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Conventional 2D approaches used in
cancer research poorly correlate with
the human condition when compared
with the possibilities of 3D models.

We examine how microfluidics can fulfil
gaps in 3D models and their other sig-
nificant advantages, with a special
focus on biomaterials.

Using the combination of 3D TE and
microfluidics on a multiomics-based
approach (i.e., genomics and proteo-
mics) in cancer research can advance
our understanding of cancer biology as
well as lead to the discovery of novel
biomarkers, promising a revolution in
the cancer research field. Further devel-
opment of technologies that are appro-
priate and sensitive enough to make the
most of the new features of microfluidics
assays are essential. The development
of chip-based 3D cell cultures in cancer
research will also be largely dependent
on the improvement of biomaterials that
emulate the extracellular matrix.

While the physiological architecture of
human organs currently exceeds the
complexity of all in vitro culture sys-
tems, microfluidic cell culture devices
can be fabricated that capture some of
this architectural complexity.
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Cancer is a major cause of morbidity and mortality worldwide, with a disease
burden estimated to increase over the coming decades. Disease heterogeneity
and limited information on cancer biology and disease mechanisms are aspects
that 2D cell cultures fail to address. Here, we review the current ‘state-of-the-art’ in
3D tissue-engineering (TE) models developed for, and used in, cancer research.
We assess the potential for scaffold-based TE models and microfluidics to fill the
gap between 2D models and clinical application. We also discuss recent advan-
ces in combining the principles of 3D TE models and microfluidics, with a special
focus on biomaterials and the most promising chip-based 3D models.

The Importance of 3D In Vitro Tissue Models for Advanced Cancer Research
Conventional approaches used in cancer research involve culturing tumor cells on 2D surfaces
and the use of animal models, which both poorly correlate with human disease states. 2D cell
cultures oversimplify the biological context of a tumor, which is influenced by intrinsic molecular
features and external cues from its surrounding microenvironment [1]. Unlike cancer cells grown
in 2D, those grown in 3D adopt a rounded shape, forming clusters that are suggestive of tumors
in vivo [2,3]. Cancer cells grown in 2D versus 3D also exhibit differential gene expression profiles
for key genes involved in angiogenesis, cell migration, and invasion [4–8]. Ex vivo models or in
vivo models, such as animal or patient-derived xenograft (PDX) models, are also popular tools for
cancer research. Such models have advantages over cell cultures and do not suffer from the lack
of 3D context, although they have their own set of limitations (Box 1).

To address the limitations of conventional approaches, the 3D microenvironment of tumors must
be taken into account to improve the physiological relevance of in vitro models [9,10]. The
integration of TE strategies and microfluidic technologies has recently sparked a breakthrough in
the design of in vitro microfluidic culture models that better adapt to morphological changes in
tissue structure and function over time, providing a level of precision control that could not be
achieved previously [11]. Here, we review the current ‘state-of-the-art’ of 3D TE models that
have been developed and used in cancer research. We critically assess the relevance of 3D cell
models in cancer studies, and discuss the main advantages and limitations, with special
emphasis on the biomaterials used. We also highlight new approaches that integrate bioreactors
and microfluidic technology, along with the potential impact of 3D TE models on the cancer drug
discovery process.

Classical 3D culture systems can be broadly subdivided as scaffold-free or scaffold-based
methods [12]. Although scaffold-free 3D cancer models are best exemplified by tumor spheroids
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Box 1. Advantages and Disadvantages of Ex Vivo Models, Animal Models, and PDX Models

Ex Vivo Models
Ex vivo tumor culture is performed using a thin slice of tumor tissue collected from human or animal sources and cultured
on porous substrates or embedded in ECM-like matrices [55,56]. These models generally preserve the native complex
and differentiated 3D cell-matrix architecture, cell phenotype, and complex architecture, logically providing a more
accurate mimic of cell behavior.

However, the main drawback of this type of model may be the absence of mechanical forces, such as shear stress and
perfusion, as well as surrounding tissue, which may result in changes in the structure and cell behavior compared with the
original in vivo microenvironment. Another drawback is the need to harvest tissue from human or animal subjects.

