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Abstract

Joint Modelling of Longitudinal and Survival
Data on Breast Cancer

The main motivation of this work is to contribute to the understanding of

the progression of breast cancer, within the Portuguese population, using a

statistical model with more complex assumptions than the traditional analy-

sis. We aim to infer which risk factors affect the survival of Braga’s Hospital

patients, diagnosed with breast tumour. While analysing risk factors that

affect two tumour markers used on the surveillance of disease progression

the Carcinoma Antigen 15-3 (CA 15-3) and the Carcinoembryonic antigen

(CEA). We take into account the expected association between the progres-

sions in time of each tumour markers with patient’s survival.

A data set of 540 patients, along with 50 variables, was collected from

medical records of the Hospital. For survival analysis it was applied the

proportional hazards Cox model and the Royston-Parmar flexible paramet-

ric model. General linear mixed effects longitudinal models were used to

study the progression of both tumour markers values. After conducting

survival and longitudinal separate analysis, a joint modelling of these two

processes to infer on the association of these was conducted, adopting the

methodology of random effects.

Results from joint models, showed that the longitudinal CA-15-3 and CEA

values were significantly associated with the survival probability of these

patients. We conclude that independent analysis brings up bias parameter

estimates and an assumption of association between the two processes in a

joint model of breast cancer data is necessary.

Keywords: Breast Cancer, Survival analysis, Longitudinal analysis, Joint

modelling.
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Resumo

Modelação Conjunta de dados Longitudinais e de
Sobrevivência em Cancro da Mama

A principal motivação deste trabalho é contribuir para a compreensão da

progressão do cancro da mama, na população Portuguesa, usando um mod-

elo estat́ıstico com pressupostos mais complexos do que a análise tradi-

cional. O objetivo é inferir sobre fatores de risco que afetam a sobrevivência

de pacientes do Hospital de Braga, diagnosticados com cancro de mama.

Analisando, ainda, fatores de risco que afetam a progressão no tempo de

dois marcadores tumorais usados na vigilância da doença - o Carcinoma

Antigénio 15-3 (CA15-3) e o Antigénio carcino embrionário (CEA). Temos

em conta a associao esperada entre a progressão de cada marcador tumoral

com a sobrevivência dos pacientes.

Um conjunto de dados de 540 pacientes, englobando 50 variáveis, foi recol-

hido dos registos médicos do Hospital. Para análise de sobrevivência recorreu-

se ao modelo de riscos proporcionais de Cox e ao modelo paramétrico

flex́ıvel Royston-Parmar. Modelos lineares generalizados de efeitos mis-

tos foram utilizados para estudar a progressão longitudinal de ambos os

valores de marcadores tumorais. Após análises de sobrevivência e longitu-

dinais separadas, foi realizada uma modelaccão conjunta destes dois pro-

cessos para inferir sobre a associaccão destes, adotando a metodologia de

efeitos aleatórios. Resultados indicaram que as progressões longitudinais

de CA-15-3 e CEA estão significativamente associadas com a probabilidade

de sobrevivência destes pacientes. Conclui-se que a análise independente

devolve estimativas dos parâmetros enviesadas sendo necessário considerar

a associaccão entre os dois processos num modelo conjunto de dados do

cancro da mama.

Palavras-Chave: Cancro da Mama, Análise de Sobrevivência, análise Longitudi-

nal, Modelos Conjuntos.
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1

Introduction

This work proposes to develop statistical methods in the scope of biostatistics to study

breast cancer within the senology unit of Braga’s Hospital, located in Portugal. Bio-

statistics is a science that develops statistical methodologies motivated by questions

and scientific problems within the areas of medicine, epidemiology, public health and

biology.

The area of joint models has been receiving a lot of attention in the last years.

By joint modelling, in a statistical context, we refer to model simultaneously the joint

distribution of two response variables with different distributions.

In this work, we are interested in two response variables commonly measured in

health sciences: a longitudinal variable, which is a variable repeatedly measured in

time for different subjects; and a time from an origin up to an event of interest. The

former known as longitudinal data and the latter as survival, or time-to-event data, in

the statistical methodology literature.

Particularly, we analyse two longitudinal variables: the Carcinoma Antigen 15-3

(CA15-3) and the Carcinoembryonic antigen (CEA). Both consisting in a large roll of

measures obtained in all blood test of each patients diagnosed with breast cancer, from

the senology unit of Braga’s Hospital. Which means that we have, for each patient,

several CEA and CA15-3 values and the respective moments of their measurements.

Also, we are interested in studying the time from breast cancer diagnose until the death

1



1. INTRODUCTION

from breast cancer.

Survival models are widely used in many medical cancer studies (Porta et al.

(1991), Alexanian & B. Barlogie (1998), Porta et al. (1998), Yuste et al. (2003), Law

et al. (2008)), and in particular, many medical studies regarding breast cancer survival

(Gómez et al. (1996), Barnett et al. (2008), Sparano et al. (2009), Kotsopoulos et al.

(2010), Gramling et al. (2010), Rosso et al. (2010), Bastiaannet et al. (2011), Ardoino

et al. (2012), Macià et al. (2012), Alsaker et al. (2013), Crozier et al. (2013), Nechuta

et al. (2013)). As Ardoino et al. (2012) explain, analysis of the hazard rate in medical

research provides useful information about disease dynamics as it allows the generation

of biological hypotheses and patient follow-up planning. Clarifying, survival models are

able to identify prognostic factors, and establishing relationships between the survival

probability function and explanatory variables.

Contrariwise, there are not many cancer studies regarding longitudinal data. In

fact, most of the epidemiological work on breast cancer focus on survival, because

studies of that nature only aggregated data is necessary. Studies that rely on variables

such as tumour markers for example, appear in the literature of biological experiments

rather than in medical studies, as longitudinal studies are more expensive to develop.

Nonetheless, as Chiang et al. (2014) point out, longitudinal measurements contain in-

formation that cannot be represented by single values or characteristics, and it would

be beneficial to develop a model that takes into account all longitudinal measurements

to give a clear indication of patient-specific tumour markers profiles for the analyses of

an association with the patient health progression.

Hence, the importance of this work is on combining the survival and longitudinal

perspective at individual level data. In many medical studies, it is possible that the

progression of disease might be associated with relapses times (women getting worst

are more likely to have another tumour earlier) or even with death due to the disease.

In a setting where the longitudinal observations may be correlated with survival, joint

models of longitudinal and time to event processes have been increasingly proposed,

to recover information from this potentially informative censoring. Joint modelling of

2



longitudinal data and time to event data is already recognized in the medical commu-

nity as a powerful tool. In this context, we emphasise the study of Chiang et al. (2014)

where they joint model the progression of tumour marker CA-125 and the overall sur-

vival of patients diagnosed with ovarian cancer.

Oncological diseases are the second highest cause of death in Portugal, and they

have a big social impact in patients and their families (Pinheiro et al., 2003). In Europe

breast cancer is the tumour with highest incidence in women (Boyle & Ferlay, 2004).

In Portugal there are not many published studies on breast cancer over the years.

However, the publication of 2003 by Pinheiro et al., refers that since 1995 mor-

tality, due to breast cancer, has been decreasing in Portugal. They argue that this

improvement, is a consequence of earlier diagnostic and better quality of treatment.

The Strategic National Health Plan refers, in the recommendations for breast cancer,

the importance of ”medicine based on evidence” to establish guidelines and specify

protocols, for a good medicine in practice.

Therefore, it is of great importance the continuous investment on statistical and

epidemiological studies in oncological diseases for understanding the progression of the

disease in Portugal.

Currently, only a few studies characterizing the complexity of this cancer on Por-

tuguese population exist, and are mainly conducted by population-based cancer reg-

istries, as for example RORENO (North Regional Cancer Registry). Although of great

importance, as they quantify the incidence and prevalence of the disease in the popu-

lation (dos Santos Silva, 1999), the information they gather can be somehow scarce in

terms of tumour specificity or even, for example, in terms of information about the real

cause of death. Thus, data taken directly from the hospital’s Senology Unit allows to

investigate cancer-specific survival estimates and the prognostic value of clinical factors

unrecorded in some population registries (Macià et al., 2012). Therefore, it is of great

importance the continuous investment on statistical models in oncological diseases for

understanding the progression of the disease in Portugal.

3



1. INTRODUCTION

So far, the most recent publication we have access to is a publication of Cancer

Registries Northern Region (RORENO) presenting results of survival of cancer patients

diagnosed with malignant tumours in the period 2007-2008 and residents to diagnostic

date in the area of influence of RORENO, which includes Braga, the area of interest of

this work.

This work has four main objectives: (i) produce an epidemiological study on breast

cancer in a specific senology unit in Portugal; (ii) develop statistical models for breast

cancer in Portugal, regarding longitudinal progression of tumour markers and survival;

(iii) develop a statistical model on joint modelling of longitudinal tumour markers pro-

cess and time to death for breast cancer, and (iv) compare results of different models

in order to conclude on the importance of joint models.

For this study we collected data directly from the medical records of each patient

diagnosed with breast cancer, listed in the computer system of Braga’s Hospital. As

there is no computer application, or database, available that resumed all patients’

breast cancer related information, it was necessary to read and analyse all the clinical

reports from each patients (which includes, as well, numerous blood and histological

reports), to verify and complete every information written by the doctors, as we were

confronted with some missing, and even contradictory information. It was, in fact, a

time-consuming and labour-intensive process, with a duration of almost a year. Which

reflects the need of a software for this purpose.

Nonetheless, we were able to obtain a group of 50 variables able to describe subject

and tumour specificities.

The motivation for the study is described in the second chapter, presenting global,

European and national breast cancer statistics along with a descriptive analysis of the

data collected.

The following chapter presents the survival analysis preformed in order to under-

stand what the possible risk factors were for death from breast cancer, for these patients.

Describing, initially, the methodology employed, along with a chronological overview
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of existing models in the literature, the main results and a short discussion of these.

The fourth chapter focuses on longitudinal analysis of tumour markers CA15-3 and

CEA, implemented in order to identify risk factors related to the increase of its values.

Beginning with a description of the methodology adopted in this work, following with

the presentation of the main results of each longitudinal models and ending with a

summary discussion of these.

Since it was found that the evolution of the values of the two tumour markers may

be associated with the probability of survival for these patients we performed a joint

analysis of survival data and longitudinal data, with the purpose of creating a joint

model that incorporated both factors risk for death from breast cancer and for the pro-

gression of tumour markers. Chapter 5 explains of the main methodologies applied in

this field along with a detailed description of the one employed in this particular study,

ending with the presentation of the main results followed by a discussion of these.

Finally, the final chapter provides a discussion of the main result along with an indica-

tion of future work to consider.
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2

Breast Cancer at a Senology Unit

2.1 Breast Cancer Epidemiology

Breast cancer is a malignant tumour, affecting mostly women, summary characterized

as an abnormal cell proliferation starting on the breast. It can invade surrounding

tissues or spread to distant areas of the body. This is an extremely complex disease,

characterized by a progression multistep process caused by interactions of both envi-

ronmental and genetic factors.

As Ferlay et al. (2013b) report, breast cancer is the second most common cancer

in the world and the most frequent cancer among women. They estimated that 1.67

million new cancer cases were diagnosed in 2012 (25% of all cancers). It is, actually, the

most common cancer in women both in more and less developed regions with slightly

more cases in less developed (883 000 cases) than in more developed (794 000 cases)

regions. Figure 2.1 presents the distribution of the number of new cases diagnosed per

year, worldwide, of the 10 most commonly diagnosed cancers, in 2012.
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2. BREAST CANCER AT A SENOLOGY UNIT

The 10 Most Commonly Diagnosed Cancers: 2012 Estimates  
Total Number and Percentage of New Cases Diagnosed per Year, Worldwide

Bowel including anus ICD-10 C18-C21

Please include the citation provided in our Frequently Asked Questions when reproducing this chart: http://info.cancerresearchuk.org/cancerstats/faqs/#How 
Prepared by Cancer Research UK
Original data sources:
Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray, F.GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: 
IARC CancerBase No. 11 [Internet].Lyon, France: International Agency for Research on Cancer; 2013. Available from: http://globocan.iarc.fr, accessed on 16/01/2014.

Figure 2.1: The 10 Most Commonly Diagnosed Cancer: 2012 Estimates. Ferlay et al.

(2013b), available from: http://globocan.iarc.fr
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2.1 Breast Cancer Epidemiology

Figure 2.2: Incidence and Mortality of Female Breast Cancer Worldwide. Ferlay et al.

(2013b), available from: http://globocan.iarc.fr

It is possible to note a great geographical variation worldwide associated with the

incidence and mortality of female breast cancer, as shown in Figure 2.2, being the in-

cidence higher for Western Europe, but mortality higher for Melanesia and Western

Africa.
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2. BREAST CANCER AT A SENOLOGY UNIT

In fact, Ferlay et al. (2013b) explain that breast cancer ranks as the fifth cause of

death from cancer overall (522 000 deaths) and while it is the most frequent cause of

cancer death in women in less developed regions (324,000 deaths, 14.3% of total), it

is now the second cause of cancer death in more developed regions (198,000 deaths,

15.4%) after lung cancer.

According to the 2008 National Register Oncology document, where all the infor-

mation on all types of cancer diagnosed in 2008 in Portugal is documented, about

one-third of the tumours diagnosed in women corresponded to breast cancer (30.2%)

in 2008 and it was reported as the most frequent cancer among women.

Similarly, the European Cancer Observatory reported, in the EUROCARE-5 study

(Angelis et al., 2014), breast cancer as the cancer with higher estimated incidence for

women in Portugal, as it is also reported in Figure 2.3.

Figure 2.3: Incidence of Female Breast Cancer in Portugal in 2012. Ferlay et al. (2013a),

available from: Available at: http://eco.iarc.fr/eucan/Country.aspx?ISOCountryCd=620

They also estimated an incidence rate per 100 000 women for breast Cancer in
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2.1 Breast Cancer Epidemiology

Portuguese women in 2012 of 85.6%, and the mortality rate per 100 000 women due to

this type of cancer of 18.4%, both values lower than the European average (92.8% and

23.1% respectively).

Furthermore, it is reported that in Portugal the estimated 1-year prevalence from

breast cancer in women in 2012 is 12.06%, the estimated 3-year prevalence is 34.11%

and 5-year prevalence is 53.83%. Lower that the European average prevalence for these

periods is, respectively, 12.17%, 34.24% and 53.58% (Angelis et al., 2014).

The 2008 National Register Oncology document reports a geographically diversity

in the incidence rate (standardized for the European population) in Portugal, observed

in Figure 2.4), being higher for districts nearby Lisbon.
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2. BREAST CANCER AT A SENOLOGY UNIT

Figure 2.4: Geographical distribution of Breast Cancer in women, diagnosed in 2008

(2008 National Register Oncology, page. 36)

Rodrigues (2011) explains that mortality, due to breast cancer, has increased in

most countries since the 1950s to the 1980s, particularly in the southern countries and

Eastern Europe. Since the 1990s values have stabilized, situation first observed in Eng-

land, Wales and the Netherlands, and subsequently in most other European countries.

However, this result has been almost exclusively limited to the age to 50 years.

Particularizing, Bastos et al. (2007) indicate that breast cancer mortality rates have

also declined in the Portuguese population in the 1990s with an estimated annual per-

cent change of -2% per year.
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2.2 Braga’s Hospital

Angelis et al. (2014) reported a five-year age-standardised relative survival for adult

cancer patients diagnosed in 2000-2007 in Portugal of 83.3% (IC[82.4;84.2]). And in-

formed that for most countries, 5-year survival for breast cancer (women only), for

that period, was fairly close to the European mean (81.8%, IC[81.6;82.0]). They point

out that in all northern and central European countries, and also Italy, Spain, and

Portugal, survival was greater than 80%, for the period between 2000 and 2007. For

all regions, survival peaked at 4554 years, and fell with age thereafter. Also, survival

for the whole of Europe increased over time: from 78.4% (IC[78.1;78.8]) in 19992001 to

82.4% (IC[82.2;82.7]) in 20052007.

The most recent study, conducted by the North Region Cancer Registry of Portugal

(RORENO), entitled ”Global survival, patients diagnosed in 2007-08”, considered all

patients aged over 15 years, diagnosed with malignant tumours in the period from 2007

to 2008 and resident at the time of diagnosis in the area of influence of RORENO -

where Braga’s Hospital is located. They compared the value reported by the study of

Angelis et al. (2014) with the value of 87% (IC[84.6;88.8]) they obtained for the stan-

dardized 5-year survival. Meaning that the 5-year survival for the north of Portugal

was greater in the period of 2007-2008 compared to the national a five-year survival for

the period of 2000-2007.

The referred RORENO’s study also compared the results obtained with the ones

they reported in a previous period analysed (2005/2006), where differences with statis-

tical significance for breast cancer survival estimates emerged, resulting in an improve-

ment of survival.

2.2 Braga’s Hospital

Braga’s Hospital is situated in the east of the city of Braga, located in northern Por-

tugal. Today it serves a direct area of about 275,000 clients.
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2. BREAST CANCER AT A SENOLOGY UNIT

Braga’s Hospital area of influence includes the districts of Braga and Viana do

Castelo and serves as 1st line Hospital the municipalities of Braga, Braga, Póvoa de

Varzim, Terras de Bouro, Vieira do Minho and Vila Verde and has 2nd line hospital

for the remaining area. Being a Central Hospital, it covers a population, according to

the 2011 census, of 1 081 641 inhabitants. The female population over 15 years of 1st

line municipalities is 128 859.

In 2008, a Senology unit at the Braga’s Hospital was created. Currently, it operates

an average of 130 new cases of breast cancer per year.

2.3 Descript Analysis of Breast Cancer Data from Braga’s

Hospital

Data were collected directly from the medical records of each patient, listed in the

computer system of Braga’s Hospital Glintt HS. We therefore have access to baseline

and clinical history of each patient (a roll of information such as diagnosis; pre-surgery,

post-surgery, group meetings; follow-up and medical exams). The authorization for

collect and use of senology data was approved by the Ethical Committee of Braga’s

Hospital.

Since there is no computer application, or database, that resumed all the patients

information we had to read and analyse all the clinical reports from each patients, in-

cluding blood and histological reports, to verify and complete every information written

by the doctors, as we were confronted with some missing, and even contradictory infor-

mation. It was, in fact, a time-consuming and labour-intensive process, with a duration

of almost a year. Which reflects the need of a software for this purpose.

Data were collected on all patients diagnosed with breast cancer from 2008 until

2012, in the hospital, and for all the patients in follow-up at the hospital at the date

of 1st January 2008.

We collected information on 596 patients, 56 patients were excluded since they

corresponded to, at least, one of the following exclusion criteria’s:
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2.3 Descript Analysis of Breast Cancer Data from Braga’s Hospital

1. No diagnostic, treatment or follow-up information;

2. Male gender;

3. Benign breast neoplasm.

Therefore 540 patients were eligible for the present analysis. As 19 patients pre-

sented bilateral breast cancer that should be treated as independent cases, on doctor’s

advice, which translates into a total number of 559 cases analysed of female patients

diagnosed with a malignant tumour.

It is noteworthy that, despite the Senology unit of Braga’s Hospital being created

only in 2008, there were patients being followed up by that date, but with a diagnostic

date before 2008. There are patients with diagnostic dates as far as 1993. These specific

cases sums into 186 cases. However, we do not have any information about patients

who have died before 2008. It is a relevant and important information to consider when

performing, for example, the survival analysis where it is necessary to perform a left

truncation of the data.

The total number of deaths is 74, however the total number of deaths from breast

cancer is only 55.

From the information gathered in all the medical reports we were able to collect more

than 50 variables. They can be grouped into two categories: (i) explanatory variables

at individual level, which are a group of demographic characteristics, prognostic and

etiologic factors (i.e. a cause or origin of a disease) resumed by Rodrigues (2011), based

on the work of Trichopoulos et al. (2008), as for example: age, menopause, age at rst

full term pregnancy, family history of breast cancer, etc.; and (ii) explanatory variables

at tumour level, that include characteristics of the tumour, some of them important

prognostic factors already reported in the literature and resumed by Fitzgibbons et al.

(2000) and Cianfrocca & Goldstein (9), such as TNM stage, histological type of tumour,

hormonal receptors or vascular or lymphatic invasion, among others. Table 2.1 gives

an exhaustive list of these variables.
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2. BREAST CANCER AT A SENOLOGY UNIT

Table 2.1: Variables collected from the Senology Unit of Braga’s Hospital.

Explanatory variables at individual level Explanatory variables at tumour level

Date of Birth Histologic Type of tumour

Marital status Degree of differentiation - Bloom-Richardson

District of Residence Presence of Carcinoma Associated

County of Residence Images of lymphatic invasion

Parish of Residence Images of venous invasion

Profession Estrogen receptors expression

Qualifications Progesterone Receptor Expression

Age at Menarche HER-2/neu

Births (number of children) Ki-67 proliferative index

Age at first full term pregnancy Neoadjuvant treatment

Breastfeeding Surgical Treatment

Duration of Breastfeeding Sentinel lymph Biopsy

Menopause Result of sentinel lymph Biopsy

Type of Menopause Axillary dissection

Age at Menopause Results of axillary dissection

Family history of breast cancer Treatment received after surgery

Degree of parentage Breast intervened

Therapeutic Hormone Replacement Breast Quadrant

Oral Hormonal Contraceptive Tumour Stage (TNM)

Age at Diagnosis Size of primary tumour

Degree of spread to regional lymph nodes

Presence of distant metastasis

Recurrence

Type of Recurrence

CEA values

CEA dates

CA 15-3 values

CA 15-3 dates

Dates of follow up consultations or death

Vital status

As expected, with Braga’s Hospital being a public hospital of Braga, the vast ma-

jority of patients live in Braga (96.4%). There are a few patients living in Porto (only

4 cases) and Viana do Castelo (16 cases).

More than half of the cases (64.19%) are related to patients with a very low educa-

tion level (with only 4 grade or less) in contrast to the 9.77% of cases of patients with
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2.3 Descript Analysis of Breast Cancer Data from Braga’s Hospital

a higher level of education, as can be seen in Figure 2.5.
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Figure 2.5: Frequency Distribution Graph of Braga’s Hospital Patient’s Education Level.

