onto yeast exctract-peptone-dextrose (YPD) agar plates (1% w/v 

yeast extract, 2% w/v peptone, 2% w/v dextrose and 2% w/v agar) at 30°C.  

For all the experiments, yeast cells were grown in minimal medium containing a carbon 

source (2% glucose or 2% lactate) and 0.67% yeast nitrogen base without amino acids (YNB) at a 

pH 5.2 to 5.6 and at 30°C.  

 

Growth curves 

Initially, it is important to understand how the strains used in this study growth in the 

conditions here presented. So, this study began by monitoring the growth of all the strains in the 

conditions above described. After that, all the following procedures in this study were conducted 

under the knowledge obtained from this simple experiment. 

 

2.1.2. Quantification of metabolites produced during C. albicans growth 

In the meantime of the growth curves experiment, 1 mL of cells were harvested by centrifuged 

for 5 mins at 5000 g and the supernatant was analyzed by HPLC (Hitachi, Lacrome Elite Demo) 

with an organic acid column (phenomex). This approach will give some information of a few 

metabolites (specially TCA metabolites) that are been produced in the growth phase under the 

conditions above described. 
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2.1.3. Susceptibility assays  

Fungal cells were incubated overnight in liquid YNB medium containing 2% of carbon source 

(glucose or lactate) at 30 ºC, 200 rpm, and then diluted to OD600 = 1 with fresh medium. Drop 

tests were performed by spotting 5 μl of the serially diluted cell suspension onto YNB + 2% Glucose 

or 2% Lactate agar plates supplemented with the following compounds: 200 μg/ml calcofluor white 

(CFW) (Fluorescent Brightener M2R, Sigma), 100 μg/ml Congo Red (CR), 90 ng/ml caspofungin 

(CFG), 10 mM caffeine (Sigma), 0.035% (w/v) SDS (BDH Chemicals). Plates were incubated 48h 

at 30 ºC before observation.  

 

2.1.4. Filamentation tests  

All strains were grown overnight in liquid minimal medium, YNB, containing 2% of carbon 

source (glucose or lactate) at 30 ºC, 200 rpm. Filamentation was induced by diluted yeast cells to 

OD600 = 1 with Dulbecco’s modified Eagle’s medium (DMEM) and incubated at 37 ºC and 5% 

CO2. In order to observe the filamentation feature, yeast cells were labeled with calcofluor white 

(CFW) and monitored by fluorescence microscopy (Leica, DM5000B+CTR5000+ebq100) at 0, 30 

min, 1h, 2h and 4h of incubation.  

 

2.1.5. Adhesion assay and biofilm formation 

To determine the impact of different carbon sources on adhesion and biofilm formation ability, 

24-well microplate (Orange Scientific, Braine-l’ Alleud, Belgium) were filled with C. albicans cell 

suspensions (1 mL containing 1x106 cells/mL) grown on each carbon source-growth condition (2% 

Glucose or 2% Lactate) as described previously, and incubated at 37 °C and at 120 rpm. 

Adhesion ability was measured after 2h of incubation and the biofilm formation ability was 

inspected after 24h and 48h. Concerning the 48h of incubation samples, an extra step was 

preformed, at 24h, 500 μL of cultured medium was removed and replaced by fresh medium.  

The experiments were preformed in triplicate. 

 

Adhesion assay and biofilm biomass assessment 

Adhesion and biofilm formation feature was assessed trough quantification of total biomass by 

crystal violet (CV) staining (Stepanovic et al. 2000). For that, after the incubation times previously 

defined, the medium was totally aspired and non-adherent cells were removed by washing the 

wells with sterile water MiliQ. Considering total biomass quantification, firstly cells were fixed with 1 
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mL of methanol (100% v/v), which was removed after 15 min of contact. The microplates were 

allowed to dry at room temperature, and 1 mL of CV (1% v/v) was added to each well and 

incubated for 5 min. Then, the wells were gently washed twice with 1 mL of sterile MiliQ water and 

1 mL of acetic acid (33% v/v) added to release and dissolve the stain. The solution with the 

dissolved stain was transferred to 96-well plate for absorbance measurement. The absorbance of 

the obtained solution was read in triplicate in a microplate reader (SpectraMax Plus) at 570 nm. 

Results were presented as absorbance per unit area of well (Abs570nm/cm2). Statistical analysis 

was performed using GraphPad Prism 6 software for Macintosh. The results were compared using 

a two-way analysis of variance (ANOVA) with the Bonferroni pos-hoc test. All tests were performed 

with a 95% confidence level. 

 

Biofilm structure 

The biofilm structure was also observed by Scanning Electron Microscopy (SEM). For each 

conditions tested (glucose-grown cells and lactate-grown cells), biofilms were formed into 24-wells 

microplates containing clean sterile glass coverslips (Ø13 mm) (Orange Scientific, Braine-l’ Alleud, 

Belgium), as elucidated above. The samples were fixed with 2.5% glutaraldehyde (Merk) for at least 

24h at 4 ºC. After that, the samples were washed carefully with PBS (pH 7) and the dehydrated 

with increasing percentages of ethanol (using 30, 50, 70, 80, 90, 100% (3x), each percentage was 

removed after 15 min of contact) and air dried for additional 20 min. Samples were kept in a 

desiccator until the base of the wells were mounted onto aluminum stubs, sputter-coated with gold 

and observed with an NanoSEM - FEI Nova 200 (Azurém, Guimarães, Portugal). 

 

2.1.6. Secreted Aspartyl Proteinases production 

The enzymatic activity can be detected by the formation of an opaque halo of protein 

degradation around the colonies grown on a specific agar plate, according to (Ruchel et al. 1982) 

To analyze the protease activity, cells suspensions grown as described previously, were cultured 

onto protease agar medium composed by 2% (w/v) agar, 1.17% (w/v) yeast carbon base, 0.01% 

(w/v) yeast extract and 0.2% (w/v) bovine serum albumin (BSA), at pH 5.0. Then, the plates were 

incubated at 30 °C for a period of 5 days. In order to guarantee the influence of the carbon 

source, secreted proteinases were also evaluated in agar plates, taking into consideration the 

carbon source (Barros et al. 2008). For that, all C. albicans strains were tested in BSA-Agar 

medium containing 0,2% (w/v) BSA, 1.45% (w/v) YNB (Difco Laboratories, Detroit, MI, USA), 2% 
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(w/v) Glucose or 2% (v/v) Lactate and 2% (w/v) agar, at pH 5.0. The plates were incubated in the 

same condition above described.  

After incubation, each plate was placed in contact with 15 mL of dye solution (0.1% (w/v) 

amido black, 30% (v/v) methanol, 10% (v/v) acetic acid and 60% ultra-pure water) for 1h. 

Afterwards, the plates were washed twice with acetic acid (33% v/v) and dried at room 

temperature. 