Animal Models
Mouse models have proven essential in cancer research. These models yield better prediction of drug behavior and
efficacy in humans compared with 2D conventional culture. They are used to understand the genetic basis of tumor
development and cancer progression. They can also be used to test the efficacies of different anticancer agents because
of their intrinsic microenvironmental complexity. Animal models enable studies of defined mutations, including the
analysis of the effects of these mutations on many genetic backgrounds.

However, there is rowing demand from the public to reduce the use of animals as experimental subjects [57–59]. Other
limitations involve the inability to mimic human-specific features relating to tumors, autoimmune conditions, stem cell
differentiation, and, ultimately, their responses to therapeutic drugs. This is because the physiology, metabolism, tumor
cell interactions with the innate immune system, proliferation, metastasis, and the cells themselves are different from
those in humans [60,61].

PDX Models
PDX models are models where surgically resected primary tumor samples are engrafted directly from patients onto
immunodeficient mice. These enable the molecular, genetic, and histological heterogeneity of their parental tumors to be
preserved for longer [62]. PDX models offer a powerful tool for cancer research and a route toward personalized medicine
for patients with cancer. They also enable the discovery of biomarkers predicting drug sensitivity and resistance, and
possibly the monitoring of the initiation and progression of metastasis as well as the fate of circulating tumor cells using
in vivo flow cytometry of implanted humor tumors [63].
(Box 2), we focus here on scaffold-based methods because they offer more opportunities for
combination with other technologies. Scaffold materials can be synthetic or natural in origin [13].
Synthetic materials typically display better mechanical properties compared with natural ones
(Table 1), but we focus our discussion on scaffolds made from naturally derived materials due to
their greater physiological relevance. Biomaterials are broadly used for their marked similarities to
the extracellular matrix (ECM), and typically have advantageous features, such as biocompati-
bility, biodegradability, and bioavailability, and also the capability to interact with cells. Addition-
ally, natural polymers can be engineered and their properties tuned to obtain desirable
mechanical and physical characteristics [14].

In Vitro 3D Scaffold-Based TE Tumor Models
Scaffold-based models have the advantage of allowing the study of tumor interactions with the
microenvironment, in particular, phenomena such as tumor migration and invasion. Another
advantage is the possible functionalization of the scaffold materials to obtain desired physico-
chemical and biological characteristics. For example, it is possible to incorporate bioactive
molecules that promote cell adhesion or matrix metalloproteinase (MMP) substrates that render
the materials susceptible to degradation by cell-secreted proteases, thus mimicking the naturally
occurring interactions of cells with ECM and its consequent remodeling [15]. Great care and
attention are required when choosing the biomaterial for culturing cancer cells, to better emulate
the physiology of their original ECM, since this facet alone is able to influence tissue organization
[11,16].

Models using Matrigel® as reconstituted basement membrane [17,18] can mimic the patho-
physiological context of cancer and have enabled advances in 3D tissue engineering. The
development of Matrigel grew from pioneering work on the isolation and purification of proteins
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Box 2. In Vitro 3D Multicellular Tumor Spheroids

Spheroids form due to the ability of cells in suspension to self-assemble when cell–cell interactions are stronger than
those between cells and substrate [64]. Their small size and the absence of vascularization result in limitations to nutrient
and oxygen diffusion, requiring the cells of the core of the spheroid to adopt a glycolytic metabolic activity, which results in
an increasing pH gradient toward the outside [65]. This mimics what happens in tumors, which have regions of hypoxia
and of acidity similarly structured as a function of the distance between the core and the tumor blood vessels [66–68].
Spheroids can be fabricated using several methods: (i) hanging drop method, in which cells can aggregate freely at the
bottom of an inverted cell suspension drop; (ii) spinner flask method, which provides constant agitation, allowing
spontaneous cell aggregation; (iii) static liquid overlay technique, which enables spheroid formation by preventing cell
adhesion to the growth substrate; (iv) centrifugation; and (v) growing cells on nonadherent micropatterned surfaces in
microfabricated devices to favor their aggregation [69].

Given their tumor-like features, in vitro multicellular spheroids have been particularly useful for studying the efficacy of
novel chemotherapeutic agents or drug delivery systems. Significant differences in drug responses have been observed
for numerous cancer types in spheroid culture, but increased chemical resistance appears to depend upon the type of
cancer cells and the specific treatment under study [70,71].

