

Universidade do Minho

CURRENT SITUATION ON THE OCCURRENCE OF MYCOTOXINS AND TOXIGENIC FUNGI IN PORTUGAL

Luís Abrunhosa

IBB, Centro de Engenharia Biológica, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal

PRESENTATION - OBJECTIVES

- Climate and Food market characteristics of Portugal
- Data about the mycotoxin levels found in some Portuguese food and feeds
- Data about the FB_2 production by *A. niger* from Portuguese wine grapes

PORTUGAL IN THE MEDITERRANEAN CONTEXT

• Portugal is at the most western point of the Mediterranean Sea and has no direct borders with it

PORTUGAL IN THE MEDITERRANEAN CONTEXT

CLIMATE

• Nevertheless, its climate is considered to be Mediterranean, even if the influence of the Atlantic Sea changes its typical caracteristics

Figure 1. Mediterranean climate regions [1]

PORTUGAL IN THE MEDITERRANEAN CONTEXT

CLIMATE

Figure 2. Climate of Portugal, according to Köppen classification [2]

In particular, the climate of Portugal, according to Köppen classification, is divided in two regions:

- 1. One at North with wet winters and summers less dry and hot (Csb).
- 2. Another at South with a clear Mediterranean influence that has drier winters and hot dry summers (Csa)

[2] Institute of Meteorology (1961-1990). http://www.meteo.pt/pt/areaeducativa/otempo.eoclima/clima.pt/index.htm

FOOD MARKET

• Presently, Portugal imports almost 54% of the consumed food products, being far more an importer country than an exporter one in some types of foods, *e.g.*

	Imported [3]
Cereals	73%
Pulses	87%
Fresh Fruits	26%
Meat products	31%
Vegetable oils	87%
Dried fruits	67%
Milk products	6%

[3] INE (2008). Agricultural Statistics of 2007. National Institute of Statistics, Portugal.

FOOD MARKET

• Therefore, we can say that the mycotoxins levels found in the Portuguese market express in some situations, far more the levels found in imported products than in local commodities.

	Imported [3]
Cereals	73%
Pulses	87%
Fresh Fruits	26%
Meat products	31%
Vegetable oils	87%
Dried fruits	67%
Milk products	6%

[3] INE (2008). Agricultural Statistics of 2007. National Institute of Statistics, Portugal.

BABY FOOD

- 56% were found to be positive for AFB₁, AFM₁ and OTA
- ${\rm o}$ Levels found were between $~0.009-0.212~\mu g/kg$
- with 1 sample exceeded the established EC limits

Mycotoxin	Analyzed Samples	Positive Samples	Levels (µg/kg)	EC limit (µg/kg)	Ref.
AFB_1	27	1 (4%)	0.009	0.10	[4]
AFM_1	27	4 (15%)	0.017 - 0.041	0.025	[4]
OTA	27	10 (37%)	0.034 - 0.212	0.50	[4]

CEREALS AND CEREALS PRODUCTS - OTA

- 34% of the samples were found to be positive
- ${\rm o}$ Levels found were between $~0.02-7.97~\mu g/kg$
- with 4 samples exceeded the established EC limits

ΟΤΑ	Analyzed Samples	Positive Samples	Levels (µg/kg)	EC limit (µg/kg)	Ref.
Cereals	38	6 (16%)	0.27 - 7.97	5.0	[5]
Rice	42	6 (14%)	0.09 - 3.52	5.0	[6]
Bread	50	28 (56%)	0.02 - 0.490	3.0	[7]
Bread	61	25 (41%)	0.033 - 5.86	3.0	[8]
Total	191	65 (34%)			

[5] Juan, C. et al. Food Chem. 2008, 107, 525-530; [6] Pena, A. et al. Anal Bioanal Chem 2005, 382, 1288-1293; [7] Bento, J.M.V. et al. Microchemical Journal 2009, 91, 165-169; [8] Juan, C. et al. Int. J. Food Microbiol. 2008, 127, 284-289.