Regarding to breast cancer etiological factors summarized, as already mentioned,

by Rodrigues (2011), we will briefly describe the information collected for the following

factors: age at diagnosis, menarche, parity (number of children), age at 1st full term

pregnancy, lactation, age at menopause, type of menopause, hormone replacement ther-

apy, oral contraceptives, family history of cancer and the presence of cancer in the other

breast (bilateral cancer).

The age at diagnosis of the patients diagnosed with malignant breast tumour varies

between 20 and 92 years, with an average of 58 years. The age distribution is illustrated

in Figure 2.6. Note that increasing age is documented as an etiologic factor however,

as Cianfrocca & Goldstein (9) indicate, there are two major studies that demonstrated

a poor prognosis for patients with less than 35 years, even after adjusting for other

prognostic factors. This means that age at diagnosis is a possible prognostic factor to

be taken into account.

Actually, the work of Leclère et al. (2013), where they describe the trends in inci-

dence of breast cancer in women under 40 from 1990 to 2008, using pooled European
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2. BREAST CANCER AT A SENOLOGY UNIT

data, show that in Portugal the overall incidence rate increased linearly during that

period by 2.68% (CI = [1.97; 3.40]). They explain that the increase can be due to a

rise in risk factors and/or changes in diagnosis and surveillance practices. Nonetheless,

they could not clearly distinguish between those two non-exclusive explanations.
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Figure 2.6: Frequency Distribution Graph of Braga’s Hospital Patient’s Age at Diagnosis.

Menarche at an early age (under 12 years) is considered an etiological factor. In our

sample, this represents 32.4%. Figure 2.7 shows the distribution of ages at menarche

for cases analysed, where there is a greater concentration of data between 11 and 14

years. However, we accounted for 42.58% of missing information for this variable, that

is, 238 cases.
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Figure 2.7: Frequency Distribution Graph of Braga’s Hospital Patient’s Age at Menarche.
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Figure 2.8: Frequency Distribution Graph of Braga’s Hospital Patient’s Parity.

Low parity is also reported to be an etiologic factor. In this particular study only

11.58% had no children, 18.36% had only one child, 37.29% had 2 children, 14.69%

had 3 children and 18.07% had four or more children. Figure 2.8 shows a plot with the
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2. BREAST CANCER AT A SENOLOGY UNIT

distribution on the number of cases, by number of births. Similarly for this variable we

registered a high number of missing cases (205 cases, corresponding to 36.67%).

In our study the distribution of age at first full-term pregnancy behaves as shown

in Figure 2.9, ranging between 15 and 40 years, being 25 the median age and 25.3 the

mean age. Only 4.46% of the cases were patients with age at first full-term pregnancy

age 35 or above.
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Figure 2.9: Frequency Distribution Graph of Braga’s Hospital Patient’s Age at First

full-term pregnancy.

For cases where information was available relating to breastfeeding, we accounted

for 93.72% that breastfeed and only 6.28% that did not breastfeed. Note that we do

not have information for 60.11% of cases, that is, 336 cases.

Results show that 63.75% of the cases correspond to patients already in menopause

(we have no information for only 3.76% of cases). The type of menopause - natural

or artificial - it is an etiological factor, however, in our sample, only 9.25% of cases

are artificial menopause. In our database age at menopause is distributed as shown

in Figure 2.10, ranging between 33 and 58 years. Age-late menopause (after 55 years)
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2.3 Descript Analysis of Breast Cancer Data from Braga’s Hospital

also represents an etiological factor, but only represents 4.79% of the cases in our study.
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Figure 2.10: Frequency Distribution Graph of Braga’s Hospital Patient’s Age at

Menopause.

Both variables submission to hormone replacement therapy and the recent use of

oral contraceptives are reported as etiological factors (Rodrigues, 2011). However, the

percentage of missing cases (missing information) in our study is very high: 83.01% and

67.08%, for hormone replacement therapy and use of oral contraceptives respectively.

In cases where information exists, 27.37%, underwent hormone replacement therapy

and 61.96% used oral contraceptives.

With regard to family history of breast cancer (in 1-degree relatives), a recognized

etiologic factor in breast cancer (Rodrigues, 2011), in our study 57.63% of cases, for

which this information is existing, have a family history of breast cancer. Of the cases

with family history of breast cancer, 26.87% reported a family member of 1 degree with

breast cancer. The distribution by degree of relationship is illustrated in Figure 2.11. It

is noteworthy to point out that the percentage of missing information for this variable,

78.89%, is extremely high.
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Figure 2.11: Frequency Distribution Graph of Braga’s Hospital Patient’s Family History

of Breast Cancer Degree of Relation.

We accounted for 38 cases with bilaterally cancer cases (i.e., 19 patients with ma-

lignant tumours in both breasts, not necessarily at the same time). Note that patients

with bilateral cancer were considered as independent cases under medical advice.

Overall, only 81 cases (15.5%) of recurrence were detected, and 11 were local re-

currences (i.e. tumour returns to the same, or right near, the original tumour site), 64

distant recurrences (i.e., the tumour has spread to other organs), and 6 cases showed

the same two types of recurrence - local and distant. Of these 6, 5 eventually died

from breast cancer, 41 of the cases of distant recurrence returned as deaths from breast

cancer and, from the cases with local recurrence, we accounted for 3 deaths from breast

cancer. Of the 478 cases without recurrence only 6 translated into deaths from breast

cancer. But as indicated by the medical consultant a death from breast cancer always

present in the moment before death a recurrence of breast cancer. What makes am-

biguous the classification ”no recurrence” of the latter 6 cases referred. However, we

ensure that at least 89.9% of deaths in our sample breast cancer are related to tumour

recurrence.
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The usual surgical treatment for breast cancer treatment comprises mastectomy

with or without axillary lymph node dissection (which includes the modified radical

mastectomy and radical mastectomy) or breast-conserving surgery (including lumpec-

tomy and quadrantectomy), with or without emptying axillary. Overall, 97.5% of

patients underwent surgical treatment, where 57.42% underwent mastectomy and the

remaining 40.07% breast-conserving surgery. Of the 14 (2.5%) who did not undergo

surgery (because they refused it or because they only underwent neoadjuvant treat-

ment), 4 eventually die from breast cancer. Results show that 12% of the cases under-

went neoadjuvant treatment.

It is noteworthy that 74.6% of deaths from breast cancer were patients who under-

went mastectomy. However, this high percentage may be associated prior to the fact

that now this type of surgery is associated with a more aggressive type of tumour and

larger, than with the surgical procedure itself (Abraúl et al., 2011).

Comparing the cases diagnosed before the creation of Senology unit with cases di-

agnosed after its creation, is important to note that 77.4% of cases diagnosed before

the creation underwent mastectomy, this value decreased to 47.5% after the creation

of Senology unit. But the reason for this difference may be due to current guidelines

outlined in the document ”National Recommendations for Diagnosis and Treatment

of Breast Cancer”, that indicate that the treatment of breast cancer has undergone

tremendous development in recent years, with the tendency to use less invasive ap-

proaches. The breast-conservative surgery, where only part of the breast tissue is

removed during surgery (as opposed to the entire breast) is accepted as an alternative

technique to mastectomy in most patients with ductal carcinoma in situ and invasive

carcinoma in early stages. In fact, as will be shown below, it is exactly this type of

tumours that are most frequently in our sample. The referred document also indicates

that several prospective randomized studies have shown that conservative surgery pro-

vides long-term survival rates equivalent to mastectomy in patients with breast cancer

in early stages.

The axillary dissection is a surgical procedure to remove all nodes from the armpit

to study whether the cancer is at an early or advanced stage, which follows the mastec-
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tomy and may or may not follow the conservative surgery. According to the ”National

Recommendations for Diagnosis and Treatment of Breast Cancer”, this procedure is

carried out because of its excellent area control and the potential impact on the overall

patients’ survival. However, being the axillary dissection a procedure that affects the

quality of life, limiting patients’ lives, it was established the sentinel node biopsy as

the technique recommended in patients with clinically negative axilla. Being the rec-

ommended axillary dissection only when identifying metastases in sentinel node. The

introduction of this technique enables the axillary staging with less surgical morbid-

ity without interfering in overall survival and local recurrence. In this data set from

Braga’s Hospital, 53% of patients underwent axillary dissection and 44% of patients

underwent sentinel node search.

However, comparing the percentage of cases subjected to the above procedures be-

fore and after the creation of Braga’s Senology unit, it is noted that, in this specific data

set, before the existence of the unit 67.7% of patients underwent axillary dissection, in

contrast to 46.4% of cases undergoing axillary dissection after the creation of the unit.

Opposite to what occurs to the research of sentinel node, where only 1.6% of cases, in

this dataset, diagnosed and treated, before the unit of creation, were submitted to this

procedure, and after the creation of the unit underwent 65.4% of cases.

Chemotherapy, hormonal therapy and radiotherapy are adjuvant treatment (post-

surgery). Although both chemotherapy and hormone therapy are also the usual neo-

adjuvant therapies. In our study, more than half of the cases (67.09%) were submitted

to chemotherapy, 67.89% of the cases were submitted to radiotherapy and a large

percentage (88.35%) were submitted to hormonal therapy. Almost half of the cases

(45.29%) were submitted to the three adjuvant treatments referred.

As de Oliveira & da Silva (2011) explain, the staging system adopted for breast

cancer is the one proposed by the American Joint Committee on Cancer (AJCC). In

this system, T is defined as the category that describes the extent of tumour size, N is

the category that describes the nodal status and M describes the presence or absence

of distant metastases. The classification of oncological disease in stages - from 0 to IV

are grouping categories of TNM classification. It is very important the collection of
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this information since many of the pathological factors reflected in the TNM classifica-

tion (tumour size, lymph node status, histological grade, histological type and tumour

vascular invasion) are the pillars for physicians establish a prognosis.

Table 2.2, adapted from de Oliveira & da Silva (2011), summarizes the various cat-

egories of staging
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Table 2.2: American Joint Committee on Cancer TNM staging system for breast cancer.

TNM staging system for breast cancer

Primary tumour (T)

TX Primary tumour cannot be found.

T0 There is no evidence of the primary tumour.

Tis Intraductal carcinoma, lobular carcinoma in situ,

Pagetś disease of the nipple with no tumour invasion

in normal breast tissue.

T1 Tumour does not exceed 2.0 cm in its largest dimension.

T2 Tumour greater than 2.0 cm but less than

5.0 cm in its largest dimension.

T3 Tumours greater than 5.0 cm in its largest dimension.

T4 Tumour of any size with direct extension to the chest

wall or skin.

Pathological classification of regional lymph nodes (N)

NX Regional lymph nodes cannot be assessed (not removed for

study or previously removed).

N0 No regional lymph node metastasis.

N1 Metastasis in 1-3 ipsilateral axillary lymph node(s), and/or

in ipsilateral internal mammary nodes with microscopic metastasis

detected by sentinel lymph node dissection but not clinically apparent.

N2 Metastasis in 4-9 ipsilateral axillary lymph nodes, or in clinically

apparent ipsilateral internal mammary lymph node(s) in the absence of

axillary lymph node metastasis.

N3 Metastasis in 10 or more ipsilateral axillary lymph nodes; or in

ipsilateral infraclavicular lymph nodes; or in clinically apparent

ipsilateral internal mammary lymph nodes in the presence of one or more

positive axillary lymph nodes; or in more than 3 axillary lymph nodes with

clinically negative, microscopic metastasis in internal mammary lymph nodes;

or in ipsilateral supraclavicular lymph nodes.

Distant Metastasis (M)

M0 No distant metastasis.

M1 Distant metastasis.

*In this study we used the pathological classification, commonly referred to as ”pN”,

a classification based on axillary lymph node dissection with or without sentinel node

biopsy, which maintains the same meaning for the categories.
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In this study, T, N and M categories were analysed individually. For the category

T, were recorded 48.8% cases with T1 and 37.3% with T2. This means that the vast

majority of cases correspond to lower classes in this category. Only 5.1% of patients

had a tumour classified as in situ (Tis class). Only 10 cases (1.79%) had no information

for this category. Figure 2.12 represents graphically these results.
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Figure 2.12: Frequency Distribution Graph of Braga’s Hospital Patient’s Primary Tu-

mour Size Categories (TNM).

Also, N staging category revealed a greater concentration data for the lower classes

- N0 and N1 -, representing 49.91% and 30.06% of cases, respectively. For this category

we had no information for 20 cases (3.6%). Figure 2.13 represents the distribution of

the cases by Regional Lymph Node Involvement.
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Figure 2.13: Frequency Distribution Graph of Braga’s Hospital Patient’s Regional Lymph

Node Involvement Categories (TNM).

For M staging category, we only accounted for 4 cases (0.73%) in the M1 class (that

is, who had distant metastases), with 15.2% of missing cases.

The classification of tumour on a stage is a combination of T, N and M categories.

Table 2.3 shows how the classification in the different stages is done according to T,

N and M categories. Most of the cases presented stage I (36.45%) and II (40.75%)

tumours. Figure 2.14 shows the distribution of stages, where it is visible a higher con-

centration data for stages I and II. We only accounted for 4.29% of cases without any

Stage information.
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Table 2.3: American Joint Committee on Cancer Tumour Staging.

AJCC Staging groups

Stage 0 Tis,N0,M0

Stage I Stage IA T1,N0,M0

Stage IB T0,N1mi,M0

T1,N1mi,M0

Stage II Stage IIA T0,N1,M0

T1,N1,M0

T2,N0,M0

Stage IIB T2,N1,M0

T3,N0,M0

Stage III Stage IIIA T0,N2,M0

T1,N2,M0

T2,N2,M0

T3,N1,M0

T3,N2,M0

Stage IIIB T4,N0,M0

T4,N1,M0

T4,N2,M0

Stage IIIC Any T,N3,M0

Stage IV Any T, Any N, M1
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Figure 2.14: Frequency Distribution Graph of Braga’s Hospital Patient’s Tumour Stage.

For histological type of cancer, it prevails in our study the invasion type of carci-

noma (90.38%) - breast cancers occurring in the ducts or the lobules (de Oliveira &

da Silva, 2011) - in detriment of carcinoma in situ (9.04%) - in which histological lesions

are identified malignant proliferation of neoplastic cells in the ductal phenotype wall

and/or in the mammary ducts, without identifying the cancer tissue surrounding the

breast ducts (Lopes, 2011). We noticed a large number of invasive ductal carcinoma

(67.86%), and they also represent the majority of deaths from breast cancer (77.08%).

Table 2.4 summarizes the distribution of carcinoma types under study.
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Table 2.4: Distribution of histological type of cancer.

Histological type Number of patients %

Ductal in situ 40 7.56

Invasive ductal 359 67.86

Mixed invasive carcinoma 24 4.54

Lobular in situ 6 1.13

Lobular invasive 41 7.75

Other (invasive) 55 10.4

Others 4 0.76

NA’s 30 5.37

Note that, in terms of prognosis, invasive ductal type of tumours (usually referred to

as invasive ductal Not Otherwise Specified/NOS) belong to the poor prognosis group,

such as a mixed invasors compared to invasive lobular or otherwise (de Oliveira &

da Silva, 2011). The in situ types of carcinoma, will eventually have a more favor-

able prognosis than the invasors. In the study sample, from the cases of carcinoma in

situ, only 3 resulted into death from breast cancer (6.25% of deaths from breast cancer).

It was assumed that the invasion of blood and lymphatics vessels of tumour emboli

can be a prognostic information as powerful as Staging (Schoppmann et al., 2004).

The prognostic value of vascular invasion was confirmed in studies concerning survival

and is considered one of the most important factors for predicting local recurrence af-

ter conservative surgery (Schoppmann et al., 2004). The study of Schoppmann et al.

(2004) concludes, in fact, that patients without lymph node involvement but with lym-

phovascular invasion have mortality rates higher than patients without lymphovascular

invasion. In our sample, only 4.65% of the cases showed venous vascular invasion im-

ages and 17.53% presented lymphatic vascular invasion images.

The Bloom & Richardson (1957) classification divides the histological grade in three

categories: grade I (well-differentiated carcinoma); grade II (moderately differentiated

carcinoma) and grade III (poorly differentiated carcinoma). The histological grade,

as a prognostic factor, has been widely studied and its impact on the survival of pa-

tients was confirmed - survival gets progressively worse as the histologic grade increases

(Cianfrocca & Goldstein, 9). In our sample cases that present a histological grade II are

31



2. BREAST CANCER AT A SENOLOGY UNIT

predominant, representing 43.84% of the cases. In lower percentage are the cases with

grade III (23.09%). Note that in our study the Gx rating means it was not possible

to classify the histological grade of the tumour and quantifies only 2 cases analysed.

8.59% of the cases did not present any information regarding the histological grade of

the tumour. Figure 2.15 represents the distribution of the cases by degree of differen-

tiation.
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Figure 2.15: Frequency Distribution Graph of Braga’s Hospital Patient’s Tumour Degree

of Differentiation.

The characterization of breast carcinoma with respect to expression of estrogen re-

ceptor (ER), progesterone (PR), and the human epidermal growth factor receptor 2

oncogene (HER-2 neu) is a usual procedure and required by doctors. A positive ex-

pression of ER and RP is usually related to a good prognostic. As Gobbi et al. (2008)

concludes that tumours presenting an overexpressing HER2-neu are associated with a

worse prognosis and have a predictive value in breast cancer.

Abraúl et al. (2011) clarify that a more accurate histological and molecular charac-

terization of breast cancer, with the systematic use of molecular markers with predictive
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value of response to treatment, has allowed more appropriate and therapeutic individ-

ualization. As so, it is problematic the existence of missing values, in our study, for RE

receptors, PR and Her-2 neu (13.77%, 17.89% and 25.75%, respectively).

Dawson et al. (2009) explain triple negative breast cancers (TNBC) are dened by

the absence of estrogen, progesterone and HER2-neu expression. Although the prog-

nostic significance of triple negative tumours remains unclear we decided to create a

binary variable to indicate the cases with TNBC and the ones with non TNBC. As a

result, in our study we were able to account for 4.38% of TNBC cases that represents

21.28% of the deaths from breast cancer.

Also the proliferative activity of cancer - particularly the Ki.67 antibody immunos-

taining index (high versus low) - is considered important in determining the prognosis

(Fitzgibbons et al., 2000). A high expression of Ki67 is associated with a worst prog-

nostic as, for example, Viale et al. (2008) indicate. In our sample 56.7% of cases showed

a high proliferative activity of Ki.67 antibody. However, for 43.83% of cases no infor-

mation for this variable is available.

We will now present some descriptive of the longitudinal variables.

As Duffy et al. (2000) explain, Carcinoma Antigen 15-3 (CA15-3) is the most widely

used serum marker in breast cancer. It consists in a large transmembrane glycoprotein

which is frequently overexpressed and aberrantly glycosylated in cancer. Currently the

main uses of CA15-3 are in preclinically detecting recurrent breast cancer and monitor-

ing the treatment of patients with advanced breast cancer, although its clinical value

is not validated in a high-level evidence study, as pointed out by the American Society

of Clinical Oncology. Nevertheless, as Harris et al. (2007) point out, there are several

well-designed studies that show that an increase in CA15-3 after primary and/or adju-

vant therapy, can predict recurrence an average of 5 to 6 months before other symptoms

or tests.

The tumour marker Carcinoembryonic antigen (CEA) is usually used for therapy

monitoring in advanced disease, although recent reports, e.g. Guadagni et al. (2001),
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discourage its routine use because of low sensitivity. The authors conclude that its use

should be considered as an inecient method of follow-up evaluation for breast cancer

patients, and it provides no additional value when used in combination with CA15-3.

Nevertheless, as Sturgeon et al. (2008) point out, on occasion, it can be informative

when levels of CA15-3 remain below the cut-off point.

We only have information on tumour marker CA15-3 values for 534 patients. This

translates into a total number of 552 cases analysed, since 18 cases presented bilateral

breast cancer. The total number of deaths from breast cancer is 55. There were 5166

measurements of tumour marker CA15-3, with a number of observations per patient

varying between 1 and 48 measurements. Being 8 the median number of measurements

per person. Figure 2.16 shows the distribution of the number of measurements per

patient on the CA15-3 tumour marker.
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Figure 2.16: Histogram for the number of measurements per patients for tumour marker

CA15-3.

We only have information on tumour marker CEA values for 532 patients. Since

19 patients had bilateral breast cancer it translates into a total number of 551 cases
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analysed. The total number of deaths from breast cancer is 54. There were 4166 mea-

surements of tumour marker CEA, with a number of observations per patient varying

between 1 and 23 measurements, as shown in Figure 2.17. The median number of

measurements per person is 7.
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Figure 2.17: Histogram for the number of measurements per patients for tumour marker

CEA.
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3

Survival Analysis

Many medical or biological studies focus its analyses investigating time to a certain

event, for example, time it takes for a patient to respond to a therapy, time until dis-

ease recurrence or relapse or time until death. When the response variable of interest

is time from an origin to an event of interest predefined, survival statistical methods

must be used (Cox, 1972), modelling the hazard of the event at each time point.

However, it is frequent in studies of this natures that data are collected over a finite

period of time and hence the event of interest may not be observed for all the individ-

uals under study. Which means that the time-to-event of those individuals who have

not experienced the event is censored. This results in what is usually called censored

data, and it contains important information regarding the time an individual has been

in risk of failure. For this reason, it is necessary to accommodate those observations in

survival models.

The combination of censoring and, also the heterogeneity in each individual’s times

until the event of interest that may exist, generates unusual difficulties in the analysis

of this type of data that cannot be handled properly by the standard statistical meth-

ods. Which justifies the need for specific models, such as survival models, to deal with

time-to-event data.

Survival models allows the investigator to be able to answer questions such as:

What is the effect of a treatment on survival time? Which factors are associated with
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the time duration of a disease? What are the predictors for death or even for cancer

recurrence, considering the time between relapses?

The work presented in this chapter is an extension of the work already published

by Borges et al. (2014). This Chapter begins with the clarification of the methodology

applied in the survival analysis of the patients from Braga’s Hospital Senology unit

diagnosed with breast cancer. It is introduced by a summary explanation of the main

approaches adopted in studies of this nature, and also describing the models applied

on the present analysis. Subsequently, the results from the survival analysis of the data

set in study will be exposed, ending with a sub-chapter that resumes a discussion of

the significant results.