 

2.1.7. Gene expression analysis 

Gene selection for quantitative Real-Time PCR 

Eight genes (ALS3, HWP1, AGP2, PUT2, GCV2, CIT1, SOU1 and GDP1) were selected to 

analyze their expression in the different growth conditions, using glucose or lactate as carbon 

source. Actin (ACT1) gene was selected as a reference Candidal housekeeping gene (Delgado-Silva 

et al. 2014). These genes were selected based on a previous work of our group (Delgado-Silva et 

al. 2014) and so the primers for quantitative Real-Time PCR (qRT-PCR) were also previous 

designed for that work. In this work, the same primers were used but in the context of the 

conditions that has been described along this work. 

Table 1. Primers used in this study. 

Primers Sequence (5’- 3’) 

ALS3 Fw: CGTCCATTTGTTGACGCTTA 

ALS3 Rev: GCGGTTAGGATCGAATGGTA 

HWP1 Fw: TCTACTGCTCCAGCCACTGA 

HWP1 Rev: CCAGCAGGAATTGTTTCCAT 

AGP2 Fw: TGTGGCTATGCAGAACTTGG 

AGP2 Rev: AGACAGGAACCCCATGACTG 

PUT2 Fw: TTCTCCTGGTGTTTGGAACC 

PUT2 Rev: TAATGCGGCTGTAGCAGATG 

GCV2 Fw: TGGGTGCTGATGTTTGTCAT 

GCV2 Rev: AGCTTGTGCTCCCAACATCT 

CIT1  Fw: CCACGAAGGTGGTAACGTCT 

CIT1 Rev: TTTTTCAATGGCTTCCTTGG 

GPD1 Fw: TTGCTCGTGCTAAATGGTCA 

GPD1 Rev: CACCCCAACCTAAACCTT 
a Restriction sites introduced into primers are underlined. 
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Yeast cells preparation 

An inoculum of each yeast strain, obtained from YPD plates, was resuspended in 100 mL of 

YNB with 2% Glucose or 2% Lactate and incubated at 30 °C, under agitation at 200 rpm. Reached 

late exponential growth phase, up to 3x108 cells were harvested by centrifugation at >12000 g for 

2 min and the supernatant was discarded and the pellet cells stored at -80º C, until use. 

 

RNA extraction 

Ribonucleic acid (RNA) extraction was performed using Ambion RiboPure™-Yeast Kit (Life 

Technologies Corporation, Carlsbad, USA). The RiboPure-Yeast method disrupts yeast cell walls by 

beating cells mixed with an aqueous lysis buffer, SDS, phenol and 0.5 mm Zirconia Beads on a 

vortex adaptor for 10 min. Before RNA extraction, it was dispensed 750 μL Zirconia Beads were 

dispensed 1.5 mL screw cap tube for each sample. The collected cells were resuspended in lysis 

reagents (480 μL lysis buffer, 48 μL 10% SDS and 480 μL Phenol:Chloroform:IAA) and vigorously 

vortexed for 10-15 seconds. The resulting mixtures (cells and lysis reagents) were transferred to 

one of the prepared tubes containing 750 μL cold Zirconia Beads and vortexed for 10 mins. The 

lysate is centrifuged for 5 min at 16000 g at room temperature to separate the aqueous phase, 

which contains the RNA, from the lower organic phase, which contains proteins, polysaccharides, 

and other cellular fragments.  

After colleting the aqueous phase (containing RNA), the Ambion RiboPure™-Yeast Kit was 

used for further RNA extraction and purification according to the manufacturer’s recommended 

protocol. To avoid residual DNA, samples were treated with Ambion DNAfree ™ reagents, and 

DNAse enzyme, included in the kit.  

 

Synthesis of cDNA 

 cDNA was synthesized using iScript Reverse Transcrption Supermix kit (Bio-Rad) according to 

the manufacturer’s instructions.  The primers used for cDNA synthesis were the ones already 

referred above. Real time PCR using SYBR green technology was performed on CFX96 real-time 

detection system in 96-well microtitre plates using a final volume of 20 μl (Bio-Rad). SYBR Green 

Supermix (Bio-Rad and Applied Biosystems) and 0.1 μM of primers were mixed with DNAse and 

RNase-free water to make the 9/10th of the total reaction volume and 1/10th of cDNA was added 

into the mixture. The following amplification program was used: 3 min of denaturation and 

polymerase activation at 95°C, 40 cycles of real time PCR with 2-step amplification were 
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performed consisting of 15s at 95°C for denaturation, 45s at 60°C for annealing. All samples 

were amplified in duplicate and the mean was obtained for further calculation. 

 

Statistical analysis  

Gene expression was normalized to the housekeeping gene ACT1 and analyzed by using the 

comparative threshold cycle (ΔΔCT) method. Data was presented as the fold difference in 

expression relative to wild-type (WT) gene expression. 

 

 

2.2. Carbon source impacts in C. albicans Immune Recognition 

 

2.2.1. Macrophage cell cultures  

The murine macrophage-like cell line J774A. 1 (American Type Culture Center number TIB 67 

(Ralph and Nakoinz, 1975)), was routinely cultured in Dulbecco’s modified Eagle's medium 

(DMEM; Lonza Group, Ltd., Braine l’Alleud, Belgium) supplemented with 10% heat-inactivated fetal 

calf serum (FBS; Biosera, Ringmer, United Kingdom), 1% glutamine, 1% sodium pyruvate, and 1% 

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer in tissue culture flasks (Nagle 

Nunc, Int., Hereford, United Kingdom) 5% (v/v) CO2 at 37 °C. 

Sub-cultures were performed into new cell-culture flasks every 2 days. After confluent growth, 

macrophage cells were recovered and washed. Viable cells were determined by Trypan blue 

exclusion counting with the hemocytometer, and resuspended in DMEM to a final concentration of 

4x105 cells/mL. 

 

 

2.2.2. Macrophage-killing assay  

The macrophage-killing assay was preformed as previously described by Mckenzie (McKenzie 

et al. 2010) and under the same growth conditions described above. Macrophages and yeast cells 

were cultured in 96-well tissue culture plate (SpectraMax Plus) and incubated for 1h at MOI 5Y:1M 

C. albicans/macrophage ratios. After incubation the 96-well tissue culture plate was centrifuged for 

2 mins at 750 g and 80 μl of supernatant culture was transferred to a new 96-well microplate and 

stored at -80ºC for further cytokine measurement. In the first 96-well plate the final volume was 

restored by adding 80 μL of 10% saponin followed by gently up and down pipetting (a few times) in 



THE IMPACT OF CARBON SOURCE IN CANDIDA ALBICANS VIRULENCE: PARTICIPATION OF RLM1 IN PATHOGEN HOST 
INTERACTION 

 

 

 39 

order to lyse macrophages and release the adherent cells. Serial 10-fold dilutions were then plated 

YPD agar plate and incubated at 30 ºC for 24h. 

Data were obtained in triplicate from at least two separate experiments and presented as 

percentages. 

