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SUMÁRIO 
 

O azeite é um componente importante da dieta mediterrânea e a sua extração é uma das 

atividades económicas dominante nas regiões do sul da Europa. Como resultado dos processos 

de extração, a indústria do azeite gera grandes quantidades de resíduos num curto período de 

tempo, tornando-se num problema crescente de poluição ambiental. 

O sistema de duas fases é um processo recente que permite a produção de azeite com 

benefícios económicos e ambientais que gera um resíduo semi-sólido.  

O bagaço de azeitona húmido, COP é menos eficaz na produção de enzimas do que o 

bagaço de azeitona esgotado, EOP (COP após secagem e extração do azeite residual). 

Neste estudo, foi utilizado o EOP como substrato sólido para a produção de xilanases e 

celulases por A. niger. Para melhorar a produção de enzimas foi avaliado o efeito de um pré-

tratamento do bagaço de azeitona por ultrassons. Os resultados mostraram que a sonicação levou 

a um aumento de 3 vezes da atividade das xilanases e uma diminuição da atividade das celulases, 

indicando que o tratamento por ultrassons atacou a integridade do material lignocelulósico 

aumentando a acessibilidade às hemiceluloses, o que induziu a produção de xilanases por fungos. 

Foram ainda avaliados outros pré-tratamentos, tais como a hidrólise ácida com ácido diluído 

ou ultrassons combinado com hidrólise ácida mas não aumentaram as atividades das enzimas 

produzidas. 

O trabalho permitiu concluir que, os açúcares que são libertados no meio reacional durante 

o pré-tratamento de ultrassons são muito importantes para a produção de enzimas e que os 

nutrientes suplementados durante o processo de SSF são essenciais ao crescimento de fungos. 

O tempo de fermentação foi outro fator com grande importância no perfil de enzimas 

produzidas por SFF já que tempos de fermentação curtos favorecem a produção de xilanases por 

SSF e tempos de fermentação maiores favoreceram a produção de celulases. 
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ABSTRACT 

 

Olive oil is an important component of the Mediterranean diet and its extraction is one of the 

dominant economic activity in the southern Europe regions. As a result of the processes of 

extraction, the oil industry generates large amounts of wastes in a short period of time, and these 

are becoming an increasing problem of environmental pollution.  

The two-phase system is a recent process that allows the production of olive oil with 

economic and environmental benefits and produces a semi-solid waste, termed two-phase olive 

mill waste or olive pomace.  

The crude olive pomace, COP is less effective in production of enzymes that exhausted olive 

pomace, EOP (COP after drying and residual oil extraction). 

In this study, it was used the EOP as solid substrate to produce xylanases and cellulases by 

A. niger which was selected from fungi screening. To improve the enzyme production was evaluated 

the effect of pre-treatment of olive pomace by ultrasound. The results showed that the sonication 

led to a 3-fold increase of xylanase activity and a decrease of cellulase activity, indicating that 

ultrasounds treatment attacked the integrity of lignocellulosic material and increased the 

accessibility of hemicelluloses which induced the xylanases production by fungi. 

Other pretreatments were also tested such as, acid hydrolysis with diluted acid or ultrasound 

combined with acid hydrolysis, but did not increase the activities of enzymes. 

The study leads to the conclusion that the sugars which are released to the filtrate during 

the ultrasound pretreatment are very important for the enzymes production and the supplemented 

nutrients during the SSF process are essential for the growth of fungi. 

The fermentation time was another factor of great importance in the profile of the enzymes 

produced by SFF as short fermentation times favour the xylanases production by SSF and longer 

fermentation times favour cellulases production. 
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CONTEXT AND MOTIVATION 

 

Olive oil is nearly totally produced in the Mediterranean region. Three quarters of the annual 

production in the world comes from European Union countries around the Mediterranean Sea. As 

the demand of olive oil is rapidly increasing worldwide, environmental pollution posed by olive mill 

wastes is a growing problem especially in the Mediterranean region. 

In order to overcome this problem several solutions for the treatment of waste generated by 

the oil industry have been studied. The olive pomace is a lignocellulosic residue and can be valued 

biotechnologically. Currently these waste is used for composting, as fuel to obtain energy through 

combustion, for the extraction the value products, for instance, extraction of pectin or phenol 

compounds.  

Another alternative, little yet explored, is to use one pretreatment of the waste, in order to 

improve its biodegradability and increase the accessibility of enzymes to materials for the 

lignocellulolytic enzyme production through solid-state fermentation. 

 

 

REASERCH AND AIMS 

 

The main goal of this thesis is the study of the effect of ultrasounds pretreatment of olive 

pomace on cellulases and xylanases production by solid-state fermentation.  

In this sense, the secondary objectives were the following: 

 Characterization of olive pomace; 

 Selection of filamentous fungi; 

 Optimization of ultrasounds pretreatment parameters; 

 Study the effect of other pretreatment – diluted acid – and compare with ultrasounds 

pretreatment; 

 Characterization of the final residue after solid-state fermentation. 
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INTRODUCTION 
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Olive oil is an important component of the Mediterranean diet and is obtained from olive 

fruit. It is one of the main agro-industrial activities in southern European regions and is a very 

important economic activity particularly for countries like Spain, Italy and Greece. Mediterranean 

countries produce approximately 97.7% of the world’s olive oil. In 2014/15 crop year (period from 

in 1 October to 30 September) global olive oil production was around 2 287 000 t, according to 

the International Olive Council. The European Union (EU) countries produce around 72% of the 

global olive oil production, being the main olive oil producers Spain with 61.6%, Italy with 21.1% 

and Greece with 13.5% of the EU’s total production and Portugal produces 3.2% 1. In 2014, olive 

oil production in Portugal was 66,000 m3 that was mainly obtained at Alentejo (46,000 m3) and 

North Region (14,000 m3) (INE, 2014). 

 

1.1. Olive oil extraction processes 

The extraction of olive oil involves different processes like olive washing, grinding, beating 

and the extraction itself, which are the main steps of the whole process. The method used for the 

extraction influences the amount and the physico-chemical properties of the wastes produced 2. 

The olive oil extraction by physical process can be achieved through traditional pressing 

(discontinuous process) or centrifugation systems (continuous process), three-phase and two-

phase systems 2. 

Nowadays, the most widely used system is the continuous two-phase in Portugal. About 85% 

of total olive oil produced in 2014 was extracted by this system (INE, 2014). Figure 1 shows the 

evolution of extraction systems used in Portuguese olive mills. 20 years ago, traditional pressing 

was the most used however along the time this system was replaced by the continuous two-phase. 

Since 2007 the traditional and three-phase system were barely used. The main cause of this 

change was the need to reduce the water and energy consumption. In addition, this new system 

reduce the wastewater produced because do not apply warm water to facilitate the olive oil 

extraction. In the traditional and three-phase systems a contaminant effluent (olive mill wastewater) 

is generated which biological treatment is difficult and cause environmental problems, however in 

two-phase extraction system this effluent is not generated. 
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Figure 1 | Extraction systems in Portuguese olive mills between 1995 and 2013. 

 

1.1.1. Traditional pressing  

Traditional pressing (figure 2) is a relatively old process. However, it is still in use for some 

small olive mills. After the extraction by pressing, a solid fraction is obtained, pomace (or olive 

cake), as by-product and an emulsion containing the olive oil that is separated by decantation from 

the remaining olive mill wastewater (OMWW) 2. This process offers advantages such as technical 

simplicity and cheap equipment, produces a small volume of OMWW because it adds a small 

quantity of water. Process discontinuity and high manpower costs are some disadvantages 3. 

 

1.1.2. Three-phase system 

The three-phase oil extraction system (figure 2) was introduced in 1970s to improve yield. 

The products generated are: pure olive oil, OMWW and a solid, pomace (olive cake or orujo) 4.  

The advantages of this system are better oil quality, complete automation, smaller area 

needed, however this process presents some disadvantages such as greater water and energy 

consumption, higher wastewater production and more expensive installations 2. 

 

1.1.3. Two-phase system 

Two-phase system (figure 2) was introduced in 1990s in Spain, with the objective to 

produce oil by a more ecological way, once this system drastically reduces the water consumption 

during the process, and greatly reduces wastewater generation. This system produces olive oil and 

a semi-solid waste, two-phase olive mill waste (TPOMW) or wet pomace or alpeorujo 4. 
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Figure 2 | Processes for olive oil extraction: traditional pressing, three-phase system and two-phase 

system.  

 

1.2. Olive by-products 

The olive oil industry generates large quantities of wastes in short periods of time, and the 

environmental pollution posed by these is a growing problem. The by-products (wastes) are a solid 

residue (pomace or TPOMW) from two-phase extraction system and a olive cake and an effluent 

(OMWW) from three-phases system (table 1) – which are ordinarily considered olive mil wastes 

(OMW)3. The olive pomace can be used in a second extraction with organic solvents to extract 

residual olive oil, then the solid is dried and used in combustion processes. 

Different studies have demonstrated that these by-products are harmful to the environment 

and that cause negative effects on soil microbial populations 5, on aquatic ecosystems 6 and even 

in air through phenol and sulphur dioxide emissions 7. The toxicity and antimicrobial activity of the 
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olive phenols are major contributors to this pollution and hinder the biological treatment of wastes, 

needed to reduce their pollutant load. Therefore there is an urgent need to find ways of treating 

this liquid and solid residues from the olive oil industry 3. 

 

Table 1| Input - output data for the three olive oil production processes. Adapted from Azbar et al. (2004) 

8. 

Production 

process 
Input 

Amount of  

input 
Output 

Amount of 

output (kg) 

Traditional  

press process 

Olives 

Wash water 

Energy 

1 ton 

0.1-0.12 m3 

40-63 kWh 

Oil 

Solid waste 

Wastewater 

̴200 

̴400 

̴600 

Three-phase 

process 

Olives 

Wash water 

Fresh water for decanter 

Energy 

1 ton 

0.1-0.12 m3 

0.5-1 m3 

90-117 kWh 

Oil 

Solid waste 

Wastewater 

200 

500-600 

1,000-1,200 

Two-phase process 

Olives 

Wash water 

Energy 

1 ton 

0.1-0.12 m3 

<90-117 kWh 

Oil 

Solid + waster 

waste 

200 

800-950 

 

1.2.1. Chemical characterization 

Among the wastes, pomace is a solid waste obtained from the extraction of olive oil by 

traditional pressing or three-phase system, and this residue consist in a pieces of skin, pulp, stone 

and olive kernel with moisture content between 22% - 25% in traditionally pressing and 40% - 45% 

in three-phase systems 9–11. The main constituents are cellulose, hemicellulose and lignin; 

polysaccharides, fatty acids, proteins, lignocellulosic polyalcohols, polyphenols and other pigments 

are also present 9. The chemical composition of this waste varies according to the olive species, 

origin of the olives, culture conditions and extraction process 12. Pomace of TPOMW from the two-

phase systems differs from the other pomace mainly in the amount of humidity (table 2). 

TPOMW is characterized by pH values slightly acidic, high moisture content (65% a 75%) 

and very high content of organic matter (mainly lignin, cellulose and hemicellulose). Other 

important organic components are fats, proteins, water-soluble carbohydrates and a small fraction 

of hydrosoluble phenolic substances. This by-product is rich in K, containing an intermediate level 
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of N (mainly organic) and poor in P and others micronutrients (Fe, Cu, Mn, and Zn) 10, that are 

described in table 2. This waste is difficult to manage because its pollutant loads is more 

concentrated 3. TPOMW is currently the main waste produced by the olive mill industry. 

 

Table 2 | Chemical composition of TPOMW given by eight authors and reported in Roig et al. (2006) 2. 

Parameter Mean Range 

Humidity (%) 62.16 49.6 – 71.4 

pH (H2O) 5.48 4.9 – 6.8 

Organic Matter (%) 90.66 60.3 – 98.5 

C/N 44.99 29.3 – 59.7 

P (g/kg) 0.97 0.3 – 1.5 

K (g/kg) 18.73 6.3 – 29 

Ca (g/kg) 5.08 2.3 – 12 

Mg (g/kg) 1.03 0.5 – 1.7 

Na (g/kg) 0.67 0.2 – 1 

Fe (mg/kg) 1 107.80 526 – 2 600 

Cu (mg/kg) 41.20 13 – 138 

Mn (mg/kg) 25.80 13 – 67 

Zn (mg/kg) 19.60 10.01 – 27 

Lignin (%)* 38.82 19.8 – 47.5 

Hemicellulose (%)* 29.70 15.3 – 38.7 

Cellulose (%)* 23.47 17.3 – 33.7 

Lipids (%)* 11.01 3.76 – 18 

Protein (%)* 6.95 6.7 – 7.2 

Carbohydrates (%)* 12.32 9.6 – 19.3 

Phenols (%)* 1.36 0.5 – 2.4 

*(% w/w) of total organic matter 

 

OMWW is also a serious waste produced in olive mills due its chemical composition and its 

high organic load 4. The composition is not constant – both qualitatively and quantitatively, and 

varies according to climate conditions, olive species, cultivation practices, the olive oil extraction 

process, the olive storage time 3. OMWW has a red-to-black colored, an acidic pH and of high 
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conductivity. Further to the high percentage of water (83% - 92%), has an high organic load, mainly 

sugars, lipids, protein, polysaccharides and minerals, K, Mg, Ca, Cl, F. Also contains phenolic 

compounds that inhibit microbial growth (antimicrobial activity) 13,14 and the germination and 

vegetative growth of plants 15, therefore are the main determinants of phytotoxic and antimicrobial 

actions of OMWW 4. OMWW are particularly difficult to degrade because the phenols tend to 

polymerize during storage into condensed high molecular weight polymers 16. 