The emerging resistance to chemotherapies expands the potential application for spheroid cancer models. Breast
cancer tumor recurrence, a major cause of death, has recently been attributed to a small population of cells with stem-like
characteristics that are able to self-renew and promote tumor progression [72,73]. A 3D spheroid tumor model with
stem-like properties was used to discover a new inhibitor of spheroid formation [74]. This stem-like enriched spheroid
formation technology could also be applied to drug discovery in other cancer types [75].

Despite the advantages of using spheroids in cancer research, they are still not routinely incorporated into drug discovery,
most likely due to technical hurdles. For example, automated analysis systems are not compatible with loose spheroids,
which can clog pipettes and tubing. Tethered spheroids may overcome this hurdle [76].
such laminin and type IV procollagen and the discovery of the biological activity of the recon-
stituted basement membrane [19,20]. Matrigel has been used to mimic breast cancer progres-
sion [5] and help gain understanding of how tissue organization itself influences the development
of a malignant phenotype [17]. Despite being the most commonly used biomaterial in cancer
research, Matrigel has some disadvantages. Given that it is a biological animal-derived product,
it lacks human peptide motifs. There can also be possible growth factor contamination, as well
as variation in endotoxin levels and stiffness between batches. These limitations, along with the
possible presence of undefined substances, make comparison between studies more chal-
lenging [21,22].

Collagen I is a frequently used substrate for cell culture and TE applications because it contains
the tripeptide RGD (Arg-Gly-Asp), a short amino acid sequence that preferentially binds to
receptors on cell surfaces. Scaffolds made from Collagen I can be synthetically modified to
provide a wider range of physicochemical properties. For example, collagen stiffness can be
adjusted through covalent crosslinking by nonenzymatic glycation. One of the first organotypic
models comprised isolated human fetal colonic epithelial cells seeded on a collagen type I matrix
with embedded colonic fibroblasts [23]. Collagen I was also used to produce a biologically
relevant 3D tumor model that supported unconfined cellular proliferation and exhibited necrosis
beyond a depth of approximately 150 mm and also had angiogenic potential [24]. The biocom-
patibility and 3D architecture of collagen I hydrogels are suitable for reproducing the microenvi-
ronmental conditions of a solid tumor.

Due to the relevance of paracrine function as a major mechanism of cell–cell communication
within the tissue microenvironment, both in normal development and cancer, a 3D model to
study paracrine function was needed. A recent 3D model, fabricated from alginate, has been
used to recapitulate autocrine and paracrine functions in cancer [2]. The model was used to
study paracrine interactions between prostate cancer cells and normal prostate stromal cells, in
which direct interactions between epithelial and stromal cells are not allowed. Alginate was
chosen as the biomaterial because of its hydrophilic nature, allowing a high functional cell loading
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Table 1. Naturally Derived and Synthetic Matrices for 3D Tumor Engineering

Material Characteristics Cancer Research
Applications

Refs

Natural materials

Matrigel® 3D hydrogel microenvironment for tumor
growth and angiogenesis studies;
cytocompatibility; cell adhesion sites;
tunable physical properties

Human colon
adenocarcinoma,
colorectal cancer, prostate
cancer, breast cancer

[77,78]

Collagen I Multiple crosslinking methods;
biocompatibility; biodegradability;
angiogenesis potential

Human breast carcinoma,
human hepatocellular liver
carcinoma

[24,71,79,80]

Fibrinogen Blood clotting; cellular and matrix
interactions; neoplasia; architecture
mimics native ECM; 3D
microenvironment for cancer growth

Melanoma, ovarian cancer
cells, liver carcinoma

[25,81]

Hyaluronan Glycosaminoglycan found in extracellular
tissue in many parts of body; major
component of native brain ECM; used for
studying tumor migration processes

Prostate cancer, glioma
tumor

[82,83]

Chitosan Analysis of interaction of prostate cancer
tumor cells with immune cells; formation
of tumor spheroids

Prostate cancer, glioma
tumor

[84–86]

Alginate Properties for cell transplantation, drug
delivery, and TE; suitable for hydrogel
microspheres; promotes conversion of
cultured cancer cells to a more malignant
in vivo-like phenotype; nonadhesive to
cells