 

2.2.3. Determination of lactate dehydrogenase activity and cytokines 

measurement 

LDH 

LDH leakage assay is one of the most used methods for cell viability determination due to its 

reliability, fastness and simplicity. Lactate dehydrogenase (LDH) is an intracellular enzyme existent 

in most eukaryotic cells, which is only released into culture medium upon cell death, or plasma 

membrane damage. Thus, LDH was measured in the supernatant of macrophages:yeast 

incubation to assess macrophage cell damage. LDH reduces pyruvate to lactate, coupled to the 

oxidation of NADH to NAD+. This reaction can be followed spectrophotometrically at 340 nm 

(Korzeniewski and Callewaert 1983).  

The collected samples were analysed in a 96 multiwell plate, each well containing: 40 μl of 

extracellular LDH sample and 250 μl of NADH (final concentration 0.28 mM). Reactions were 

started by adding 10 μl of pyruvate (final concentration 0.32 mM) to each well. Both NADH and 

pyruvate solutions were prepared in 0.05 M phosphate buffer pH 7.4. NADH conversion to NAD+ 

was spectrophometrically evaluated in a microplate reader (Molecular Devices – SPECTRAmax Plus 

384) at 340 nm, every 10 seconds for 3 minutes, at 30ºC.  The % of viability was calculated 

according to equation 1 (Holder et al. 2012). 

 

(1) 

Where msample is the LDH released into the supernatant from the wells containing the material; 

∅min the LDH released into the supernatant from the wells containing only cells, and ∅max is the LDH 

released into the supernatant from the wells in which the cells were deliberately with 

DMSO:Ethanol (1:1), representing the maximum expected LDH value. 

 

 

 

%viability 1
msample min

max min

100
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TNF-α and IL-10 

Production of TNF-α and IL-10 by macrophages co-incubated with C. albicans SC5314, 

SCRLM1M4A, SCRLM1M4B, SCRLM1K2A AND SCRLM1K2B strains were quantified using a 

commercially available sandwich ELISA kit (Quantikine; R&D Systems, Abingdon, U.K.), (KMC 

0102, Biosource, Camarillo, CA), respectively, and according to the manufacturer’s instructions. 

The macrophage incubation medium used for TNF-α and IL-10 quantification was the same used 

in the LDH analysis. Determinations of LDH, TNF-α and IL-10 were carried out in triplicate, and the 

results are expressed as the mean of these results. 

 

 

2.2.4. Statistical analyses  

Results from at least two independent sets of experiments are expressed as means ± SD by 

Two-way (ANOVA), Bonferroni post-tes  (Graphpad Prism 6) were used to determine statistical 

significance. The level of significance was set at a corrected P value of < 0.05.  
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3. Results and Discussion 

Clearly, to cause infection C. albicans must grow and divide in diverse niches. Cells must 

assimilate locally available carbon sources that can include fermentable sugars and non-

fermentable carbon sources (Lorenz and Fink 2001; Lorenz et al. 2004; Piekarska et al. 2006; 

Ueno et al. 2011; Vieira et al. 2010). Physiologically relevant sugars include glucose, galactose, 

and fructose among the others. But, in many hosts niches these sugars are only present at low 

levels and are even absent in the host. Therefore, other non-fermentable carbon sources become 

important to sustain yeast growth and its metabolism in vivo (Ueno et al. 2011; Vieira et al. 2010; 

Piekarska et al. 2006). These alternative carbon sources include amino acids and organic acids. A 

good example is lactate, which is present in ingested foods, produced via host metabolic activity, 

generated by endogenous lactic acid bacteria in the urogenital and gastrointestinal tracts, and is an 

important carbon source for Candida in the intestine (Ueno et al. 2011; Ene et al. 2012a). 

 

So, before all the experiments proposed in this study, all the strains used were assessed for 

grown on YNB liquid medium with glucose or with lactate, at 30ºC. Previous results of our group 

(Delgado-Silva et al. 2014), demonstrated that the growth rate of C. albicans Δrlm1/Δrlm1 mutant 

was unaffected in YPD at 30º C. However it was important to assure the growth of these same 

strains grown in minimal medium with glucose or lactate. 

In fact, the results showed that the growth rate of C. albicans strains was unaffected in 

minimal medium with glucose as observed by Delgado-Silva in YPD at 30º C (Figure 11). Similarly 

to glucose-grown C. albicans cells the growth rate of C. albicans Δrlm1/Δrlm1 mutant was also not 

significantly affected, however the growth rate was significantly lower. 

 

 

 

 

 

 

 

 

Figure 11. Growth curve of C. albicans. SC5314 (wt; black circles), homozygous mutant SCRLM1M4A and 
SCRLM1M4B (Δrlm1/Δrlm1); green diamond; red triangles) and complemented SCRLM1K2A and SCRLM1K2B 

(Δrlm1/Δrlm1+RLM1; brown squares; blue diamond). 
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3.1. Identification of some metabolites during C. albicans  

During C. albicans strains growth samples were taken and analyzed by HPLC in order to 

evaluate glucose or lactate consumption and determine the presence of known metabolic 

metabolites produced. All strains were grown in conditions described before. In the Figure 12 the 

metabolites identified during glucose-grown cells and lactate-grown cells are presented. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

 
 
 
Figure 12. Identification by HPLC of metabolites during C. albicans growth on different carbon 

sources. 

In glucose-grown cells it was possible to observe that during the first 20h of growth, glucose is 

totally consumed. During this period, some compounds are produced such glycerol, ethanol and 

acetic acid. It also interesting to note that when glucose is totally consumed the production of 

glycerol stabilizes while ethanol decreases for all strains tested. Curiously, the profile for acetic acid 

is slightly different since it decreases for the WT and complemented strains while for the mutant 
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this it stabilizes or increases. These results might suggest that RLM1 can interfere with the shift of 

ethanol to acetic acid. For lactate-growns cells, the rate of consumption of lactate was slower than 

the rate of consumption of glucose, and after 45h of growth lactate consumption stabilized. 

Curiously, the yeast cells were unable to completely consume lactate, only around 32% of the initial 

lactate was consumed, contrary to glucose-grown cells that consume 100% of the initial glucose. 

During lactate growth, the ethanol produced was residual, and no acetic acid or glycerol was 

detected. Curiously, in lactate grown cells a relatively small mount of tartaric acid was observed, 

contrary to glucose grown cells, after 18h of growth that accumulated until 45h, the same time 

that lactate consumption ended, and then stabilized or diminished. No significant difference the 

amount of this acid was observed between the different strains. This experiments point to different 

metabolic route used by cells grown in the different carbon source. Although these results needs 

confirmation it indicated us that for lactate-grown cells other HPLC columns may be needed in 

order to identify compounds of that metabolic pathway.  