The entire analysis was performed with open source statistical software R, in par-

ticular making use of Survival (Therneau, 2015) and flexsurv (Jackson, 2015) packages.

3.1 Definition of Concepts

We will present some notation and concepts to describe the distribution of time to the

event for a given population.

Let T be the random variable representing the time until the event of interest.

It would be ideal if we could observe the exact failure times of a random sample of

n individuals: (t1, ..., tn), where for each individual i = 1, ..., n the observation ti is a

realization of the random variable Ti with the same (common) distribution depending

on parameters that we want to estimate.

However, for certain individuals we will not observe T , but rather a realization ci,

of a random variable Ci, representing the time censored. The only thing we can assure

about the failure time, when we observe a censored time, is that failure time is certainly

greater than the censored time, namely, that Ti > Ci.
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What we got to observe then is the minimum of two values, which gives rise to a

set of realizations (t1, c2, c3, ..., t12, c13, ..., cn−1, tn).

Hence, what is actually observed is a realization of the variable Si = min(Ti, Ci),

time of survival, that is, the minimum between failure time and censored time.

To distinguish what is failure time and what is censored time we consider δi =

I(Ti ≤ Ci), an indicator that takes value 1 if the observed is the failure time, and zero

otherwise. Thus, a set of survival data is a pair (si, δi).

The distribution of the random variable T of interest can be described in several

ways, using previously known functions. For example, by the already known cumulative

distribution function:

F (t) = P (T ≤ t), t ≥ 0, (3.1)

which is right continuous, i.e., limu→t+ F (u) = F (t). When T is a survival time, F (t)

is the probability that a randomly selected subject from the population will experience

the event before time t. If T is a continuous random variable, then it has a density

function f(t), which is related to F (t) through the following equation:

f(t) =
dF (t)

dt
, (3.2)

or even, through

F (t) =

∫ t

0
f(u)du. (3.3)

Since we are interested in the time of an individual survive, i.e., probability of an

individual surviving beyond time t, we are, hence, interested in the survival function

defined as:

S(t) = P (T ≥ t) = 1− F (t). (3.4)

The survival function S(t) is a non-increasing function over time, taking the value 1

when t = 0, i.e., S(0) = 1. Being T a continuous random variable, it has the character-

istic S(∞) = 0, which means that everyone will experience, at some moment, the event.

However, there are cases where it is possible to make S(∞) > 0, which corresponds

to the situation where there is a positive probability of not dying or not experiencing

the event. For example, if the event of interest is the time from a response until the
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returning of the disease, and if there is a possible cure to the disease, then in this case

S(∞) > 0, where S(∞) is the proportion of subjects healed.

We can also establish the following relationships between these functions:

S(t) =

∫ ∞
t

f(u)du, (3.5)

or even

f(t) = −dS(t)

dt
, (3.6)

The hazard rate is a convenient way to describe the distribution of time to event, as

it has a very natural interpretation related to how the event occurs in the population.

We will begin to define mortality rate, which is a discrete version of the hazard rate.

The mortality rate for a particular time t, where t is an integer usually measured in

units of time (e.g. years, months, days, etc.), the proportion of people who experienced

the event between time t and (t+ 1) between the living individuals at time t, i.e.:

m(t) = P (t ≤ T < t+ 1 | T ≥ t). (3.7)

The hazard rate, h(t), is the limit of the mortality rate if the time interval is con-

sidered very short (rather than a unit). The hazard rate is the instantaneous rate of

the event occurring at time t given that the individual has survived up to time t.

Specifically, the hazard rate is defined as:

h(t) = lim
∆t→0

P (t ≤ T < t+ ∆t | T ≥ t). (3.8)

Hence, if ∆t is very small, we will have:

P (t ≤ T < t+ ∆t | T ≥ t) ≈ h(t)∆t. (3.9)

This definition implies other relations:

h(t) =
lim∆t→0

1
∆tP (t ≤ T < t+ ∆t | T ≥ t)

P (T ≥ t)
=
f(t)

S(t)
= −dlogS(t)

dt
. (3.10)

By integrating both sides of this last equality we obtain the cumulative hazard

function:

H(t) =

∫ t

0
h(u)du = − logS(t). (3.11)

40



3.2 Censoring and Truncation

Hence, we obtain:

S(t) = exp (−H(t)) = exp

(
−
∫ t

0
h(u)du

)
, (3.12)

and also:

f(t) = h(t) exp

(
−
∫ t

0
h(u)du

)
, (3.13)

The likelihood function of θ, a vector of parameters, given the data set Y = (Ti, δi),

i = 1, ..., N , where N is the size of a generic sample, is given by:

L (θ | Y ) =

N∏
i=1

f(ti | θ)δiS(ti | θ)1−δi . (3.14)

From the relations in 3.10 and 3.13 we can rewrite 3.14 as it follows:

L (θ | Y ) =
N∏
i=1

h(ti | θ)δi exp

(
−
∫ ti

0
h(u | θ)du

)
. (3.15)

3.2 Censoring and Truncation

When working with real data, especially in a study in which time marks such as date

of beginning of the study (that could be the date of the tumour diagnose) and end of

study (that could be the date of death) are extremely important, we need to take into

account the existence of censoring and, even truncation. In this particularly study we

detected the need to acknowledge left truncation and right censoring of the data.

We consider the beginning of the study as the date of the malignant tumour diag-

nosis and the end of the study the date 30/11/2014. Because subjects enter this study

at different times and the terminal point of the study is predetermined by us, they

have their own specific, fixed, censoring time. This form of censoring has been named

generalized Type I censoring (David & Moeschberger, 1978).

Another type of censoring scheme that also arises in this type of data is interval

censoring. This occurs when all that is known is that the event of interest occurs be-

tween two known times, in a time interval.
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As previously mentioned, the Senology Unit of Braga’s Hospital was only created

in 2008, however we have information on patients who were diagnosed with malignant

tumour before that time and alive at the Unit’s creation. As we do not have any infor-

mation on patients who were diagnosed before 2008 and died before that year, we have

to consider a left truncation of the data in that year.

Klein & Moeschberger (2003) clarify that truncation of survival data occurs when

only those individuals whose event time lies within a certain observational window

(YL, YR) are observed. When YR is infinite then we have left truncation. An individual

whose event time is not in this interval, is not observed and no information on this

subject is available to the investigator. Also, they alert to the fact that because we are

only aware of individuals with event times in the observational window, the inference

for truncated data is restricted to conditional estimation.

Note that, in our specific case, patients alive in 2008 and diagnosed before will natu-

rally be the ”stronger” compared to others that had already died and were not observed.

Adapting Klein & Moeschberger (2003) notation, for a specic subject under study,

we assume that there is a lifetime V and a fixed censoring time, Cr (Cr for ”right”

censoring time). The V ′s are assumed to be independent and identically distributed

with probability density function f(v) and survival function S(v). The exact lifetime

V of an individual will be known if, and only if, V is less than or equal to Cr. If V is

greater than Cr, the individual is a survivor, and his event time is censored at Cr.

The likelihoods for this two types of censoring may be written by incorporating

the following components: for the right-censored observations S(Cr); and for the left-

truncated observations f(x)
S(YL) . Hence, in our study, the likelihood function may be

constructed by putting together the component parts as:

L (θ | Y ) =
∏
i∈D

f(xi)

S(YLi)

∏
i∈R

S(Cr), (3.16)

where D is the set of death times and R the set of right-censored observations.
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3.3 Non-Parametric Survival Models

The Kaplan-Meier estimate (Kaplan & Meier, 1958), also called the Product-Limit

estimator, is a nonparametric estimate of the survival function, S(t) widely used in

survival analysis. This estimate is a step function with jumps at observed event times,

ti. The Kaplan-Meier estimate of the survival function is given by:

Ŝ(t) =

{
1 if t < t1∏
ti≤t

[
1− di

Yi

]
if t1 ≤ t

, (3.17)

where 0 < t1 < t2 < ... < tD, also the number of individuals with an observed event

time ti is di, and the value Yi represents the number of individuals at risk at time ti

(individuals who die at time ti or later).

The variance of the Product-Limit estimator is estimated by Greenwood’s formula

(Klein & Moeschberger, 2003), given by:

V̂ [Ŝ(t)] = Ŝ(t)2
∑
ti≤t

di
Yi(Yi − di)

. (3.18)

However, Kaplan-Meier estimator only applies to right censored type of data (Klein

& Moeschberger, 2003). When the data is left truncated and right censored, the Kaplan-

Meier estimator may have a relatively large variance for small t, where the risk sets are

small, and also for large t. This early instability in the point estimator of the survival

function may propagate throughout the entire curve. Lai & Ying (1991) suggested a

solution to this problem by a slight modication of the Product-Limit estimators where

deaths are ignored when the risk set is small. Their estimator is given by:

Ŝ(t) =
∏
ti≤t

(
1− di

Yi
I[Yi ≥ cnα]

)
, (3.19)

where I is the indicator of a set A, n is the sample size, and c > 0, 0 < α < 1 are

constants. This estimator is asymptotically equivalent to the usual Product-limit esti-

mator.

Note that for right-censored data Yi, is, in fact, the number of individuals on study

at time 0 with a study time of at least ti. For left-truncated data, Yi can be redefined

as the number of individuals who entered the study prior to time ti and who have a
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study time of at least ti, that is, Yi is the number of individuals with Lj < tiTj .

To evaluate the statistical significance of differences among the Kaplan-Meier sur-

vival curves of each variable category, we made use of the Gρ family of tests of Har-

rington & Fleming (1982), with weights on each death of S(t)ρ, where S(t) is the

Kaplan-Meier estimate of survival, implemented in the statistical software used. Since

we made ρ = 0, we actually made use of the log-rank or Mantel-Haenszel test where

the null hypothesis being tested is: no difference between (true) survival curves.

It should be emphasized that a limitation of non-parametric methods is that they

do not allow the examination of the effect of covariates on survival time.

3.4 Parametric Survival Models

As Cox et al. (2007) refer parametric models can be attractive because standard meth-

ods such as maximum likelihood are available for parameter estimation and testing and

a complete description of the hazard function can be obtained.

In fact, such models play an important role in the survival analysis since many

medical and biological statistical analyses are performed using parametric techniques.

Such models are constructed from families with known probability distributions such

as Exponential and Weibull. Thus, it was considered appropriate to explain, although

briefly, these two families, in the survival context.

Exponential Model

The Exponential distribution is characterized for having constant hazard λ(t) = λ.

Thus, the density function for the survival time T , is given by:

f(t) = λ exp(−λt), (3.20)

and the respective survival function by:

S(t) = exp(−λt). (3.21)
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The corresponding likelihood function of λ, given the data set Y = (Ti, δi) , i =

1, ..., N , where N is the size of a generic sample, can be written as:

L(λ | Y ) =
N∏
i=1

(λ exp(−λti))δi S(ti | λ)1−δi = λ
∑N

i=1 δi exp

(
−λ

N∑
i=1

ti

)
. (3.22)

Note that, regardless of how much time an individual has lived, the risk of failure is

always the same. For processes where the risk changes with time, this model will not

be appropriate.

Weibull Model

Considering that T is Weibull distributed with shape and scale parameters σ and

α, respectively, the density function is given by:

f(t) = ασαtα−1 exp (−(σt)α) . (3.23)

And the survival function as:

S(t) = exp (−(σt)α) . (3.24)

The respective hazard and cumulative hazard functions are given by:

h(t) = σααtα−1, (3.25)

and

H(t) = (σt)αt. (3.26)

The logarithm of the hazard function is a linear function of log time with constant

(α log σ + logα) and slope (α − 1). Thus, the hazard is rising if α > 1, constant if

α = 1, and declining if α < 1.

The corresponding likelihood function of (σ, α) can be written as:

L(σ, α | Y ) =
N∏
i=1

f(ti | σ, α)δiS(ti | σ, α)1−δi = α
∑N

i=1 δi exp

{
N∑
i=1

(δi log σ + (α− 1)δi log(ti)− σtαi

}
.

(3.27)

In the field of fully parametric models, in the context of survival, is important to

refer the work of Stacy (1962) in the generalization of the gamma (GG) distribution
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that allowed Ardoino et al. (2012) to use the GG model to investigate the shape of the

hazard function in early breast cancer patients. As they refer its use may be particu-

larly advantageous, as it allows testing different shapes of the hazard function. Later

on, Cox et al. (2007) developed a taxonomy of the hazard functions of the GG family,

which includes various special distributions and allows depiction of effects of exposures

on hazard functions.

Also, the generalized F distribution (GF ), a larger family of functions that contains

the GG function, was applied in the survival context by Ciampi et al. (1986) and later

Cox (2008) provided a characterization of the hazard functions of the GF model.

Nonetheless, in general, fully parametric model with a low number of parameters

(such as Weibull, exponential, lognormal, loglogistic, among others) are considered in-

sufficiently exible, especially for studying long follow-up times (Ardoino et al., 2012).

3.5 Semi-Parametric Survival Models

There are also different approaches to the analysis of survival data which are not fully

parametric, as for example Herndon & Harrell (1990) and Herndon & Harrell (1995)

who incorporate cubic splines in the hazard model or Rosenberg (1995)that made use

of B-splines in the hazard function estimation. Rossini & Tsiatis (1996) also propose a

semiparametric proportional odds model for the analysis of current status data. Roys-

ton & Parmar (2002) propose a flexible parametric models for censored survival data,

which will be explained in detail later on. Putter et al. (2005) made the more complete

use of time-varying covariates.

More recently, Cadarso-Suarez et al. (2010), proposed an extension to these mod-

els, having a flexible hazard ratio curves for continuous predictors, with an application

for breast cancer. And Zou et al. (2011), suggests an alternative to the Cox Pro-

portional hazard model (that would be explained following), when the proportional

hazard assumption is not satisfied, constructing a semiparametric accelerated failure

time partial linear model and developing its estimation method based on the penalized
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spline (P-spline) and the rank estimation approach. Also, Aalen’s additive model is an

alternative approach when proportional hazard assumption is not verified (Aalen, 1989).

However, the most popular semi-parametric approach to model survival is the well-

known Cox proportional hazards model (Cox, 1972), which will be detailed following.

3.5.1 Cox Proportional Hazards Model

Cox proportional hazards model (CPHM) is, doubtless, the most commonly used model

in survival analysis.

The CPHM defines the probability of survival as a function of time t, for a vector

of covariates xi, as it follows:

S(t | xi) = [S0(t)]exp(x
′
iβ), (3.28)

where S0(t) is the baseline survival function and β the vector of coefficients estimated.

The corresponding hazard function can be written as:

h(t | xi) = h0(t) exp(x
′
iβ), (3.29)

where h0(t) is the baseline hazard function.

This model implies that the risk ratio between any two individuals with covariates

vectors, respectively, x1 and x2, given by:

h(t | x1)

h(t | x2)
=
h0(t) exp(x

′
1β)

h0(t) exp(x
′
2β)

= exp
{

(x1 − x2)
′
β
}
, for all t ≥ 0, (3.30)

is constant and not time dependent. Justifying the name of proportional hazards model.

Cox model is said to be a semi-parametric model because h0(t) is non-parametric,

it is a baseline hazard function non specified, and exp(x
′
1β) is parametric.
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Cox (1975) proposed an estimation of the primary parameters of interest, β, by

maximization of a partial log-likelihood function. Which is none other but the likeli-

hood of the data conditioning in times of failure.

To briefly describe the partial log-likelihood function proposed let’s consider the

failure and censor times ordered. Let t be a time where an individual has experienced

the event, and R(t) be the set of individuals at risk at time t. This function considers,

for each individual i with failure time, the probability of the individual who failed in

interval [t, t+ δt) actually be the individual i, as:

P {i fails in [t, t+ δt) | one failure occurred in [t, t+ δt), R(t)} =
exp(x

′
1β)∑

k∈R(ti)
exp(x

′
kβ)

.

(3.31)

Making the product for all individuals with failure time, comes:

PL(β) =

n∏
i=1

{
exp(x

′
1β)∑

k∈R(ti)
exp(x

′
kβ)

}
. (3.32)

Note that the partial likelihood function does not depend on h0(t), hence there is no

need to assume a distribution of the latter.

Summarizing, the particularity of this model, which can be viewed as one of its

advantages, is that the estimation of the coefficients does not require the formulation

of the baseline cumulative survival function as it gets absorbed when the coefficients

are estimates by the method of partial log likelihood.

3.5.2 Flexible Parametric Survival Models

Despite the vastly usage of CPHM, there are some constrains to the application of

these models namely, the proportional hazard assumption and the non formulation of

the baseline cumulative survival function, that can be of medical interest.

In this analysis, we made use of Flexible Parametric Survival Models, in particu-

lar a flexible Royston-Parmar survival model (FRPM) (Royston & Parmar, 2002), to
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estimate hazard ratios over time since diagnosis by a set of statistical significant co-

variates. And, also the well-known CPHM, only for the purpose of comparing estimates.

As Royston & Parmar (2002) stress out it is often of interest, in medical studies,

the smoothly estimation of the baseline hazard function as it is directly related to the

time-course of an illness. Also the incorporation of time varying regression coefficients

on the CPHM, when the assumption of proportional hazards is violated, results in a

complex practical interpretation of the coefficients and in the robustness of the result-

ing model. So it is of interest the use a more flexible model where the visualization of

the hazard function is much easier.

For that we choose to work with the approach proposed by Royston & Parmar

(2002) where they model the logarithm of the baseline cumulative hazard function as

a ”natural” cubic spline function of log time.

The FRPM comes from the family of functions that are based on transformation of

the survival function by a link function g(.):

g [S(t | xi)] = g [S0(t)] + xiβ. (3.33)

Since we are interested in estimating hazard ratios, and as Royston & Parmar (2002)

suggest, we use natural cubic splines to model g[S0(t)] within the Aranda-Ordaz family

of link functions (Aranda-Ordaz, 1981):

g(x; θ) = log

(
x−θ − 1

θ

)
. (3.34)

Choosing to work with hazards scaling by making θ → 0, rather than with more

general values of θ as they refer that the interpretation of covariate effects would turn

out obscure.

Thus, the model transformation may be written as it follows:

g [S(t | xi)] = log [H(t | xi)] = ηi = s(log(t) | γ, k) + xiβ. (3.35)

where H(t | xi) is the cumulative hazard function and s is a natural cubic spline

acting on a log scale of time t, with adjustable parameter vector and k knots.
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The choice of number of knots can be made using the minimum combination of

Akaike Information Criterion (AIC) (Akaike, 1973).

The respective survival function can be formulated as:

S(t | xi) = exp (− exp(ηi)) . (3.36)

And the hazard function as:

h(t | xi) =

(
ds(log(t) | γ, k′

0)

dt

)
exp(ηi). (3.37)

The contribution to the log likelihood for the ith individual for a flexible parametric

model on the log cumulative hazard scale can be written as (Lambert & Royston, 2009):

logLi(β) = δi

(
log[s

′
log(ti) | γ, k0] + ηi

)
− exp(ηi). (3.38)

Making the product for all individuals with failure time, comes:

logL(β) =
n∏
i=1

(
δi

(
log[s

′
log(ti) | γ, k0] + ηi

)
− exp(ηi)

)
. (3.39)

3.6 Model Diagnostic

Since both CPHM and FRPM rely on the assumption of proportional hazards we

preformed a statistical test proposed by Grambsch & Therneau (1994) based on the

Schoenfeld residual calculation, to assess the validity of that assumption.

Also we graphical represented the Cox-Snell residuals (Cox & Snell, 1968), a type

of residuals for survival models, for assessing the overall goodness-of-fit of the CPHM.

If the model adjusted is correct it is well known that, if we make the probability

integral transformation on the true death time T , the resulting random variable has a

uniform distribution on the unit interval or that the random variable U = H(Tj |xj),
where xj is a vector of all fixed-time covariates, has an exponential distribution with

hazard rate 1. Here, H(Tj |xj) is the true cumulative hazard rate for an individual with
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covariate vector xj . If the estimates of the β’s from the model are b = (b1, ..., bp), then,

the Cox-Snell residuals are defined as (Klein & Moeschberger, 2003):

rCSi = Ĥ0(Tj) exp

(
p∑

k=1

(xijk, bk)

)
, j = 1, ..., n. (3.40)

where Ĥ0(t) is the baseline hazard rate estimated.

If the model is correct and the b′s are close to the true values of β then, the r′CSi
s

should be a censored sample from a unit exponential distribution.

A graphical assessment of goodness-of-fit is to compare the survival function of the

unit exponential distribution Sexp(t) = exp(−t), with the Kaplan-Meier estimate of the

survival function of rCSi (Rizopoulos, 2012). Accounting for the fact that r′CSi
s are a

censored sample from a unit exponential distribution.

Also, for model diagnose we made use of a graphical superimposing of the nonpara-

metric survival curve (Kaplan-Meier) versus the FRPM curve versus the CPHM curve,

for a certain combination of covariates values.

3.7 Breast Cancer Survival Analysis

3.7.1 Kaplan-Meier Analysis

The exploratory analysis presented in Chapter 2, reports, for the 540 patients eligi-

ble for the present analysis, a majority of early-stage breast cancer cases. We mean by

early-stage breast cancer, cases whose values are on the first categories of tumour stage,

size and grade. This can be related to an increased screening, leading to early detection

of the tumor. It is an important result as it may translates in a high probability of

survival of these patients.

Figure 3.1 presents the Kaplan-Meier survival curves for all patients considering

only right censoring (dashed line) and considering right censoring and left truncation

data (solid line). The graph reveals that the Kaplan-Meier estimate for 10-year survival
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of these patients is quite near of 80%. Also, it seems that for the entire observed follow

up time the survival probability is above the 50%.

The importance of acknowledging left truncation is well expressed in the differences

between the Kaplan-Meier estimates. As it is visible that ignoring left truncation leads

to an overestimation of survival. It would be expected to observe this difference as the

Kaplan-Meier allowing for left truncation is giving less weight to the survival times of

patients still alive in January 2008.
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Figure 3.1: Kaplan-Meier curve estimates of Breast Cancer patients of Braga’s Hospital.