 

1.2.2. Lignocellulosic materials 

The processes that use lignocellulosic wastes (olive pomace) as raw material, can minimize 

the lack of food, fix problems of waste, decrease dependence on fossil fuels and mitigate the effects 

on climate and the environment 17. The utilization of fermentable sugars, like glucose, from 

lignocellulosic material is the most plentiful renewable resource in the Earth 18. 

Lignocellulose is mainly constituent of plant cell walls. It consists of three types of polymers, 

cellulose, hemicelluloses, lignin, and a smaller amount of pectin and extractives (soluble non-

structural materials as non-structural sugars, chlorophyll, nitrogenous material, and waxes) 19–21. 

The composition and percentages of these constituents in the plants can vary depending of the 

species, and the ratios between various polymers within a single plant vary with age, stage of 

growth and other conditions 20. 

These polymers are strongly intermeshed and chemically bonded by non-covalent forces and 

by covalent cross-linkages, therefore these binding of the polymers hinders their biodegradation by 

fungi and bacteria 20.  

Cellulose and hemicelluloses are macromolecules from different sugars and lignin is an 

aromatic polymer synthesized from phenylpropanoid precursors 20. 

Cellulose is a linear polymer composed of D-glucose subunits linked by -1, 4-glycosidic 

bonds forming cellobiose molecules; and form long chains (elemental fibrils) linked together by 

hydrogen bonds and van der Waals forces. Microfibrils (formed by elemental fibrils) group together 

to constitute the cellulose fiber. Hemicelluloses and lignin cover microfibrils. Cellulose can appear 

in crystalline form, crystalline cellulose, and a small percentage of non-organized cellulose chains, 

form amorphous cellulose 20.  

Hemicelluloses are polysaccharides that consists of D-xylose, D-mannose, D-galactose, D-

glucose, L-arabinose, 4-O- methyl-glucuronic, D-galacturonic and D-glucuronic acids and sugars are 

linked together by -1, 4- and occasionally -1, 3-glycosidic bonds 20. 
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Lignin is an amorphous heteropolymer and non-water soluble; confers structural support, 

impermeability, and resistance against microbial attack and oxidative stress. This polymers 

composed of phenylpropane units are joined together by different types of linkages 20. 

 

1.2.3. Phenol Compounds 

Olive oil contains phenolic substances with antioxidant properties and all of these 

compounds are potent inhibitor of free radical generation. This substances prevent human diseases 

and are associated with lower incidences of atherosclerosis, certain cancers, and cardiovascular 

and neurodegenerative diseases. Beyond to antioxidant activity, phenolic compounds also have 

anti-inflammatory, antiatherogenic and anti-proliferative properties. Phenol compounds are 

responsible for the brightly colored pigments of many vegetables and fruits, are responsible for 

protecting plants from disease and ultraviolet light, also help prevent damage to seeds until they 

germinate and are quantitatively and qualitatively abundant in olive oil by-products.  

Olive oil wastes are an excellent source of natural antioxidants. Phenols compounds, which 

are considered to be the main antioxidant compounds in OMW, are able to donate a hydrogen 

atom to the lipid radical formed during the propagation phase of liquid oxidation 22. 

The phenolic profile of OMW is variable and complex because the occurrence of specific 

phenolic compounds depends on the olive variety, climatic conditions, storage time, the treatments 

applied to extract the oil from the olives and to treat the olive mill wastes, and its mode of culture 

also significantly influence the qualitative and quantitative phenolic content of the residues 3,4. 

The main phenolic compounds detected in residues were phenolic acids, flavonoids and 

secoiridoids 3. There are also others compounds namely, hydrocarbons, tocopherols, sterols and 

triterpenoids 23–26. 

The recuperation of phenolic compounds by olive by-products can be done by different 

techniques such solvent extraction, enzymatic preparation, membrane separation, centrifugation 

and chromatographic procedures 3. 

 

1.3. Valorisation of olive mill wastes 

Olive oil extraction produces a dark-colored wastewater and a solid residue containing 

nutrients that can be further bioprocessed for disposal 3. 

The wastes from olive oil industry are a serious environmental problem, due to its heavy 

load of lipids, organic acids and phenolic compounds. The reutilization of olive mill wastes are of 
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great interest since, due to legislation and environmental reasons; the industry is increasingly being 

forced to find an alternative use for its residual matter. There are two main approaches for the re-

used of waste, the extraction of valuable phytochemical compounds with beneficial properties for 

the food, cosmetic and pharmaceutical industries and the other focuses on the bioconversion of 

olive mill by-products without environmental impacts 3. 

Efficient biotechnological treatments were developed as anaerobic fermentation which can 

produce different types of value-added products (fuels, organic acids, enzymes, biopolymers) and 

biological remediation of olive by-products that have been reported as environmental-friendly 

process 3. 

Since early 1990, the two-phase system was introduced as a new method more 

environmentally friendly and resulted in the production of a new semi-solid waste, TPOMW. This 

new method of extraction of oil has more advantages comparatively to the three-phase system. 

Therefore a new waste, with singular physico-chemical properties, is generated in large quantities. 

TPOMW is a solid waste with a strong odour and a doughy texture, and this makes its transport, 

storage and handling hard. There are great difficulties for its revalorization due to the high moisture 

content (65%) and carbohydrate concentration and the high energy consumption required for 

drying. This residue also has become a serious problem for olive mills, because its management 

requires specific facilities 2.  

 

1.3.1. Physical-chemical processes 

 

1.3.1.1. Drying and second extraction of oil 

TPOMW can be dried and further subjected to second extraction of oil with solvents. This 

waste tends to stick to the furnace walls blocking the gaseous stream and causing an risk of 

explosion due to high humidity and sugars present – it cannot be piled and must be kept in large 

ponds 27. The moisture also affects the drying process because demands a lot of energy that 

substantially increases costs. The problems associated with this process of recovery have led to 

investigation of other alternative technologies 2. 

After the second extraction, TPOMW is usually used as fuel to obtain electric or thermal 

energy through combustion 28,29. This method is currently used in most of the olive mills because 

the residue has a high calorific power (400 kcal/kg). However, most of the energy obtained by 
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combustion is used for dryness of the fresh TPOMW and therefore the total energy recovery is low 

8. 

 

1.3.1.2. Extraction of valuable products 

TPOMW is suggested as a low-cost source of interest compounds.  

This residue has been proposed for the extraction of pectins. These are natural hydrocolloids 

used as stabilizers agents, emulsifiers and gelling in the food industry and are currently obtained 

from citrus peel and apple pomace. One intensive search has been made for other sources of 

pectins using waste as raw materials. Cardoso et al. (2003) 30 studied the economic feasibility of 

TPOMW for the extraction of pectins and obtained positive results. 

This residue is also a potential source of phenols that has an extensive range of biological 

activities. The OMW are rich in polyphenols and contains about 98% of the olive fruit phenols 31. 

Various authors have been proved the antimicrobial, cardio-protective, antioxidant, antihypertensive 

and anticarcinogenic activities of these compounds and can be applied in food, cosmetic and 

pharmaceutical industries 2. 

 

1.3.2. Biotechnological processes 

 

1.3.2.1. Composting 

Composting is a technology that utilizing solid wastes and produces a fertilizer from such 

wastes. Removes the phytotoxicity of the residues within a few weeks and allows the subsequent 

enrichment of croplands with compost nutrients that were originally taken up by olive tree 

cultivation. Composting of solid wastes requires the proper adjustment of temperature, pH, 

moisture, nutrients and oxygenation, allowing the adequate development of the microbial 

populations 32. Optimal conditions for an ideal composting process are a C/N between 20 and 40 

of the composting material, moisture content of 50% to 65%, an adequate oxygen supply, a small 

particle size and enough void space through which air can flow 33. This recycling process is gaining 

interest as a sustainable strategy to reuse this residue for agricultural purposes 34–37. Compost, rich 

in organic matter and free of phytotoxicity, can thus be obtained 34 after 60 days of composting, 

these exhibited a microbial stability and a clear absence of phytotoxicity 4. 
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The major problem of this process from olive by-products is odour emission and the drainage 

water that has to be treated. To minimize this problem biofilters are used to treat the released gas 

from composting piles, which increases the total costs of the technology 4. 

This process may be an appropriate low-cost strategy for the recycling of solid wastes with 

a complete detoxification of starting materials, representing an alternative to combustion 2. 

 

1.3.2.2. Anaerobic digestion 

The biogas (a mixture of CH4 and CO2) and partially stabilized organic matter that can be 

obtained through anaerobic digestion. Biogas can be used to obtain energy and organic matter and 

can be applied as soil conditioner. The high level of phenolic compounds and biotoxicity present 

as a limiting factor 38. 

The main limitation of this process is the inhibition of methanogenic bacteria by the phenolic 

substances and the organic acids present in residue 39. Pretreatment stage is necessary to remove 

undesirable compounds 8. Filidei et al. (2003) 40 proposed sedimentation–filtration pretreatment 

prior to anaerobic digestion as a useful way of solid wastes disposal. 

Anaerobic digestion presents advantages such as low sludge generation, less energy 

requirement for operation and methane production 8. 

Biomass gasification is a new physicochemical method that transforms solid biomass into 

synthetic gas (‘‘syngas’’), a mixture of CO and H2. Synthetic gas is used to obtain important 

chemical products such as NH3 or CH3OH and for preparation of synthetic fuel 2. 

 

1.4. Pretreatments of lignocellulosic materials 

The purpose of the pretreatment is to prepare lignocellulosic materials for enzymatic 

degradation. Pretreatment enhance the biodigestibility of the residues and increase the accessibility 

of the enzymes to the materials. Without an initial pretreatment, enzymatic hydrolysis of the 

lignocellulosic materials into fermentable sugars is not as effective due to the high stability of these 

compounds to enzymatic attack. The efficiency of this process is mainly influenced by the nature 

and composition of lignocellulosic biomass 41. The main factors that can affect the rate of biological 

degradation of lignocelluloses by enzymes can be its accessible surface area and protection by 

hemicelluloses and lignin, the crystallinity of cellulose, degree of cellulose polymerization, and 

degree of acetylation of hemicelluloses 42. The successful pretreatment should, 1) minimize loss of 

hemicelluloses and cellulose; 2) maximize the enzymatic convertibility; 3) maximize the recovery 
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of valuable by-products, e.g. lignin; 4) not require the addition of chemicals toxic to the enzymes 

or fermenting microorganisms; 5) minimize the use of energy, capital equipment and chemicals; 

and 6) be scaled up to industrial size 43. 

The presence of lignin in lignocelluloses leads to a protective barrier that prevents plant cell 

destruction by fungi and bacteria. The cellulose and hemicellulose must be broken down into their 

corresponding monomers (sugars), so that microorganisms can utilize them 44 (figure 3). 

 

 

Figure 3 | Schematic representation of the effect of pretreatment in conversion of carbohydrates polymers 

into fermentable sugars 44.  

 

Different strategies are used to increase the enzymatic susceptibility and have been 

introduced several pretreatments of lignocellulosic materials. The methods can be classified into 

physical, physical-chemical, chemical and biological pretreatments 41. The pretreatments increase 

accessibility of the fungi to the cellulose, which can actuate as inductor of cellulases production by 

fungi. 

 

1.4.1. Ultrasound 

The physical pretreatment can increase size of pores and accessible surface area, and 

decrease degrees of polymerization of cellulose and crystallinity. There are different types of 

physical processes that can be applied to lignocellulosic waste materials as milling (e.g. two-roll 

milling, ball milling, colloid milling, hammer milling and vibro energy milling) and irradiation (e.g. 

by gamma rays, microwaves or electron beam) and these can be used to improve the 

biodegradability or enzymatic hydrolysis of these residues 41. 

Ultrasound pretreatment (US) causes a cavitation bubbles formation in the liquid phase 45, 

the bubbles grow and then violently collapse when they reach a critical size. Cavitational collapse 
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produces turbulence, intense local heating and high pressure at the liquid-gas interface, high 

shearing phenomena in the liquid phase and formation of radicals 46,47. It was also proven that the 

degradation of excess sludge is more efficient when using low frequencies: mechanical effects 

facilitate particles solubilisation 45. 

Compared with some other physico-chemical pretreatment methods, microwave irradiation 

seems to have less energy consumption. When were pre-treated lignocellulosic materials with 

microwave irradiation or microwave-assisted pretreatment in the presence of water, their enzymatic 

susceptibility increased 48. The combination of radiation and other methods (e.g., acid treatment) 

can accelerate the enzymatic hydrolysis 49,50. The irradiation also increased the enzymatic 

degradation of cellulose to glucose. However, pre-irradiation in air is more effective than an acid 

solution 50. The waste pre-treated using irradiation resulted in double yield of glucose from the 

hydrolysis compared with the untreated waste 51. 

 

1.4.2. Acid 

The acid pretreatment can operate either under a low acid concentration (dilute-acid 

pretreatment) and high temperature or under a high acid concentration (concentrated-acid 

pretreatment) and low temperature 41. 

Concentrated acids such as HCl and H2SO4 have been used to treat the lignocellulosic 

materials. These concentrated acids are powerful agents for cellulose hydrolysis, however 

concentrated acids are toxic, corrosive, dangerous and therefore corrosion resistant reactors is 

necessary, making the pretreatment very expensive. The concentrated acid should also be 

recovered in order to make the process economically viable 52,53. 

Dilute acid hydrolysis also has been successfully developed for pretreatment of 

lignocellulosic materials. Is used H2SO4 at concentrations usually below 4% wt, and has been of the 

most interest in such studies as it is effective and inexpensive 44. Dilute acid pretreatment can 

achieve high reaction rates and significantly enhance cellulose hydrolysis. Dilute acid effectively 

removes and recovers most of the hemicelluloses as dissolved sugars 44. When added H2SO4, the 

hemicelluloses are removed and this increases the digestibility of the cellulose in the solid waste 54 

and cellulose can actuate as inductor for cellulases production by filamentous fungi. In the 

treatment with dilute acid is favourable to apply high temperature to the hydrolysis of cellulose 55. 