DAIRY PRODUCTS – AFM_1

- 63% of the samples were found to be positive
- ${\rm o}$ Levels found were between $~0.005-0.8~\mu g/kg$
- with 49 (7%) samples exceeded the established EC limits

\mathbf{AFM}_1	Analyzed Samples	Positive Samples	Levels (µg/kg)	EC limit (µg/kg)	Ref.
Dairy products	598	394 (66%)	0.005 - 0.8	0.050	[9]
Dairy products	74	29 (39%)	0.060 - 0.065	0.050	[10]
Total	672	423 (63%)			

[9] Martins, H. et al. Mycot. Res. 2005, 21, 192-195; [10] Ouakinin J. et al. Repositorio de Trabalhos Instituto Nacional de Veterinaria XIV. 1982, 75-78

APPLE-PRODUCTS - PATULIN

- 55% of the samples were found to be positive
- ${\rm o}$ Levels found were between $~3.0-80.5~\mu g/kg$
- with some of the analysed apples exceeding the EC limits

Patulin	Analyzed Samples	Positive Samples	Levels (µg/kg)	EC limit (µg/kg)	Ref.	
Apple juice	68	28 (41%)	3.9 - 42.0	50.0	[11]	
Purees for infant	76	5 (7%)	3.9 - 5.7	10.0	[11]	
Apples	351	241 (69%)	3.0 - 80.5	25.0	[12]	
Total	495	274 (55%)				

[11] Barreira, M.J.et al. Food Chem. 2010, 121, 653-658; [12] Martins, M.L.G. Food Addit. Contam. 2002, 19, 568-574

FEED AND FEEDSTUFFS - AFB_1

• 21% of the samples were found to be positive

AFB ₁	Analyzed Samples	Positive Samples	Levels (µg/kg)	EC limit (µg/kg)	Ref.
Bovine fedd	399	34 (4%)	5 - 15	20	[13]
Poultry feed	85	16 (93%)	1 - 20	20	[13]
Swine feed	74	7 (71%)	1 - 2	20	[13]
Raw materials	513	63 (12%)	1 - 45	20	[14]
Feed	1584	436 (28%)	1 - 80	20	[14]
Total	2655	556 (28%)			

FEED AND FEEDSTUFFS - AFB_1

 ${\rm o}$ Levels found were between $~1-80~\mu g/kg$

AFB ₁	Analyzed Samples	Positive Samples	Levels (µg/kg)	EC limit (µg/kg)	Ref.
Bovine fedd	399	34 (4%)	5 - 15	20	[13]
Poultry feed	85	16 (93%)	1 - 20	20	[13]
Swine feed	74	7 (71%)	1 - 2	20	[13]
Raw materials	513	63 (12%)	1 - 45	20	[14]
Feed	1584	436 (28%)	1 - 80	20	[14]
Total	2655	556 (28%)			

FEED AND FEEDSTUFFS - AFB_1

• Some of the samples exceeded the EC limits

AFB ₁	Analyzed Samples	Positive Samples	Levels (µg/kg)	EC limit (µg/kg)	Ref.
Bovine fedd	399	34 (4%)	5 - 15	20	[13]
Poultry feed	85	16 (93%)	1 - 20	20	[13]
Swine feed	74	7 (71%)	1 - 2	20	[13]
Raw materials	513	63 (12%)	1 - 45	20	[14]
Feed	1584	436 (28%)	1 - 80	20	[14]
Total	2655	556 (28%)			

FEED and FEEDSTUFFS - FB_1

• 10% of the samples were found to be positive

\mathbf{FB}_{1}	Analyzed Samples	Positive Samples	Levels (mg/kg)	EC limit (mg/kg)	Ref.
Corn	12	8 (67%)	0.025 - 32.20	60	[13]
Oat	5	2 (40%)	0.132 - 0.421	60	[13]
Raw materials	208	19 (9%)	0.010 - 0.040	60	[14]
Poultry feed	22	20 (90%)	0.031 - 7.437	20	[13]
Horse feed	7	6 (86%)	0.06 - 0.500	5	[13]
Feed	357	6 (2%)	0.012 - 0.034	20	[14]
Total	611	61 (10%)			

FEED AND FEEDSTUFFS - FB_1

• Levels found were between 0.01 - 7.4 mg/kg

\mathbf{FB}_1	Analyzed Samples	Positive Samples	Levels (mg/kg)	EC limit (mg/kg)	Ref.
Corn	12	8 (67%)	0.025 - 32.20	60	[13]
Oat	5	2 (40%)	0.132 - 0.421	60	[13]
Raw materials	208	19 (9%)	0.010 - 0.040	60	[14]
Poultry feed	22	20 (90%)	0.031 - 7.437	20	[13]
Horse feed	7	6 (86%)	0.06 - 0.500	5	[13]
Feed	357	6 (2%)	0.012 - 0.034	20	[14]
Total	611	61 (10%)			