In order to estimate the relative risk of death from breast cancer we proceeded

initially with the calculation of the Kaplan-Meier estimates stratified by category, and

compared these through their graphical representation.

A total of 16 variables turned out to have significant differences in their categories

survival curves. Which means that they have a statistical significant effect on patient’s

risk of dying from breast cancer. Table 3.1 presents the results on significance of Log-

rank test, under the null hypothesis that the survival curves of the different categories

are all equal. In this table only the variables found significantly different are presented.
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All the others do not reject the null hypothesis. Figures 3.2 through 3.20 present the

Kaplan-Meier curves for the categories of each variable with significant effect on pa-

tients survival.

Table 3.1: Log-Rank Test Results for variables with significant effect on patients Survival

on Breast Cancer

Log-rank Test Results

Variable p-value

Tumour Stage < 0.001

Bilateral Breast Cancer 0.002

Breast Cancer Recurrence < 0.001

Neoadjuvant Treatment < 0.001

Type of Surgery < 0.001

Venous Vascular Invasion < 0.001

Sentinel Lymph Node Biopsy 0.02

Estrogen Receptor Expression < 0.001

Progesterone Receptor Expression < 0.001

Triple Negative < 0.001

Degree of differentiation < 0.001

Size of Primary Tumour 0.005

Regional Lymph Node Involvement < 0.001

Age at Diagnosis (Categorized) 0.017

Images of lymphatic invasion 0.04

Hormonotherapy < 0.001

From results presented in Table 3.1 and observing Figure 3.2, we can accept that

tumour stage is a significant risk factor for the survival of these patients. Also, log-rank

test results confirm that there is no significant difference between the survival rate be-

tween the first three categories of tumour Stage (0, I and II) (p-value = 0.851), and also

between the last two categories of this covariate (III and IV) (p-value = 0.714). Hence

we were able to group the first three categories into only one category (0/I/II) and to

group the two last categories into one (III/IV), that according to log-rank test results

the corresponding survival curves are significant different (p-value < 0.001). Figure 3.3

suggest that the cases diagnosed in stage III or IV have lower probability of survival

compared to a tumour in stage 0, I or II, for these patients.
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Figure 3.2: Kaplan-Meier curves for categories of variable tumour stage.
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Figure 3.3: Kaplan-Meier curves for categories of variable tumour stage with different

categorization.

Cases that presented a bilateral tumour (tumour in both breasts) have higher risk

of dying from breast cancer compared to unilateral cases of tumour, as expected by

doctors.
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Figure 3.4: Kaplan-Meier curves for categories of variable bilateral breast cancer.

As expected, there is a relationship between breast cancer recurrence and a higher

risk of dying from the disease, as can be perceived in Figure 3.5. Although, as men-

tioned in the previous descriptive analysis, not all cases of recurrence translated in

cases of death from breast cancer, our medical consultant informed that cases of death

from breast cancer developed in some moment a recurrence of breast cancer (even in

the moment right before the time of death). That ambiguity was responsible for the

non-incorporation of this variable in the survival model. Meaning that indicator of

death and recurrence are equal.
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Figure 3.5: Kaplan-Meier curves for categories of variable breast cancer recurrence.
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Patients that were submitted to neoadjuvant treatment, as shown in Figure 3.6,

have a higher probability of dying from breast cancer, probably, as already mentioned

in previous chapters, due to tumour characteristics. Since cases with a non-operable

tumour (for example, for being too large) are considered ”worst” and are submitted to

neoadjuvant treatment.
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Figure 3.6: Kaplan-Meier curves for categories of variable neoadjuvant treatment.

Also, as can be observed in Figure 3.7 , patients that were not submitted to surgery

have a higher risk of dying from breast cancer compared to those submitted to surgery.

This result is expected as those cases not submitted to surgery are the ones consid-

ered ”worst” and of high risk to undergo a surgery. Those submitted to mastectomy

presented a higher risk of dying from breast cancer compared do those submitted to

conservative surgery. The few cases that were submitted to sentinel lymph node biopsy

presented a lower risk of dying from breast cancer, as can be observed in Figure 3.8.

This could be related to a better diagnostic and consequently more efficient treatment.
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Figure 3.7: Kaplan-Meier curves for categories of variable type of surgery.
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Figure 3.8: Kaplan-Meier curves for categories of variable sentinel lymph node biopsy.

Figures 3.9 and 3.10 clarify that cases that shown images of both venous vascular

invasion and lymphatic invasion, respectively, also presented a higher probability of

dying from breast cancer.
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Figure 3.9: Kaplan-Meier curves for categories of variable images of venous vascular

invasion.
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Figure 3.10: Kaplan-Meier curves for categories of variable images of lymphatic invasion.

Figures 3.11 and 3.12 clarify that a positive expression of both estrogen and pro-

gesterone receptors, respectively, are associated with a lower probability of dying from

breast cancer.
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Figure 3.11: Kaplan-Meier curves for categories of variable estrogen receptor expression.
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Figure 3.12: Kaplan-Meier curves for categories of variable progesterone receptor expres-

sion.

It turns out, as expected, that there is a significant difference on the survival rates,

for the categories of the covariate Triple Negative (TN), as shown in Figure 3.13 and

confirmed in the log rank test results exposed in Table 3.1, being, as expected the TN

breast cancer cases the ones with lower survival rate.

59



3. SURVIVAL ANALYSIS

0 50 100 150 200 250

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Triple Negative

Time (month)

S
(t

)

Non Triple Negative
Triple Negative

Figure 3.13: Kaplan-Meier curves for categories of variable triple negative.

Our results, as shown in Figure 3.14, point out to a significant difference between

the survival rate of the three grade categories (G1, G2 and G3). The survival rate of

patients with tumour grade G3 is lower comparing to the other two categories, and the

cases with tumour diagnosed in grade G1 have a higher survival rate.
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Figure 3.14: Kaplan-Meier curves for categories of variable tumour grade.

Higher categories of primary size tumour are, as expected, related to a higher risk

of dying from breast cancer, as shown in Figure 3.15. Although, Tis and T1 type of

tumour do not seem to differ in their probability of survival.
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Figure 3.15: Kaplan-Meier curves for categories of variable size of primary tumour.

Figure 3.16 suggests that, for the covariate Regional Lymph Node involvement,

patients with tumour with Nx, N0 or N1 degree of regional lymph node involvement

have a significant higher survival probability than those with higher degree. We were

able to access, through log-rank tests results, that there are no significant differences

on the survival curves between the Nx, N0 and N1 degrees (p-value = 0.873) and also

between the N2 and N3 categories (p-value = 0.754). Later, grouping Nx, N0 and N1

degrees in one category and N2 and N3 in one other category, we were able to access

a statistical difference on survival curves between this two new categories given that

the Log-rank test p-value obtained was lower than 0.0001. Figure 3.17 elucidates the

referred difference between those two categories.
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Figure 3.16: Kaplan-Meier curves for categories of variable regional lymph node involve-

ment.
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Figure 3.17: Kaplan-Meier curves for categories of variable regional lymph node involve-

ment with different categorization.

Although age at diagnose treated as a continuous variable was not statistically sig-

nificant in terms of survival, a different result emerge when it was categorized into two

categories: patients younger than 44 years and patients older than 44 years (or equal).

We verified that the lower category (younger women) has a lower survival probability

than the other category, and this difference is statistically significant (p-value = 0.017).

Figure 3.19 shows the difference between survival curves of both categories. Note that

we firstly categorized age at diagnosis as it is done in studies reported by the North
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Region Cancer Registry of Portugal (RORENO), as shown in Figure 3.18.
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Figure 3.18: Kaplan-Meier curves for categories of variable age at diagnosis.
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Figure 3.19: Kaplan-Meier curves for categories of variable age at diagnosis with different

categorization.

As Figure 3.20 shows, cases submitted to adjuvant hormonotherapy presented a

higher probability of survival.

63



3. SURVIVAL ANALYSIS

0 50 100 150 200 250

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Hormonotherapy

Time (month)

S
(t

)

Without Hormonotherapy
With Hormonotherapy

Figure 3.20: Kaplan-Meier curves for categories of variable hormonotherapy.
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3.7.2 Analysis with Semi-Parametric Models

For the analysis of the breast cancer data in study, we considered two semi-parametric

models: (i) the vastly used Cox proportional hazards model (CPHM) and (ii) the flex-

ible Royston-Parmar survival model (FRPM) that allows, contrariwise to CPHM, the

formulation of the baseline cumulative survival function.

The CPHM survival function is given by equation 3.28, described in the last sec-

tion, however to access the importance of acknowledging left truncation, along with

right censoring, of data in the model we compared estimates obtain in two moments:

(i) considering only right censoring, hence the partial likelihood function use do esti-

mate the model parameters is simply given by equation 3.32; and (ii) considering both

left truncation and right censoring of data, and so we incorporated the correspondent

components in equation 3.32 and indicated in equation 3.16.

In the present analysis, using the statistically significant variables obtained in log-

rank tests, presented in the previous section, we adjusted several survival models with

multiple covariates to estimate the joint effect of several independent variables on sur-

vival of patients.

However, we did not consider, in our models, the variables related to treatment, as

treatment decisions by the medical team are made upon tumour characteristics (such

as, for example, size, staging, grade). As it would result into a strong correlation be-

tween treatment type of variables and variables related to tumour characteristics.

The final model (adjusted) was estimated by ”step-wise backwards”, starting with

the saturated model with all the significant variables, and then eliminating one-by-one

the variables with lower significance, with a limit of 0.08 for the p-value, for inclusion

of the variable. The choice of the number of knots for the FRPM was done by varying

between 0 and 4 the number of knots, as suggested by Royston & Parmar (2002), and

choosing the model that presented the minimum combination of Akaike Information

Criterion (AIC) ((Akaike, 1973)).
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After adjusting several survival models with multiple covariates, beginning, as al-

ready mentioned, with the saturated model, we ended up with a CPHM and a zero

knots FRPM that incorporate five covariates with highly significant effect on the sur-

vival of these patients: triple negative (yes versus no); age at diagnosis (< 44 versus

≥ 44); tumour stage (0/I/II versus III/IV), tumour grade (G1 versus G2 versus G3)

and regional lypmh node involvement degree (Nx/N0/N1 versus N2/N3).

Note that, as Royston & Parmar (2002) explain, by convention the zero knot model

means that no internal and no boundary knots are specified and so, the baseline dis-

tribution is none other but the Weibull.

Table 3.2 compares the estimates obtained (and respective 95% confident inter-

vals (CI)) when adjusting to the FRPM with the ones obtained when adjusting to the

CPHM. As one can see, the estimates values are identical for both models. Since the

main difference between both models relies in the fact that the FRPM allows the for-

mulation of the baseline cumulative survival function, which can be of medical interest,

we choose to refer, in the present text, to parameters estimates obtain with this model.

There are a few differences in the results when we ignore or allow left truncation

in the modelling process. For example, the covariate lymph node involvement does not

have a significant effect in the patient’s survival if we ignore left truncation. However,

there are differences in the 95% confidence intervals for the estimates, i.e., in the stan-

dard errors of the parameters estimates. Specifically, the confidence intervals for the

parameters estimates obtained when left truncation is acknowledge are wider, which

is the same as saying that the standard errors are bigger. This is expected since the

model considering left truncation gives distinctive weighs to the patients diagnosed be-

fore 2008.

Analysing the hazard ratio (HR) estimates presented in table 3.2, as expected, the

hazard of dying from breast cancer is significantly higher in women with triple negative

breast cancer (FRPM HR = 6.86). Also it seems that the hazard ratio for the ones

older or equal than 44 years at the time of diagnose is lower (FRPM HR = 0.38). The

risk of dying from breast cancer is 7.00 times higher for the cases with tumour stage III
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or IV compared to cases with tumour on stage 0, I or II. Also, the risk of dying from

a tumour with G2 type of grade is 4.72 times higher than G1 type grade of tumour,

and the risk increases for the ones with G3 type of grade (FRPM HR = 6.99). Finally,

those who present a regional lymph node involvement of N2 or N3 degree have a higher

risk (FRPM HR = 2.24) of dying from breast cancer.

Table 3.2: Hazard Ratios for each significant effect covariates for Cox proportional Hazard

Model and for Flexible Royston-Parmar Model.

Only Right Right Censoring

Censoring and Left truncation

CPHM FRPM CPHM FRPM

(0 knots) (0 knots)

Covariates HR 95% CI HR 95% CI HR 95% CI HR 95% CI

Triple Negative (with) 8.07 [3.27; 19.96] 7.10 [2.80; 17.99] 7.82 [2.81; 21.98] 6.86 [2.51; 18.7]

Age at Diagnosis (≥ 44) 0.39 [0.20; 0.73] 0.41 [0.22; 0.78] 0.37 [0.18; 0.71] 0.38 [0.20; 0.73]

Tumour Stage (III or IV) 3.89 [2.09; 7.25] 3.94 [2.13; 7.24] 7.58 [2.95; 19.45] 7.00 [2.80; 17.5]

Tumour Grade (G2) 4.51 [1.04; 19.47] 3.86 [0.96; 15.33] 5.05 [1.16; 21.94] 4.72 [1.09; 20.50]

Tumour Grade (G3) 6.14 [1.37; 27.65] 5.75 [1.38; 24.05] 6.39 [1.39; 29.47] 6.99 [1.53; 31.90]

Lymph Node — — 2.39 [0.86; 6.62] 2.24 [0.81; 6.21]

Involvement (N2 or N3)

Figure 3.21 presents the plot of the Kaplan Meier estimates, the FRPM and the

CPHM for a subject with following characteristics, most frequent observed in the data

under study: non triple negative; age at diagnosis ≥ 44, tumour stage 0 or I or II,

tumour Grade G2 and Regional Lymph nodes involvement degree Nx, N0 or N1. This

graph was built in order to graphically asses that both models, the FRPM and the

CPHM, fit well the data.

Both models curves remain within the 95% confidence interval of the Kaplan-Meier

curve, which confirms a good fit to the data of both models. Also, CPHM and FRPM

survival curves are similar which, along with the almost identical parameters estimates

presented in table 3.2, confirms that results obtained from both models are identical.
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Figure 3.21: Cox Proportional Hazards Curve versus Kaplan Meier curve versus Flexible

Royston-Parmar Survival Curve for Combination of covariates: Non Triple Negative; Age

at diagnosis ≥ 44, Tumour Stage 0 or I or II and Tumour Grade G2 and Regional Lymph

nodes involvement degree Nx, N0 or N1.

As shown in Table 3.3, the proportional hazards assumption for these variables,

important for both models, was not violated.

Table 3.3: P-values obtained from testing the proportional hazards assumption

Variable p-value

Triple Negative 0.3885

Age at diagnosis (≥ 44) 0.0621

Tumour Stage (III or IV) 0.5721

Tumour Grade (G2) 0.1727

Tumour Grade (G3) 0.4238

Lymph Node Metastasis (N2 or N3) 0.3312

From the graphical representation of Cox-Snell residuals shown in Figure 3.22, where

the black solid line denotes the Kaplan-Meier estimate of the survival function of the

residuals (with the dashed lines corresponding the 95% pointwise confidence intervals),

and the grey solid line, the survival function of the unit exponential distribution, sug-

gests a good fit of the CPHM to the data.
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Figure 3.22: Superposition of Kaplan-Meier estimates of the survival function of the

residuals and survival function of the unit exponential distribution.
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3.8 Discussion

Although many of 50 variables obtained are recognized in literature as potential prog-

nostic factors only five are shown to have a statistically significant effect on survival of

the 540 patients of the Unity of Senology of Braga’s Hospital when adjusted to other

prognostic factors, namely: triple negative (yes versus no); age at diagnosis (< 44 versus

≥ 44); tumour stage (0 or I or II versus III or IV), tumour grade (G1 versus G2 ver-

sus G3) and regional lymph node involvement degree (Nx or N0 or N1 versus N2 or N3).

The resulting adjusted FRPM, with 0 knots, and CPHM reveal that the patients

with triple negative type of tumour, younger than 44 years at diagnose, with tumour

in stage III or IV, grade G3 and regional lymph node metastasis degree N2 or N3, are

the ones with higher risk of dying from breast cancer.

It was found also that ignoring a left truncation of the breast cancer data under

study leads to an overestimation of survival estimates.

The estimates obtained by adjusting two different semi-parametric models - the

CPHM and the FRPM - were identical. Fact sustained by a graphical comparison of

both survival curves. The main difference between both models relies in the fact that

the latter allows the formulation of the baseline cumulative survival function, which can

be of medical interest. Hence, the choice between both CPHM and FRPM depends on

the investigator’s interest of having the baseline cumulative survival function specified

or not.

To compare the results obtained with previous studies we calculated the survival

rate at 1, 3 and 5 years for the adjusted FRPM for the combination of variable val-

ues most frequent in the dataset in study: non triple negative; age at diagnosis ≥ 44,

tumour stage 0 or I or II, tumour Grade G2 and Regional Lymph nodes involvement

degree Nx, N0 or N1. Table 3.4 presents these results and the last results reported by

the North Region Cancer Registry of Portugal (RORENO) for the districts of North

of Portugal and also for Braga’s district itself, which points out to an improvement of
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the survival rate for the Unity of Senology of Braga’s Hospital.

Table 3.4: Comparison between study results and relative survival estimates (%) for

breast cancer for the North Districts of Portugal and for Braga’s district of residence, by

RORENO

Years Braga’s Hospital RORENO RORENO

after FRMP 2000/2001 2000/2001

diagnosis Braga

1 year 98.2% 96% 96 %

3 years 88% 86% 87%

5 years 81% 78% 79%

Number of cases 540 2320 470

Bering in mind that this is a comparison between a cause-specific survival estimated

(adjusted to risk factors) and an overall relative estimation. And also, different time

intervals of disease diagnose were taken into account.

Nevertheless, it resulted that the survival estimates are better for Braga’s Hospital

breast cancer data, compared to the north region of Portugal and to Braga’s region.
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4

Longitudinal Analysis

Longitudinal data is usually characterized as response variables that are measured re-

peatedly through time for a group of individuals.

It is important to use longitudinal methods when studying medical or biological

data, as they can distinguish, for example, changes over time within individuals from

differences among individuals in their baseline levels (Diggle et al., 2002). The main

characteristic of longitudinal models is that they model both the dependence among

the response on the explanatory variables and the autocorrelation among the responses.

Ignoring correlation in longitudinal data could lead to incorrect inferences about the

regression coefficients, inefficient estimates of the coefficients and, also, sub-optimal

protection against biases causes by missing data (Diggle et al., 2002).

In this particular study, the response variables, values of CA15-3 and CEA tumour

markers, were analysed making use of longitudinal models as defined in Diggle et al.

(2002), where different correlation structures were tested.

The work presented in this chapter is an extension of the work published by Borges

et al. (2015). Firstly it will be presented the methodology applied, introduced by a

summary explanation of the main approaches to analyze longitudinal data, describing

the longitudinal models used to infer about the factors that affect the progression of

both CA15-3 and CEA tumour markers values. Subsequently, the results from the

longitudinal analysis of these responses will be demonstrated ending with a discussion
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4. LONGITUDINAL ANALYSIS

of both longitudinal analysis.

The entire analysis was performed using R software, in particular making use of

both nlme (Pinheiro et al., 2015) and JoineR (Philipson et al., 2012) packages.

4.1 Definition of Concepts

As Diggle et al. (2002) explains, there are three main approaches when dealing with

longitudinal data: i) the marginal model approach; ii) the random effects model and

the iii) transition model approach.

The marginal model approach consists in modelling the marginal mean as in a

cross-sectional study. This approach has the advantage of separately modelling the

mean and covariance. Although, as Fitzmaurice et al. (2008) explain, marginal models

account for the consequences of the correlation among the repeated measures, they do

not provide any explanation for its potential source.

The random effects model assumes the existence of correlation among repeated re-

sponses because the regression coefficients vary across individuals. This is the approach

adopted in the present study, which will be detailed later.

The transition model approach focuses on the conditional expectation of the re-

sponse variable given past outcomes. This type of models combine the assumptions

about the dependence of the response variable on the covariates among repeated values

of the first, into a single equation.

Diggle et al. (2002) and Fitzmaurice et al. (2008), present an interesting framework

for the analysis of longitudinal data, explaining that we can make use of several types

of models, depending on the nature of the response variable (for example, continuous

Gaussian or non-Gaussian, binary, count) or even the type of data set. Those include:

(i) mixed-effects models, (ii) generalized estimating equations (GEE) models, (iii) tran-
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sitional models, (iv) Bayesian models or (v) nonparametric/semiparametric models.

The linear mixed-effects models, primary proposed by Laird & Ware (1982), are a

flexible class of models that incorporate both fixed effects and random effects. In practi-

cal terms, fixed effects explain individual-specificity and random effects incorporate the

between individual variation and the within-individual correlation in longitudinal data.

In this models, the mean response is modelled as a combination of population char-

acteristics (fixed effects) assumed to be shared by all individuals, and subject-specific

effects (random effects) that are unique to a particular individual. As Fitzmaurice et al.

(2008) explain this models have two desirable features: first, there are fewer restrictions

on the design matrices for the fixed and random effects; second, the model parame-

ters could be estimated efficiently via likelihood based methods. The main restriction

on the application of these type of models rely on assumptions of multivariate normality.

As Pinheiro & Bates (2000) point out the increasing popularity of mixed-effects

models is explained by the flexibility they offer in modeling the within-group correla-

tion often present in grouped data, by handling both data with measures equally or

unequally separated in time, in a unified framework, and by the availability of reliable

and efficient software for fitting them.

The GEE models were firstly introduced by Liang & Zeger (1986), and their pri-

mary characteristic is that the mean structure and the correlation structure are mod-

elled separately without distributional assumptions for the data. They consist in a

semi-parametric approach and an extension of generalized linear models. These models

account for correlation of responses within subject and it can be used when the response

variable is not normally distributed.

In transitional models the within-individual correlation is modelled via Markov

structures. They are appealing due to the sequential nature of longitudinal data. Is

this type of models the conditional distribution of each response is expressed as an ex-

plicit function of the past responses and covariates. In general, transition models have

been developed for repeated measures that are equally separated in time. Although

its use is advantageous when the response variable in non-Gaussian, they are more
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difficult to apply when there are missing data and non-equidistant intervals between

measurement occasions (Fitzmaurice et al., 2008).