Oral squamous cell
carcinoma, human
hepatocellular carcinoma

[2,86–88]

Fibroblast-derived
matrices

Distinctly different cell morphology,
aggregation pattern, proliferation profile
and invasive potential; however, these
matrices do not fully represent the
composition and structure of the tumor
microenvironment

Human colorectal
carcinoma, human
pancreatic carcinoma

[89,90]

Silk fibroin Unique mechanical properties; good
biocompatibility; well-controlled
degradability; versatile processability

Human breast
adenocarcinoma

[91]

Agarose Amenable mechanical and biological
properties; more stable than traditional
natural hydrogels

Osteosarcoma and breast
adenocarcinoma

[92]

Synthetic materials

Polyethylene glycol
(PEG)

Biocompatibility; high water content;
multitunable properties; specific
biological functionalities can be covalently
incorporated

Human epithelial ovarian
cancer, human pancreatic
ductal adenocarcinoma

[15,93,94]

Poly(lactic-co-glycolic)
acid (PLGA)

Highly porous scaffolds; convenient to
handle; amenable to large-scale use

Oral squamous, cell
carcinoma

[95,96]

Poly e-caprolactone
(PCL)

Biologically inert synthetic polymer; high
porosity; large surface area:volume ratio
for cellular attachment; tunable fiber
diameter; low cost

Ewing sarcoma [97]

Synthetic peptides Controlled amino acid composition for
easy incorporation of specific biological
relevant ligands; adequate physiological
properties

Human ovarian carcinoma,
human breast carcinoma

[98–100]
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in culture. Alginate hydrogels have the appropriate characteristics for cell transplantation, drug
delivery, and TE because their production and cell encapsulation can be achieved under mild
conditions.

Fibrin (purified from fibrinogen) hydrogels are also used as a biomaterial in cancer research,
supporting the growth of cancer cells into colonies that resemble embryonic stem cell colonies
[25]. Fibrin is present in connective tissue stroma in human malignant tumors, and fibrin and
fibrinogen can increase the survival and metastatic potential of circulating tumor cells [25]. In vitro
scaffold-based cancer models have been used in drug discovery to understand mechanisms of
action, find novel targets, or address drug efficacy, toxicity, and resistance events. For instance,
the efficacy of three anticancer drugs (i.e., camptothecin, docetaxel, and rapamycin) in the
treatment of bone metastatic prostate cancer was assessed using hyaluronic acid (HA)-derived
hydrogels to grow the lymph node carcinoma of the prostate (LNCaP) [3]. The difference in
efficacy between the three drugs may reflect their different mechanisms of action and chemical
properties, emphasizing the importance of a proper microenvironment in anticancer drug
efficacy assessments. HA allowed cells residing in the hydrogel matrix to form distinct clustered
structures that grew and merged, reminiscent of real tumors [3].

Other biocompatible hydrogels, such as those made of gellan gum or silk [26,27], can be used in
the development of complex microtissues for cancer research. These two naturally derived
hydrogels attract special interest since they may provide important chemical cues to the cells
due to their resemblance to the natural ECM and their ability to easily achieve a 3D model
architecture. Their biodegradability and biocompatibility have been extensively validated in vitro
and in vivo [28–30]. Moreover, they have tunable mechanical properties, which are ideal for cell
encapsulation. Therefore, cancer models can be created by including cancer cells, stromal
fibroblasts, macrophages, or growth factors.

Novel Applications for Scaffolds
Scaffold-based TE strategies were also applied to cancer immunotherapy to develop an in vitro
3D scaffold model for examining the interaction of tumor-associated fibroblasts (TAF) with
breast tumor cells and breast-specific, neu antigen (p98)-reactive T cells [31]. Breast cancer
cells seeded on 3D chitosan-alginate (CA) scaffolds exhibited productive growth and formed
distinct tumor spheroids. Antigen-specific p98 T cells, but not naïve T cells, bound better to
tumor cells on scaffolds. The p98 T cells induced potent tumor cell killing, but T helper cell
cytokine function was impaired in the presence of TAF co-seeding on scaffolds. From a
biomaterials perspective, CA scaffolds are important because they are biocompatible and
nonimmunogenic, they have the proxy structure of glycosaminoglycans (GAGs) (a major
component of native ECM), and are approved by the US Food and Drug Administration
(FDA) for numerous biomedical applications. These types of strategy can bridge the gap
between in vitro and preclinical testing of novel immunotherapies by enabling researchers
to probe individual cell types and factors in a more physiologically relevant tumor-like
microenvironment.