FEED AND FEEDSTUFFS - FB_1

• with no samples exceeding the EC limits

\mathbf{FB}_{1}	Analyzed Samples	Positive Samples	Levels (mg/kg)	EC limit (mg/kg)	Ref.
Corn	12	8 (67%)	0.025 - 32.20	60	[13]
Oat	5	2 (40%)	0.132 - 0.421	60	[13]
Raw materials	208	19 (9%)	0.010 - 0.040	60	[14]
Poultry feed	22	20 (90%)	0.031 - 7.437	20	[13]
Horse feed	7	6 (86%)	0.06 - 0.500	5	[13]
Feed	357	6 (2%)	0.012 - 0.034	20	[14]
Total	611	61 (10%)			

OTA IN BLACK ASPERGILLI FROM WINE GRAPES

- Some years ago, we have participated in the Europpean project that studied the OTA problematic in wine grapes
- At that time, studies were conducted to find the main fungi responsable for OTA presence in wines [15]

	Isolated strains	OTA production	Mean levels (µg/kg)
A. carbonarius	68	100%	1129
A. niger aggregate	571	4%	137
Other aspergilli	131	0%	-

[15] Serra, R. et al. Res. Microbiol. 2005, 156, 515-521.

OTA IN BLACK ASPERGILLI FROM WINE GRAPES
OTA in grapes was due to the presence of *A. carbonarius*Nevertheless, most of the black aspergilli found were from the *A. niger* aggregate

	Isolated strains	OTA production	Mean levels (µg/kg)
A. carbonarius	68	100%	1129
A. niger aggregate	571	4%	137
Other aspergilli	131	0%	-

[15] Serra, R. et al. Res. Microbiol. 2005, 156, 515-521.

OTA IN BLACK ASPERGILLI FROM WINE GRAPES

• At that time, all those strains were also preserved and they are still representative of the local black aspergilli present in Portuguese wine grapes

	N° of isolates	OTA production	Mean levels (µg/kg)
A. carbonarius	68	100%	1129
A. niger aggregate	571	4%	137
Other aspergilli	131	0%	-

[15] Serra, R. et al. Res. Microbiol. 2005, 156, 515-521.

 $FB_2\ \mbox{in black aspergilli from wine grapes}$ o We tested:

- All the strains of *A. niger* aggregate and of *A. carbonarius* available in the collection
- A. niger Type strain CBS 554.65^T (positive control) [16]
- A. niger CBS 120.49 (positive control) [16]
- We confirmed FB_2 identity in some strains extracts with IMAC

 $FB_2\ \mbox{in black}$ aspergilli from wine grapes

- Strains were grown in CYA for 8 days at 25 °C
- 5 plugs extracted with methanol [16]
- We optimized an isocratic HPLC-FL method to detect and quantify FB_2 in black aspergilli strains extracts
- The method uses NDA derivatization and was adapted from [17]

[16] Frisvad, J.C. et al. J. Agric. Food Chem. 2007, 55, 9727-9732.[17] Bennett, G.A.; Richard, J.L. Journal of Aoac International 1994, 77, 501-506.

120.49; c) control strain with IMAC purification ; d) Blank

 FB_2 in blak aspergilli from wine grapes

- FB_2 was not detected in A. carbonarius strains tested
- But was detected in 158 (29%) strains from the A. *niger* aggregate
- Levels of production for all the strains:
 - 0.003 6.0 mg/kg
 - Mean = 1.0 mg/kg
 - Mediana = 0.022 mg/kg

DISTRIBUTION BY WINE REGIONS

• Douro wine region: mean=0.78 mg/kg

DISTRIBUTION BY WINE REGIONS

• Ribatejo wine region: mean=0.28 mg/kg

DISTRIBUTION BY WINE REGIONS

• Alentejo wine region: mean=1.5 mg/kg

Micotoxigenic fungi

DISTRIBUTION BY WINE REGIONS

• Vinho Verde wine region: mean=1.1 mg/kg

CONCLUSIONS

• In what concerns mycotoxin levels from published data

- Levels found in the Portuguese market are not high
- In what concerns local mycotoxigenic fungi
 - We found that 29% of the local A. *niger* from wine grapes were positive for FB_2 production
 - With only 6% of the strains producing more that 1 mg/kg
- Therefore, we can say that the risk for FB₂ presence in Portuguese wines is comparable with the one posed by OTA and *A. carbonarius* - That is low

ACKNOWLEDGMENTS

- Thanks to the organization for the invitation to give this presentation and for they nice welcome to Egypt
- Thanks to Thalita Calado to the lab work
- Thanks to all of you also for listening