The most used and tested approaches typically employ dilute H2SO4, however, HNO3 
56, HCl 57,58, and 

H3PO4 57 have also been tested. A number of plant materials has been examined particularly, legume 
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by-products; corn (cobs, husks and stover); hardwood bark from poplar, aspen, and sweet gum; 

reed canary grass and mixed hardwood (0% maple and 90% birch) 44. 

Dilute acid pretreatment can improve considerably the hydrolysis of cellulose but their cost 

is usually higher than those of physicochemical pretreatments. In these pretreatment is also 

necessary the pH neutralization for the downstream enzymatic hydrolysis or fermentation 

processes 44. 

Cara et al. (2008) 59 studied the production of fermentable sugars from olive-tree biomass 

by dilute acid pretreatment and more scarification of the pre-treated solid residues. 

There are studies that have demonstrated that materials that are subjected to acid hydrolysis 

may be more difficult to ferment due to the presence of toxic substances 60. 

Acid pretreatment results in high pressures, costly materials of construction, neutralization 

and conditioning of hydrolysate prior to biological steps, non-productive binding of enzymes to lignin 

and slow cellulose digestion by enzymes 61. At a low concentration of acid (e.g. 0.1% - 1% H2SO4) 

and elevated temperature (e.g. 140 ºC – 190 °C), the dilute-acid pretreatment can obtain high 

reaction rates and significantly better cellulose hydrolysis. With this process, almost 100% 

hemicelluloses removal is possible, and the pretreatment is not effective in dissolving lignin, but it 

can increases the cellulose’s susceptibility to enzymatic hydrolysis and disrupt lignin 42,62. Dilute-

acid pretreatment can be performed either in a relatively long retention time (e.g. 30 min – 90 

min) at lower temperatures (e.g. 120 °C) or in short retention time (e.g. 5 min) at high temperature 

(e.g. 180 °C) 41. 

 

1.4.3. Alkaline 

The alkaline pretreatment applies an alkaline solution such as NaOH, NH3 or Ca(OH)2 (lime) 

to remove the lignin and a part of the hemicellulose, and also increase the accessibility of enzyme 

to the cellulose. This alkaline pretreatment removes or modifies the lignin by fracturing the ester 

bonds that form cross-links between xylan and lignin, thus increasing the porosity of the biomass 

63. However, the process is very complicated, involving several reactive and not reactive 

phenomena, for example, peeling-off reactions (referred to as formation of alkali-stable in end-

groups), dissolution of non-degraded polysaccharides, decomposition of dissolved polysaccharides 

dissolved and hydrolysis of glycosidic bonds and acetyl groups 64. Thus, the efficiency of the NaOH 

pretreatment is very dependent process conditions, like temperature, NaOH concentration, and 

treatment time, as well as the inherent characteristics of lignocellulose used 65–67. 
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The processes of pretreatment with NaOH can be performed with high concentrations or low 

concentrations (in terms of NaOH). In processes of low NaOH concentration (0.5% – 4%), high 

temperature and pressure are used, NaOH recycling does not occur, and this mechanism is a 

reactive destruction of lignocelluloses. NaOH at high-temperature disintegrate the lignin and 

hemicellulose and removes them from the solid phase 18. 

Is reported in the literature, for example, when soybean straw was soaked in ammonia liquor 

(10%) for 24 h at room temperature, the hemicellulose decreased by 41.45% and lignin by 30.16% 

68. Also, alkaline pretreatment was shown to be more effective on agricultural residues than on 

wood materials 41.  

Vaccarino et al. (1987) 69 studied the effects of Na2CO3, NaOH and SO2 pretreatments on the 

enzymatic digestibility of grape marc, and the better degrading effects were obtained by 

pretreatment with 1% NaOH solution at 120 °C. Zhao et al. (2008) 70 also reported that 

pretreatment with NaOH could obtain a higher enzymatic conversion ratio of cellulose compared 

with H2SO4 pretreatment.  

Alkaline treatment appears to be the most effective method in breaking the ester bonds 

between lignin, hemicellulose and cellulose, and avoiding fragmentation of the hemicellulose 

polymers, when compared with acid or oxidative reagents pretreatments 71.   

 

1.5. Solid-state fermentation 

The solid-state fermentation (SSF) has gained interest in biotechnology industries due to its 

possible applications for the production of value added products, such as enzymes, organic acids, 

poly unsaturated fatty acids, single cell protein, antibiotics, biopesticides, biofuel and aroma 

production 72,73. These processes use agro-industrial residues as the substrates, and provides an 

alternate way of value-addition to these otherwise under- or non-utilized residues 73. Thus, these 

approaches arise when it is imperative to use a solid waste to avoid environmental impacts that 

may be caused by direct elimination 74 and in addition, the costs of process are reduced.  

The SSF is defined as a fermentation process that occurs in the absence or near-absence of 

free water in which it is applied a natural or inert substrate used as solid support. The substrate 

must have enough moisture to support the growth and metabolism of the microorganism 75–77. 

Normally the source of nutrients comes from within the particle, however there are cases in 

which the nutrients come from an external source. A polymer gives the solid particle structure, and 
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it may or may not be degraded by the microorganism during fermentation. There are also cases in 

which the artificial or inert carriers are used with a nutrient solution absorbed into the matrix 74.  

The SSF also appears as an attractive alternative to submerged fermentation (SmF). In SSF 

the microbial growth and product formation occurs at or near the surface of the solid substrate 

particle having low moisture contents 78. There are several potential advantages for bioprocessing 

and production of various value-added products compared to submerged fermentation, because 

products has higher yield, lower energy requirements and produces less wastewater with less risk 

of bacterial contamination 79. Also requires a small volume of fermentation mash or reactor volume, 

leading in lower capital operating costs, lower probability of contamination due to low moisture, 

easy product separation, simple technology and oxygen is typically freely available at the surface 

of the particles.  

The SSF also has some disadvantages such as difficulties in monitoring the process 

parameters (pH, the moisture content, oxygen, biomass concentration) due to the solid nature of 

the substrate, difficulties in temperature control and ventilation systems, the impossibility of using 

microorganisms that grow at low humidity levels, the need for large volumes of inoculum and the 

possibility of contamination by unwanted fungi.  

 

1.5.1. Microorganisms  

In SSF, the microorganisms grow in conditions that more closely resemble their natural 

habitats, in order to be able to produce certain metabolites and enzymes which are normally not 

produced or are produced with low yield in SmF 80. 

The ability of microorganisms to grow on the solid substrate depends on the requirements 

of their water activity (aw), the capacity of adhesion and penetration into the substrate and the ability 

to assimilate mixtures of different polysaccharides. In SSF, the low moisture within the substrate 

limits the growth and metabolism of microorganisms when compared to SmF. aw of substrates 

have determinant influence on microbial activity, can determine the type of microorganisms that 

can grow in SSF. aw of the medium has been attributed as a fundamental parameter for mass 

transfer of water across the microbial cells 81. Moreover, reduced water activity causes lower mass 

transfer and little water availability for microorganisms 82. Operation at low moisture levels, provides 

a selective environment for the growth of mycelial organisms, even avoiding sterilization steps.  
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The filamentous fungi are microorganisms better adapted to the SSF by their physiological, 

biochemical and enzymological properties, and are particularly interesting due to their high 

production of extracellular enzymes 83. 

The hyphae generated by these fungi have the capacity to penetrate solid substrates and 

still have the advantage over unicellular microorganism colonization of the substrate and utilization 

of nutrients available. The filamentous fungi also have the ability to grow at low aw and at high 

osmotic pressure conditions (high concentrations of nutrients) making these microorganisms 

efficient and competitive for bioconversion of solid substrates microorganisms. There are still some 

SSF involving bacteria and yeasts. 

Filamentous fungi have the propensity to grow adhered to surfaces. Not yet been thoroughly 

studied the influence of this type of growth on fungal physiology, particularly when related to 

productivity 84. Under natural conditions, fungal contact with surfaces is required for nutrient uptake, 

hyphal apical growth and enzyme secretion. These microorganisms can grow in the absence of 

free water 85, and considering that submerged free floating fungal growth is not natural, growth on 

and within solid substrates is fundamentally related to cell adhesion. Growth morphology of 

filamentous fungi is an important factor related to productivity of various industrial processes 86. 

The filamentous fungus Aspergillus of the section Nigri are considered of wide economic 

importance due to production of metabolites such as enzymes 87–89. Apart from their economic 

importance, some black aspergilli are also ochratoxin-producing organisms which contaminate 

several agricultural products, including grape-derived products, cocoa and coffee 90–92. These fungi 

are one of the more difficult groups concerning identification and classification, and several 

taxonomic schemes have been proposed. New molecular approaches have shown that there is a 

high biodiversity, but that species are difficult to recognize based solely on their phenotypic 

characters 93. 

Among these fungi, A. niger is known as one of the best extracellular enzyme producers (e.g. 

lipases, cellulases) 94–97. 

Serra et al. (2006) 98 described a new species belonging to section Niger, called A. ibericus. 

This species do not produce any relevant mycotoxins, therefore are safe for biotechnological 

applications to produce many metabolites with commercial value. 

The fungus A. foetidus is reported in several studies as a source of enzymes with 

biotechnological interest. Shah et al. (2005) 99 and Chapla et al. (2010) 100 used lignocellulosic 

wastes for production of xylanases using solid-state fermentation. Kumar et al. (2012) 101 produced 
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pectinase from Mango Peel in solid-state and submerged fermentation. Mukherjee et al (2004) 102 

used tannin rich substrates for the production of tannases and gallic acid. 

A. uvarum sp. is described within Aspergillus section Nigri by Perrone et al. (2008) 103 and 

this isolated not produces ochratoxin A. 

Also filamentous fungi of the Trichoderma genus are especially notable for their high 

enzymatic productivity 104.  

T. reesei is one of the main industrial source of cellulases and hemicellulases due to its 

ability to secrete high quantities of hydrolytic enzymes 105, and are also used as biological agents to 

control plant pathogens in agriculture 106,107. Is the most widely employed fungus for the production 

of cellulolytic enzymes and has been extensively studied 108. These fungi has been widely 

investigated for cellulases production from various materials such as wheat bran 109, wheat straw 

110 and wood 111. 

 

1.5.2. Enzymes 

The production of enzymes is one of the most important applications of SSF and the agro-

industrial substrates are considered the best substrates for the enzymes production. The enzymes 

produced by microorganisms can be cellulases, amylases, pectinases, proteases, lipases, 

xylanases, ligninases, among others. These enzymes have great commercial value and play a very 

important role in the food, textile areas, paper, pharmaceutical. There are important factors that 

can affect the yield of enzymatic production like the type of strain, culture conditions, nature of the 

substrate and availability of nutrients 112.  

 

1.5.2.1. Cellulases 

Cellulases are enzymatic complexes that can degrade lignocellulosic residues, are one of 

the largest industrial enzyme worldwide, and can be used for production of ethanol, single-cell 

protein, for treatment of waste papers, for fruit juice extraction, cotton processing, animal feed 

additives and bleaching of pulp 82,86. The advantage of using lignocellulosic wastes like substrate, 

allows the reduction of costs in the production of cellulases, making the process more cheap 113.  

These enzymes catalyse the hydrolysis of the -1,4-glucosidic linkages of cellulose 20 and 

produce glucose, cellobiose and cello-oligosaccharides as primary products. The joint action of the 

enzymes, endo-glucanases (EG), cellobiohydrolases (CBH) and β-glucosidases (BGL) are used for 

hydrolysing cellulose. The rate-limiting step is the capacity of EG to reach for amorphous regions 
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within the crystalline matrix and create new ends with which EG can act 114. So, EG produces cuts 

in the cellulose polymer exposing reducing and non-reducing ends, CBH acts upon these reducing 

and non-reducing ends to liberate cellobiose and cello-oligosaccharides units, and BGL cleaves the 

cellobiose to liberate glucose 86. 

From among the fungal strains that produce cellulases stand out Aspergillus, Trichoderma, 

Penicillium, and Fusarium genera 115.  

It has been found that strains of Trichoderma are poor in BGL, but can accumulate high 

activities of exo- and endo-glucanase (respectively CBH and EG) 116. However, the strains of 

Aspergillus are high in BGL activity 117. 

 

1.5.2.2. Xylanases 

Xylanases (endo-1,4- -D-xylanases) are included in hemicellulase system and have been 

used for hydrolyse internal bonds in xylan chain from lignocellulosic materials, products such as 

brans and straws of different cereals, corn, hull and cobs, sugarcane and cassava bagasse, various 

saw dusts and different fruit processing and oil processing residues. Moreover, xylanases have 

immense potential for increasing the production of several valuable products like xylitol and ethanol 

in a most economical way 118.  

The production of these enzymes requires substrates in very high concentration. Xylanases 

are produced mainly by Trichoderma spp. and Aspergillus spp. 119,120. 

The enzymes production was achieved successfully by Aspergillus niger, Aspergillus fischeri 

using wheat straw and wheat bran as main substrates 121,122. Ghanem et al. (2000) 122 produced 

xylanases using Aspergillus terreus on wheat straw medium.  

It was also observed that the addition of nitrogen source as supplement is an important step 

for xylanases production 122. 

Other cellular models can be used for xylanases production using SSF such as 

Aureobusidium pullulans, 123, Thermomyces lanuginosus 124, Humicola insolens 125 and 

Melanocarpus albomyces 126. 
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2.1. Raw material 

Two types of olive pomace (crude olive pomace, COP and exhausted olive pomace, EOP) 

were collected from olive oil industry of north of Portugal in season 2013/2014. COP is a semi-

solid waste of the two-phase system that was recovered after olive oil extraction. EOP is obtained 

after recovery of residual olive oil from COP and dried to use in combustion processes. The 

pomaces samples were stored, respectively, at –20 ºC and at room temperature and dry 

conditions. 