Chip-Based 3D TE Models in Cancer Research
TE-based models still face difficult challenges, such as the requirement of functional vascu-
lature networks to regulate the transport of nutrients and oxygen and the need to control
metabolic or mechanical functions of the encapsulated cells within biocompatible scaffolds
[32]. Combining TE principles with microfluidic technologies has the potential to fill such gaps,
since microfluidics allows the fabrication of 3D architectures with controlled spatial relations
between cells, the presence of flow-induced signaling and transduction, and the capacity to
introduce the chemical gradients necessary to reproduce the architecture of the in vivo
microenvironment [33–35].
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Figure 1. Chip-Based 3D Models in Cancer Research. Scheme of an example of a chip-based 3D model mimicking
the native extracellular matrix (ECM) tumor microenvironment. The entry of tumor cells into the blood stream and then the
micrometastasis process in a variety of tissues, or in the presence of other relevant cell types, can be studied. The chip
microwells could contain a 3D engineered hydrogel representing an ECM-like matrix, such as Matrigel®, in direct contact
with microchannels mimicking blood vessels for intravasation and/or extravasation studies. The small blue arrows represent
the migration of (cancer) cells from the microchannel and into the 3D tissue-engineered ECM-like matrix and vice versa. (A)
Cellix VenaT4 chip; (B) The microwell filled with Matrigel® (3D); (C) Microscopy image of the channel–microwell interface; (D)
Representation of cancer cells migrating from the microchannel to the 3D TE ECM-like matrix in the presence of osteoblasts;
(E) fluorescence microscopy image of HeLA cells adhered to the channel migrating into the ECM-like matrix (Matrigel) (M.R.
Carvalho, unpublished data, 2015).
The combination of TE principles and microfluidic technologies can take the form of so-called
‘biochips’ for 3D cell culture that better mimic the physiological environment and interactions
observed in vivo [36,37]. In vitro multitissue 3D tumor models on a chip can make it possible to
obtain quantitative measurements on circulating tumor cells, extravasation and micrometastasis
(Figure 1). For example, a microfluidic platform was built to emulate the dynamic physiology of
the bone marrow microenvironment, allowing realistic interactions of bone marrow cells and
osteoblasts, so as to investigate multiple myeloma [38].

In combination with biomaterial-based approaches, several chip-based models (Figure 2) have
provided invaluable knowledge and previously unmeasurable or unobservable data (Figure 3)
about cancer-related processes, such as angiogenesis and metastasis, and have proved
instrumental in drug discovery.

Angiogenesis
Angiogenesis is a prerequisite for tumor growth, invasion, progression, and metastasis, and,
thus, is crucial to include in cancer models. Organ-on chip models that integrate vasculature
have the potential to transform in vitro approaches for the study of cancer [39,40], offering the
possibilities of spatially resolved delivery and extraction of solvents and solutes to control the
biochemistry of the microenvironment of the tumor, growth of appropriate endothelium, and
delivery of circulating cells, as well as the possibility to control tension and shear stress during
angiogenesis, tumor growth, and drug delivery [41].
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Figure 2. Microfluidic Devices Used in the Study of Angiogenesis (A) and Metastasis (B). (Ai) Passive pumping-
based microfluidic angiogenesis assay with 3D cylindrical lumens. (a) Illustration of a triple channel design with connecting
microchannels. (b–d) Microchannel systems can be (b) single, (c) double, or (d) triple channel designs, and are arrayable. (Aii)
Perfusable 3D microvessels are generated using an optically clear polydimethsiloxane microfluidic-based platform. (B)
Microfluidic vasculature enables the region-specific activation of endothelium under physiological flow conditions [101].
Reprinted with permission from [102] (Ai) and [47] (Aii). Abbreviation: PDMS, polydimethylsiloxane.
Physiological vascularized tumor conditions can be achieved by including mixed cell populations
in the device: tumor cells, stroma cells, endothelial cells that line the vessels, and also immune
cells. Such an approach would enable the analysis of any circulating molecular and cellular
components that may promote tumor angiogenesis [42]. The biomaterials that form the micro-
fluidic scaffold would have to recapitulate matrix stiffness and withstand interstitial pressure, as
well as convey mechanical cues that modulate cell signaling via mechanoreceptor signal
transduction.