In longitudinal studies each patient is denoted by the subscript i = 1, ..., n. Re-

peated measurements for each patient i, at corresponding time tij , are denoted by Yij ,

where j = 1, ...,mi. Let N =
∑n

i=1mi , be the total number of measurements in the

data set. In some studies mi can be equal to all subjects, i.e., for all patients measure-

ments were taken at the same time, which means that mi = m. In that particular case

we say that it is a balanced study. If mi’s are different for all subjects it is called an

unbalanced study.

The construction of a longitudinal model is based on the ordinary least square (OLS)

model to explain the mean progression of a given response variable through time, given

by:

Yij = µij + εij , (4.1)

where E[Yij ] = µij and εij are N independent and identically distributed (i.i.d.)

realizations of N(0, ξ2).

However, since the OLS model assumes independence between any two measure-

ments, from the same or different subject, it is important to consider different models,

in the context of longitudinal analysis, that take into account the correlation that usu-

ally exists in the measurements of the same subject. What longitudinal models purpose

is to decompose the variability in εij , in variability between subjects and variability

within subjects, through time.

In fact, in many medical studies it is important to consider not only random effects

(variability between subjects) but also a possible variability within subjects as it may

have important medical implications. Liang & Zeger (1986) alert that treating the cor-

relation as a nuisance may be less appropriate when the time course of the outcome for

each subject is of primary interest or when the correlation itself has scientic relevance.
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4.2 Longitudinal Model

The general longitudinal model described as in Diggle et al. (2002) is:

Yij = µij + d
′
ijUi +Wi(tij) + Zij . (4.2)

Where Ui are n i.i.d. realizations of MVN(0,Σ), representing the random effects at

individual level, and d
′
ij is a vector of covariates for the random efects. Wi(tij) is a con-

tinuous time Gaussian Process with E[Wi(tij)] = 0 and V ar[Wi(tij)] = σ2, representing

the variability within subjects, where the correlation between two measurements of an

individual is described by: corr(Wi(tij),Wi(tik)) = ρ(tij , tik).

Finally, Zij are N i.i.d. realizations of N(0, τ2), representing the measurement error

(variability non specied).

Since Wi(tij) is assumed a stationary process we have ρ(tij , tik) = ρ(|tij − tik|).

We can have different definitions for the function ρ(|tij−tik|). That is, if we consider

the correlation among Wi(tij), let say between Wi(t) and Wi(t−u), determined by the

autocorrelation function ρ(u), we will have for a longitudinal model that accounts for

an exponential correlation structure within individuals:

ρ(u) = exp

(
− 1

φ
|u|
)
, (4.3)

and for a longitudinal model that accounts for a Gaussian correlation structure within

individuals:

ρ(u) = exp

(
− 1

φ
u2

)
, (4.4)

where φ is the range parameter that specifies the rate at which the correlation stables.

To model the fixed term of the longitudinal model, µij , we can consider a model

with a changing point δ on the effect of time on the response variable. In practice, the

changing point is the moment where there is an alteration on the slope of the linear

response variable’s progression, on average. Considering δ the changing point, we have

E[Yij ] = µij with:

µij =

{
Xijβ + α1tij , if tij < δ
Xijβ + α2(tij − δ) if tij ≥ δ

, (4.5)
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where Xij represents the vector of covariates, β the vector of unknown regression coef-

ficients, α1 and α2 the coefficients representing the slope before and after the changing

point, respectively.

For simplicity, let’s consider the complete set of N measurements, y, as a realization

of a multivariate Gaussian random vector Y with Y ∼MVN(Xβ, η2V ). Where X is an

N × p matrix of all values of the p explanatory variables. And η2V as a block-diagonal

matrix with non-zero n× n blocks η2V0, each representing the variance matrix for the

vector of measurements on a single subjects.

For parameter estimation we adopted the maximum likelihood method, whose asso-

ciated log likelihood function for observed data y, under Gaussian assumption, is given

by:

L(β, η2, V0) = −1

2

{
nm log(η2) +m log(|V0|) +

1

η2
(y −Xβ)

′
V −1(y −Xβ)

}
. (4.6)

The maximum likelihood estimator for β, given V0 is the weighted least-squared

estimator (Diggle et al., 2002), given by:

β̂(V0) =
(
X

′
V −1X

)−1
X

′
V −1y. (4.7)

Substituting 4.7 in 4.6 we will have:

L(β̂(V0), η2, V0) = −1

2

{
nm log(η2) +m log(|V0|) +

1

η2
RSS(V0)

}
, (4.8)

where,

RSS(V0) = (y −Xβ̂(V0))
′
V −1(y −Xβ̂(V0)). (4.9)

The maximum likelihood estimator for η2, for fixed V0, is obtained differentiating

4.8 with respect to η2, resulting:

η̂2(V0) =
RSS(V0)

nm
. (4.10)

The reduced log likelihood for V0, apart from a constant term, is obtained substi-

tuting 4.7 and 4.10 into 4.6, as:

Lr(V0) = −1

2
m {n logRSS(V0) + log(|V0|)} . (4.11)
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Maximizing 4.11 we obtain the maximum likelihood estimator of V0. Finally, sub-

stituting V̂0 in 4.7 and 4.10 we obtain the maximum likelihood estimators β̂ and η̂2,

respectively.

4.3 Missing Data

One important aspect, when dealing with real data, is acknowledging the missing data

mechanism behind the lack of measurements of the response variable that can, and

usually, arise.

When dealing with unbalanced data, such as the one analysed in this study, is dif-

ficult to access if the lack of a measurement can actually be defined as missing data.

Nevertheless, we should take into account the different classifications of missing data

mechanism in order to incorporate it in the longitudinal model, if necessary.

Adopting Diggle et al. (2002) notation, let’s consider Y ∗ = (Y o, Y m) where Y ∗ is

the complete set of measurements with no missing values, Y o the measurements actu-

ally obtained (observed) and Y m the measurements that would have been available had

they not been missing. Also, let R denote a set of indicator random variables, denoting

which elements of Y ∗ fall into Y o , and which ones fall into Y m. A probability model for

the missing value mechanism defines the probability distribution of R conditional on Y ∗.

Little & Rubin (2000) classify the missing data mechanism into three different

categories:

• Completely random if R is independent of both Y o and Y m

• Random if R is independent of Y m

• Informative if R is dependent on Y m

Since we are dealing with unbalance type of data and, also, the missing data de-

tected in our data base does not seem to be related to the progression of the disease, we

consider the first type of mechanism - the completely random mechanism. Which can
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be ignorable when adopting the likelihood function as the basis for inference (Little &

Rubin, 2000).

For a detailed description of the random and informative mechanisms and the in-

corporation of these in the longitudinal model we suggest the work of Little & Rubin

(2000) and Diggle et al. (2002).

4.4 Variogram for Longitudinal Data

To model the correlation structure for each model we analysed the empirical variogram

of OLS residuals from the saturated model for the mean response (Diggle et al., 2002).

The variogram (Diggle et al., 2002) of a stochastic process Y (t) is given by:

V (u) =
1

2
Var {Y (t)− Y (t− u)} , u ≥ 0. (4.12)

For a stationary process, the autocorrelation function, ρ(u), and the variance of

Y (t), σ2, are related by:

γ(u) = σ2{1− ρ(u)}. (4.13)

The estimation of the empirical variogram is based on the calculation of the observed

half-squared-differences between pair of residuals, νij = 1
2(rij − rik)2, and the corre-

sponding time-differences, uijk = tij − tik, where rij = Yij − µij , and j < k = 1, ...,mi.

The autocorrelation function at any lag u is estimated from the sample variogram

by:

ρ̂(u) = 1− γ̂(u)

σ̂2
, (4.14)

where γ̂(u) is the average of all the νij corresponding to that particular value of u,

and σ̂2 is the estimated process variance.
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4.5 Model Diagnostic

Diagnostic checking of the longitudinal fitted model can be made by superimposing the

fitted mean response profiles on a time-plot of the average observed response within

each combination of covariates categories and time, as suggested by Diggle et al. (2002).

However, this task can be rather difficult if we are dealing with a model that incorpo-

rates a great number of covariates.

One other form of model fitting diagnose is to superimpose the fitted variogram on

a plot of the empirical variogram. Which will allow the validation of the correlation

structure by graphical comparison.

Another procedure to additionally access which correlation structure best describe

data variability, within a longitudinal model, with a predetermined fixed part, is by

comparison of the maximized log likelihood values.

Plot of the subject specific residuals versus the fitted responses and a Q-Q plot of

the subject-specific residuals can, also, be used for graphical validation of the assump-

tions of the constant variance and normal distribution of Zij , respectively.

4.6 Breast Cancer Longitudinal Analysis

The same covariates used in the survival model, previous adjusted (Chapter 3), were

tested in the longitudinal model fitted. The reference time used was time, in months,

since diagnose of breast cancer until the date of the blood test. According to the usual

medical procedures, physicians stay alert to a possible recurrence of breast cancer for

patients that present values of tumour markers above a certain reference value. We have

considered the reference value of 37 U/ml for CA15-3 tumour marker, and 5.0 ng/mL

for the CEA tumour marker, as this were the values referred in the blood tests analysed.

The normality assumption of both response variables CA15-3 and CEA was first

tested preforming a Shapiro-Wilk normality test (Shapiro & Wilk, 1965), both with a

returned p-value < 0.0001 and therefore was rejected. It was used a log-transformation
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of both the tumour markers CA15-3 and CEA values. It is, in fact, a usual transforma-

tion in many biological cancer markers studies, as, for example, in studies of Goldhirsch

et al. (1988), Crump et al. (2000), J. Louhimo et al. (2002) or even Liu et al. (2014).

Keene (1995) gives examples that evidences the log transformed analysis as more

supportive of a treatment effect than the untransformed analysis. Also, he mentions

that variables such as biochemical measurements typically show a skewed distribution,

which can often be made symmetric using a log transformation. Noting, as well, that

has been argued that the theoretical justification for using this transformation for most

scientific observations is probably better than that for using no transformation at all.

A longitudinal model was also fitted only to the subset of patients that died, using

the reference time, in month, from date of death until blood tests, in order to search

for more significant results to explain the progression of both tumour marker values

through time related to the death from breast cancer.

For both analysis, we began with an exploratory analysis and point estimation by

modelling a OLS model with the variables that had shown significant effect on patients’

survival, given by equation 4.1.

We then conducted a backward elimination to delete variables not significant, with

a limit of 0.08 for the p-value, for inclusion of the variable, until the mean structure

was well defined with only significant covariates.

Observing graphical representation of the empirical variogram, patterns suggested

the existence of variability between subjects, and a possible variability within subjects.

Hence, maintaining the same mean structure we compared two nested models with dif-

ferent covariance structures, such as: (i) random effects, exponential serial correlation

and measurement error (REE), and (ii) random effects, Gaussian serial correlation and

measurement error (REG).

The entire analysis was performed using R software, in particular making use of

both nlme (Pinheiro et al., 2015) and JoineR (Philipson et al., 2012) packages.
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4.6.1 Results of Tumour Marker CA15-3 Longitudinal Analysis

As reported in Chapter 1, there is only available information on tumour marker CA15-3

values for 534 of the 540 patients eligible for analysis. A total of 5166 measurements

of tumour marker CA15-3 represent all the available measurements of those patients

from the time of diagnosis of breast cancer to the end of study. The total number of

deaths from breast cancer is 55.

Time Since Diagnose

A spaghetti plot, in longitudinal study, represents the individual progressions in

time of the response variable.

Figure 4.1 presents the progression in time, since diagnostic, of the CA15-3 values

for each patient with grey lines, against the reference value, and the non-parametric

smooth spline line with dash line, indicating the average trend of progression.

The smooth spline suggests that, on average, the marker progression increases at a

slow rate, staying below the reference value, until about 10 years (120 months) after

breast cancer diagnose. After that point the increase seems to be at a higher rate. This

fact may point out the existence of a changing point in its progression in time, after

the referred cutting point. Thus, a linear parametric modeling approach, testing for

changing points, given by equation 4.5 appears to be reasonable.
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Figure 4.1: Spaghetti plot for tumour marker CA15-3 values.

However, after fitting several saturated parametric models considering several chang-

ing points’ values, its existence was not signicant in the mean time trend of the tumour

progression. Which could be due to the high increase at the end with only the contri-

bution of 3 (or 4) of the patients.

With the motivation to understand which of the explanatory variables with sig-

nificant effect on patients survival would affect the progression of the tumour marker

CA15-3, and also how it would affect, we fitted single longitudinal models with single

explanatory variable, using the same correlation structure as the one obtained in the

selected longitudinal model with multiple explanatory variables, that will be presented

next.

In table 4.1 we present the results of the single models, with single variables that

were significant in the survival analysis (Chapter 3), in the longitudinal analysis (when

considering various variables in the longitudinal model) and any other variables (not

present in survival and longitudinal models) that turned out significant by itself. Note
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that the number of observation in each model is different due to the different number

of missing data in each variable.

Results show that variable triple negative, although with significant effect on the

survival of the patients, does not have a significant effect on its own on the mean pro-

gression of the tumour marker CA15-3 (p-value = 0.7471).

Age at diagnosis treated whether as categorized (Survival) or as continuous (Lon-

gitudinal), by itself, does not present a significant effect on the mean progression of

the tumour marker. As expected, since they are reported as possible prognostic factors

(Chapter 1), an increase of tumour values progression is related to higher categories of

variables such as tumour stage, tumour degree, regional lymph node involvement and

primary tumour size, as informed in Table 4.1.

The presence of venous vascular invasion, on its own, is responsible for an increase

of the starting point of the mean progression of the log values of the tumour marker

of 0.7413, comparing to the cases with no venous vascular invasion. The same occurs

to the cases that presented lymphatic invasion, although the increment is only of 0.1751.
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Table 4.1: Estimated Parameters Values for Single CA15-3 Longitudinal Models

Variable β SE p-value DF ν2 σ2 φ τ2 Loglike

Time 0.003 0.001 < 0.001 4498 0.428 0.033 0.934 0.401 -4251.094

Triple negative

(Yes) -0.058 0.179 0.747 471 0.444 0.033 0.915 0.414 -3585.843

Age at diag.

(≥ 44) -0.164 0.092 0.074 548 0.428 0.033 0.969 0.410 -4260.855

Age at diag.

(continuous) 0.001 0.002 0.675 548 0.432 0.033 0.967 0.410 -4262,368

Tumour stage

(III or IV) 0.352 0.086 < 0.001 525 0.398 0.034 1.0195 0.4108 -4079.871

Tumour degree

(G2) 0.186 0.079 0.019 500 0.431 0.025 0.983 0.415 -3773.657

(G3) 0.253 0.094 0.007

Regional Lymph

nodes

(N1) 0.206 0.074 0.005 527 0.3943 0.0338 1.0076 0.4081 -4120.342

(N2) 0.351 0.120 0.004

(N3) 0.530 0.140 < 0.001

(Nx) 0.065 0.159 0. 681

Venous vascular

invasion

(Yes) 0.741 0.157 < 0.001 548 0.413 0.033 0.964 0.409 -4251,446

ki.67(low) -0.209 0.093 0.026 309 0.488 0.029 0.876 0.424 -2083,901

Recurrence

(with) 0.936 0,082 < 0.001 548 0.313 0.034 0.999 0,417 -4204,607

Lymphatic

invasion

(Yes) 0.175 0.086 0.042 548 0.427 0.033 0.970 0.410 -4260,388

Primary

tumour size

(T2) 0.157 0.070 0.025 534 0.403 0.034 0.991 0.034 -4184,692

(T3) 0.431 0.147 0.004

(T4) 0.730 0.319 0.022

(Tis) -0.334 0.168 0.047

(Tx) 0.324 0.226 0.151

Neoadjuvant

treatment

(with) 0.462 0.101 < 0.001 548 0.411 0.033 0.977 0.412 -4252.045

lymph node

Biopsy

(with) -0.310 0.065 < 0.001 548 0.409 0.033 0.971 0.410 -4251.318
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4.6 Breast Cancer Longitudinal Analysis

Recurrence of breast cancer is, as expected, related to a low survival probability

(Chapter 3), and that result is concordant with the significant effect of this variable on

the mean progression of this tumour marker. Cases that presented recurrence of breast

cancer had an increment of 0.936 on the starting point of the mean progression of the

log values of the tumour marker.

A low ki.67 expression appears to be related to a mean progression starting -0.2085

times lower than the mean progression of cases that presented a higher expression of

that biomarker.

An interesting result is that the cases submitted to neoadjuvant treatment are

related to an increase of the starting point of the mean progression of the tumour com-

pared to those not submitted to it. That increment is of 0.4623 on the log values of the

tumour marker. That could be due to the fact that cases of large primary tumour are

usually submitted to that kind of treatment in order to decrease its size for posterior

surgery.

Cases where it was performed a biopsy of sentinel lymph node present a lower

starting point (-0.3095) of the mean progression, compared to those were it was not

preformed any surgery of that type. As already referred in Chapter 1, this type of

surgery is adopted recently and it applies to tumour in earlier stages, so that patients

are spared of being submitted to axillary dissection (a rather aggressive surgery), hence,

this result may be camouflage by the tumour characteristics rather than the surgery

itself.

That is one of the reasons why all variables related to type of treatment (neoad-

juvant, surgery or adjuvant) were excluded from the posterior analysis that will be

presented. One other reason is that those variables are due to medical decision taken

upon the tumour characteristics and thus correlation with variables related to tumour

characteristics may occur.

A longitudinal analysis starting with all explanatory variables was performed. Dif-

ferent correlation structures for the longitudinal model given by equation 4.2 were
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4. LONGITUDINAL ANALYSIS

tested, based on the analysis of the empirical variogram, presented in Figure 4.2. Based

on the structure of the empirical variogram, we present the results, comparing two

models, both with a random intercept an individual level, and with a serial correlation

structure: one with Exponential structure (REE), given by 4.3, and the second with a

Gaussian structure (REG), given by 4.4.

Table 4.2 presents the estimated parameters (Est) of the fitted longitudinal models,

and compares the estimates to those obtained by tting the simple OLS model, and the

respective log Likelihood values. It is noticeable that, although the estimates values

are similar for the two models, there are slightly variations on the significance of these

(p-value).
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Table 4.2: Estimated Parameters Values for General Linear Model and Longitudinal

Models – CA15-3 Tumour Marker

REE REG OLS

Model Model Model

Est p-value Est p-value Est p-value

Intercept 2.226 < 0.001 2.215 < 0.001 2.287 < 0.001

Time

(month) 0.003 0.006 0.004 < 0.001 0.004 < 0.001

Age at

diagnosis 0.007 0.018 0.007 0.018 0.007 < 0.001

Tumour

Stage

(III or IV) 0.277 0.035 0.243 0.063 0.408 < 0.001

Venous

Vascular

Invasion

(Yes) 0.610 0.003 0.623 0.002 0.812 < 0.001

Ki.67

(low) -0.168 0.067 -0.163 0.076 -0.226 < 0.001

ν2 0.426 0.5011 .

σ2 0.031 0.066 .

φ 10.552 6.119 .

τ2 0.403 0.284 .

ξ2 . . 1.084

Log Likelihood -1953.611 -2472.825 -3447.758

Since REE longitudinal model presented the higher Log likelihood value we selected

this as the model to describe the progression of the tumour marker CA15-3 values in

time.

The fixed part of the longitudinal model, which describes the mean progression of

the marker, is composed by the following significant covariates on the intercept com-

ponent of the model: time (in month), age at diagnosis, tumour stage (0/I/II versus

III/IV), venous vascular invasion (Yes vs No), and Ki.67 expression (low vs high). The

intercept component of the model, in this particular case, means that a patient with a

tumour stage of 0, I or II, with no venous vascular invasion images and a high Ki.67

expression, at an earlier age of diagnosis will start the progression of the tumour marker
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4. LONGITUDINAL ANALYSIS

with a value of 2.2258, on a logarithmic scale.

We can infer that age at diagnosis affects the log value of the marker at a rate

of 0.0074 per year of age at diagnosis. Also, a patient with a tumour on stage III or

IV implicates an increasing of the log value of the tumour marker by an increment of

0.2769, comparing to those with a tumour on stage 0, I or II. Also, a tumour that

presents images of venous vascular invasion has an increment in the starting point of

the marker value of 0.6097. On the other hand, a low expression of the biomarker Ki.67

decreases the starting point of the log value of the tumour marker by 0.1681. Also,

there is an increase of 0.0033 per month of the tumour marker value.

The correlation structure that best represents the variability of the data is, in

fact, the one that incorporates random effects at individual level with ν̂2 ≈ 0.426,

an exponential correlation structure to describe the variability within patients with

ρ̂(u) ≈ exp(− 1
10.552 .|u|) and σ̂2 ≈ 0.031, and a measurement error with variance

τ̂2 ≈ 0.403.

Figure 4.2 represents the empirical and both fitted variograms for the different

models. The superposition of the theoretical fitted variogram of both exponential and

Gaussian correlation structures with the empirical variogram supports the choice of

the REE model, since the REE curve (green line) is the one that best approaches the

empirical curve.

Figures 4.3 and 4.4 present, the plot of the subject specific residuals versus the fit-

ted responses and a Q-Q plot of the subject-specific residuals, respectively. Observing

this plots, the assumptions of the longitudinal model, concerning to the homogeneity

of variances of the measurement errors and the normality of these do not seem likely

to be rejected.
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Figure 4.2: Superposition of empirial variogram and theoretical variograms - CA15-3

tumour marker.

Figure 4.3: Residuals versus the Fitted Responses of CA15-3 values.
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Figure 4.4: Q-Q plot of the CA15-3 longitudinal model.

Time Since Death

A similar longitudinal analysis was performed, but now using a different time scale,

time since death until date of blood test, in order to search for more significant results

to infer about the relation between the progression of the tumour marker values and the

death from breast cancer. Note that, with this time scale the analysis is only performed

with the subset of patients that died, and also, as we are analysing the marker values

from date of blood tests until death, we are dealing with duration at a negative scale.

Figure 4.5 presents the progression in time, since date of death, of the CA15-3 val-

ues for each patient that died from breast cancer, with grey lines, against the reference

value, and the non-parametric smooth spline line with dash line, indicating the average

trend of progression.