 

2.2. Physical-chemical characterization of olive pomace 

Both olive pomaces were analysed for the physical-chemical characterization according to 

the procedures described in the next sections. 

 

2.2.1. Humidity determination 

A known quantity of waste, about 1 g, was added in a container with a known weight 

(previously dried in hot air oven until constant weight). The vessel with the waste was placed in the 

hot air oven at 105 ºC for about 24 h (until constant weight). After cooling in desiccator containing 

silica gel it was weighed. This determination was performed in triplicate. Humidity (H) percentage 

(grams of water per grams of humid waste) was calculated according to equation 1. 

 

H (%) = 
WCHS - WCDS

WCHS - WC
 x 100    (eq.1) 

 

wherein WCHS is the weight of container with humid waste in grams, WCDS is the weight of 

container with dry waste in grams and WC is the weight of container in grams. 

 

2.2.2. Total solids determination 

To determine the total solids in the waste, the procedure is the same as in section 2.2.1. 

Total solids percentage (grams of solid per 100 grams of humid waste) was calculated according 

to equation 2. 
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TS (%) = 
WCDS - WC

WCHS - WC
 x 100    (eq.2) 

 

wherein WCHS is the weight of container with humid waste in grams, WCDS is the weight of 

container with dry waste in grams and WC is the weight of container in grams. 

 

2.2.3. Ash determination 

A known quantity of waste, about 1 g, with a known humidity was added in a porcelain 

container (previously exposed to 575ºC during 30 min in the muffle). The porcelain container with 

the waste was placed in the hot air oven at 105 ºC for about 24 h and in the muffle at 575 ºC for 

about 2 h (until constant weight). After cooling in desiccator containing silica gel and then it was 

weighed. This determination was performed in triplicate. Ash percentage (grams of ash per 100 

grams of dry waste) was calculated according to equation 3. 

 

Ash (%) = 
WCA - WC 

(WCHS - WC) x (1 - H)
 x 100   (eq.3) 

 

wherein WCA is the weight of porcelain container with ash in grams, WC is the weight of porcelain 

container in grams, WCHS is the weight of porcelain container with humid waste in grams and H 

is the humidity in grams of water/grams of humid waste. 

 

2.2.4. Nitrogen, carbon and metals determination 

Total nitrogen and organic carbon were determined by a Thermo Finningan Flash Element 

Analyzer 1112 series, San Jose, CA (USA) and metals, such as Ca, K, Mg, Na, Zn, Cu, Fe, Mn, 

Cr, Ni and Pb were analysed in ashes using Flame Atomic Absorption and Atomic Emission 

Spectrometry (FFAS/FAES) FAAS/FAES 127 . 

 

2.2.5. Cellulose, hemicellulose and lignin determination  

The organic constituents of olive pomace such as cellulose, hemicellulose and Klason lignin 

were characterized by quantitative acid hydrolysis (QAH) in a two-stage acid treatment. The first 

stage with 72% wt H2SO4 at 30 ºC for 1 h and the second stage after dilution to 4% wt H2SO4 at 121 

ºC for 1 h. 
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A sample of about 0.5 g was weighed in a test tube. It was added 5 mL of 72% wt H2SO4. 

The test tubes were placed in the water bath at 30 ºC during 1 h with periodic agitation (first stage). 

After this period, the test tube content was transferred for flasks and the waste that stayed adhered 

to the walls was dragged with distilled water. To increase the volume of dissolution up to 148.67 g 

distilled water was added. The flasks were closed, weighed and introduced in to autoclave during 

1 h at 121 ºC (second stage). Posteriorly the flasks were cooled and was determined the originated 

losses during the second stage by weighing. The entire content of each of the flasks was filtered 

through a Gooch container with known weight. The Gooch container used to filter the product 

resulting from QHA were introduced in the hot air oven at 105 ºC. After 24 h it was cooled in 

desiccator containing silica gel and then weighed. This determination was performed in duplicate. 

The filtrate was analysed by High Performance Liquid Chromatography (HPLC) system for 

measure sugars (glucose, xylose and arabinose) and acetic acid. Using a Jasco830-IR intelligent 

refractive-index detector and a Varian MetaCarb 87H column. The column was eluted with 0.005 

M H2SO4 and the flux was 0.7 mL/min at 60ºC. Calibration curves were constructed with glucose, 

xylose, arabinose and acetic acid standard solutions between 0.1 g/L e 10 g/L. Retention times 

in minutes were, respectively, 8.075 min for glucose, 8.61 min for xylose, 9.327 min for arabinose 

and 13.18 min for acetic acid.  

With the data of sugars concentrations (glucose, xylose, arabinose and acetic acid) was 

calculated the content in polymers (CP) which hydrolyse gave rise to monomers measured in the 

waste. The CP, glucan, CGn, xylan, CXn, arabinan, CArn, and acetyl groups, CGA, (grams of polymer 

per 100 grams of dry waste) were calculated according to equation 4.  

 

CP (%) = F x SCF x 
[S]ρ  x 

W + WHS x H

WHS x (1 - H)
 x 100   (eq.4) 

 

wherein F is a factor which corrects degradation of sugars (1.04 for CGn, 1.088 for CXn/CArn and 

1.00 for CGA), SCF is a stoichiometric correction factor to take account the increase in molecular 

weight during hydrolysis (162/180 for CGn, 132/150 for CXn/CArn and 43/60 for CGA), S is the 

monomer concentration in g/L, � is the density of the analysed dissolution in g/L (As the samples 

were diluted in water for HPLC analysis the value is about 1000 g/L, W is the weight of added 

water in grams and corrected to take account the losses during second stage of QHA, WHS is the 
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total weight in grams of humid waste and H is the humidity in grams of water/grams of humid 

waste. 

Cellulose (grams of cellulose per 100 grams of dry waste) and hemicellulose (grams of 

hemicellulose per 100 grams of dry waste) content were determined according to equation 5 and 

equation 6, respectively. 

 

Cellulose (%) = CGn    (eq.5) 

 

Hemicellulose (%) = CXn +CArn + CGA   (eq.6) 

 

The increase weight of the Gooch container matches to Klason lignin, thus the content of 

lignin (grams of lignin per 100 grams of dry waste) was calculated according to equation 7. 

 

Klason lignin (%) = 
WCDS - WC

WCHS x (1 - H)
 x 100   (eq.7) 

 

wherein WCDS is the weight of Gooch container with dry sample in grams, WC is the weight of 

Gooch container in grams, WCHS is the weight of Gooch container with humid initial sample who 

underwent to the QHA in grams and H is the humidity in grams of water/grams of humid waste. 

 

2.2.6.  Lipids determination 

The total fats contents were extracted with diethyl ether, in a Soxtec System HT2 1045 

Extraction Unit. The temperature of the process was 90 ºC.  

About 5 g of humid waste (with the diameter of the particles less than 1 mm) were weighed 

for a thimbles which were covered with a thin layer of cotton and a thimble adapter. Thimbles were 

inserted in the condensers of the extraction unit (1045 Extraction Unit). Extraction cups with glass 

beads were weighed and were added 50 mL of diethyl ether.  

The extraction cups were dried in the hot air oven at 105 ºC for about 30 min. After cooling 

in the desiccator containing silica gel weight was determined. This determination was performed 

in duplicate. Lipids percentage (grams of lipids per 100 grams of dry waste) was calculated 

according to equation 8. 
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Lipids (%) = 
WCL - WC

WHS x (1 - H)
 x 100    (eq.8) 

 

wherein WCL is the weight of extraction cups with lipids in grams, WC is the weight of extraction 

cups in grams, WHS is the weight of humid initial sample in grams and H is the humidity in grams 

of water/grams of humid waste. 

 

2.2.7. Reducing sugars determination  

Free reducing sugars were measured by the DNS method 128 and in order to analyse them 

in olive pomaces an extraction with water (S:L ratio, 1:5 w/v) was performed.  

To each tube was added 0.5 mL of DNS reagent to 0.5 mL of sample (0.5 mL of distilled 

water for blank) in triplicate. Tubes were placed in a bath at 100 ºC during 5 min. After cooling, 

was added 5 mL of water to the mix. Absorbance was read at 540 nm. Calibration curve was 

constructed with glucose standard solutions between 0 g/L and 4 g/L. 

 

2.2.8. Total phenols determination 

Total phenols were assessed by the Folin-Ciocalteu method (Commission Regulation (EEC) 

No. 2676/90) and in order to analyse them in olive pomace an extraction with water (S:L ratio, 

1:5 w/v) was performed.  

In each tube 100 µL of sample (100 µL of distilled water for blank) was added, as well as 2 

mL of Na2CO3 at 15%, 500 µL of Folin-Ciocalteu reagent and 7.4 mL of distilled water in triplicate. 

Tubes were placed in a bath at 50 ºC during 5 min. After cooling to room temperature, tubes were 

vortexed. Absorbance was read at 700 nm. Calibration curve was constructed with caffeic acid 

standard solutions between 0 g/L and 2 g/L. 

 

2.2.9. Proteins determination 

Proteins were measured by the Bradford method 129 and in order to analyse them in olive 

pomace an extraction with water (S:L ratio, 1:5 w/v) was performed.  

In each well microplate was added 10 µL of sample (10 µL of distilled water for blank) to 

300 µL of Coomassie Blue reagent in triplicate. Microplate was stirred during 5 min and waited for 

10 min at room temperature. Absorbance was read at 595 nm. Calibration curve was constructed 

with bovine serum albumin (BSA) standard solutions between 0 g/L and 1 g/L. 
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2.3. Microorganisms 

Different species of Aspergillus section Nigri and Trichoderma reesei were used in this study 

and are listed in table 3. They were obtained from MUM (University of Minho, Braga, Portugal) 

and CECT (Valencia, Spain) culture collection, where they were preserved in glycerol stocks stored 

at -80 ºC. They were revived on malt extract agar (MEA) plates (20 g/L malt extract, 1 g/L peptone, 

20 g/L glucose and 20 g/L agar). To obtain inocula for SSF, the selected fungi were subcultured 

on MEA slants, and incubated at 25 ºC for 6 days. During the experimental period, strains were 

preserved at 4ºC and cultured monthly on fresh MEA slants. 

 

Table 3 | Filamentous fungi screened to verify ability to produce extracellular cellulases. 

Fungi Code 

Aspergillus niger  01Uas107 

Aspergillus niger 01Uas181 

Aspergillus niger  01Uas183 

Aspergillus niger  CECT 2088 

Aspergillus niger CECT 2700 

Aspergillus niger CECT 2915 

Aspergillus niger MUM 92.13 

Aspergillus ibericus  MUM 03.49 

Aspergillus ibericus  MUM 2004 

Aspergillus ibericus  03Uas268 

Aspergillus uvarum  MUM 08.01 

Aspergillus foetidus  01Uas162 

Aspergillus carbonarius  01Uas130 

Trametes versicolor  MUM 04.100 

Trichoderma reesei 03Uas095 

 

2.4. Screening of filamentous fungi 

 

2.4.1. Screening by Congo red test 

The strains were initially screened using the Congo red test. The screening of cellulases 

producing microorganisms was performed on agar plates using a cellulosic substrate, 

carboxymethylcellulose (CMC) as carbon source.  
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These fungi were inoculated in agar plates with specific medium, Mandel Weber medium. 

The composition of the medium consisted of 1.4 g/L (NH4)2SO4; 2 g/L KH2PO4; 0.3 g/L CaCl2.2H2O; 

0.3 g/L MgSO4.7H2O; 0.005 g/L FeSO4.7H2O; 0.0016 g/L MnSO4.H2O; 0.0014 g/L ZnSO4.7H2O; 

0.002 g/L CaCl2.6H2O; 5 g/L CMC; 0.1 g/L peptone; 0.1 g/L tween-80; 20 g/L agar. The medium 

was autoclaved at 121 ºC for 15 min. After, around 20 mL of medium was poured into sterile Petri 

plate and allowed to solidify. The fungal cultures were inoculated at the centre of plate containing 

sterile medium and incubated at 25 ºC during 5 days. At the end of 5 days the growth of the 

microorganism was measured by the diameter of the colony. Each culture plate was stained with 

10 mL aliquot of Congo red dye (2.5 g/L). After 15 min, the solution was discarded and the cultures 

were washed with 10 mL of 1 mol/L NaCl. Cellulases production was detected by appearance of 

clear zone of medium around growth colony, pale halo and orange edges around the fungal colony 

indicative of areas of hydrolysis. This halo was measured for subsequent calculation of the 

enzymatic index (EI) using the equation 9. 

 

EI = 
H

C
      (eq.9) 

 

wherein H is the diameter of hydrolysis zone and C is the diameter of the colony. 

 

The strains that showed higher EI were considered to be potential producers of cellulases. 

Two replicates per strain were performed for this screening step. 

 

2.4.2. Screening by SSF 

The three fungi that showed more diversity in enzyme production and stronger activities were 

subjected to a second screening. These fungi were proved in SSF (section 2.7.1.) using COP and 

EOP as solid subtract. Two replicates per condition were performed for this screening step. The 

condition that exhibited higher enzymes activities (cellulases and xylanases) was selected for the 

following steps. 

 

2.5. Ultrasound pretreatment 

The ultrasound pretreatment (US) of EOP was carried out with a high intensity ultrasonic 

processor Cole-Parmer 750 model (Illinois, USA) operating at 750 W and 20 kHz. To optimize the 
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optimal operational conditions this pretreatment for xylanases and cellulases production by SSF a 

full factorial design 32 were planned (section 2.9.2).  

The solid waste (30 g solid dry) was added to vessel and mixed with distilled water. Different 

liquid:solid ratio and time of treatment were studied in the experimental design. The vessel was 

placed in a protective box and the tip (diameter 1/2”) allocated into the vessel. After pretreatment, 

the solid was recovered by vacuum filtration and dried at 50 ºC for 24 h in a hot air oven. The 

treated waste was used as solid substrate in SSF to produce enzymes (section 2.7.2). This process 

is shown in figure 4. 