Microfluidic vascular models can be divided in two categories [43]: microfabricated molds that
confine biological hydrogels between parallel microfluidic channels [44], or bona fide vascular
structures fully embedded within 3D ECM [45]. In an example of the microfabricated mold
approach, a device was developed with a central microchannel embedded within a collagen
hydrogel, which allowed tumor-relevant hydrodynamic stresses to be introduced and quantified
using microparticle image velocimetry (m-PIV) [46].

As an example of the second approach, a 3D microphysiological system is being developed. The
model uses iPSC technology (i.e., the development of vessel networks derived from human
iPSC-derived endothelial cells in a cardiac-derived ECM to simulate the microcirculation), the
cardiac muscle, and the solid tumor into a single integrated microphysiological system [47]. As a
3D matrix, a co-culture of endothelial colony-forming-derived endothelial cells and normal
human lung fibroblasts are mixed with fibrin matrix.

Metastasis
Metastasis is one of the most complex processes in cancer and likely one of the most difficult to
study and mimic using in vitro models [48,49]. Therefore, it is crucial to understand the molecular
Trends in Biotechnology, November 2015, Vol. 33, No. 11 673
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Figure 3. Outputs of Angiogenesis (A) and Metastasis (B) Studies in Tissue-Engineered (TE) Designs. (Ai)
Cultured breast or prostate epithelial carcinoma cells (MCF-7 and LNCaP) with human umbilical vein endothelial cells
(HUVECs) and mesenchymal stromal cells (MSCs) within matrices fabricated from synthetic star-polyethylene glycol (PEG)
and maleimide-functionalized heparin to study 3D tumor angiogenesis microenvironments after 14 days: extended focus
confocal images displaying phalloidin (red), Hoechst (blue), and CD31 (green) showing HUVEC and MSC to cancer cell
interactions for each tumour cell type. (Aii) 3D endothelial-lined lumens (ELL) obtained by seeding HUVECs in a microfluidic
chip. (Bi) A microfluidic tumor–vascular interface model: endothelial channel (green), tumor channel (green), and 3D
extracellular matrix (ECM; gray) between the two channels. White arrow shows fibrosarcoma cells (HT1080) invading in
3D toward the endothelium [52]. (Bii) Migration of HUVEC and Hela cells during co-culture on-chip. Reprinted with
permission from [103] (Ai), [102] (Aii), and [104] (Bii).
and cellular phenomena involved in the metastatic cascade [50,51]. Invasion of cancer cells
through the basal membrane into a blood or lymphatic vessel (intravasion) followed by entrance
in other tissue and/or organs (extravasion) are critical steps [52,53]. Although significant
progress has been made in visualizing tumor cell motility in vivo, the underlying mechanism
of cancer cell intravasation is largely unknown. Few studies have addressed the development of
3D models for metastasis studies. However, an in vitro 3D microfluidic model of the tumor–
vascular interface was designed to integrate live imaging, precise control of microenvironmental
factors, and endothelial barrier measurement [52]. The chip comprised two independent
channels in which tumor and endothelial cells are seeded, interconnected via a 3D ECM hydrogel
made of collagen type I. This work sheds light on the influence of macrophage-secreted factors
in the intravasion processes. Thus, the formation of an endothelial monolayer on a 3D collagen
type I hydrogel mimicking ECM enabled the precise quantification and control of critical
microenvironmental factors.

Drug Discovery
Developing in vitro 3D chip-based tumor models will not only aid in investigating angiogenesis
and metastasis, but can also help provide a realistic preclinical assessment of anticancer drug
efficacy and resistance.
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Outstanding Questions
There is a need to develop microfluidic
devices to achieve high detection effi-
ciency that could make use of the mul-
tiple biochemical and biophysical cues
that are distinctive in cancer.

Can we apply the already developed
microfluidics to patient's samples to
bridge the gap to the clinics?