 

3.2. Impact of carbon source in RLM1 mutant response to cell wall stress agents 

Previous study of our group determined that RLM1 of C. albicans is involved in the CWI 

pathway, as described for S. cerevisiae, by comparing the sensitivity of the constructed mutant 

strains against a range of cell wall-perturbing agents as well as to agents known to be associated 

with altered cell walls (Delgado-Silva et al. 2014). In this study we aim to understand the impact 

that different carbon sources may have in cell wall integrity. It is important refer that all the 

information known, until now, about RLM1 gene was obtained exclusively by Candida cells grown 

in YPD (glucose, as primary carbon source). As represented in Figure 13, the absence of a 

functional RLM1 in C. albicans cells grown on glucose results in hypersensitivity to Congo red (CR) 

as described by Delgado-Silva (21014) but the hypersensitivity to Calcofluor White (CFW) reported 

by Delgado-Silva et. al (2014) was not observed in this work (Delgado-Silva et al. 2014). 
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Figure 13. Sensitivity of C.albicans strains against agents that affect cell integrity. Serial 10-fold 
dilutions of YNB Glucose an YNB Lactate overnight cultures were spotted on YNB (2% Glucose or 2% Lactate) plates 
with 100μg/ml Congo red, 200μg/ml calcofluor white, 90ng/ml caspofungin, 10mM caffeine, 0.035% SDS. After 

incubation for 2 days at 30ºC plates were photographed. C. albicans strains obtained from SC5314 (RLM1/RLM1) 
were two independently constructed homozygous mutant strains (Δrlm1/Δrlm1) SCRLM1M4A and SCRLM1M4B, and 

two independently constructed complemented strains (Δrlm1/Δrlm1 +RLM1) SCRLM1K2A and SCRLM1K2B.  

 

Additionally, in yeast cells grown in glucose the SC5314-derived Δrlm1/Δrlm1 mutants were 

also more sensitive than the complemented and parental strains to the presence of Caspofungin 

(CFG).  These cells (Δrlm1/Δrlm1 mutant) were equally resistant to caffeine and unaffected by 

SDS as the WT and complemented strains.  

On the other hand lactate-grown cells present hypersensitivity to caffeine and SDS, regardless 

of RLM1 mutation, particularly to SDS in which none of the strains were able to grow. The absence 

of a functional RLM1 in C. albicans cells grown on lactate results in hypersensitivity to Congo red 

(CR) and to Caspofungin, as observed in glucose-grown cells. However, cells grown on lactate 

appear to be more resistant to Congo Red than cells grown on glucose. In lactate-grown cells no 

differences were also observed in the sensitivity to CFW, as observed for glucose-grown cell. 

It has been described that in response to the weakening of the cell wall, an increase in the cell 

wall chitin content is observed after activation of the so-called ‘‘compensatory mechanism’’ 

(Lagorce et al. 2003) However, Delgado-Silva et. al observed that under no stress condition, in the 

absence of a functional Rlm1p, C. albicans cell wall presents a different polymer organization 

which involves the increase of chitin content and decrease in mannans but does not seem to 

involve alterations in the β-1,3-glucans layer (Delgado-Silva et al. 2014). 

The hypersensitivity observed in C. albicans Δrlm1/Δrlm1 mutant cells to CR, which affects 

the assembly of β-1,3-glucan, and to CFG, an inhibitor of β-1,3-glucan synthase, may suggest an 

alteration in the organization of β-1,3-glucan, since the Delgado-Silva (2014) reported no alteration 
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in the glucan contents in the cell wall of C. albicans Δrlm1/Δrlm1 mutant grown on glucose. In 

this case, the two-fold decrease in the cell wall mannans and therefore mannoproteins in the cell 

wall surface observed in the mutant in comparison with the wild-type by Delgado-Silva (2014), 

suggests that CR may access more easily to the glucans layer and affect more marked its 

assembly. Changes in the association between the polysaccharides, particularly the amount of 

mannoproteins, have also been described in response to cell wall weakening (Lagorce et al. 2003). 

These results are in agreement with previous study that suggests that C. albicans RLM1 is 

indeed involved in cell wall biogenesis and in cell wall remodeling (Delgado-Silva et al. 2014). 

Considering cells grown in the different carbon sources, the hypersensitivity to CFG, that enter 

the cell to inhibit of β-1,3-glucan synthesis affects cells equally, regardless of the carbon source. 

However, for CR, which affects the assembly of β-1,3-glucan outside the cell, the C. albicans 

Δrlm1/Δrlm1 mutant grown in lactate appear to be much more resistant to CR than grown in 

glucose. Recently, new studies have illustrated that lactate-grown cells are affected in their cell wall 

architecture and stress responses, indicating that, although the amount of cell wall polysaccharides 

is not affect, the thickness of the chitin+glucan layer is significantly reduced in comparison with 

glucose-grown cells (Ene et al. 2012a; Ene et al. 2013). Although no information on the cell wall 

components of C. albicans Δrlm1/Δrlm1 mutant grown on lactate is available, the fact that these 

cells are more resistant when grown on lactate may be due to either the increase on the 

mannoproteins layer, hampering the access to the target molecule or, the amount of the target 

molecule may be reduced, as suggested in the previous studies. 

The alterations mediated by an alternative carbon source such as lactate (used in this study) 

may contribute for the differences in the sensitivity to caffeine and SDS, which is not observed 

when Candida cells are grown on glucose. SDS is known to disrupt and solubilize the plasma 

membrane and is thus not a cell wall-specific compound (Daher et al. 2011; Plaine et al. 2008). 

However lactate-grown cells present higher cell wall porosity (Ene et al. 2012a), which might 

facilitate the permeabilization of SDS and render the cell more susceptible (Daher et al. 2011). 

This alteration is not related to RLM1 since all strains presented the same phenotype. The 

mechanism by which caffeine induces cell wall stress is not understood, but lactate-grown C. 

albicans were much more sensitive than glucose grown cells and this susceptibility was not related 

to RLM1. Curiously, lactate-grown cells do not produce detectable amounts of glycerol, which is 

known to be osmostabilizer and thus, could contribute to the reduced or complete absence of 

growth in caffeine and SDS, respectively. 
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Altogether, these results are consisting with the data reported by Delgado-Silva et. al (2014), 

which observed that the lack of RLM1 in C. albicans significantly down-regulated genes involved in 

carbohydrate catabolism and up-regulated genes involved in the utilization of alternative carbon 

sources (Delgado-Silva et al. 2014) 

 

3.3. Filamentation tests 

A striking feature of C. albicans is the capacity to grow as budding yeast and as filamentous 

forms. The yeast-to-hypha transition contributes to the overall virulence of C. albicans and may 

even constitute a target for the development of antifungal drugs (Shareck and Belhumeur 2011). 

In order to observe if filamentation of RLM1 mutants was affected by different carbon source, 

the cells pre-grown on glucose or lactate were then incubated with DMEM at 37ºC and 5% CO2, and 

photographed in different time points. 