 

 

Figure 4 | Diagram which represents US treatment of olive pomace.  

 

2.6. Evaluation of other pretreatments 

Other pretreatments such as acid hydrolysis with diluted acid (AH) or ultrasound combined 

with acid hydrolysis (US+AH) were studied (figure 5) to compare with US. 

The AH of EOP was carried with dilute H2SO4 (3%) during 30 min in flasks inside autoclave 

at 121 ºC with a L:S ratio of 8 g/g 130. The hemicellulosic fraction solubilized in the liquid was 

separated by vacuum filtration and the solid was neutralized (pH 6) by washing with distilled water 

and dried at 50 ºC for 24 h in a hot air oven. The treated waste was used as solid substrate in SSF 

to produce enzymes (section 2.7.3.). 

US+AH was carried out in two steps. In the first step the pomace (60 g solid dry) was 

subjected to US in the optimal operational conditions previously optimized in section 2.5. and this 

pretreatment was performed in same conditions mentioned above. In the second step the treated 

moist waste was submitted to the AH. This pretreatment was performed in the same conditions 

mentioned above. The treated waste was used as solid substrate in SSF to produce enzymes 

(section 2.7.3.). 
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Figure 5 | Diagram which represents AH (A) and US+AH (B) pretreatment of olive pomace. 

 

2.7. Solid-state fermentation 

 

2.7.1. Screening of filamentous fungi by SSF 

COP and EOP were used as substrates in SFF experiments in order to compare its 

adequability for enzymes production and it was also used the three fungi selected in screening 

stage with stronger activities. 

SSF was carried out in 500 mL Erlenmeyer with 10 g of dried solid substrate. Moisture level 

was adjusted to 75% (wet basis) with nutrients solution (5 g/L peptone, 5 g/L yeast extract, 0.2 

g/L KH2PO4). Erlenmeyers with solid medium were sterilized at 121 ºC for 15 min.  

For the inoculation, fungal spores selected in Congo red test were grown in MEA medium 

slants tubes and were suspended in a sterile solution (1 g/L peptone, 0.1 g/L tween 80). The 

inoculum spore concentration was adjusted to 106 spores/mL using a Neubauer counting 

chamber. Each Erlenmeyer was inoculated with 2 mL of the spore suspension and incubated at 

30 ºC for 6 days.  

The extraction of enzymes was performed at final of each experiment with a solution 

composed of 1% NaCl and 0.5% Triton-X100 at room temperature in an L:S ratio of 1:5 and with 

agitation for 1 h. Following, extracts were centrifuged (4000 g, 15 min), filtered through Whatman 

Nº 1 filter paper and verified the extract volume. 
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2.7.2. Ultrasound pretreatment 

The experiments were planned to observe the optimal operational conditions of US to 

improve xylanases and cellulases production by SSF in according to the experimental design 

(section 2.9.2.). For this, it was used the optimal conditions obtained from the screening of 

filamentous fungi by SSF (section 2.4.2.) and US pretreatment was carried out (section 2.5). 

The SSF, inoculation, incubation and extraction of enzymes were carried out in same 

conditions of section 2.7.1. 

 

2.7.3. Other pretreatments 

One experiment was planned to observe the differences between AH and US (section 2.6.). 

For this, it was used the optimal conditions obtained from the screening of filamentous fungi by 

SSF (section 2.4.2.) and was carried out the AH. 

The other experiment was planned to observe the differences between US+AH and US. For 

this, it was used the optimal operational conditions previously optimized (section 2.5.) to carry out 

the US followed by AH. 

The SSF, inoculation, incubation and extraction of enzymes were carried out in same 

conditions of section 2.7.1. 

 

2.7.4. Study of kinetic to enzymes production 

The experiments were planned to observe over time the production of enzymes and the 

behaviour of the sugars, proteins and phenols. For this was used the optimal operational conditions 

previously optimized to carry out the US. Eleven Erlenmeyers with the same conditions were used 

and in each time one Erlenmeyer was taken for analysis. 

The SSF, inoculation and extraction of enzymes were carried out in same conditions of 

section 2.7.1. The incubation was at 30 ºC during seventeen days. Until the fifth day one 

Erlenmeyer was taken per day. After the fifth day until the eleventh day one Erlenmeyer was taken 

of two in to two days. The last Erlenmeyer was taken in the seventeenth day.  

 

2.7.5. Effects of nutrients  

To evaluation the effect of nutrients several tests were performed and are described below.  
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2.7.5.1. Low cost nutrients 

In the first test, the experiment was planned to observe the effect of the low cost nutrients 

in the xylanases and cellulases production by SSF. For this was used the optimal operational 

condition previously optimized to carry out the US. 

In the SSF the moisture level was adjusted to 75% (wet basis) with a low cost nutrients 

solution (0.04 gurea / gsubtract and 7.5 mL vinasses) 131. The other conditions of the SSF, inoculation, 

incubation and extraction of enzymes were carried out in same conditions of section 2.7.1.  

 

2.7.5.2.  Importance of nutrients 

In this test, the experiment was planned to observe the importance of nutrients in the 

xylanases and cellulases production by SSF. For this, it was used the pomace (10 g solid dry) 

selected in section 2.4.2. that was mixed with distilled water in an L:S ratio of 3 and the sonication 

time was 5 min. The US was performed in same conditions mentioned in section 2.5.  

In the SSF the moisture level was adjusted to 75% (wet basis) with the filtrate resulting of 

the filtration after pretreatment. The other conditions of the SSF, inoculation, incubation and 

extraction of enzymes were carried out in same conditions of section 2.7.1. 

 

2.7.5.3.  Importance of liquid fraction of ultrasound pretreatment 

In this test (figure 6), the experiment was planned to observe the importance of the liquid 

of pretreatment in the xylanases and cellulases production by SSF. Firstly the pomace (10 g solid 

dry) selected in section 2.4.2. was used and it was mixed with nutrients solution (5 g/L peptone, 

5 g/L yeast extract, 0.2 g/L KH2PO4) with an L:S ratio of 3 and a sonication time of 5 min. In a 

second assay the pomace (30 g solid dry) selected in section 2.4.2. was used and it was mixed 

with nutrients solution in an L:S ratio and a sonication time of the optimal operational condition of 

the US previously optimized (section 2.5.). The US was performed in same conditions mentioned 

in section 2.5 for both assays. 

In the SSF the moisture level was adjusted to 75% (wet basis) with the filtrate resulting of 

the filtration after pretreatment. The other conditions of the SSF, inoculation, incubation and 

extraction of enzymes were carried out in same conditions of section 2.7.1. 
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Figure 6 | Diagram which represents US of olive pomace and the moisture adjust of solid to carry out 

the SSF (75%) it was performed with liquid fraction of ultrasounds pretreatment. 

 

2.8. Analysis of enzyme activities 

The activity of cellulases (endo-1,4-ß-glucanase) was determined with the enzymatic kit Azo-

CM-Cellulose S-ACMCL 094/12 (Megazyme International, Ireland).  

The procedure for determination of cellulases’ activity was to add 0.5 mL of suitably diluted 

enzyme solution in 0.1 M sodium acetate buffer (pH 4.6) and pre-equilibrated at 40 ºC to 0.5 mL 

of pre-equilibrated substrate solution (CM-Cellulose 4 M). For the reaction blank was added 

precipitant solution to substrate solution. Then, the mixture was stirred and incubated at 40 ºC for 

exactly 10 min. The reaction was terminated and not hydrolysed substrate was precipitated by the 

addition of 2.5 mL of Precipitant Solution with vigorous stirring for 10 sec on a vortex mixer. The 

reaction tubes was allowed to equilibrate to room temperature for 10 min. Was stirred the tube 

contents again and centrifuged the tubes at 1,000 g for 10 min. Was measured the absorbance of 

the supernatant solution at 590 nm and was determined enzyme activity by reference to a standard 

curve. For prepare the Precipitant Solution was dissolved 40 g of C2H3NaO2.3H2O and 4 g of 

Zn(O2CCH3)2 in 150 mL of demineralised water. Was adjusted the pH to 5.0 with 5 M HCl and the 

volume to 200 mL with demineralised water. Was added 200 mL of this solution to 800 mL of 

ethanol (95%), was mixed well and stored at room temperature in a well-sealed bottle. To prepare 

the buffer solution was added 6 g of C2H4O2 to 800 mL of distilled water. The pH was adjusted to 

4.6 by the addition of 5 M NaOH solution. The final volume was adjusted to 1 L.  

One unit of enzyme activity was defined as the amount of enzyme required to release 1 µmol 

of glucose reducing sugar equivalents from CM-Cellulose in 1 min at 40 ºC and pH 4.5. The values 

of cellulases’ activity were expressed in U per gram of dry subtract. 

The activity of xylanases (endo-1,4-ß-xylanases) was determined with the enzymatic kit Azo 

wheat arabinoxylan S-AWAXL 05/14 (Megazyme International, Ireland).  
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The procedure to determine of xylanases’ activity was the same as for the determination of 

cellulases’ activity but the buffer solution was 0.1 M sodium acetate buffer (pH 4.5), substrate 

solution was wheat arabinoxylan and Precipitation Solution was ethanol (~95%). 

One unit of enzyme activity was defined as the amount of enzyme required to release 1 µmol 

of xylose reducing sugar equivalents from wheat arabinoxylan in 1 min at 40 ºC and pH 4.5. The 

values of xylanases’ activity were expressed in U per gram of dry subtract 

 

2.9. Statistical analyse 

Results are presented as the mean ± standard deviation (SD) of at least two replicates. The 

analyses were carried out using Microsoft Office Excel software. 

 

2.9.1. Analysis of variance 

Statistically significant differences of the several assays tested in section 2.4 were evaluated 

by a one-way ANOVA. A significant difference was considered if P <0.05 applying the Tukey 

multiple-comparisons. Statistical analyses were performed using GraphPad (San Diego, USA) 

software.  

 

2.9.2. Full Factorial Design 

For evaluation of sonication effect of EOP in xylanases and cellulases production by SSF a 

full factorial design 32 was carried out. To fix the range of operation conditions for studying in 

experimental design through preliminary experiments (select of fungus and type of pomace, section 

2.4) were performed. The two studied variables were the time of treatment and the L:S ratio (v/w), 

the dependent variables studied were xylanases and cellulases activity. The independent variables 

considered and their variations ranges are shown in table 4. The correspondence between coded 

and uncoded variables was established by linear equations deduced from their respective variation 

limits. 

This design allows estimating the significance of parameters and their interaction using 

Student’s t – tests. The experimental design was performed in 11 experiments with three replicates 

in the centre point. For statistical calculation, the variables were coded according to equation 10. 
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� = � − � / �    (eq.10) 

 

wherein � is the dimensionless coded value of the independent variable, � is the value of 

independent variable at the centre point, and δX is the step change. 

 

Table 4 | Levels of independent variables and dimensionless coded variables definition ( �) i of the 

experimental design – optimization of US. 

Independent variables Units 
Levels �� 

-1 0 1 

Time (� ) min 5 10 15 (T – 10/5) 

L:S ratio (� ) g/g 3 7 11 (L:S – 7/4) 

Dependent variables Units     

Cellulases activity U/g solid substrate     

Xylanases activity U/g solid substrate     

 

The interrelationship between dependent and independent variables was established in the 

equation 11. 

 �=� + � ∙ + � ∙ + � ∙ + � ∙ + � ∙ ∙ + � ∙ ∙ +� ∙ ∙ + � ∙ ∙   (eq.11) 

 

wherein � is the dependent variable, � are the regression coefficients (calculated from 

experimental data by multiple regression using the least-squares method) and  are independent 

variables (coded). 

 

All experiments were carried out in duplicate and in randomized run order.  

The experimental data were evaluated by response surface methodology using Statistica 5.0 

software. Dependent variable were optimized using an application of commercial software (Solver, 

Microsoft Excel 2007, Redmon, WA, USA). 
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3.1. Physical-chemical characterization of olive pomace 

The solid wastes from olive mills were characterized to assess the potential as solid substrate 

in SSF. Table 5 shows the physical and chemical composition of COP and EOP. It was analysed 

the content of moisture, total solids, ash, organic constituents (such as lignin, hemicellulose and 

cellulose) and lipids. In addition, it was measured the concentration of proteins, reducing sugars 

and phenols, nitrogen, carbon, and micronutrients according to the methods described in the 

section 2.2. 

The COP was directly collected after olive oil extraction obtaining a wet solid waste, having 

a very high humidity, around 74%. EOP was recovered after extraction of residual olive oil and dried, 

having a low humidity, around 10%. The moisture content and total solids were very different 

between wastes due to the drying processes. Roig et al. (2006) 2 proposed valorisation methods 

for the TPOMW, between them, the author considers that the drying and second extraction of oil is 

a physicochemical treatment. 

The content of lignin, hemicellulose and cellulose were high in both residues, which was 

roughly accounted for 35% (mass per mass of dry solid), 39% and 34%, respectively, for COP and 

42%, 24% and 11%, respectively, for EOP. The content of the main organic constituents were similar 

to the other residues studied in literature 2. The higher content of cellulose and hemicellulose 

indicated that these wastes have potential to be used as solid substrate in SSF and can induce the 

production of lignocellulolytic enzymes 132. 

Other important components in these residues were lipids, reducing sugars and proteins. 

All of these compounds were higher in COP because these compounds could have been extracted 

from EOP when the recovered of residual olive oil was performed.  

The analysis of olive pomace showed other valuable compounds, phenolic substances, 

which were high and similar in both residues. TPOWM usually are rich in polyphenols, which could 

be used in pharmaceutical, cosmetic and food industries and its extraction may be an alternative 

for revalorization of olive pomaces 31, however their presence it can be harmful for SSF due to they 

can inhibit fungal growth 133. 