The smooth spline of the spaghetti plot suggests that, on average, the marker

progression increases at a slow rate until about 20 months before death from breast

cancer. In fact, when fitting the saturated general linear model for the subset of patients

who died from breast cancer, given by equation 4.5, we detected a changing point at

92



4.6 Breast Cancer Longitudinal Analysis

2 years before death (24 months). Which means that, for the patients that died from

breast cancer it was detected an abrupt rise of CA15-3 values, above the reference

value, 2 years before their death.

Figure 4.5: Spaghetti plot for tumour marker CA15-3 values - for the subset of patients

that died from breast cancer.

Table 4.3 summarizes and compares the estimated parameters for the two longi-

tudinal models fitted REE and REG - with those of the general linear model (OLS

Model). Note that the variable ”Time further than 2 years before death” is, in fact,

time before the changing point (2 years before death from breast cancer), in the nega-

tive scale considered and, equivalently, ”Time earlier than 2 years before death” is time

after the changing point, in the negative scale considered.
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Table 4.3: Estimated Parameters Values for General Linear Model and Longitudinal

Models For Patients Who Died From Breast Cancer – CA15-3 Tumour Marker

REE REG OLS

Model Model Model

Est p-value Est p-value Est p-value

Intercept 3.879 < 0.001 3.756 < 0.001 3.501 < 0.001

Time further than

2 years before death -0.001 0.718 0.002 0.504 0.006 0.0853

Time earlier than

2 years before death) 0.015 0.006 0.018 < 0.001 0.015 < 0.001

Bilateral (Yes) -0.684 0.072 -0.583 0.0867 -0.714 < 0.001

Venous

Vascular

Invasion

(Yes) 1.367 0.005 1.312 0.002 1.474 < 0.001

Estrogen

Receptor

(Positive) 0.654 0.052 0.627 0.031 0.923 < 0.001

ν2 0.00000003 0.435 .

σ2 0.040 0.080 .

φ 23.247 6.588 .

τ2 1.826 1.149 .

ξ2 . . 1.828

Log Likelihood -713.339 -719.435 -1232.524

Similar to results obtained considering time since diagnose until date of blood test,

we selected the REE longitudinal model to describe the progression of the tumour

marker CA15-3 values in time, since it was the one with higher Log likelihood value.

Results show that time after the changing point, that is before two years prior to

death has a significant effect (p-value = 0.006) on the mean progression of the tumour

marker values, related to an increase of 0.0153 per month of the CA15-3 values. How-

ever, before changing point the effect of time is not significant (p-value=0.7175) in the

mean progression of the tumour marker values.

The mean progression of the marker, when considering the reference time as time

since death of breast cancer until date of blood test, is composed by the following
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significant covariates on the intercept component of the model: bilateral (yes versus

no), images of venous vascular invasion (yes versus no) and estrogen receptor expres-

sion(positive versus negative). The intercept component of the model, in this particular

case, means that a patient with no bilateral tumour, with no venous vascular invasion

images and a negative estrogen receptor expression will start the progression of the

tumour marker with a value of 3.879, on a logarithmic scale.

As expected, the presence of venous vascular invasion has an increasing effect on

the average CA15-3 linear progression in time, as it is related to a worst prognostic

case in the previous survival analysis (Chapter 3).

Contradictory results are the decreasing effect of a bilateral type of tumour and

the increasing effect of a positive estrogen. The mentioned covariates have a statistical

significant effect on the intercept component of the model.

Bilateral cancer cases have a decrease of 0.6839 on the intercept component, and a

case with venous vascular invasion a decrease of 1.3667 compared to those with no ve-

nous vascular invasion. A positive estrogen receptor expression has an increasing effect

on the intercept component by 0.6535, compared to those with a negative expression.

For this subset, the correlation structure that best represent the variability of

the data is the structure that incorporates random effects at individual level with

ν̂2 ≈ 3 × 10−8, an exponential correlation structure to describe the variability within

patients with ρ̂(u) ≈ exp(− 1
23.247 .|u|) and σ̂2 ≈ 0.040, and a measurement error with

variance τ̂2 ≈ 1.826. The superposition of the theoretical variogram of both exponen-

tial and exponential correlation structures with the empirical variogram, presented in

Figure 4.6, validates the choice of an exponential correlation structure, since it is the

one that best approximates the empirical variogram curve.
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Figure 4.6: Superposition of empirial variogram and theoretical variograms, for patients

that died from breast cancer - CA15-3 tumour marker.

Figures 4.7 and 4.8 present, the plot of the subject specific residuals versus the fit-

ted responses and a Q-Q plot of the subject-specific residuals, respectively. This plots

suggest that the assumptions of the longitudinal model, concerning to the homogeneity

of variances of the measurement errors and the normality of these do not seem likely

to be rejected.
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Figure 4.7: Residuals versus the Fitted Responses of CA15-3 values - for the subset of

patients that died from breast cancer.
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Figure 4.8: Q-Q plot of the CA15-3 longitudinal model - for the subset of patients that

died from breast cancer.
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4.6.2 Results of Tumour Marker CEA Longitudinal Analysis

As reported in Chapter 1, there is only available information on tumour marker CEA

values for 532 patients. This translates into a total number of 551 cases analysed, since

19 cases presented bilateral breast cancer. In total there are 4166 measurements of

tumour marker CEA. Also, the total number of deaths from breast cancer is 54.

Time Since Diagnose

The spaghetti plot in Figure 4.9, presents the progression of the CEA values, since

tumour diagnose, for each patient with grey line, against the reference, and the non-

parametric smooth spline line, indicating the average trend of progression. The smooth

spline suggests that, on average, the marker progression stays below the reference value

with a non accentuated slope in its increase. However, it is possible to see that there

are individuals with values above the reference value of log (5.0)ng/mL. Nevertheless a

linear modeling approach appears to be reasonable. Also, it does not point out to the

existence of a changing point in its progression in time.
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Figure 4.9: Spaghetti plot for tumour marker CEA values.

In fact, after fitting several saturated parametric models considering several chang-

ing points’ values, given by equation 4.5, its existence was not significant in the mean

time trend of the tumour progression.

With the motivation to understand which of the explanatory variables with sig-

nificant effect on patients survival would affect the progression of the tumour marker

CEA, and also how it would affect, we fitted single longitudinal models with single

explanatory variable, using the same correlation structure as the one obtained in the

selected longitudinal model with multiple explanatory variables, that will be presented

following.

Table 4.4 presents the results of the single longitudinal models considering each

one of the variables in the final survival and longitudinal models, and other variables

that end up significant by itself. Note that the number of observation in each model is

different due to the different number of missing data in each variable.
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Table 4.4: Estimated Parameters Values for Single CEA Longitudinal Models

Variable β SE p-value DF ν2 σ2 φ τ2 Loglike

Time 0.004 0.001 < 0.001 3504 0.147 0.041 64.871 0.655 -2707,571

Triple negative

(Yes) -0.243 0.183 0.185 469 0.064 0.032 5.417 0.731 -2227.894

Age at diag.

(≥ 44) 0.211 0.095 0.026 546 0.000 0.040 6.450 0.789 -2736.615

Age at diag.

(continuous) 0.012 0.002 < 0.001 546 0.000 0.040 6.234 0.767 -2726.959

Tumour stage

(III or IV) 0.301 0.083 < 0.001 527 0.000 0.039 5.819 0.691 -2562.447

Tumour degree

(G1) 0.025 0.079 0.752 498 0.000 0.038 6.759 0.748 -2365.831

(G3) 0.160 0.089 0.073

Regional Lymph

nodes

(N1) 0.154 0.072 0.033 525 0.000 0.040 5.828 0.689 -2630.571

(N2) 0.214 0.118 0.069

(N3) 0.511 0.140 < 0.001

(Nx) 0.116 0.154 0.453

Venous vascular

invasion

(Yes) 0.317 0.166 0.057 546 0.000 0.040 6.479 0.792 -2737.273

Recurrence

(with) 0.786 0.090 < 0.001 546 0.000 0.040 5.829 0.722 -2703.008

Primary

tumour size

(T2) 0.070 0.071 0.325 532 0.000 0.040 6.212 0.7470 -2653.722

(T3) 0.342 0.152 0.025

(T4) 1.006 0.331 0.003

(Tis) -0.081 0.170 0.634

(Tx) 0.174 0.229 0.449

Neoadjuvant

treatment

(with) 0.377 0.107 < 0.001 546 0.000 0.040 6.391 0.783 -2732.881

Surgery (with) -1.710 0.242 < 0.001 546 0.000 0.040 6.067 0.746 -2714.994

Menopause

(Yes) 0.245 0.071 < 0.001 525 0.000 0.041 6.559 0.779 -2590.513
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Results show that variable triple negative, although with significant effect on the

survival of the patients, does not have a significant effect on its own on the mean pro-

gression of the tumour marker CEA (p-value = 0.185).

Contrary to results obtained for the tumour marker CA15-3 (Section 4.6.1), age

at diagnosis treated whether as categorized (Survival) or as continuous (Longitudinal)

variable, by itself, has a significant effect on the mean progression of the tumour marker.

Both have an increasing effect of the starting point of the mean progression of the log

values of the tumour marker. For age at diagnose categorized, the value 0.211 means

that there is a rise of that amount in the starting point for any patient with 44 years or

more at the time of diagnose. The value 0.018, for age at diagnose continuous, means

that there is a rise of that amount per year of age.

As expected, since they are reported as possible prognostic factors (Chapter 1), an

increase of tumour values progression is related to higher categories of variables such as

tumour stage, regional lymph node involvement and primary tumour size. Although in

this two last variables we can only consider a significant difference between the baseline

category (N0 for regional lymph node and T1 for primary size tumour) and the higher

categories (N3 and T3 or T4, respectively), since the p-values registered are lower than

0.05.

For tumour degree variable, it was only obtained a marginal significant difference

between the cases that presented a G3 degree and the cases that presented a G2 degree

(the baseline category), corresponding to an increase of the starting point of the mean

progression of the log values of the tumour marker of 0.16.

The presence of venous vascular invasion, on its own, is responsible for an increase

of the starting point of the mean progression of the log values of the tumour marker of

0.3166, comparing to the cases with no venous vascular invasion (although the p-value

of 0.057 is considered marginally significant).

Lymphatic invasion and, also, estrogen receptor expression have no significant effect

on the tumour marker progression, by themselves.
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Recurrence of breast cancer is, as expected, related to a low survival probability

as shown in previous chapters, and that result is concordant with the significant effect

of this variable on the mean progression of this tumour marker. Cases that presented

recurrence of breast cancer had an increment of 0.7857 on the starting point of the

mean progression of the log values of the tumour marker, compared to non-recurrence

cases.

Cases submitted to surgery present a lower starting point (-1.7097) of the mean

progression of the tumour marker, compared to those were it was not preformed any

surgery. A result similar to the one obtained in the survival analysis (Chapter 3), where

cases submitted to surgery presented a higher survival probability.

Cases of menopausal patients have an increment of 0.2452 on the starting point

of the mean progression of the log values of the tumour marker, compared to pre-

menopausal patient’s cases.

A similar result obtained for the CA15-3 longitudinal analysis (Chapter 4.6.1) is

that the cases submitted to neoadjuvant treatment are related to an increase of the

starting point of the mean progression of the tumour compared to those not submitted

to it. That increment is of 0.3769 on the log values of the tumour. Again, that could

be due to the fact that cases of large primary tumour are usually submitted to that

kind of treatment in order to decrease its size for posterior surgery.

It is important to underline that all variables related to type of treatment (neoad-

juvant, surgery or adjuvant) were excluded from the posterior analysis that will be

presented. One other reason is that those variables are due to medical decision taken

upon the tumour characteristics and thus correlation with variables related to tumour

characteristics may occur.

Then, a longitudinal model was fitted, starting with all explanatory variables, and

using backward stepwise for variables selection. As for CA15-3, different correlation

structures for the longitudinal model given by equation 4.2 were tested, based on the
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analysis of the empirical variogram presented in Figure 4.10. Based on the structure

of the empirical variogram, we present the results, comparing two models, both with a

random intercept an individual level, and with a serial correlation structure: one with

Exponential structure (REE) and the second with a Gaussian structure (REG).

Table 4.5 presents the estimated parameters of the two fitted longitudinal models

REE and REG, and compares the estimates to those obtained by fitting the simple

OLS model and the respective log Likelihood values.

Table 4.5: Estimated Parameters Values for General Linear Model and Longitudinal

Models – CEA Tumour Marker

REE REG OLS

Model Model Model

Est p-value Est p-value Est p-value

Intercept -0.280 0.067 -0.303 0.046 -0.045 0.525

Time

(month) 0.005 < 0.001 0.005 < 0.001 0.003 < 0.001

Age at

diagnosis 0.013 < 0.001 0.013 < 0.001 0.011 < 0.001

Tumour

Stage

(III or IV) 0.284 0.002 0.285 0.001 0.267 < 0.001

Tumour

Degree

(Gx or G1 or G2) -0.134 0.089 -0.133 0.093 -0.263 < 0.001

Primary

Tumour

Size

(T4) 1.057 0.002 1.049 0.003 0.132 < 0.001

(Tis) 0.045 0.795 0.057 0.742 0.050 0.627

ν2 0.263 0.413 .

σ2 0.037 0.068 .

φ 36.596 15.272 .

τ2 0.368 0.184 .

ξ2 . . 0.694

Log Likelihood -2218.830 -2302.393 -4457.261
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The longitudinal model with random effects plus exponential correlation structure

was selected as the one that best describes the mean progression of the tumour, at a

logarithmic scale, since it is the one with the lower Log Likelihood value (-2218.83). As

expected all estimates for all covariates and between REE and REG models are quite

similar, and the differences between the p-values are rather small. Hence, the choice of

the adequate model relayed also on the graphical analysis of the correlation structure,

as it will be described later on.

The fixed part of the longitudinal model, which describes the mean progression of

the marker, is composed by the following significant covariates on the intercept com-

ponent of the model: age at diagnosis, tumour stage (0/I/II versus III/IV), tumour

Degree (G3 versus Gx or G1 or G2) and primary tumour size (Tx/T1/T2/T3 versus

T4 versus Tis). The intercept component of the model, in this particular case, means

that a patient at an earlier age of diagnosis, with a tumour stage of 0, I or II, G3

tumour degree and a T1, T2 or T3 primary tumour size will start the progression of

the tumour marker with a value of 0.756 ng/mL (exp(−0.278)), although this value is

marginally significant for presenting a p-value of 0.067, meaning that the progression

of the tumour marker could start with a value of 1 (exp(0)).

Time, in month, has a significant effect on the progression of CEA values, and is

responsible for an increase of 0.0045 per month of the tumour marker log values.

Age at diagnosis affects the log value of the marker at a rate of 0.0132 per year of

age at diagnosis.

A tumour degree different from G3 (the highest category of this variable) has a

decreasing effect on the starting log value of the tumour mean progression by an incre-

ment of 0.1341.

A patient with a tumour on stage III or IV implicates an increasing of the log value

of the tumour marker by an increment of 0.2835, comparing to those with a tumour on

stage 0, I or II. Also, a tumour that presented a T4 primary tumour size implicates an
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increase in the starting point of the marker value by an increment of 1.0572.

The correlation structure chosen to represent the variability of the data is the

one that incorporates random effects at individual level with ν̂2 ≈ 0.263, an expo-

nential correlation structure to describe the variability within patients with ρ̂(u) ≈
exp(− 1

36.596 .|u|) and σ̂2 ≈ 0.037, and a measurement error with variance τ̂2 ≈ 0.368.

Figure 4.10 that represents the empirical and both fitted variograms for the differ-

ent models. This superposition of the theoretical fitted variogram of both exponential

and Gaussian correlation structures with the empirical variogram supports the choice

of the REE model, since the REE curve (green line) is the one that best approaches

the empirical curve.
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Figure 4.10: Superposition of empirial variogram and theoretical variogram - CEA tu-

mour marker

Figures 4.11 and 4.12 present, the plot of the subject specific residuals versus the

fitted responses and a Q-Q plot of the subject-specific residuals, respectively. Observing
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this plots, the assumptions of the longitudinal model, concerning to the homogeneity

of variances of the measurement errors and the normality of these do not seem likely

to be rejected.
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Figure 4.11: Residuals versus the Fitted Responses of CEA values.
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Figure 4.12: Q-Q plot of the CEA longitudinal model.
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Time Since Death

A similar longitudinal analysis, as for the CA15-3 tumour marker, was performed,

but now with a different time scale time since death until date of blood test in order

to search for more significant results to infer about the relation between the progression

of the tumour marker values and the death from breast cancer. Note that, again, with

this time scale the analysis is only performed with the subset of patients that died, and

also, as we are analysing the marker values from date of blood tests until death, we are

dealing with duration at a negative scale. However, these patients are not necessarily

the same as for CA15.3 as the number of death from breast cancer are different for

both tumour markers, as already mentioned.

Figure 4.13 presents the progression in time, since date of death, of the CEA values

for each patient that died from breast cancer, with grey lines, against the reference

value, and the non-parametric smooth spline line with dash line, indicating the average

trend of progression.

Similarly to results obtained to tumour marker CA15-3 longitudinal analysis, the

smooth spline of the spaghetti plot suggests that, on average, the marker progression

increases at a slow rate until about 20 months before death from breast cancer. In fact,

when fitting the saturated general linear model for the subset of patients who died from

breast cancer, given by equation 4.5, we detected a changing point at 2 years before

death (24 months). Which means that, for the patients that died from breast cancer it

was detected an abrupt rise of CA15-3 values, above the reference value, 2 years before

their death.
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Figure 4.13: Spaghetti plot for tumour marker CEA values - for the subset of patients

that died from breast cancer.

Table 4.6 summarizes and compares the estimated parameters for the two longi-

tudinal models fitted REE and REG - with those of the general linear model (OLS

Model). Note that the variable ”Time further than 2 years before death” is, in fact,

time before the changing point (2 years before death from breast cancer), in the nega-

tive scale considered and, equivalently, ”Time earlier than 2 years before death” is time

after the changing point, in the negative scale considered.
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Table 4.6: Estimated Parameters Values for General Linear Model and Longitudinal

Models For Patients Who Died From Breast Cancer – CEA Tumour Marker

REE REG OLS

Model Model Model

Est p-value Est p-value Est p-value

Intercept 0.980 0.002 0.925 0.002 1.100 < 0.001

Time further than

2 years before death 0.016 < 0.001 0.016 < 0.001 0.019 < 0.001

Time earlier than

2 years before death 0.050 < 0.001 0.053 < 0.001 0.062 0.085

Bilateral (Yes) -0.697 0.034 -0.615 0.075 -0.972 < 0.001

Venous

Vascular

Invasion

(Yes) 1.008 0.010 0.948 0.016 1.166 < 0.001

Lymphatic

Invasion

(Yes) -0.585 0.029 -0.608 0.026 -0.827 < 0.001

Estrogen

Receptor

(Positive) 0.924 0.001 0.964 0.001 0.947 < 0.001

ν2 0.00000042 0.525 .

σ2 0.002 0.091 .

φ 19.958 7.451 .

τ2 1.425 0.772 .

ξ2 . . 1.428

Log Likelihood -502.163 -523.639 -724.714

Results show that both time after the changing point, that is before two years prior

to death, and before changing point have a significant effect (p-value < 0.001) on the

mean progression of the tumour marker CEA values. Although both are related to

an increase of the CEA values in time, that increment per month is higher after the

changing point (0.050) than before the changing point (0.016).

As expected, the presence of venous vascular invasion has an increasing effect on

the average CEA linear progression in time, as it is related to a worst prognostic case

in the previous survival analysis (Chapter 3).
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Bilateral type of tumour and a positive estrogen have a statistical significant effect

on the intercept component of the model (2.66 ng/mL). Bilateral cancer cases have a

decrease of 0.697 on the intercept component, and a case with lymphatic invasion a

decrease of 0.585 compared to those with no lymphatic invasion. A positive estrogen

receptor expression has an increasing effect on the intercept component by 0.924, com-

pared to those with a negative expression.

A case that presents images of vascular invasion increases of the start value of the

tumour marker by an increment of 1.008, comparing to those that do not present any

image.

For this subset, the correlation structure chosen to represent the variability of the

data is the one that incorporates random effects at individual level with ν̂2 ≈ 4.2×10−7,

an exponential correlation structure to describe the variability within patients with

ρ̂(u) ≈ exp(− 1
19.958 .|u|) and σ̂2 ≈ 0.002, and a measurement error with variance

τ̂2 ≈ 1.425.

Figure 4.14 represents the empirical and both fitted variograms for the different

models. The superposition of the theoretical fitted variogram of both exponential and

Gaussian correlation structures with the empirical variogram supports the choice of the

REE model, since the REE curve (green line) is the one that approaches the empirical

curve.
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Figure 4.14: Superposition of empirial variogram and theoretical variograms, for patients

who died from breast cancer - CEA tumour marker

Figures 4.15 and 4.16 present, the plot of the subject specific residuals versus the

fitted responses and a Q-Q plot of the subject-specific residuals, respectively. Observing

this plots, the assumptions of the longitudinal model, concerning to the homogeneity

of variances of the measurement errors and the normality of these do not seem likely

to be rejected.

111



4. LONGITUDINAL ANALYSIS
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Figure 4.15: Residuals versus the Fitted Responses of CEA values.
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Figure 4.16: Q-Q plot of the CEA longitudinal model.
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4.7 Discussion

According to medical procedures of Braga’s Hospital Senology unit, an abrupt rise in

values of CA15-3 or CEA tumour markers, over a reference value, is an alert sign to a

possible recurrence of breast cancer.

With the previous statistical analysis presented in section 4.6 we can conclude that

an abrupt rise in values of those two tumour markers is related to death from breast

cancer. This can be seen by the results of the longitudinal model assuming time since

death.

The resulting model fitted to explain the variation of the tumour marker CA15-3

values, confirms that the factors that have a statistically significant effect on the linear

progression of the tumour marker are: age at diagnosis, tumour stage (III/IV versus

0/I/II), venous vascular invasion (Yes versus No), and Ki.67 antibody immunostaining

index (high versus low). As expected, a III or IV tumour stage, the presence of venous

vascular invasion, high age at diagnosis and high ki.67 index have an increasing effect

on the average tumour marker progression in time, as they are related to a worst prog-

nostic case.