The results depicted in Figures 14 and 15 demonstrated that both lactate-grown cells and 

glucose-grown cells were able to filament. It is important to note that the filamentation feature was 

significantly not affect by the lack of a functional RLM1 in both growth conditions, even though the 

wild type presents slight longer hyphae. Still, it seems that C. albicans cells grown on lactate the on 

set of filamentation is later than cells grown on glucose. Another observation that might be brought 

to light after these figure analysis (Figures 14 and 15) is that lactate-grown cells are more 

aggregated than glucose-grown cells. This last result might be important in the biofilm formation. 
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Figure 14. Filamentation of C. albicans glucose-grown cells. Evaluation of filamentation of C. albicans strains (SC5314, RLM1 mutants and complemented) after supplemented 
with DMEM medium at 37 ºC and monitoring for 30, 60, 120 and 240 minutes by fluorescence microscopy. 
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Figure 15. Filamentation of C. albicans on lactate as carbon source. Evaluation of filamentation of C. albicans strains (SC5314, RLM1 mutants and complemented) after 
supplemented with DMEM medium at 37 ºC and monitoring for 30, 60, 120 and 240 minutes by fluorescence microscopy. 
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 Based on previous studies of our group (Delgado-Silva et al. 2014; Nogueira 2008), the 

filamentation feature was not affected by absence of RLM1. The results obtained in this study were 

in accordance with those studies, in cells grown on glucose as well as in cells grown on lactate. 

However, the higher aggregation observed in lactate-grown cells might be due to overexpressed of 

adhesion molecules, which means that those cells displayed higher levels of self adhesion, which 

might influence, for example, the biofilm formation (Ene et al. 2013; Ene et al. 2012a; Ene and 

Brown 2014). 

 

3.4. Adhesion and biofilm formation 

Adhesins are thought to promote adherence to host tissue, biofilm formation and colonization  

(Hoyer et al. 2008; Nobile et al. 2008). 

According to Delgado-Silva et. al (2014), Δrlm1/Δrlm1 mutant shows higher up-regulation of 

proteins involved in adhesion and biofilm formation. Additionally, Ene et. al (2012), demonstrate 

that lactate-grown cells display higher adherence ability and biofilm formation than glucose-grown 

cells. Based on these two reports, C. albicans strains were tested regarding their ability to adhere 

to a polystyrene surface (within 2h) and to form biofilm after 24h and 48h on lactate and on 

glucose (Figure 16). 

 

 

 

 

 

 

 

 

 

 

Figure 16. In vitro adhesion and biofilm formation. C. albicans cells from SC5314 (RLM1/RLM1), 
SCRLM1M4A and SCRLM1M4B (Δrlm1/Δrlm1) and complemented strains SCRLM1K2A and SCRLM1K2B 

(Δrlm1/Δrlm1+RLM1) were allowed to adhere (2h) and to form biofilm (24h and 48h) in polystyrene. The symbol * 

indicates that measurements were significantly different (P<0.005) from the WT strain and glucose as a primary 
carbon source. 
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Regarding adhesion after 2 hour on incubation, in glucose-grown cells no significance 

differences between strains were founded. In contrast, in lactate-grown cells the adhesion is overall 

mush higher for all strains (P <0.05) but, as for glucose-grown cells, no clear trend was observed 

regarding the role of RLM1 at this time point.  

In the context of biofilm formation, a clear difference in total biomass formation was observed 

between glucose- and lactate-grown cells (24h and 48h). Overall, lactate-grown cells presented 

higher biomass than glucose-grown cells (P <0.05). Additionally, at 24h the mutant strain presents 

different behaviors when grown on glucose or on lactate. On lactate-grown cells it seems that the 

mutant forms less biomass than the WT and complemented strains, which means that RLM1 gene 

may influence biofilm formation. Although this effect does not appear to be consisting at 48h 

where RLM1 mutant strains present higher biofilm formation in both carbon sources. An 

explanation for this delay in the biomass formation might be due adaptation of the mutant strain to 

lactate growth condition. The fact that RLM1 mutants produced more biomass at 48h on glucose-

grown cells was already described, but in lactose-grown cells no information was available. In 

general, the complemented strain, SCRLM1K2A and SCRLM1K2B, with some variations in its 

behavior, showed once more to be similar to WT. These variations in its behavior might be due to 

partial complementation of RLM1 (Delgado-Silva et al. 2014). Together, these results indicate that 

RLM1 acts as a negative regulator of in vitro biofilm formation, particularly when cells are grown on 

glucose. 

The structure of the biofilm formation was accessed by SEM analysis and it was possible to 

observe that in glucose-grown cells RLM1 mutants displayed biofilm-like structure more evident 

than WT and complemented strains, but, no phenotypic differences between the WT and mutant 

cells were observed when grown in biofilm (Figure 17). The structure of biofilm by SEM was only 

observed in WT, SCRLM1M4B and SCRLM1K2B, since the results even with some variations 

seems to have the same trend, which complemented strains (SCRLM1K2A and SCRLM1K2B) 

presents similar behavior within them and as WT, and the mutants strains (SCRLM1M4A and 

SCRLM1M4B) also presents similar behaviors between them. This result is in accordance with the 

previous work of Delgado-Silva (2014). 
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Figure 17. In vitro ability of wild-type, mutant, and complemented strains to adhere to polystyrene 

surface. SEM analysis of adhered cells of wild-type SC5314 strain (RLM1/RLM1), the homozygous RLM1 mutant 
strains SCRLM1M4A and SCRLM1M4B (Δrlm1/Δrlm1), and the complemented strains SCRLM1K2A and SCRLM1K2B 

(Δrlm1/Δrlm1+ RLM1) after 48 hours of incubation.  

However, when C. albicans cells were grown on lactate more adherent cells were observed 

and the structure of those cells was much similar to a biofilm structure than the glucose-grown 

cells, which displayed a monolayer of cells. In lactate-grown cells no phenotypic differences was 

observed between the mutant strains and the WT, as observed for glucose-grown cells. 

Delgado-Silva et. al (2014) observed that absence of  RLM1 significantly activated genes 

involved in cell adhesion and biofilm formation (Delgado-Silva et al. 2014). Blankenship et al. 

(2010) had already observed novel functions in C. albicans conserved protein kinases (PKs) 

compared to their orthologs in S. cerevisiae and Schizosaccharomyces pombe when studying cell 

wall remodeling, which included functions related to filamentation and biofilm formation 

(Blankenship et al. 2010). Nobile et al. (2009) described Zap1/Csr1 also as a negative regulator of 

biofilm formation and in a previous study Nobile and Mitchell (2006) identified Bcr1 as a 

transcription factor that governs biofilm formation in an in vitro catheter model (Nobile and Mitchell 

2006; Nobile et al. 2009). Delgado-Silva et. al (2014), demonstrated that RLM1 behaved as a 

negative regulator of biofilm in an in vitro polysteryne biofilm model, and the  RLM1 mutant strain 

presented overexpression of  ALS1,  ALS3,  HWP1,  RBT1 and  ECE1, which includes the same 

Bcr1 targets (ALS1,  ECE1, and  HWP1), suggesting that  BCR1 activates genes directly involved in 

biofilm formation while  RLM1 regulates negatively the same set of genes (Delgado-Silva et al. 
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2014). Additionally, lactate as being the main carbon source for C. albicans acts as synergetic with 

the lack of functional RLM1. 