The analysis of the content of C and N showed an increase of N content and decrease of C 

after extraction of residual oil. C/N ratio of the COP and EOP, were, respectively, 83 and 36. 

Carbon and nitrogen sources are important components for fungal growth and should be given 

significant consideration 134. The optimum ratio for SSF is closed to 15 135.  
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Table 5 | Physical-chemical composition of COP and EOP. The results represent the average of three 

independent measurements ± SD. 

Parameter COP EOP 

Humidity (%) 73.5 ± 0.4 9.9 ± 0.1 

Total solids (%) 26.5 ± 0.4 90.1 ± 0.1 

Ash (%) 6.6 ± 0.5 3.4 ± 0.2 

Lignin (%) 35 ± 1 41.62 ± 0.04 

Hemicellulose (%) 39 ± 5 24.1 ± 0.2 

Cellulose (%) 34 ± 1 11 ± 2 

Lipids (%) 16.65 ± 0.09 4 ± 2 

Proteins (mg/gdry waste) 4 ± 1 2.6 ± 0.3 

Reducing Sugars (mg/gdry waste) 96 ± 6 42 ± 2 

Phenols (mg/gdry waste) 8.4 ± 0.3 8.9 ± 0.2 

N (%) 0.6 ± 0.1 1.27 ± 0.07 

C (%) 49.7 ± 0.7 46 ± 1 

Ca (g/kg) 1.16 ± 0.04 1.8 ± 0.2 

K (g/kg) 17 ± 1 14.2 ± 0.7 

Mg (mg/kg) 474 ± 22 473 ± 57 

Zn (mg/kg) 12 ± 0 10.5 ± 0.7 

Cu (mg/kg) 11.5 ± 0.7 11 ± 1  

Fe (mg/kg) 42 ± 2 147 ± 33 

Mn (mg/kg) 8.6 ± 0.1 10.2 ± 0.4 

Cr (g/kg) <22 <22 

Ni (mg/kg) <22 <22 

Pb (mg/kg) <22 <22 

Na (mg/kg) 373 ± 35 92 ± 5 

 

As regards the olive pomaces mineral content, the values was not different in both residues, 

except to the Fe content that was higher in EOP and the content of Na that was higher in COP. 

These residues were rich in K, which is a common characteristic in OMW and by-products as 

reported by Albuquerque et al. (2003). The macro and micronutrients content in residues was 

similar to other residues studied in literature 2. The concentration of heavy metals in residues of 



3| RESULTS AND DISCUSSION 

41 

TPOMW is almost non-existent. Madejón et al. (1998) showed a concentration lower than 1 mg/kg 

for Pb, Cd, Cr and Hg. In analysis of the COP and EOP, heavy metals such as Cr, Ni and Pb showed 

a concentration lower than 22 mg/kg.    

 

3.2. Screening of filamentous fungi 

The aim of this study was to screen several strains of filamentous fungi and selection of 

most efficient cellulases-producing microorganisms. The screening of filamentous fungi correlates 

qualitative screening using agar plate’s assays, initial screening step, with quantitative 

measurements of cellulases and xylanases production during cultivation for 6 days under SSF, 

second screening step. 

 

3.2.1. Screening by Congo red test 

The initial screening step consisted of observation of the growth of fifteen strains of 

filamentous fungi on agar plates using CMC as carbon source, and measurement of the hydrolysis 

halo that is used for calculation of the EI. The diameter of the halo zone is useful for selection of 

strains that can efficiently degrade polysaccharides such cellulose 136. The halo produced by 

hydrolysis of cellulose is directly related to the region of action of cellulolytic enzymes, since the 

dye only remains attached to regions where there are ß-1,4-D-gluconohydrolase bonds 137 and as 

hydrolysis indicator was used Congo red dye 138–140. 

The clear zone around the colonies is represents in figure 7, which corresponds to the zone 

of CMC degradation and was observed for the strains studied in two experiments independents 

and compared with a control. 

 

 

Figure 7 | Observation of the clear zone around a colony of A. niger CECT 2915 (A), A. ibericus MUM 

03.49 (B) and A. uvarum MUM 08.01 (C) using Congo red dye.  
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The EI can be used as a rapid and simple methodology to select strains within the same 

genus that have potential for the production of enzymes 141. Figure 8 shows the results of the 

assays carried out on agar plate containing CMC as carbon source, in which for each strain was 

determined the EI. These results were analysed by one-way ANOVA followed by a multiple 

comparison test, Tukey's Multiple Comparison Test. The differences observed between the EI 

values for the D, F, G, H, K, M, N and O were found to be statistically significant (p-value = 0.0005). 

From these results it was possible to select the three strains that presented the highest EI. 

 

 

Figure 8 | EI of fifteen strains of filamentous fungi. The results represent the average of two independent 

experiments and error bars represent SD.  

 

Florencio et al. (2012)104 observed which the between-isolate variability of EI was low for the 

strains of the genus Trichoderma where an obvious hydrolysis halo was visible. 

In other work, Congo red plates with CMC presented low hydrolysis zone intensities when 

compared to a method using Gram’s iodine reagent for selection of bacteria-producing cellulases 

142. However, concession of a longer time for reaction of the dye with the medium could increase 

the visibility of hydrolysis zone, while the diameter of the halo can aid selection of strains possessing 

high polysaccharide degradation activity 136. 

Based on these preliminary data, A. niger CECT 2915, A. ibericus MUM 03.49 and A. 

uvarum MUM 08.01 were selected for further studies.  
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3.2.2. Screening by SSF 

In second screening step filamentous fungi selected in initial screening step were evaluated 

by cultivation under SSF during a period of 6 days using as solid substrate, the solid waste, COP 

and EOP. Figure 9 shows the activities of cellulases and xylanases achieved. When COP was used 

as solid subtract, the activity for cellulases and xylanases was not verified. When EOP was used, 

A. niger achieved maximum activity for cellulases (38 U/g of solid subtract) and for xylanases (28 

U/g of solid subtract).  

 

A B 

  

 

Figure 9 | Cellulases production (A) and xylanases’ production (B) during SSF using COP (red) or EOP 

(grey) as solid subtract and the strains were screened in Congo red test. The results represent the average 

of two independent experiments and error bars represents SD. 

 

These results were analysed by one-way ANOVA followed by a multiple comparison test, 

Tukey's Multiple Comparison Test. The differences observed between the cellulases activities for 

the A. uvarum on EOP, A. ibericus on EOP and A. niger on EOP were statistically significant (p-

value < 0.0001). The differences observed between the xylanases activities for the A. uvarum on 

EOP, A. ibericus on EOP and A. niger on EOP were statistically significant (p-value < 0.0001), but 

differences statistically significant between A. uvarum on EOP and A. ibericus on EOP were not 

obtained. 

The production of enzymes in these wastes was considerably different. A SSF with EOP as 

a solid subtract enhanced the production of cellulases and xylanases by any of the three studied 

strains.  
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The fact undetectable enzymatic activity in COP is probably caused by the presence of high 

initial concentration of fats and phenols with recognized antimicrobial properties in TPOMW, which 

delays the beginning of the fermentation and, on the other hand, to the high concentration of lignin, 

which needs specific enzymes and high temperatures to be degraded. Several authors, such as 

Baeta-Hall et al. (2005)143, Alburquerque et al. (2006)34, Cayuela et al. (2006)144, Cayuela et al. 

(2010)145 and Salgado et al. (2014)131 also referred that in composting processes of TPOMW long 

composting periods are needed for this kind of material and concentrations of fats and phenols 

can inhibit growth of fungi. Kumar et al. (2009)44 refers that enzymes produced by a variety of 

microorganisms are also capable of breaking down lignocellulosic materials to sugars but require 

longer retention times. In addition, the content of N in COP (0.6%) was lower than in EOP (1.27%). 

This difference causes an increase of C/N ratio of COP (83) versus C/N ratio of EOP (36) which it 

is closer to the optimum value for SSF.   

Otherwise, the EOP was subjected to a second extraction. This process may have functioned 

as a pretreatment of the waste and the accessibility of fungi improved, reflecting on the increase 

of enzymes activities. Agreeing with the characterization physical-chemical (section 3.1.) this waste 

present half of the lipids content and the percentage of N is higher compared to COP. There are 

evidences in literature which showed as that solvents can improve the access of fungi to 

lignocellulosic material. The organosolv process involves simultaneous prehydrolysis and 

delignification of lignocellulosic biomass supported by organic solvents and, usually, dilute aqueous 

acid solutions 44. An organic or aqueous organic solvent mixture with inorganic acid catalysts is 

used to break the internal lignin and hemicellulose bonds 146,147. Swelling of lignocelluloses with water 

and polar solvents creates a very large internal surface area 148. 

The sugars have an important role in SFF. In COP sugars concentration is very high so it 

may inhibit the lignocellulosic enzymes. In literature is reported that cellobiose, gentibiose at higher 

concentration inhibited about 80% of the ß-glucosidase activity and similarly, laminaribiose and 

glucose also led to a 55–60% inhibition in the enzymatic activity 149.  In EOP the sugar concentration 

may induce cellulases and xylanases production. Several investigations so far have indicated that 

cellulases are inducible enzymes. It is reported that cellobiose may act as an effective inducer of 

cellulases synthesis in Nectria catalinensis 150. Xylanases biosynthesis was also induced by xylose 

or cellobiose added to the culture medium during growth 151.   

EOP was selected to evaluate the effect of US on cellulases and xylanases production by A. 

niger in SSF. 
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In figure 10 is represented the course of reducing sugar, proteins and phenols during a 

SSF by 6 days. It was observed a reduction of the concentration of reducing sugars in all of the 

fermentations comparatively to the control. This data can indicate the use of the free sugars in the 

medium for the growth of fungi. 

 

 

Figure 10 | Reducing sugars, proteins and phenols concentration in extract after SSF. The results 

represent the average of three independent measurements and error bars represents SD.  

 

The phenol concentration has also reduced in all conditions comparatively with the control. 

Besides the phenolic compounds being toxic to microorganisms, the fungi have the capacity to 

degrade the phenol compounds present in wastes. It also shows that the phenols concentration 

has increased in both residues in comparison to the characterization of initial waste which showed 

8.4 ± 0.3 mg/g of dry waste in COP and 8.9 ± 0.2 mg/g of dry waste EOP. In COP control there 

was 27.4 ± 0.9 mg/g of dry waste and in EOP 21 ± 1 mg/g of dry waste. The solid subtract was 

sterilized at 121 ºC for 15 min before fermentation, and this step can function as a pretreatment, 

breaking the lignin bounds. A wide range of phenolic compounds is generated due to the lignin 

break down varying widely between different raw materials 152. 
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3.3. Ultrasound pretreatment 

The recalcitrant structure of the biomass hinders the efficient hydrolysis 153. A high content 

of lignin and the degree of binding of this component to the other organic constituents in 

lignocellulosic materials 154 may difficult the ability of microorganisms and their enzymes to degrade 

the residues. Due to the complex structure of the lignocellulosic biomass, a pretreatment becomes 

a prerequisite so that the enzymatic hydrolysis of the polysaccharides to fermentable sugars is 

performed effectively. The ultrasounds pretreatment is a physical treatment with a low 

environmental impact that can favour the accessibility of fungi to hemicellulose and cellulose 

fraction. 

EOP was selected to study the effect of US. The L:S ratio and sonication time were optimized 

using a full factorial design 32 to maximize the production of cellulases or xylanases. 

Table 6 describes the corresponding experimental matrix and the results obtained. The 

range of variation of L:S ration was set from 3 to 11 and the sonication time varied from 5 to 15 

min. The two responses studied were cellulases and xylanases activities per mass of dry solid 

subtract (U/g). According to the results of eleven SSF, the cellulases activity varied from 13.38 to 

37.88 U/g and xylanases activity varied from 7.53 to 70.86 U/g. 

The predict response by the model (�) and experimental data observed in experiments ( ) 

are represented in figure 11 and it shows that no significant differences between the predicted 

model and observed data were found. 

A B 

  

Figure 11 | Relation between observed and predicted values in cellulases (A) and xylanases (B) production 

response. 
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Table 6 | Response variables obtained according to the studied full factorial 32 design to optimize US. 

Runs 

Independent variables 
Dependent variables 

Cellulases production ( 1) Xylanases production ( 2) 

Real levels observed predicted observed predicted �1 

(Time, min) 

�2 

(L:S ratio) 

1 

(U/g) 

�1 

(U/g) 

2 

(U/g) 

�2 

(U/g) 

1 5 3 37.88 ± 4.47 37.88 27.35 ± 5.84 27.35 

2 5 7 27.18 ± 4.75 27.18 28.84 ± 2.34 28.84 

3 5 11 13.38 ± 3.33 13.38 7.53 ± 1.92 7.53 

4 10 3 22.10 ± 6.78 22.10 11.46 ± 1.06 11.46 

5 10 7 15.80 ± 3.88 16.70 69.11 ± 3.89 70.05 

6 10 11 16.91 ± 2.39 16.91 26.88 ± 3.27 26.88 

7 15 3 27.34 ± 5.71 27.34 55.52 ± 4.99 55.52 

8 15 7 26.74 ± 2.03 26.74 69.86 ± 3.17 69.86 

9 15 11 23.02 ± 7.91 23.02 48.64 ± 3.67 48.64 

10 10 7 17.46 ± 1.33 16.70 70.86 ± 8.83 70.05 

11 10 7 16.85 ± 0.66 16.70 70.17 ± 3.87 70.05 �1:  time (uncoded); �2: L:S ratio  1: cellulases activity; 2: xylanases activity 

 

The statistical analysis of the results yielded an empirical coded model for cellulases and 

xylanases activity as a function of the sonication time and L:S ratio. Table 7 lists the regression 

coefficients, their statistical significance (based on a t test, with significance levels of α= 0.05) and 

the statistical parameters, such as, F value, determination coefficient (R2) and significance level.  