However, there are other variables that, by themselves (i.e., fitting a longitudinal

model considering only that specific variable alone) have a statistical significant effect

on the mean progression of the tumour marker, namely: regional lymph nodes inva-

sion, recurrence, lymphatic invasion, primary tumour size, neoadjuvant treatment and

biopsy of sentinel lymph node. This can be explained by the fact that when using only

a single variable the model captures variability by that only variable.

When analysing all patients that were diagnosed with breast cancer, in our study,

the only variables that have a statistically significant effect on the linear progression of

the tumour marker CEA are: tumour stage (III/IV versus 0/I/II), primary tumour size

(Tx/T1/T2/T3 versus T4 versus Tis), age at diagnosis and tumour degree (Gx/G1/G2

versus G3). As expected, a III or IV tumour stage, a T4 type of tumour, a G3 type of

tumour and age at diagnosis have an increasing effect on the average tumour marker
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progression in time, as they are related to a worst prognostic case (Chapter 1).

Also for CEA tumour marker, there are other variables that, by themselves have

a statistical significant effect on the mean progression of this tumour marker, namely:

regional lymph nodes invasion, recurrence, lymphatic invasion, surgery, menopause,

neoadjuvant treatment and venous vascular invasion. Again, this results can be related

by the fact that when using only a single variable the model captures variability by

that only variable.

For both tumour markers, it was detected a changing point on the linear progres-

sion of the tumour markers for the subset of patients that died from breast cancer two

years before the death. This means that, at that point, there is a change on the rate

of progression of the tumour markers.

The risk factors for the progression of CA15-3 tumour marker, for the subset of

patients that died from breast cancer, i.e. considering time since death until date of

blood test, are: bilateral tumour (Yes versus No), venous vascular invasion (Yes versus

No) and estrogen receptor expression (positive versus negative). As expected, the pres-

ence of venous vascular invasion has an increasing effect on the average CA15-3 linear

progression in time, as it is related to a worst prognostic case in the previous survival

analysis (Chapter 3). Unexpectedly, a bilateral type of tumour has a decreasing effect

and a positive estrogen has an increasing effect. These two last results contradict the

results from the previous survival analyses (Chapter 3) since bilateral cases are related

to lower survival probability and, a positive estrogen expression is related to a higher

probability of survival.

For CEA tumour marker, the risk factors for the progression of the marker, for the

subset of patients that died from breast cancer, i.e. considering time since death until

date of blood test, are: bilateral (Yes versus No), lymphatic invasion (Yes versus No),

venous vascular invasion (Yes versus No) and estrogen receptor expression (positive

versus negative). As expected, the presence of venous vascular invasion has an increas-

ing effect on the average CEA linear progression in time, as it is related to a worst
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prognostic case in the previous survival analysis (Chapter 3).

A bilateral type of tumour and the presence of lymphatic invasion have a decreas-

ing effect. A positive estrogen has an increasing effect. These three results contradict

the results from the previous survival analyses (Chapter 3) since bilateral cases and

lymphatic invasion are related to lower survival probability and, a positive estrogen is

related to a higher probability of survival.

For all models fitted, the fact that the estimated variance of the measurement error

is quite lower than the estimated variance of the OLS model, means that the fitted REE

longitudinal model explains the variability of the data mainly by means of variability

between patients and within patients assigning a very low value for measurement error

(or white noise as usually mentioned in literature).
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5

Joint Modelling of Longitudinal

and Survival data

In the previous longitudinal analysis (Chapter 4), we verified that observing the subset

of patients that died from breast cancer, and using as reference time the one since death

until date of blood tests, the results of the time effect, as so of the explanatory variables,

are different from those when considering all patients in our data base. Showing that

there is a relation between survival and longitudinal measures of both tumour marker

CA15-3 and CEA.

In scientific problems where the longitudinal observations may be correlated with

time-to-event, joint models have been increasingly proposed, to recover information

from these potentially informative censorings (Wulfsohn & Tsiatis (1997), Henderson

et al. (2000) and Diggle et al. (2008)).

In fact, in medical data, such as the one presented in this study, where survival is

collected simultaneously alongside the repeated measures data (CA15-3 and CEA tu-

mour markers values), it is typically found that longitudinal data have an association

to the time-to-event process of subjects (McCrink et al., 2013).

Joint models for longitudinal and survival data are statistical models that allow

us to understand two processes of interest simultaneously, longitudinal and survival

(also known as time-to-event process), given that there is an association between them
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(Sousa, 2011).

This Chapter begins with the clarification of the methodology applied in the joint

modelling of the survival and longitudinal processes, introduced by a summary expla-

nation of the main approaches reported in studies of this nature, and also describing

the construction of the joint model applied on the present analysis. Subsequently, the

results from the joint analysis of these two processes to the data set in study will be

demonstrated, ending with a section that resumes a discussion of the significant results.

5.1 Methodology

As already explain in the previous chapter, longitudinal data is originated when differ-

ent individuals are measured repeatedly over time for some response variable of interest.

Time-to-event data deals with times from a reference point until the occurrence of an

event of interest. Generally, longitudinal models describe the process underneath the

observed data allowing for different sources of variability in the data (Diggle et al.,

2002) whereas classic survival models describe the hazard of an event at any given time

as a function of explanatory variables (Cox, 1972).

The need for considering joint modelling these two processes arises, as Sousa (2011)

explains, when the interest is on studying the association between the response variable

and the survival mechanism, allowing also the estimation of parameters that represent

their association.

Depending on the nature of the statistical problem and the scientific questions to

be answered, joint modelling of longitudinal and time-to-event data can have differ-

ent focus. It can focus on the inference on the survival model parameters, improving

the inference by allowing for correlation in the longitudinal measurements; or it can

have a primary interest on the longitudinal trajectory that might be associated with

an event pattern, or, even, it can focus on the association between the measurements

and time-to-event assuming that both repeated measurements and event time depend
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on a unobserved random effect.

Joint modelling of longitudinal data and survival data is already recognized in the

medical community as a powerful tool. Ibrahim et al. (2010) present a joint modelling

for cancer clinical trials and gives a general discussion for designing and analysing clin-

ical trials data using joint models. Deslandes & Chevret (2010), propose a joint model

of multiple longitudinal responses and a competing risk dropout process to patients in

an intensive care unit.

The analysis presented here focusses on the detection of risk factors that affect the

survival of the patients from Braga’s Hospital and also, that affect the progression of

tumour markers CA15-3 and CEA values for these patients. As an abrupt rise on these

markers values above a certain reference value is an alarm sign for a possible tumour

recurrence or even imminent death, the survival process and the longitudinal process

of both tumour markers are obviously associated. As McCrink et al. (2013) point out,

when there is an association between the two processes that is not appropriately taken

into account, unnecessary bias can be introduced into the model, affecting the results

and therefore the inferences obtained. For that, it is pertinent the construction of two

joint models to study the association between the survival of the patients and the longi-

tudinal progression of the CA15-3 tumour marker values, and the association between

the survival of the patients and the longitudinal progression of the CEA tumour marker

values.

In the statistical community, joint modelling has been widely studied in the bio-

statistics setting. One of the first joint models proposed was by Wulfsohn & Tsiatis

(1997), followed by a generalization by Henderson et al. (2000). Diggle et al. (2008)

propose a more empirically interpretable model. Recent work includes, for example,

Ding & Wang (2008), Nathoo & Dean (2008), Ye et al. (2008), Rizopoulos et al. (2009),

Albert & Shih (2010), Jacqmin-Gadda et al. (2010), Wu et al. (2010) and Huang et al.

(2011).

In the context of joint modelling, Tsiatis & Davidian (2004) clarify that random ef-

fect models (Laird & Ware, 1982) are usually used to model the marker process and the
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individual random effects are included in the survival model. They explain that the two

main approaches to jointly model this processes are: a two-stage approach, developed

by Self & Pawitan (1992) (Tsiatis et al. (1995), Bycott & Taylor (1998), Dafni & Tsi-

atis (1998)) and a likelihood based approach (Faucett & Thomas (1996), Wulfsohn &

Tsiatis (1997), Henderson et al. (2000), Wang & Taylor (2001) and Xu & Zeger (2001)).

Briefly, the two-stage method consists in fitting, primarily, a linear mixed effect

model to the longitudinal covariate data, and estimate the missing or mismeasured

covariates based on the fitted model; the second stage consists in fitting the survival

model separately, with the missing or unobserved true covariate values substituted by

their estimates from the first stage as if they were observed values and then proceed

with the usual survival analysis (Wu et al., 2012).

As Wu et al. (2012) alert in their review of joint modelling, that although this

methodology is appealing for its simplicity and easy implementation with existing soft-

ware, they may lead to biased inference in the estimation of the longitudinal covariate

model parameters because the truncations resulted from the events are not incorpo-

rated. Also, the uncertainty of the estimation in the first stage is not incorporated in

the second stage of the survival model estimation. Thus, standard errors of the param-

eter estimates of the survival model may be underestimated. As well, all information

in the longitudinal process and the survival process is not fully combined in each model

fitting to produce the most efficient estimates.

Among others alternative methods for these two approaches, there is one that should

be mentioned here, often referred in literature as a naive method (alongside with the

two-stage method): the time-dependent model. An extension of the Cox proportional

hazard model, described in Chapter 3, that allows the incorporation of time-varying

covariates introduced by Cox (1972). However, as McCrink et al. (2013) clarify, many

authors such as Henderson et al. (2000), Sweeting & Thompson (2011b) and Sweeting

& Thompson (2011a) verify, if a longitudinal covariate has been measured with error

(as it is usual), the time-dependent Cox model will not be able to take into account this

error and thus can introduce bias. Furthermore, one of the Cox model assumption is
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that the covariates are external, not related to the failure mechanism, which is an unre-

alistic assumption for the longitudinal process. In addition, and being a characteristic

of the presented dataset, it is important to refer that Cox model is not applicable to

unbalance data, as it requires that the value of each covariate is known at every failure

time for all subjects.

The likelihood of a joint model is based on the product of the likelihood for both

longitudinal data and survival data and it produces valid and the most efficient infer-

ence if the assumed models are correct. Even though its formulation requires intensive

computation, it is, currently, the methodology widely adopted as it alleviates the po-

tential bias caused by the two-stage approach and the time-dependent Cox model. For

that reason it is the methodology adopted in this study.

As Diggle et al. (2008) clarify, the principle of likelihood approaches in joint mod-

elling is the specication of the joint distribution of Y , a vector of repeated measure-

ments, and a single event time F , which they denote by [Y, F ]. There are three types

of likelihood approaches that differ in their parameterization of the joint likelihood of

longitudinal and survival processes: the selection models; the pattern-mixture mod-

els and the random effects models (McCrink et al. (2013) and Sousa (2011)). Their

differences can be perceived in the following equations, where U represents the latent

random effect that links the longitudinal and survival processes:

Selection models: [Y, F, U ] = [U ][Y |U ][F |Y ]. (5.1)

Pattern-mixture models: [Y, F, U ] = [U ][F |U ][Y |F ]. (5.2)

Random effects models: [Y, F, U ] = [U ][Y |U1][F |U2], where U = (U1, U2). (5.3)

As the main interest of the present analysis lies in the association between the lon-

gitudinal process and survival process, this study adopts the random effects approach

that will be detailed following. Sousa (2011) gives an extended literature review on
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joint modelling, describing as well the selection models and the pattern-mixture mod-

els.

In the random effects approach to joint modelling, given by equation 5.3, the ob-

servable outcomes Y and F are assumed to be conditionally independent given a latent

variable U , hence the joint distribution of Y and F takes the form:

[Y, F ] =

∫
U

[U ][Y, F |U ]dU =

∫
U

[U ][Y |U ][F |U ]dU. (5.4)

In random effects joint models the association between longitudinal measurements

and time-to-event is completely determine by the correlation structure between the two

random effects U1 and U2.

One widely used method to estimate the parameters of the joint model, adopted in

the present work, is the maximum likelihood (ML) that maximizes de log likelihood of

the joint distribution given by (McCrink et al., 2013):

N∏
i=1

∫
f(Yi|Ui, θ)f(Fi, δi|Ui, θ)f(Ui|θ)dUi, (5.5)

where f(Yi|Ui, θ), f(Fi, δi|Ui, θ) and f(Ui|θ) are the densities for the longitudinal

process, survival process, and random effects, respectively, and δ is the event indicator,

equaling one if the event occurred and zero otherwise.

As Sousa (2011) explains, these type of models are also called shared parameter

models, because the longitudinal response and missing mechanisms (in our particular

case, the time-to-event mechanism) are modelled by sharing random effects. Also, in

these models it is assumed that both survival and longitudinal process dependent on

an underlying disease or illness progression, dened by a random effect, rather than to

the actual outcome.

Historically contextualizing, after a first approach on joint modelling by Schluchter

(1992), Faucett & Thomas (1996) proposed one of the first random effects models with

proportional hazards for the event time. They consider the joint analysis of longitudi-

nal measurements and survival time as the joint distribution of two models, covariate
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tracking model and disease risk model. The first models the longitudinal response as

a linear mixed model with subject specific random effects, intercept and slope, as in a

linear growth curve model, and the second allows a Cox proportional hazards model for

the disease risk, with the same random effects as in the longitudinal model, assuming

that these describe the true latent process (Sousa, 2011).

Following, Wulfsohn & Tsiatis (1997) propose the estimation of the parameters us-

ing all the information available at each time point, by maximising the full likelihood

of the joint distribution. As Sousa (2011) clarifies, although, the models by Faucett

and Thomas and by Wulfsohn and Tsiatis are the same, they use different approaches

for the parameter estimation. Faucett and Thomas follow a Markov chain Monte Carlo

approach, with a Gibbs sampling whereas Wulfsohn and Tsiatis use an Expectation

Maximization algorithm for the estimation. Henderson et al. (2000) gives an exten-

sion of random effect joint model originally developed by Wulfsohn & Tsiatis (1997),

including also the possibility of a serial correlation structure shared.

Usually the repeated measurements are modeled by a linear mixed effects model,

already explained in Chapter 4, with random effects at individual level and the model

for the survival outcome is a Cox proportional hazards model with log-Gaussian frailty.

The stochastic dependence is, then, captured by allowing the Gaussian random effects

of the linear model to be correlated with the frailty term of the Cox proportional haz-

ards model.

A typical form for the latent variable U, that will be discussed later on, is the

random intercept and slope effect given by (Henderson et al., 2000):

Ui(t) = U0i + Ui1tij , (5.6)

where U0i and Ui1 represent the random intercept and slope effects, respectively, for

subject i.

The present joint analysis adopts of random effect methodology developed by Wulf-

sohn & Tsiatis (1997) with the extension of Henderson et al. (2000), making use of two

packages of R software: JM, developed by Rizopoulos (2010), and joineR, developed
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by Philipson et al. (2012). McCrink et al. (2013) provide, in their review of advances in

joint modelling, a clear comparison of the usage of these two packages, alongside with

the comparison of recent alternative methods and various formulations of the joint

model built.

However, concerning this particular analysis there are two major constrains in the

software used: although the random effect joint model allows to deal with right cen-

soring and left truncated data, the two packages used are not yet able to deal with left

truncated data. Hence, we will only consider a Cox model that incorporates right cen-

soring in the survival process. For that, it is only relevant to compare estimate results

for the survival process with the model, previously obtain in Chapter 3, which considers

only the right censoring mechanism. The other constrain regards the fact that these

two packages are not able to incorporate a serial correlation, between two measures

taken in different times for the same subject, in order to account for the existence of

a possible variability within subjects. In our specific case it was show, in Chapter 4,

the existence of an exponential correlation structure that represents the within subject

variability that should not be ignored, to both tumour markers longitudinal processes.

Hence, it was decide, in order to allow for correlation between two measures taken in

two different times to depend on time, to consider a longitudinal random intercept and

slope, as in equation 5.6.

The choice between the two packages depends on the focus of the research being

implemented (McCrink et al., 2013). The joint model implemented in the JM package

focuses on the survival process and how it is influenced by a longitudinal time-dependent

covariate that is measured with error. The joineR package implements a joint model

where the focus is on both processes with the purpose of inferring about the strength

of the link between both processes. Since both objectives are of interest for the present

analysis, we made use of both packages.

Although the literature on joint models is vast, this two software are the only ones

that can rapidly adjust this type of models.
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Maintaining the notation of the previous chapters, both model implementations use

a linear mixed effects model, to represent the longitudinal process given by:

Longitudinal Process: Yij = µij + Ui + Zij = X1β + U0i + U1itij + Zij , (5.7)

where X1 is the design matrix for the fixed covariates, with corresponding regression

parameters β. In the present analysis the fixed covariates considered are the ones that

shown significant effect on the independent longitudinal analysis, presented on Chap-

ter 4. The latent variable given by (U0i, U1i) is a realization of a MVN(0,Σ) where

Σ =

(
ν2

1 ν12

ν12 ν2
2

)
is the variance/covariance matrix of the random effects. Zij are

Normal i.i.d. realizations of N(0, τ2), representing the measurement error (variability

non specified).

However, the main difference between joineR and JM packages relies on the way

the incorporation of the latent random variable in the survival process is made. JM

incorporates the precise estimate of the longitudinal unobserved process, mi(t) = µ̂ij +

Ûi, into the survival process as it follows:

JM Survival Process: hi(t) = h0(t) exp{X2iβ2 + αmi(t)}, (5.8)

where X2i represents the baseline covariates, in this particular study, the covariates

with significant effect on the previous independent survival analysis (Chapter 3), and

β2 the vector of corresponding regression parameters. The parameter α represents the

effect of the true longitudinal response on the survival process, in this study the longi-

tudinal responses are the log value of tumour marker CA15-3 and, also, the log value

of tumour marker CEA.

On the other hand, joineR incorporates the longitudinal random effects into the

survival model through the random effects, as it follows:

joineR Survival Process: hi(t) = h0(t) exp{X2iβ2 + γ0U0i + γ1U1it}, (5.9)

where γ0 and γ1 represent the effect of the longitudinal random intercept and slope

on the survival process, that is, the association parameters.
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Note that, actually both approaches differ only on the survival sub-model, since

the longitudinal sub-model used in both software is the same. In fact, the difference

between the two survival sub-models may lead to different estimate values of β2 and, in

the limit, even to differences on the effects of the covariates in the individuals’ survival

(i.e., covariates may have a statistical significant effect on subject’s survival within the

joint model fitted with joineR but no significant effect within the model fitted with

JM ). This can be easily perceived by the main difference between equations 5.8 and

5.9 that is the incorporation of the effect of mi(t) = µ̂ij + Ûi, which will lead to an

effect of the longitudinal covariates in the survival process, i.e., in the estimates of the

survival covariates, within the joint model fitted with JM package. On the other hand,

estimates of β2 within the joint model fitted by joineR package will only incorporate

the effect of the covariates of the survival process.

To synthesize, using the model implemented by JM package we will be able to de-

terminate the factors that influence the change in CA15-3 values, as so in CEA values,

on the patient’s and what effect that change has on their survival. joineR package is

appropriate to use in our analysis since we are interested in determining the effect of

the initial response (values of CA15-3 and also CEA), γ0, and change in the response

over time, γ1, on a patient’s survival. As there seems, from results of previous Chapter,

to exist a link between the longitudinal processes of CA15-3 and CEA and patient’s

survival.

For model diagnose we will use graphical representation of the subject specific resid-

uals versus the fitted responses for the validity of the mixed effects model, already ex-

plained in detail in Chapter 4. This plot is used to assess the assumption of constant

variance of Zij . Also, a Q-Q plot of the subject-specific residuals is represented to

verify the assumption of normality of Zij . To validate the survival process fitted we

made use of the graphical representation of Cox-Snell residuals (Cox & Snell, 1968),

already explained in detail in Chapter 3.
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5.2 Breast Cancer Joint Analysis

5.2.1 Tumour Marker CA15-3

The joint model of the longitudinal process of tumour marker CA15-3 values and the

survival process, as described previously, was fitted using the two packages, joineR and

JM described in the previous section.

Analogously to the longitudinal analysis presented in Chapter 4, it was used a log-

transformation of the tumour marker CA15-3 values in the longitudinal process within

both joint models adjusted.

Table 5.1 presents the results from joint modelling the longitudinal process of CA15-

3 tumour marker values (on logarithmic scale, as in Chapter 4 analysis) and the survival

process, where the event is death from breast cancer and the reference time, for the

longitudinal process, is time (in months) from tumour diagnose to death from tumour.

It is shown the estimates obtained for the significant covariates considered in the pre-

vious separate longitudinal analysis (Chapter 4) and survival analysis (Chapter 3), as

well its standard errors (SE) and respective p-values.
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Table 5.1: Estimated parameters values for Joint Model CA15-3 tumour marker

JoineR Package JM Package

Covariates Estimates SE p-value Estimates SE p-value

LONGITUDINAL PROCESS

Intercept 2.212 0.170 < 0.0001 2.225 0.097 < 0.0001

Time (month) 0.006 0.001 < 0.0001 0.006 0.001 < 0.0001

Age at diagnosis 0.007 0.002 0.003 0.005 0.002 < 0.001

Tumour Stage

(III or IV) 0.054 0.099 0.584 0.134 0.078 0.088

Venous Vascular

Invasion (Yes) 0.753 0.269 0.005 0.642 0.112 < 0.0001

Ki.67 (low) -0.136 0.062 0.090 -0.009 0.071 0.900

SURVIVAL PROCESS

Triple Negative (with) 1.878 0.408 < 0.0001 2.303 0.718 0.001

Age at diagnosis

(≥ 44) -0.070 0.371 0.850 -0.636 0.522 0.223

Tumour Grade

(III or IV) 2.874 0.608 < 0.0001 3.557 0.706 < 0.0001

Tumour Grade

(G2) 1.332 0.738 0.071 2.451 0.910 0.007

(G3) 1.513 0.738 0.040 2.804 0.859 0.001

Lymph Node

(Nx or N0 or N1) 2.729 0.830 0.001 3.998 0.632 < 0.0001

LATENT ASSOCIATION

Association γ0 1.136 0.182 < 0.0001

parameter(s) γ1 1.099 0.103 < 0.0001 α 1.194 0.143 < 0.0001

ν21 0.2301 0.4970

ν22 1.6× 10−7 0.00038

τ2 0.0636 0.2566

Loglikelihood -2302.3 -2230.6

It is important to highlight that in the present joint analysis only patients with

information of CA15-3 values available were included. Which means that only 534

patients were eligible for the present analysis, whereas 540 patients were included in

the independent survival analysis presented in Chapter 3. This translates into different

values for the independent survival model parameters estimated when considering only

the 534 patients with information on CA15-3 values. Thus, a direct comparison of esti-
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mates obtained in the survival process within the joint models with the ones obtained

in the individual survival analysis must take into account that results are not based

in the exactly same dataset. However, a comparison between the covariates that have

effect on the survival process of both joint modelling and independent survival analysis,

presented in Table 3.2, is pertinent.