 

3.5. Secreted Aspartyl Proteinases production (SAPs) 

The expression of secreted aspartic proteinase (SAP) genes is regulated in response to carbon 

source and nitrogen available (Hube et al. 1994). For example, SAP2 is expressed at high levels 

during growth on glycerol, at medium levels on glucose or galactose, and at low levels when C. 

albicans cells are grown on ethanol (Hube et al. 1994). 

In this study, the SAPs production by C. albicans grown on glucose and or on lactate was 

evaluated with two different methods. One of them was assessed using a “classical” YCB-BSA agar 

plate and the other method used YNB-BSA agar plate supplemented with glucose or lactose, since 

the interest of this study was to evaluate the impact of an exclusive carbon source, by eliminating 

the influence of YCB. 

The results depicted in Figure 18 demonstrated that only glucose-grown cells were able to 

produce SAPs in both methods, however the SAPs were also produced on YCB-BSA agar plate by 

lactate-grown cells. No differences were founded in the length of the halos in all strains for each 

condition, which suggests that RLM1 is not involved in the SAPs production. However it is possible 

to note that the halos of glucose-grown cells are slightly higher than those of lactate-grown cells. 

 

 

 

 

 

 

 

 

Figure 18. Secreted aspartyl Proteinases production of C. albicans in different carbon sources. 1- 
SC531; 2-SCRLM1M4A; 3-SCRLM1K2A; 4-SCRLM1M4B and 5-SCRLM1K2A. 

 

As observed in the Figure 18, in fact, lactate-grown cells were able to produced SAPs, however 

this production might be masked by the influence of YCB. Up until now, no information about SAPs 

production was reported for lactate-grown cells. 
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Regarding the RLM1 mutant, as reported before, no difference was observed in the mutant 

compared with WT. Delgado-Silva et. al (2014) demonstrated that lack of RLM1 leads to an up-

regulation of a secreted protease (SAP6), but this up-regulation does not induce an higher halo of 

degradation. RLM1 mutant also up-regulated genes involved in the uptake of amino acids and 

oligopeptides AGP2 and OPT6, respectively. These, together with the action of SAP6 contribute to 

the intake of small peptides and aminoacids. The up-regulation of PUT2 and GCV2, whose 

products are involved in amino acid degradation, may suggest the utilization of alternative carbon 

or energy sources by C. albicans mutant cells (Delgado-Silva et al. 2014), but still no information 

was reported about non-fermentable carbon source, such as lactate. 

 

3.6. Influence of carbon source RML1-responsive genes  

In this study, gene expression was analyzed in cells grown on glucose and or on lactate, rather 

than YPD or under any cell wall stress condition such as in previous works (Delgado-Silva et al. 

2014; Bruno et al. 2006). Data was analyzed by using a ΔΔCt method and presented as the fold 

difference in expression relative of the target genes to wild-type (WT) gene expression, in C. 

albicans cells grown on glucose and or lactate (Figure19). These genes were chosen according to 

our previous work and are involved in several different biological processes from cell wall 

organization (ALS3, HWP1) to metabolic and stress response (GPD1, AGP2, GCV2, SOU1, PUT2 

and CIT1) Delgado-Silva et. al (2014). This analysis presented is for mutant strain SCRLM1M4B 

and for complemented strain SCRLM1K2B, since the all data obtained with these strains are 

representative of all the other strains.  

Comparing the ratio of expression of the tested genes in cells grown on glucose or lactate 

(Figure 19A) it is clear that the majority of the genes follow a similar pattern, except for SOU1 and 

ALS3. This indicates in the mutant behaves similarly in both carbon source in respect to these 

genes. Sou1p has ben involved in utilization of L-sorbose while Als3p is a protein is a cell wall 

adhesion. Regarding the other genes the ratio of expression in the mutant was close to 1, except 

AGP2, CIT1 and PUT2 that were close to or higher than 2. 

Cit1p has been described as a citrate synthase, the enzyme responsible for the first step of 

the TCA cycle, so the absence of a functional RLM1 affect this pathway differently. Agp2p is an 

amino acid permease, suggesting the utilization of alternative carbon/energy sources in the 

absence of RLM1. Put2p has been reported to be involved in amino acid degradation, which may 
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suggest once more the utilization of alternative carbon or energy sources by C. albicans mutant 

cells. 

 
 

Figure 19. Expression of genes of C. albicans strains grown on different carbon sources. The 
values are present in relative expression ration mutant/wild-type (A) and relative expression ration lactate-grown 
cells/glucose grown cells. 

 
Relatively to the effect of carbon source, namely lactate, in the expression of these genes in 

the mutant and in the complemented strain (Figure 19B), it is possible observe that in lactate-

grown cells the expression of ALS3, AGP2, HWP1, GCV2 and PUT2 are higher than in glucose-

grown cells (expression higher than 1.0). 
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In a certain way, these results confirm some previous results presented in this study, as we 

observed the high ability of adhesion displayed by lactate-grown cells, which may correlate with a 

higher expression of adhesion related genes, ALS3 and HWP1, in those C. albicans cells. 

As reported before, AGP2 and PUT2 as well as GCV2 are much influenced when Candia cells 

are grown on lactate, since these genes are involved in the metabolism of alternatives carbon 

source such as amino acids up-taking. 

Another interesting date observed in this analysis is that GPD1 was barely influenced by 

lactate as primary carbon source. GPD1 was one of the genes that Delgado-Silva et. al (2014) 

observed a down-regulation in the mutant. The product of this gene is the glycerol-3-phosphate 

dehydrogenase, involved in the glycerol biosynthesis pathway, and in this present work, this gene 

was also down regulated in the mutant when C. albicans cells were grown on lactate as well as 

when cells were grown on lactate. However, the relative expression of GPD1 was lower in cell 

grown on lactate than on glucose-grown cells and no differences were founded within the strains, 

which may be due to its specific function related with carbohydrates metabolism. Since this gene 

was founded down-regulated upon the RLM1 deletion, according to Delgado-Silva et. al (2014) 

work, suggest RLM1 mutant might use other carbon source than lactate or glucose. 

Other genes that could be involved in the interconnection of the pathways required to metabolize 

non-fermentable carbon sources, i.e. involved in the gluconeogenesis, the glyoxylate cycle, and 

beta-oxidation, are CIT1, coding for citrate synthase and SOU1 a sorbose redutase, all up-regulated 

in the mutant (Delgado-Silva 2012; Delgado-Silva et al. 2014). CIT1 was up-regulated in the 

mutant, either on glucose and lactate grown cells, suggesting that its expression was not 

influenced carbon source. However, comparing the expression ration on lactate/glucose, it is clear 

that its expression is heigher in glucose grown cells, either in the mutant and complemented strain. 