R2 is the coefficient of determination and it is used to measure goodness of fit. The values 

of R2 were found equal to 0.9972 to cellulases activity and 0.9997 to xylanases activity. The values 

of R2 were close to 1 showing a good fitting of the data to the model and indicating that 99% of the 

variability in the response could be explained by the model. 
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Table 7 | Regression coefficients and correlation and statistical significance parameters of experimental 

design for cellulases and xylanases production. 

 Regression coefficients Standard error t P 

Cellulases production 

b0 16.70*** 0.4844 34.4761 0.0008 

b1 -0.22 0.5933 -0.3742 0.7442 

b11 10.26*** 0.7659 13.3947 0.0055 

b2 -2.60** 0.5933 -4.3765 0.0484 

b22 2.80* 0.7659 3.6568 0.0673 

b12 5.04*** 0.4195 12.0223 0.0068 

b112 0.00 0.7266 -0.0055 0.9961 

b122 -4.61** 0.7266 -6.3383 0.0240 

b1122 -4.3* 1.0558 -4.1272 0.0540 

Xylanases production 

b0 70.05*** 0.5102 137.2827 0.0001 

b1 20.51*** 0.6249 32.8247 0.0009 

b11 -20.69*** 0.8067 -25.6515 0.0015 

b2 7.71*** 0.6249 12.3365 0.0065 

b22 -50.87*** 0.8067 -63.0603 0.0003 

b12 3.23** 0.4419 7.3195 0.0182 

b112 -3.19* 0.7653 -4.1723 0.0529 

b122 -14.38*** 0.7653 -18.7940 0.0028 

b1122 36.28*** 1.1120 32.6281 0.0009 

Correlation and statistical significance parameters 

 R R2 R2 Adjusted Fexp P 

y1 0.9986 0.9972 0.9863 91.3837 0.0108 

y2 0.9998 0.9997 0.9987 967.7274 0.0010 

*significant coefficient at 90%; **significant coefficient at 95%; ***significant coefficient at 99%  

P: probability; R: multiple correlation coefficient; R2: determination coefficient.  = 0.05  

1 : cellulases activity ; 2: xylanases activity . 
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The interaction of the independent variables and the optimum levels that have the most 

significant effect on dependent variable can be determined through the three-dimensional response 

surface curve plot. Figure 12 shows the effect of sonication time and L:S ratio on cellulases and 

xylanases production. 

As it can be observed, the US had a positive effect in xylanases production, however the 

cellulases activity decreased after US. Yang et al. (2012) 155 observed that exists positive effect on 

xylanases production by A. japonicus using rice hull as solid subtract in SSF with ultrasonic 

treatment. This positive effect of ultrasounds pretreatment of lignocellulosic materials could 

improve the accessibility of fungi to hemicellulose fraction and to induce the xylanases production. 

The formation of microbubbles during sonication improves diffusivity or mass transfer processes 

156. Salgado et al. (2013) 157 also observed that A. niger was more effective in producing 

hemicellulose enzymes such as endoxylanases, whereas, maximum endocellulases production was 

achieved by A. uvarum. 

The optimal conditions that led to maximum xylanases activity (75.32 U/g) were calculated 

with Solver tool showing 12.41 min and 7.27 of liquid and solid ratio as optimal parameters of US. 

   

 

A B 

  

 

Figure 12 | Response surface for cellulases (A) and xylanases (B) production as a function of the time 
(coded) and L:S ratio (coded). 
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To validate the model an experiment was performed in the optimal conditions (figure 13). 

The confirmatory experiments carried out using the predicted conditions showed similar activities 

between experimental (71.21 ± 8.37 U/g) and predicted value. 

To verify if the increased sonication time would affect the cellulases and xylanases 

production, two assays were carried out with the higher sonication times (figure 13). The L:S 

ratio was maintained the optimal and the times were 20 min and 30 min. The results obtained 

showed that higher sonication times do not benefit the production of xylanases, but cellulases 

activity does not seem to change. 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 13 | Cellulases and xylanases’ production during SSF using pomace treated by US. In the several 

assays were studied the sonication time differently and the L:S ratio was of the optimal operational condition 

previously optimized in experimental design. The results represent the average of two independent 

experiments and error bars represents SD. 

 

There are minor researches on US from lignocellulose, but some researches have study this 

pretreatment. Yachmenev et al. (2009) 158 showed that saccharification of cellulose is enhanced 

efficiently by US and that the maximum effects of cavitation occur at 50ºC, which is the optimum 

temperature for many enzymes. The effect of ultrasounds on lignocellulosic biomass have been 

mainly employed for extracting hemicellulose, cellulose and lignin. The extractability of the wheat 

straw hemicelluloses was investigated using extraction method with application of ultrasonic 
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irradiation in 0.5 M KOH aqueous solution. The results showed that ultrasonically assisted 

extraction in a period of 20–35 min produced a slightly higher yield of hemicelluloses and lignin 

159. Braguglia et al. (2011) 160 studied the ultrasound technology in sewage sludge treatment before 

anaerobic digestion with the aim to stimulate the conversion of organic matter into biogas. The 

shear forces generated by high-pressure waves lead the release of intracellular substances into the 

aqueous phase, making them available for the subsequent anaerobic digestion. 

Figure 14 shows the concentration of reducing sugars that remained available in the liquid 

where the pretreatment occurred (known as filtrate) and in waste without pretreatment. 

 

 

Figure 14 | Reducing sugars concentration in EOP without treatment (control) and filtrate after 

pretreatment. The results represent the average of three independent measurements and error bars 

represents SD. 

 

After the pretreatment a great quantity of sugars is released to the reactional mean (between 

30.0 ± 0.8 e 73 ± 5 mg/g solid subtract). During the pretreatment of EOP with ultrasounds the 

mechanical impacts, produced by the collapse of cavitation bubbles in the lignocellulosic biomass, 

led to the release of the polysaccharides, particularly for extracting low molecular weight 

substances to the mean. Sun et al. (2004) 161 reported a positive effect of ultrasound on the 

extractability of polysaccharides from corn bran, buckwheat hulls, and Salvia officinalis L. This 
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author also showed that ultra-sonication attacked the disruption of the cell walls and cleavage of 

the α-ether linkages between lignin and hemicelluloses. Consequently, the accessibility, solubility, 

and diffusion of the dissolved hemicelluloses and lignin from the cell walls increased. 

The free sugars that were extracted during the pretreatment were lost, because the 

reactional mixture after the pretreatment was filtrated, and liquid fraction was not used in SSF. This 

data may explain the low cellulases activity. The fact that there is a low concentration of free sugars 

in the mean, it takes to a first action of the xylanases which degrades the hemicellulose, because 

the cellulases are inducible enzymes 151. According to Sun et al. (2002) 162 the presence of lignin 

and hemicellulose makes the access of cellulases enzymes to cellulose difficult, thus reducing the 

efficiency of the hydrolysis.  

 

3.4. Evaluation of other pretreatment 

Acid hydrolysis with diluted acid pretreatment has received considerable research attention 

over the years 52,54. The main objective of this treatment is to solubilize the hemicellulosic fraction 

of the biomass and to make the cellulose more accessible to enzymes 152. 

The course of cellulases and xylanases was studied when the EOP was subjected to AH 

comparing it with the US. It was also studied a combination of both pretreatments to understand 

the course of the lignocellulosic enzymes. 

The profile of cellulases and xylanases production is represented in figure 15. The data 

show that AH or US+AH did not enhance the enzyme activity. The US in the optimal conditions, 

L:S ratio of the 7.27 and sonication time of the 12.41 min is, still, the most effective pretreatment 

in the production of the enzymes in study. 

It is reported in literature that dilute-acid at moderate temperatures effectively removes and 

recovers most of the hemicellulose as dissolved sugars, and glucose yields from cellulose increase 

with hemicellulose removal to almost 100% for complete hemicellulose hydrolysis 163. Other authors 

suggest that although little lignin is dissolved, the lignin is disrupted, increasing cellulose 

susceptibility to enzymes 62 and that high temperature in dilute acid treatment is favourable for 

cellulose hydrolysis 55. According to Zhao et al. (2008) 70 the poor delignification ability of sulfuric 

acid is still a limit of mild acid pretreatment, because lignin is believed to be a major hindrance in 

enzymatic hydrolysis. Hemicellulose can be readily hydrolysed by dilute acids under moderate 

conditions, but much more extreme conditions are needed for cellulose hydrolysis 44. 
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Figure 15 | Cellulases and xylanases’ production during SSF using pomace treated by acid hydrolysis 

with diluted acid (AH), ultrasound combined acid hydrolysis with diluted acid (US+AH) and ultrasound 

pretreatment (US). The results represent the average of two independent experiments and error bars 

represents SD. 

 

Besides this pretreatment having the advantage of solubilizing hemicellulose, mainly xylan, 

and converting solubilized hemicellulose into fermentable sugars, nevertheless, depending on the 

process temperature, some sugar degradation compounds are detected, and affect the 

microorganism metabolism in the fermentation step 152. A variety of toxic compounds such as 

furfural and aromatic lignin degradation compounds, would be generated. In most cases, these by-

products, known as inhibitors, exert negative effects on the growth, metabolism, and product 

formation of microbial cells 152,164. Alvira et al. (2010) 152 showed that organic acids can pretreat 

wheat straw with high efficiency and furthermore, less amount of furfural was formed in the maleic 

and fumaric acid pretreatments than with sulfuric acid.  

Table 8 shows the variation of the compounds (reducing sugars, proteins and phenols) in 

filtrate and waste after pretreatment and in the extract and waste after fermentation for the three 

pretreatments in study. A general analysis of the results shows that most of the compounds 

remains in the filtrate, after the pretreatment and in the extract, after fermentation. 

Facing the sugars course, it should be noted the data obtained in the filtrate that corroborate 

the literature. In the end of AH, the concentration of sugars was 311 ± 19 mg/g solid subtract. In 

literature it is described that the acid pretreatment is effective for converting cellulose and 

hemicelluloses into monomeric sugars 165. In filtrate of the US+AH the sugars concentration was 
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slightly lowest. This waste was subjected to two pretreatment, US followed by AH, and two 

filtrations. There was sugar loss in two steps, impoverishing the waste and affecting this way the 

fermentation.  

 

Table 8 | Reducing sugars, proteins and phenols concentration in initial waste, filtrate and treated waste 

after pretreatment, extract and treated and fermented waste after SSF. The results represent the average of 

three independent measurements ± SD. 

 
Initial  

waste* 

after pretreatment  after SSF 

 Filtrate Treated waste* 
 

Extract 
Fermented and 

treated waste* 

Reducing Sugars (mg/g solid subtract) 

AH 

42 ± 2 

311 ± 19 2.53 ± 0.03  3.0 ± 0.5 1.4 ± 0.1 

US+AH 287 ± 0 2.42 ± 0.01  2.8 ± 0.3 1.2 ± 0.3 

US 38.4 ± 0.5 7.9 ± 0.3  4.7 ± 0.2 1.0 ± 0.2 

Proteins (mg/g solid subtract) 

AH 

2.6 ± 0.3 

1.0 ± 0.1 n.d.  1.3 ± 0.8 n.d. 

US+AH 3.2 ± 0.1 n.d.  1.0 ± 0.4 n.d. 

US 1.5 ± 0.2  0.59 ± 0.03  3.7 ± 0.5 0.018 ± 0.004 

Phenols (mg/g solid subtract) 

AH 

8.9 ± 0.2 

27 ± 1 1.33 ± 0.02  2.8 ± 0.5 1.38 ± 0.07 

US+AH 17.2 ± 0.6 1.23 ± 0.01  2.9 ± 0.1 1.5 ± 0.2 

US 11.8 ± 0.3 4.37 ± 0.08  4.8 ± 0.2 1.58 ± 0.06 

        *extraction with water 1:5 (w/v) 

 

For proteins it is possible to observe an increase after the fermentation. The fermentation 

with the waste treated with ultrasounds presented the highest proteins concentration (3.7 ± 0.5 

mg/g solid subtract) and also achieved more enzymatic production. 

Analysing phenol compounds, the highest concentration was verified in the filtrate after the 

pretreatment. As it was already referred, the pretreatment increases the phenols concentration due 

to the breaks in the lignin. The filtrate may be a source of extracting the phenol compounds. 

Phenolic extracts from OMW can be used as alternatives to synthetic antioxidants in order to 

increase the stability of foods by preventing lipid peroxidation, and protect living systems from 

oxidative damage by scavenging oxygen radicals 22. 
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The effect of several pretreatment in the removal of lignocellulosic compounds is shown in 

in table 9 and was set the percentage of elimination for each compound after each treatment. 

When the residue is treated with diluted acid, there is a high percentage of elimination of 

hemicellulose, 78% in AH and 76% in US+AH. However, the elimination of lignin and cellulose were 

much reduced. In literature is referred the possibility of the almost 100% hemicellulose removal by 

AH but this pretreatment is not effective in dissolving lignin 42,52. 

 

Table 9 | Lignin, hemicellulose and cellulose percentage in treated waste by AH, US+AH and US. 

Eliminated percentage of the lignin, hemicellulose and cellulose after pretreatments. The results represent 

the average of three independent measurements ± SD. 

 Lignin (%) Hemicellulose (%) Cellulose (%) 

Initial waste 41.620 ± 0.04 24.1 ± 0.2 11 ± 2 

Treated waste  

AH 56.0 ± 0.2 7.9 ± 0.6 9.2 ± 0.1 

US+AH 61 ± 3 9.7 ± 0.3 15.50 ± 0.01 

US 38.5 ± 0.7 19 ± 1 9.4 ± 0.7 

Eliminated (%) 

AH 10 78 3 

US+AH 14 76 18 

US 24 30 25 

 

The eliminated percentage of the lignocellulosic material in US was reduced and practically 

the same for all the compounds. Its reported that the ultrasound pretreatment in distilled water 

was effective and gave a 7.37% reduction in Klason lignin of wheat straw compared with the 

untreated wheat straw 166. Salgado et al. (2014) 167 observed that SSF of the olive pomace and 

exhausted grape marc by A. niger reduced cellulose, hemicellulose and lignin content of substrate 

by 28.08, 10.78 and 13.3%. 