Are we taking advantage of the right
biomaterials? How can we improve
ECM-like features and avoid batch-
to-batch variations and compare and
correlate work from different groups?
For example, a microfluidic chip-based, 3D co-culture drug-sensitivity test platform was devel-
oped in which a mono-lung cancer cell line, a mixture of lung cancer and stromal cell lines, and
cells from fresh lung cancer tissues were treated with anticancer drugs [54]. A gradient
concentration generator inside the chips allowed the reconstruction of tumor microenviron-
ments in vitro with continuous nutrient and oxygen supplementation. Cell culture medium was
introduced into the microchannels to generate a set of gradient concentrations for each drug or
combination of drugs. Moreover, these drug-sensitivity tests were carried out on the fresh
cancer tissues. which enabled the screening of single or combination anticancer drug schemes
efficiently and accurately for patients.

In addition to the chips independently developed by researchers in academic laboratories,
companies are emerging that manufacture microfluidic-based 3D cell culture devices that are
approved for commercialization. For example, MIMETAS produces OrganoPlatesTM, which are
microfluidic-based culture plates that enable culturing and screening of a range of organ and
tissue models. These platforms allow the precise deposition of cells in a 3D culture matrix, and
their patented liquid-handling technology results in better readout and quantification compared
with conventional culture systems. The cells are contained in a gel that allows 3D tissue
configurations and cell–cell interactions. A continuous perfusion of media through the plate
mimics blood flow and the exchange of nutrients, oxygen, and metabolites.

Other companies in the market are also following this new trend. Cellix's VenaT4 chip is suitable
for ECM, collagen gels, hydrogels, Matrigel®, or similar aqueous biomaterials, and ideal for
invasion assays in an in vivo-like settings. Such companies will revolutionize the field by working
closely with researchers and clinicians to develop customized in vivo-based accurate
biomimicry.

Concluding Remarks and Future Perspectives
Bioengineered 3D microsystem technologies are relatively new and still require great effort to
validate and characterize their properties and suitability for practical biomedical applications.
Despite the promise of microfluidic chip-based 3D cell culture systems for cancer research, there
are some disadvantages compared with conventional techniques and challenges that need to
be addressed (see Outstanding Questions). Moving in vitro culture from macroscopic culture to
Polydimethylsiloxane (PDMS)-based devices can come with unforeseen challenges. Changes in
device material, surface coating, cell number per unit surface area, or per unit media volume may
all affect the outcome of otherwise standard protocols and, in this sense, surface materials and
treatments deserve special attention. Although these systems present numerous advantages in
terms of their ability to mimic what happens in vivo and to visualize cell growth, cell migration, and
cell–cell interactions, the small volumes used as well as the low numbers of cells within the
microfluidic devices make conventional biochemical assays more challenging due to detection
limits, making it difficult to generate statistically significant amounts of data. Advancements in
technologies that are sensitive enough to detect all-important genetic and transcriptomic
changes are required for the discovery of novel biomarkers and critical events in cancer
development. Regardless, their potential in predicting clinical responses could have great effects
on the way in which drug discovery and bioequivalence studies, and the pathogenesis of
relevant diseases, such as cancer, can be investigated.

Further development of chip-based 3D cell cultures in cancer research will largely depend on the
improvement of biomaterials that emulate the ECM, and the capacity to scale up these complex
technologies. Integrating TE approaches and microfluidics into easy-to-use, scalable, repro-
ducible, and cost-effective systems will be the key to their success and future translation to the
market. A 3D multitissue in vitro tumor model on a chip could contribute to accelerating the time-
to-market for anticancer drugs, along with a well-defined regulatory and development strategy.
Trends in Biotechnology, November 2015, Vol. 33, No. 11 675



3D in vitro models could demonstrate whether different formulations of the same drug are
bioequivalent. A straightforward bioequivalence trial comparing relevant pharmacokinetic
parameters of both formulations would be instrumental in gaining FDA approval.

There is now a huge demand for new strategies and more suitable biomaterials to interface with
microfluidic chips for cell biological studies. Clearly, there is still a long road ahead for this to
become reality, but we believe that this is the right direction to pursue in the search for novel and
more efficacious treatments for cancer.
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