Regarding SOU1, this gene behaved differently in the mutant when cells were grown on the two 

carbon sources. In cells grown on lactate SOU1 is up-regulated in the mutant while in cells grown 

on glucose is down-regulated. This result suggests that sorbitol may have an important role in the 

metabolization of lactate. 
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3.7. Host-pathogen interaction: Participation of RLM1 in Macrophage-Candida 

albicans interaction under the influence of different carbon source 

 

To determine RLM1 impact in the host-pathogen interaction we investigated the ability of the 

Δrlm1/Δrlm1 mutant strain to interact with macrophages murine cell line J774, taking into 

account the influence of different carbon source, glucose and lactate. To assess this host-pathogen 

interaction, the macrophages were incubated with live C. albicans cells in a MOI of 5:1 for 1h. The 

uptake of live fungal cells by macrophages was measure by counting CFUs (colony forming units) 

and the results presented in percentage of Yeast Killing (Figure 20). Furthermore cytokines were 

also measured in order to understand the immune response in the context of this study. 

Results indicate that lactate-grown cells were less efficiently killed by macrophages (around 

20%) than glucose-grown cells (around 50%) (Figure 20). 

 

 

 

 

 

 

 

Figure 20. Yeast Killing. Killing of C. albicans SC5314, SCRLM1M4A, SRLM1M4B, SCRLM1K2A and 
SCRLM1K2B cells grown on glucose, lactate by macrophages. Fungal cells and macrophages were incubated for 1h at 
5:1 C. albicans/macrophage ratio. Values represent means ± SD for 2 independent experiments. Results are 
expressed as the percentage of yeast killing. The C. albicans/macrophage ratio was 5:1. 

 

Considering RLM1 influence in the interaction between C. albicans cells and macrophages it 

seems that Δrlm1/Δrlm1 mutant strains are less susceptible to macrophage killing when grown on 

glucose, in comparison with the WT and complemented strains. The exact opposite was observed 

when cells were grown on lactate. 

 

To determine the effect of the disruption of RLM1 on the immune response elicited by C. 

albicans grown on glucose or on lactate, the pro-inflammatory cytokine TNF-α and the anti-

inflammatory IL-10 were measured in after 1h incubation with murine macrophage-like cell line 

J774A after challenged with C. albicans cells from WT, mutant or complemented strains (Figure 
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21.A and B). In Figure 21A, the results showed that in cells grown on glucose TNF-α levels 

produced by macrophages were significantly lower in response to Δrlm1/Δrlm1 mutants cells in 

comparison with WT (P <0.0001). On the other hand, the complemented strains, although 

inducing a higher amount TNF-α than the mutant strain, present even a little bit higher levels than 

WT. Regarding the impact of the carbon source in this host-pathogen interaction it was clear that 

lactate-grown cells stimulated increased TNF-α production than glucose-grown cells. An interesting 

data can be also observed in TNF-α production by lactate-grown cells lacking of RLM1, the trend 

observed in glucose-grown cells for Δrlm1/Δrlm1 mutants is reverted when grown on lactate 

(Figure 21A). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21. Host vaibility and immune response to Candida cells grown on glucose or on lactate. 

 

Then the anti-inflammatory IL-10 was measured in similar conditions as described before for 

TNF-α (Figure 21B). The results for IL-10 production was in general similar to those observed for 

TNF-α, with exception for the mutants and complemented strains B. The same trend was observed 

in lactate-grown cells, which presented higher production of IL-10 than glucose-grown cells. Also, 

the immune response to the mutant strains grown on lactate was reverted too, as observed for the 

TNF-α production.  
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In order to quantify the cell damage caused by the WT, Δrlm1/Δrlm1 mutants and 

complemented C. albicans strains, we determined the LDH released from macrophages after 1h of 

co-incubation. As illustrated in Figure 21C, the cell damage caused by Δrlm1/Δrlm1 mutant was a 

little higher in comparison with the WT and complemented strains, in cells grown on glucose, 

however in lactate-grown cells these effect was the opposite, which is possible to observed that 

Δrlm1/Δrlm1 mutants caused less cell damage than WT and complemented strains. These results 

indicate that the deletion of RLM1 has a significant impact in the immune response as well as the 

carbon source. 

 

The host response to infection by C. albicans is associated with the release of different 

cytokines pro- and anti-inflammatory, such as TNF-α and IL-10, respectively, and the balance 

between them determines the fade of C. albicans (Mencacci et al. 1998). The comparative analysis 

of the interaction of the WT, Δrlm1/Δrlm1 mutant and complemented C. albicans strains with 

J774 macrophages cell line showed that at 1h of co-incubation, in glucose-grown cells, the levels of 

TNF-α were much higher, in response to WT and complemented strains in comparison with 

Δrlm1/Δrlm1 cells. These observations are in agreement with previous work of Delgado-Silva et. al 

(2014) that sowed by  histopathology results that kidney sections revealing heavy infiltration of 

leucocytes around C. albicans  cells, in mice infected with WT or complemented strains and few 

inflammatory cells around the Δrlm1/Δrlm1 mutant cells (Delgado-Silva et.al 2014). 

Previous works (Ene et al. 2012b; Ene et al. 2012a) as well as this present study 

demonstrated that C. albicans grown on alternative carbon sources induced fungal cell wall 

remodeling and modulation of the cell wall proteome and secretome (Ene et al. 2012b; Ene et al. 

2012a). This fact already described will affect and regulate important virulence attributes, such as 

stress and drug resistance, adherence, biofilm formation, and infection outcome. 

IL-10 represents one of the key immune cytokines for the host defense against C. albicans 

infection. Lactate-grown cells display a significant reduction in the amount of mannan in the cell 

wall as well as in the organization of the mannan fibrils (Ene et al. 2012a). The amount of β-glucan 

is also decreased in the lactate-grown cell wall, but its recognition might be masked by the altered 

architecture of the mannan fibrils and the different proteins attached to it (Ene et al. 2012a; Ene et 

al. 2012b). IL-10 drives a Th2 response and it as also play an important role in the host defense 

against disseminated candidiasis (Romani 2004). Increased IL-10 production, modulated through 

different TLRs and dectin-1, shifts the balance toward anti-inflammatory cytokine responses 
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(Gringhuis et al. 2007). On the other hand, the upregulation of IL-10 also exacerbates Candida 

infection in mice (Tonnetti et al. 1995). IL-10-deficient mice are more resistant to Candida 

infection, due to an up-regulated Th1 antifungal response (Del Sero et al. 1999). Hence, increased 

IL-10 production might predispose the host to Candida infection. The importance of RLM1 in the 

interaction between macrophages and C. albicans cells seems to be different behaviors when cells 

are grown on glucose or on lactate. RLM1 mutant strains when grown on lactate as well as on 

glucose seem to behave at the same level in comparison with WT strain, observing a switch of 

cytokines production when carbon source changes from glucose to lactate. This data lies on the 

previous results here presented that the cell wall suffers remodeling when grown lactate as well as 

the fact that RLM1 mutant strain present different organization in its cell wall “per se” concluded 

by Delgado-Silva et. al (2014). 