 

3.5. Study of enzymes production kinetics 

Cellulases and xylanases production during SSF was evaluated in the optimal conditions of 

US. In this study, the course of cellulases and xylanases activities during several days were 

evaluated and their values were represented in figure 16A. The highest xylanases activity (75 ± 
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1 U/g solid substrate) was achieved after 7 days of fermentation, which is similar to the theoretical 

value predicted by the model of US. After this, the activity decreased, maybe due to proteolysis. 

Salgado et al. (2015) 167 refers that  low proteolytic activity can be an advantage when developing 

SSF processes, may avoid inactivation of other secreted enzymes and benefit the accumulation of 

those in the substrate, improving production yields. Biesebeke et al. (2002) 168 identified two 

proteases that are only expressed in SSF culture.   

 

A B 

  

Figure 16 | Evaluation of the behaviour over time of cellulases and xylanases (A), just like reducing sugars, 

proteins and phenols contents (B) during SSF in the optimal operational condition of the US. The results 

represent the average of two independent experiments (A) or three independent measurements (B) and 

error bars represents SD. 

 

The maximum cellulases activity (35 ± 5 U/g solid subtract) was achieved after 11 days. 

Usually, short fermentation times are needed for xylanases production by SSF. Longer 

fermentation times favoured endocellulases production; this may be due to the need of a prior 

action of the xylanases to expose the cellulose fibres, which will induce cellulases production 157. 

According to Kumar (2008) the rapid and efficient fermentation of hydrolysates is limited because 

a range of inhibitory compounds in addition to monomeric sugars is generated during the hydrolysis 

of lignocellulosic. 

Kavya et al. (2009) 169 observed a maximum xylanases production (12.65 U/ml) by A. niger 

in wheat bran after 6 days of incubation period. Xu et al. (2008) 170 achieved maximum activity at 

48h. Christopher et al. 2005 124 observed a maximum xylanases production by Thermomyces 
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lanuginosus after 4 days. Park et al. (2002) 171 also observed under the optimized conditions, the 

xylanases production by A. niger obtained after 5 days of fermentation were 5.071 IU/g of rice 

straw. 

The cellulases carried out the enzymatic hydrolysis in the three steps: adsorption of 

cellulases enzymes onto the surface of the cellulose, the biodegradation of cellulose to fermentable 

sugars, and desorption of cellulases. Cellulases activity decreases during the hydrolysis. The 

irreversible adsorption of cellulases on cellulose is partially responsible for this deactivation 52,172. 

The cellulases activity can be inhibited by cellobiose and to a lesser extent by glucose 173,174. Inhibition 

of the cellulases by hemicellulose-derived sugars has also been shown 175. 

At the start and at each time of SSF, the reducing sugars, proteins and phenols concentration 

were analysed to follow the change of its composition waste (figure 16B). 

Sugars concentration is decreased rapidly after 3 days of fermentation. Protein concentration 

increased relative to the start of fermentation during 11 days. Phenol concentration seemed to 

increase slightly. According to Giannoutsou et al. (2012) this slight increase may be the result of 

the degradation of polyphenols to smaller phenolic compounds that may be an indication that the 

microorganism could use the specific substrate for its growth. 

Salgado et al. (2015) also studied the course of the compounds over time of the fermentation 

and proved the depletion of the sugars, the increase of the proteins percentage from 8.47% to 

17.98% after 6 days of fermentation and degradation of phenol compounds, the fungus reduced 

28.32% of phenols after 10 days of fermentation. 

The existence of nutrients in fermentation may have contributed to the growth of the 

microorganism, and the decay of these nutrients over time may have affected to the activity of 

enzyme, and it was the decay of the microbial production and therefore the enzyme production 96.  

Enzymes usually have an expression control mechanism that can be inhibited or stimulated 

by products of the medium. The end products of a particular metabolic pathway are often inhibitors 

of enzymes that catalyse the initial steps of the pathway 176. Biazus et al. (2006) worked with corn 

malt and observed that in the production of enzymes the beginning is slow, then accelerates until 

it reaches its maximum value; thereafter, the concentration of products generated are inhibited 

and its activity is reduced, which was also observed. The decrease in activity with increasing 

incubation time may be due to the production of by products resulting from microbial metabolism, 

as well as nutrient depletion, inhibiting fungal growth and enzyme formation 177.  
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Figure 17 shows pH course through fermentation. The values of the pH vary between 3.84 

and 4.57. This behaviour corroborates the described in literature. The optimal pH of the xylanases 

and cellulases have been studied by several authors. Pérez et al. (2002) 20 reported that most 

xylanases from fungi have pH optima between 4.5 and 5.5. Kumar et al. (2008) 151 refers that the 

effect of pH on cellulases production was analysed using A. niger, and was observed that pH 5.5 

was optimal for maximum cellulases production. Other author also reported that maximum 

adsorption of cellulases from A. phoenicus occurred at pH of 4.8 – 5.5 178.  

 

  

 

 

 

 

 

 

 

Figure 17 | Evaluation of the behaviour over time of pH during SSF in the optimal operational condition 

of the US. 

 

3.6. Effects of nutrients 

 

3.6.1. Low cost nutrients 

Vinasses can be a good source of N and minerals, and their use as a nutritional supplement 

for submerged fermentations has already been tested 179. Urea is an organic nitrogen source widely 

used in biotechnology processes for its low cost. 

It was tested the production of lignocellulosic enzymes in SSF supplemented with low cost 

nutrients solution, 0.04 gurea/gsubtract and 7.5 mL vinasses. The conditions used in the pretreatment 

were the optimal and the enzyme activities obtained for cellulases and xylanases were 10 ± 1 and 

19 ± 1 U/g solid subtract, respectively (table 10). The data suggests that the addition of the low 

cost nutrients are not a viable alternative to obtain good enzymatic activities of the enzymes in this 

study. 
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Table 10 | Cellulases and xylanases’ production during SSF using low cost nutrients. The results represent 

the average of two independent experiments ± SD and the “commercial nutrients” (optimal conditions of 

experimental design) was used as a comparison.  

 Time  

(min) 
L:S ratio 

Enzymes production 

 Cellulases (U/g) Xylanases (U/g) 

Low cost nutrients 12.41 7.27 10 ± 1 19 ± 1 

Commercial nutrients 12.41 7.27 21 ± 6 71 ± 8 

 

Salgado et al. (2013) 180 also studied the supplementation of TPOWM with others agro-

industrial by-products. According to this author, the endoxylanases production (3.06 U/g of dry 

substrate) benefited from a strong effect of urea addition. 

 

3.6.2. Importance of nutrients 

In SSF, the solid material can serve as a physical support and as a source of carbon and 

Nutrients to sustain microbial growth or only as an inert physical support to which nutrients and 

the carbon source are added 87. 

In order to prove how addition of nutrients is important to cellulases and xylanases 

production a fermentation without nutrients was carried out. The liquid of pretreatment was used 

in the fermentation for the humidity correction instead of the nutrients solution. Table 11 shows 

the values obtained for production of enzymes, cellulases and xylanases, which were nearly zero. 

As can be seen, the TPOWM, by itself does not function as a source of nutrients and a support for 

the growth of microorganisms. 

 

Table 11 | Cellulases and xylanases’ production during SSF using the liquid of the pretreatment to 

adjusted the humidity in fermentation. The results represent the average of two independent experiments ± 

SD and the “with nutrients” (Run 1 of experimental design) was used as a comparison.  

 Time  

(min) 

L:S 

ratio 

Enzymes production 

 Cellulases (U/g) Xylanases (U/g) 

Without nutrients 5 3 1.1 ± 0.4 0.2 ± 0.1  

With nutrients 5 3 29 ± 4 27 ± 6 
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3.6.3. Importance of liquid fraction of ultrasound pretreatment 

To confirm that the free sugars really induce the production of lignocellulolytic enzymes and 

that the compounds that are released to the filtrate after ultrasounds pretreatment favour the SSF. 

In the previous studies, this filtrate was not used and the moisture adjust, after ultrasounds 

treatment, was performed with nutrients solution. In the new strategy to improve cellulases and 

xylanases production,  the ratio L:S of ultrasounds treatment was adjust with nutrients solution and 

after treatment the moisture adjust of solid to carried out the SSF (75%) was performed with liquid 

fraction of ultrasounds pretreatment. Therefore, two tests with different L:S ratio and sonication 

time were done and compared with the obtained enzymatic activity in the same conditions of the 

experimental design of the US (section 3.3.). 

For the pretreatment of 5 min and an L:S ratio of 3 the enzyme activities for cellulases and 

xylanases were 47 ± 6 and 32 ± 2 U/g solid substrate, respectively (table 12). The enzyme 

activities obtained in previous strategy (Run 1 of the experimental design) were 29 ± 4 and 27 ± 6 

solid subtract, showing an increase in both enzymes production. 

The effect of the filtrate added was also tested in the optimal condition of the experimental 

design and obtained enzymatic activities of 46 ± 3 and 100 ± 15 U/g solid substrate for cellulases 

and xylanases, respectively (table 12). 40.8% increase of xylanases activity and 119% increase of 

cellulases activity were obtained compared to the initial activity. 

 

Table 12 | Cellulases and xylanases’ production during SSF using the nutrients solution as a liquid by 

carry out US and the liquid of the pretreatment was used to adjust the humidity in fermentation. The results 

represent the average of two independent experiments ± SD and the Run 1 and optimal conditions was 

used as a comparison. 

 Time  

(min) 

L:S 

ratio 

Enzymes production 

 Cellulases (U/g) Xylanases (U/g) 

With filtrate 5 3 47 ± 6 32 ± 2  

Without filtrate 5 3 29 ± 4 27 ± 6 

With filtrate 12.41 7.27 46 ± 3  100 ± 15 

Without filtrate 12.41 7.27 21 ± 6 71 ± 8 
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In both tests it was possible to verify that the addition of the filtrate, from the ultrasound 

pretreatment, in fermentation induces the production of lignocellulosic enzymes. In literature it is 

indicated that various soluble sugars like glucose, xylose, arabinose, galactose, which are helpful 

for the initiation of growth and replication of microorganisms and that are used firstly all sugars 

that were available for its growth 181. 
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In this work the use of olive mill wastes in SFF for cellulases and xylanases production was 

evaluated analysing the effect of ultrasounds pretreatment of olive pomace, the low cost substrate 

used. 

Two wastes from olive mills were studied, COP and EOP. The COP is rich in sugars and 

lipids and EOP presented intermediate sugars concentration and is poor in lipids due to its residual 

oil removal by extraction. Both wastes have high concentration of phenols.  

A screening of several fungi was carried out to observe their ability to produce cellulases. A. 

ibericus MUM 03.49, A. niger CECT 2915, and A. uvarum MUM 08.01 were selected as the most 

efficient cellulases-producing microorganisms by Congo red test. In addition, the selected fungi 

were tested in SSF of COP and EOP seeing that the production of enzymes in both wastes was 

considerably different. A SSF with EOP as a solid subtract enhanced the production of cellulases 

and xylanases by any of the three studied strains. The maximum cellulase (38 U/g of solid subtract) 

and xylanase (28 U/g of solid subtract) activities were achieved using EOP as solid substrate by A. 

niger. 

The ultrasounds pretreatment was optimized by full factorial design 32. The optimal 

conditions were 12.41 min and a liquid and solid ratio of 7.27.  Ultrasounds treatment of EOP 

improved xylanase production by SSF, however it showed a negative effect on cellulase production. 

Thus the sonication can be an effective treatment to induce the production of xylanases by SSF 

and the optimal conditions led to maximum xylanases activity (75.32 U/g). Other treatments were 

studied, acid hydrolysis with diluted acid and sonication in combination with diluted acid, but these 

treatments did not to improve cellulases and xylanases production. Thus a clean treatment such 

as ultrasounds achieved best results that other treatment with high environmental impact as acid 

hydrolysis. 

Kinetics of enzymes activities was monitored and the highest xylanases activity (75 ± 1 U/g 

solid substrate) was achieved after 7 days of fermentation and the maximum of cellulases activity 

(35 ± 5 U/g solid subtract) was achieved after 11 days. These results showed that the production 

of xylanases requires shorts periods and production of cellulases needs more time. 

The data suggests that the replacement of commercial nutrients (yeast extract, peptone and 

KH2PO4) by the low cost nutrients (urea and vinasses) are not a viable alternative to obtain good 

enzymatic activities of the enzymes in EOP treated with ultrasounds. The addition of the nutrients 

is very important for the cellulases and xylanases production in SSF with EOP.  
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Finally, the liquid fraction obtained after the ultrasound pretreatment that was not initially 

used in SSF was added to solid pretreated and used in SSF. The addition of filtrate to solid 

pretreated showed a positive effect in xylanase and cellulase production by SSF. This liquid is rich 

in free sugars that can induce the enzymes production.  

This study clearly improved the production of cellulases and xylanases under SSF of EOP 

through fungi selection, optimization of ultrasounds treatment and addition of filtrate from 

ultrasounds treatment. The xylanase production was increased from 28 U/g (initial SSF) to 100 

U/g and the cellulase production 38 U/g (initial SSF) to 46 U/g. This friendly environment 

treatment was a suitable process to enhance the valorisation of olive mill wastes by improving the 

enzyme production. 

In a future research, it would be interesting that we focus on the recovery of phenolic 

compounds from filtrate obtained after ultrasounds treatment, purification and characterization of 

enzymes produced and to search another applications for fermented solid after enzymes extraction. 
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