Moreover, it is essential to recall that, as already explained in the previous section,

both joint models fitted with the two packages only account for right censoring, as this

are not yet able to fit random joint models to left truncated data.

Furthermore, it should be noted that the differences between the estimates obtained

for the survival process for both packages is justified by the way these incorporate the

effect of the longitudinal variable in the survival process, as explained in the previous

section.

Covariates such as triple negative (yes versus no), Tumour stage (0 or I or II versus

III or IV) and lymph node involvement (Nx or N0 or N1 versus N2 or N3) maintain

their significant effect on patients’ survival, as in the individual survival model. Even

though lymph node involvement had only shown significant effect when considering left

truncation in the survival model, as can be observed in Table 3.2.

Tumour grade (Gx or G1 versus G2 versus G3) has a borderline significant effect on

patient’s survival within the joint model adjusted with joineR package, but a clearly

significant effect within the joint model adjusted with JM. Contrariwise to results from

the independent survival analysis presented in Table 3.2, age at diagnosis (categorized

as < 44 years old versus ≥ 44 years old) does not show a significant effect in patients

survival within both joint models adjusted.

The differences between the correlation structure of the linear mixed effect consid-

ered for the longitudinal process within the joint model and the one considered in the

individual analysis presented in Table 4.3, may lead to some differences in the covariates

estimates. Hence, the comparison will concern on the covariates effect on the linear
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mean progression of CA15-3 log value.

Comparing with the results of the individual longitudinal analysis, covariates such

as age at diagnosis, venous vascular invasion (yes versus no) maintain their significant

effect on initial values of the linear mean progression of CA15-3 log value. However,

ki.67 index (low vs high) and tumour stage (0 or I or II versus III or IV) do not present

a significant effect on the longitudinal process for both joint models, contrariwise to

results presented in Table 4.3.

For the joint model obtained with JM package, the significance of the association

parameter α̂ (p-value < 0.0001) in the survival process highlights the importance for

a joint modelling of the present data. This significant association verifies the relation-

ship between the longitudinal and survival processes. Likewise, within the joint model

adjusted with joineR package, both association parameters, γ̂0 and γ̂1, are significant

(p-value < 0.0001) in the survival process. Which confirms, in fact, the relevance for a

joint model of the present data.

With regard to results obtain for JM ’s joint model, through determination of haz-

ard ratio (HR), it is apparent that individuals with higher CA15-3 log value tend to

have a worst survival (HR = exp(1.1942) = 3.3).

Within estimates obtained for the joint model adjusted with joineR package, through

calculation of hazard ratios, γ̂0 indicates that individuals with initial values of CA15-3

log values that are higher than the population average tend to have worst survival

(HR = exp(1.136) ≈ 3.11). Likewise, γ̂1 indicates that individuals who have a greater

increase in CA15-3 log values linear mean progression tend to have worst survival

(HR=exp(1.099) ≈ 3). This was expected as high values of CA15-3 corresponds to a

deterioration of disease.

Next, we provide diagnostics for the joint model fitted. In fact, the diagnostics

given are for both longitudinal and survival sub-models.

In Figure 5.1 we present the graphical representation of Cox-Snell residuals, where

the black solid line denotes the Kaplan-Meier estimate of the survival function of the
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residuals (with the dashed lines corresponding the 95% pointwise condence intervals),

and the grey solid line, the survival function of the unit exponential distribution. This

graphic suggests a good fit of the survival process within the joint model.

Figure 5.1: Superposition of Kaplan-Meier estimates of the survival function of the resid-

uals and survival function of the unit exponential distribution - CA15-3 Tumour Marker.

In Figure 5.2 is represented the subject specific residual plot for the validity of the

linear mixed effects model, which seems to validate the assumption of constant variance

of Zij . And in Figure 5.3 is represented de Q-Q plot of the subject-specific residuals in

which the assumption of normality of the Zij ’s appears not to be violated.
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Figure 5.2: Subject-specific residual plot - CA15-3 Tumour Marker.

Figure 5.3: Subject-specific residual plot - CA15-3 Tumour Marker.
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5.2.2 Tumour Marker CEA

Similarly as the joint analysis for tumour marker CA15-3, the joint model of the longi-

tudinal process of tumour marker CEA values and the survival process was fitted using

the two packages, joineR and JM described in the previous section.

Just as the longitudinal analysis presented in Chapter 4, it was used a log-transformation

of the tumour marker CEA values in the longitudinal process within both joint models

adjusted.

Table 5.2 presents the results from joint modelling the longitudinal process of CEA

tumour marker values and the survival process, where the event is death from breast

cancer and the reference time is time (in months) from tumour diagnose to death from

tumour. It is shown the estimates obtained for the significant covariates considered in

the previous separate longitudinal analysis (Chapter 4) and survival analysis (Chapter

3), as well its standard errors (SE) and respective p-values.
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Table 5.2: Estimated parameters values for Joint Model CEA tumour marker

JoineR Package JM Package

Covariates Estimates SE p-value Estimates SE p-value

LONGITUDINAL PROCESS

Intercept -0.297 0.118 0.012 -0.517 0.090 < 0.0001

Time (month) 0.004 0.001 < 0.0001 0.006 0.0004 < 0.0001

Age at diagnosis 0.011 0.001 < 0.0001 0.013 0.001 < 0.001

Tumour Stage

(III or IV) 0.203 0.066 0.002 0.242 0.045 < 0.001

Degree

(Gx or G1 or G2) -0.012 0.062 0.846 -0.008 0.038 0.827

Estrogene Receptor

(Positive) 0.151 0.064 0.019 0.190 0.059 0.001

Tumour Size

(T4) 1.052 0.366 0.004 0.979 0.130 < 0.001

(Tis) 0.0120 0.224 0.930 0.139 0.171 0.418

SURVIVAL PROCESS

Triple Negative (with) 3.163 0.576 < 0.0001 3.243 0.523 < 0.0001

Age at diagnosis

(≥ 44) -0.416 0.382 0.113 -0.503 0.347 0.147

Tumour stage

(III or IV) 1.797 0.499 < 0.0001 1.259 0.367 0.0006

Tumour Degree

(G3) -0.464 0.456 0.317 -0.386 0.415 0.353

(Gx or G1) -0.734 0.566 0.353 -0.986 0.625 0.115

Lymph Node

(Nx or N0 or N1) 0.529 0.566 0.351 0.654 0.378 0.083

LATENT ASSOCIATION

Association γ0 0.959 0.175 < 0.0001

parameter(s) γ1 0.929 0.172 < 0.0001 α 1.048 0.115 < 0.0001

ν21 0.2235 0.4757

ν22 1.94× 10−7 0.0003

τ2 0.0117 0.1320

Loglikelihood -2254.97 -2308.11

Also in this analysis, it is relevant to highlight that only patients with information

of CEA values available were included. Which means that only 532 patients were eli-

gible for the present analysis, whereas 540 patients were included in the independent
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survival analysis presented in Chapter 4. Again, this translates into different values

for the independent survival model parameters estimated when considering only the

532 patients with information on CEA values. Thus, a direct comparison of estimates

obtained in the survival process within the joint models with the ones obtained in the

individual survival analysis, presented in Table 3.2, must take into account that results

are not based in the exactly same data set. However, a comparison between the covari-

ates that have effect on the survival process of both joint modelling and independent

survival analysis is pertinent.

Once again, it should be noted that the differences between the estimates obtained

for the survival process for both packages is justified by the way these incorporate the

effect of the longitudinal variable in the survival process, as explained in section 5.1.

For both joint models adjusted, covariates such as triple negative (yes versus no),

Tumour stage (0 or I or II versus III or IV) maintain their significant effect on patients’

survival, as in the survival model presented in Table 3.2. However lymph node involve-

ment (Nx or N0 or N1 versus N2 or N3), tumour grade (Gx or G1 versus G2 versus G3)

and age at diagnosis (categorized as < 44 years old versus ≥ 44 years old) do not show

a significant effect in patients survival within both joint models adjusted, contrariwise

to the results from the independent survival analysis.

Also for the joint modelling of CEA longitudinal process and survival process, the

differences between the correlation structure of the linear mixed effect considered for

the longitudinal process within the joint model and the one considered in the individ-

ual analysis presented in Table 4.5, may lead to differences in the covariates estimates.

Hence, a comparison merely between covariates effect on the linear mean progression

of CEA log value may be appropriate.

All covariates maintain their significant effect on initial values of the linear mean

progression of CEA log value, as in the individual longitudinal model presented in Ta-

ble 4.5, except tumour degree (Gx or G1 or G2 versus G3). However, it is important

to note that the tumour degree effect was marginally significant (p-value of 0.067) in
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the individual longitudinal analysis.

Analogous to results obtained for CA15-3 tumour marker, for the present joint

model obtained with JM package, the significance of the association parameter α̂ (p-

value< 0.0001) in the survival process highlights the importance for a joint model for

the present data. This significant association verifies the relationship between the lon-

gitudinal and survival processes. Likewise, within the joint model adjusted with joineR

package, both association parameters, γ̂0 and γ̂1, are significant (p-value < 0.0001) in

the survival process. Which confirms, in fact, the relevance for a joint model of the

present data.

With regard to results obtain for JM ’s joint model, through determination of haz-

ard ratio (HR), it is apparent that individuals with higher CEA log value tend to have

a worst survival (HR = exp(1.048) ≈ 2.85).

Within estimates obtained for the joint model adjusted with joineR package, through

calculation of hazard ratios, γ̂0 indicates that individuals with initial values of CEA log

values that are higher than the population average tend to have worst survival (HR =

exp(0.959) ≈ 2.61). Likewise, γ̂1 indicates that individuals who have a greater increase

in CEA log values linear mean progression tend to have worst survival (HR=exp(0.929) ≈

2.53). This was expected as high values of CEA corresponds to a deterioration of dis-

ease.

Next, we provide diagnostics for the joint model fitted. In fact, the diagnostics

given are for both longitudinal and survival sub-models.

In Figure 5.4 we present the graphical representation of Cox-Snell residuals, where

the black solid line denotes the Kaplan-Meier estimate of the survival function of the

residuals (with the dashed lines corresponding the 95% pointwise condence intervals),

and the grey solid line, the survival function of the unit exponential distribution. The

Cox-Snell residuals plot suggests a go fit of the survival process within the joint model.
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Figure 5.4: Superposition of Kaplan-Meier estimates of the survival function of the resid-

uals and survival function of the unit exponential distribution - CEA Tumour Marker.

In Figure 5.5 is represented the subject specific residual plot for the validity of the

linear mixed effects model, which seems to validate the assumption of constant variance

of Zij . And in Figure 5.6 is represented de Q-Q plot of the subject-specic residuals in

which the assumption of normality of the Zij ’s appears not to be violated.
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Figure 5.5: Subject-specific Residual Plot - CEA Tumour Marker.

Figure 5.6: Subject-specific residual plot - CEA Tumour Marker.
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5.3 Discussion

The importance of adopting a joint model approach to deal with longitudinal and sur-

vival data arises from the fact that separate analysis based on the longitudinal model

and the survival model may lead to biased estimates or even to inefficient results.

Being the main goal of the present analysis to understand the joint evolution of

repeated measurements of two tumour markers CA15-3 and CEA and a time-to-event

process at the level of an individual subject, the shared random effect methodology was

adopted.

Results showed that the longitudinal CA 15-3 and CEA values were significantly

associated with the survival probability of these patients. Actually, for both tumour

markers, it was apparent that individuals with higher values of the two tumour markers

tend to have a worst survival.

This goes also in the same direction of the results in Chapter 4 of the individual

longitudinal analysis, where we could see a decrease of tumour markers values at a

higher rate, at around 2 years before death from breast cancer.

As expected, differences were found in parameter estimates for the longitudinal and

survival process, compared to those obtained in the respective individual analyses. Re-

sulting, also, that covariates with significant effects on both individual processes would

cease to have significant effect in the joint model.

For the joint model with tumour marker CA15-3, in the process of survival age

at diagnosis (categorized as < 44 years old versus ≥ 44 years old) is no longer a risk

factor in the probability of survival of these patients, and in the longitudinal process

covariates tumour stage (0 or I or II versus III or IV) and ki.67 (low versus high) ceased

to have significant effect on the average progression of CA15-3 values.

For the joint model with tumour marker CEA, in the process of survival covariates

lymph node involvement (Nx or N0 or N1 versus N2 or N3), tumour grade (Gx or G1
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versus G2 versus G3) and age at diagnosis (categorized as < 44 years old versus ≥ 44

years old) cease to show a significant effect in patients survival. Also, all covariates

maintain their significant effect on initial values of the linear mean progression of CEA

log value, except tumour degree (Gx or G1 or G2 versus G3).

For both tumour markers, in the joint models obtained with JM package the sta-

tistical significance of the association parameter in the survival process highlights the

importance for a joint modelling of the present data. This significant association vali-

dates the relationship between the longitudinal and survival processes. Equally, within

the joint model adjusted with joineR package, both association parameters are sig-

nificant, for both joint models, in the survival process. Which confirms, in fact, the

relevance for a joint model of the present data, for both tumour markers CA15-3 and

CEA.

From the exposed it is clear that independent analysis brings up bias parameter

estimates and an assumption of association between the two processes in a joint model

is necessary.
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Conclusion and Further Work

The main motivation of the present work is to contribute to the understanding of the

progression of a complex disease that currently affect a great percentage of women –

the breast cancer – using a statistical model with more complex assumptions than the

traditional analysis. As well, to contribute to the characterization of this particular

disease on the Portuguese population. Since the number of studies on this subject

carried out in Portugal, specifically focusing on the Portuguese population, is greatly

reduced, it is extremely important the continued investment in statistical studies in

oncological diseases to understand the evolution of the disease in Portugal.

This work aims, particularly, to infer which risk factors affect the survival of patients

diagnosed with malignant breast tumour, and how do they affect. While analysing,

also, risk factors that affect two important tumour markers utilized by doctors on the

surveillance of disease progression the Carcinoma Antigen 15-3 (CA15-3) and the Car-

cinoembryonic antigen (CEA). Moreover, this analysis should take into consideration

the expected association between the progressions in time of each of the referred tu-

mour markers with the patient’s survival.

A data set of 540 patients, eligible for the present analysis, was collected from med-

ical records of Braga’s Hospital, located in north of Portugal. Statistical methods for

survival analysis and longitudinal analysis were used to study a roll of more than 50

variables that combines important and vastly reported prognostic factors with others
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whose effect is not recognised.

These include survival analysis methods, where the event of interest is death from

breast cancer and the time is measured from the diagnosis of malignant tumour to

the time at which the event occurs. All patients that did not observe the event were

censored ate the end of the observational study at 30/11/2013, if not censored before.

In survival analysis it was applied the proportional hazards Cox model (Cox, 1972) and

the Royston-Parmar flexible parametric model (FRPM) (Royston & Parmar, 2002).

Correspondingly, longitudinal analysis methods were used to understand the pro-

gression of the values of tumour markers CEA and CA15-3. Longitudinal models with

various correlation structures defined by Diggle et al. (2002) were considered in this

particular analysis.

However, as these two processes may be associated, since CA15-3 and CEA values

above a certain reference value are a warning sign for a possible tumour recurrence,

which may lead to death from breast cancer, it is important to model these two pro-

cesses together. Ignoring a possible association could lead, as several authors point

out, to a biased estimation of parameters of interest. Hence, after conducting survival

and longitudinal separate analysis, a joint modelling of these two processes to infer the

combination of these was conducted.

Although many of 50 variables collected are recognized in literature as potential

prognostic factors only 16 variables shown to have, individually, a statistically signifi-

cant effect on these patients probability of surviving, namely: tumour stage, bilateral

breast cancer, breast cancer recurrence, neoadjuvant treatment, type of surgery, ve-

nous vascular invasion, sentinel lymph node biopsy, estrogen receptor expression, pro-

gesterone receptor expression, triple negative, degree of differentiation, size of primary

tumour, regional lymph node involvement, age at diagnosis (categorized), images of

lymphatic invasion and hormonotherapy.

When adjusting a survival model incorporating multiple risk factors only the fol-

lowing five covariates shown to have a statistically significant effect on survival of those
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patients: triple negative (yes versus no); age at diagnosis (< 44 versus ≥ 44); tumour

stage (0/I/II versus III/IV), tumour grade (G1 versus G2 versus G3) and regional

lymph node metastasis degree (Nx/N0/N1 versus N2/N3). The resulting adjusted

FRPM, with 0 knots, reveals that the patients with triple negative type of tumour,

younger than 44 years at diagnose, with tumour in stage III or IV, grade G3 and re-

gional lymph node metastasis degree N2 or N3, are the ones with higher risk of dying

from breast cancer.

Moreover, besides right censoring alto left truncation for the survival analysis was

considered given the characteristics of these data. It found that ignoring left truncation

of this data in the survival model, leads to an overestimation of survival estimates.

The resulting model fitted to explain the variation of the tumour marker CA15-3

values, confirms that the factors that have a statistically significant effect on the linear

progression of the tumour marker are: age at diagnosis, tumour stage (III/IV versus

0/I/II), venous vascular invasion (Yes versus No), and ki.67 antibody immunostaining

index (high versus low). As expected, a III or IV tumour stage, the presence of venous

vascular invasion, high age at diagnosis and high ki.67 index have an increasing effect

on the average tumour marker progression in time, as they are related to a worst prog-

nostic case.

When analysing all patients that were diagnosed with breast cancer, in our study,

the only variables that have a statistically significant effect on the linear progression of

the tumour marker CEA are: tumour stage (III/IV versus 0/I/II), primary tumour size

(Tx/T1/T2/T3 versus T4 versus Tis), age at diagnosis and tumour degree (Gx/G1/G2

versus G3). As expected, a III or IV tumour stage, a T4 type of tumour, a G3 type of

tumour and age at diagnosis have an increasing effect on the average tumour marker

progression in time, as they are related to a worst prognostic case (Chapter 1).

However, modelling together these two processes, adopting the methodology of ran-

dom effects (Wulfsohn & Tsiatis, 1997), shows that the association between the lon-

gitudinal processes and survival is significant and it is essential its recognition. The

importance of adopting the joint modelling methodology to deal with longitudinal and
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survival data arises from the fact that separate analysis based on the longitudinal model

and the survival model may lead to biased estimates or even to inefficient results.

Being the main goal of the present analysis to understand the joint evolution of re-

peated measurements of two tumour markers CA15-3 and CEA and a time-to-event pro-

cess at the level of an individual subject, the random effect methodology was adopted.

Results showed that the longitudinal CA-125 and CEA values were significantly

associated with the survival probability of these patients. Actually, for both tumour

markers, it was apparent that individuals with higher values of the two tumour markers

tend to have a worst survival.

As expected, there were found differences in parameter estimates for the longi-

tudinal and survival process compared to those obtained in the respective individual

analyses. Resulting, also, that covariates with significant effects on both individual

processes would cease to have significant effect in the joint model. This shows how

misleading ignoring the association between the two processes could be.

For the joint model with tumour marker CA15-3, in the process of survival age

at diagnosis (categorized as < 44 years old versus ≥ 44 years old) is no longer a risk

factor in the probability of survival of these patients, and in the longitudinal process

covariates tumour stage (0 or I or II versus III or IV) and ki.67 (low versus high) ceased

to have significant effect on the average progression of CA15-3 values.

For the joint model with tumour marker CEA, in the process of survival covariates

lymph node involvement (Nx or N0 or N1 versus N2 or N3), tumour grade (Gx or G1

versus G2 versus G3) and age at diagnosis (categorized as < 44 years old versus ≥ 44

years old) cease to show a significant effect in patients survival. Also, all covariates

maintain their significant effect on initial values of the linear mean progression of CEA

log value, except tumour degree (Gx or G1 or G2 versus G3).

From the exposed it is clear that independent analysis brings up bias parameter

estimates and an assumption of association between the two processes in a joint model
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is necessary.

Although the existence of breast cancer epidemiological studies, which include sur-

vival analysis, carried out, for example, by cancer registers centres (as RORENO), the

information they gather can be somehow scarce in terms of tumour and patient speci-

ficity or even in terms of information on the actual cause of death. Thus, dealing with

data as the one presented in this work, obtained directly from a senology unit of a

Hospital, enables to investigate specific estimates of cancer survival and the prognos-

tic value of certain clinical factors that usually cannot be collected by the population

registers. In fact, an analysis of this nature would not be possible without access to

specific data at patient and tumour level. The exposed confirms the need to invest in

similar studies to the one presented, within senology units of hospitals in order to have

access to all clinical and personal patient information.

At the moment there are only two packages that can easily fit these models, only

available in R. However, these can only fit restricted models with random effects. For

example, longitudinal models with stochastic correlation structure is not possible. This

is mainly due to computation complexity.

A possible extension of this model is to consider a joint multivariate model that

could deal with the variables CEA and CA15-3 and, also, with the survival process,

accounting for left truncation, simultaneously.

Future work includes the creation of a joint longitudinal survival-cure model of this

data (or of a possible extension of this dataset), adopting, for example, the methodology

proposed in Kim et al. (2013) work, where they present a semiparametric joint models

to analyse longitudinal measurements and survival data with a cure fraction. Also, as

the inclusion of left truncation data in the joint models presented was not possible the

development of software that can incorporate left truncation in joint modelling of longi-

tudinal and survival processes is aspired. As it is the construction of individual survival

prediction models that incorporates longitudinal measurements of tumour markers.
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