These observations confirmed that RLM1 as well as carbon source impacts in the recognition 

and phagocytosis of C. albicans cells by macrophages, further reinforcing the idea that differential 

nutrient availability in host niches significantly affects host-fungus interactions. The mechanist of 

the RLM1 together with effect of different carbon source needs to be further clarified. 

 



 



 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

Concluding remarks 



 
  



THE IMPACT OF CARBON SOURCE IN CANDIDA ALBICANS VIRULENCE: PARTICIPATION OF RLM1 IN PATHOGEN HOST 
INTERACTION 

 

 

 65 

4. Concluding remarks 

Candida albicans, as an opportunistic pathogen, is able to adapt its growth to a range of 

environmental changes, by modulation of expression of many genes in a coordinated manner. 

Metabolic adaptation impacts upon C. albicans pathogenicity at multiple levels: by promoting 

nutrient assimilation, cell wall remodeling, stress resistance, and the expression of virulence 

factors, and also by influencing immune surveillance (Figure 22) (Brown et al. 2014a). 

 

 

 

 

 

 

 

 

 

 

 

Figure 22. Nutrient adaptation affects Candida albicans pathogenicity at multiple levels. Nutrient 
adaptation contributes directly to pathogenicity by supporting fungal growth. Nutrient adaptation also promotes 
pathogenicity indirectly through cell wall remodelling, by enhancing stress resistance, by modulating the expression of 
key virulence factors, and by affecting the efficacy of immune surveillance by innate imune cells. Adapted from (Brown 
et al. 2014a). 

 

The cell wall, as the most external cellular component, plays a crucial role in the interaction 

with host cells mediating processes that are essential during infection, hence the importance of 

carrying out studies about cell wall molecules that participate in the virulence of this yeast 

(Delgado-Silva et al. 2014). Cell wall has been characterized in the model organism S. cerevisiae, 

with which C. albicans shares many orthologous proteins, including RLM1 (Delgado-Silva et al. 

2014). RLM1 belongs to the type II MADS-box proteins family characterized by a genetically 

variable C-terminus due to the presence of a repetitive region of different sizes (Sampaio et al. 

2009; Delgado-Silva et al. 2014). C. albicans Δrlm1/Δrlm1 mutant, the complemented and WT 

strains were exposed to several cell wall stress agents under the influence of different carbon 

sources. In this study, C. albicans Δrlm1/Δrlm1 mutant displayed phenotypes associated to cell 

wall deficiency such as hypersensitivity to CR and CFG either on glucose and lactate grown cells. 

These results and the homology with MADS-box transcription factors as well as the impact of 
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different carbon source suggest an involvement in a regulatory role of cell wall remodeling. This 

regulatory role was further evidenced by the nuclear localization of RLM1-GFP fusion protein 

observed in Delgado-Silva et. al (2014) work. In this study, different sensitivities to SDS and 

Caffeine was observed in lactate-grown cells in comparison with glucose-grown cells, indicating that 

lactate-grown cells presents higher sensitivity to those cell wall stress. In accordance to Delgado-

Silva et. al work, gene expression in the mutant lacking RLM1 significantly activated genes involved 

in cell adhesion like ECE1, ALS1, ALS3, HWP1 and RBT1, and decreased transcription of genes 

involved in the catabolism of carbohydrates, DAK2, GLK4, NHT1 and TPS1 (Delgado-Silva et al. 

2014). It has been described also that lactate-grown cells have higher capacity of adhesion than 

glucose-grown cells (Ene and Brown 2014). The increased transcription of genes involved in cell 

adhesion as well as the impact of carbon source was confirmed by adhesion and biofilm assays, 

suggesting that RLM1 acts as a negative biofilm regulator even grown on lactate. 

In addition, decreased production of TNF-α and IL-10, and lower cellular toxicity was observed 

in the absence of a functional RLM1, suggesting that RLM1 has a significant impact on C. albicans 

virulence. However these phenotypes were reverted when cells were grown on lactate, which 

indicates that nutrients availability confers alterations in both interlayers resulting in different 

outcomes in host-pathogen interaction.  

Finally, qRT-PCR analysis showed that the expression of ALS3, HWP1, AGP2, PUT2, GCV2, 

CIT1, SOU1 and GPD1, which are genes involved in distinct biological processes such as cell 

adhesion and metabolism of alternative carbon sources was, in general, higher in the 

Δrlm1/Δrlm1 mutant in relation to the WT strain, however this trend was observed more when 

Candida cells were grown on lactate, even though the these results need to be further repeated in 

order to observe a clearly a trend.  

Overall, these results showed that the transcription factor RLM1 is involved in the stability of 

the cell wall, in the interaction with the host, and being important for the virulence of C. albicans. 

These observations also showed that C. albicans mutant appears to rearrange the metabolic 

pathways so that glucose or lactate is deviated from utilization as energy source, being more 

available for use as cell wall building blocks, as well as increase cell wall protein involved in 

adhesion. As a consequence the association between β-glucan, mannoproteins, and chitin would 

certainly change (Delgado-Silva et al. 2014). 

As discussed above, we concluded that RLM1 is important for the cell wall biogenesis and 

adaptation to different carbon source might change perceptions how Candida–host interacts.
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5. Perspectives for future work 

The studies performed in this work allowed to achieve the main objectives proposed for this 

thesis. In spite of the advances obtained in this work, regarding molecular and functional 

characterization RLM1 gene, new questions have emerged that should be covered in the future. 

Some of future has already been done such the characterization of possible alterations in 

organization and cell wall contents of RLM1 mutant under lactate growth condition, hence RLM1 

mutant displayed “per se” alterations in its cell wall and it is wide described that different carbon 

source has impact in modulation of cell wall (Delgado-Silva et al. 2014; Ene et al. 2012a; Ene et al. 

2012b).  

Proteomic studies of RLM1 mutant is also an interesting field to explore and we believe that 

cell wall proteins might be different in lactate-grown cells than glucose-grown cells under the 

influence of lacking od functional RLM1. 

Since RLM1 is a transcriptional factor, some studies of transcriptomic is also need to 

understand what happens downstream of RLM1-dependent pathways, such as CWI under the 

influence of lactate as primary carbon source. In this way the importance of RLM1 as a virulence 

factor can be further demonstrated which will open the perspective to new strategies of antifungal 

therapies targeting kinases of the CWI pathway and, in particular, the transcription factor RLM1. 

Since RLM1 mutant have up-regulated genes for use alternative carbon source it is also 

interesting to explore other carbon sources than glucose or lactate.  

In order to better understand the impact of RLM1 in host-pathogen interaction under the 

influence of different carbon source is important to preformed additional studies including other 

immune cells as well as studies regarding immune-response pathway, such as mTOR pathway or 

the glyoxylate cycle. 

Finally, it is also important to exploit this study using clinical strains, such as 124a (Sampaio 

et al. 2010).  
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