
António Manuel de Almeida Campos

Framework para aplicações de
monitorização de Sistemas Embebidos,
Web based e Open-Source

An
tó

ni
o

M
an

ue
l d

e
Al

m
eid

a
Ca

m
po

s

outubro de 2013UM
in

ho
 |

 2
01

3
Fr

am
ew

or
k

pa
ra

 a
pl

ic
aç

õe
s

de
 m

on
ito

ri
za

çã
o

de
Si

st
em

as
 E

m
be

bi
do

s,
 W

eb
 b

as
ed

 e
 O

pe
n-

So
ur

ce

Universidade do Minho
Escola de Engenharia

outubro de 2013

Tese de Mestrado
Ciclo de Estudos Integrados Conducentes ao Grau de
Mestre em Engenharia Eletrónica Industrial e Computadores

Trabalho efetuado sob a orientação do
Professor Doutor Paulo Cardoso

António Manuel de Almeida Campos

Framework para aplicações de
monitorização de Sistemas Embebidos,
Web based e Open-Source

Universidade do Minho
Escola de Engenharia

To my mother and father

Labor Omnia Vincit

FRAMEWORK FOR EMBEDDED SYSTEMS MONITORING APPLICATIONS,
WEB-BASED AND OPEN-SOURCE

by

António Campos

DISSERTATION

Presented to the Faculty of the School of Engineering of the University of Minho

in Partial Fulfillment of the Requirements for the Degree of Master of Science,

under the supervision of Professor Paulo Cardoso.

Department of Industrial Electronics

University of Minho

Guimarães, 2013

Acknowledgements

First of all, I’d like to thank professor Paulo Cardoso for being my advisor, for giving me the

independence to work and, most of all, for questioning the whys and the why nots of my work.

”From now on our relationship is between co-workers! I will not demand anything from you, this

is your work. I will discuss it with you!”.

I’d also like to thank to the professors and technicians of the Industrial Electronics Department.

Even though you imposed many challenges that gave me a lot of headaches and even made me

sweat, I am now ready to face the real world. Also, to all the teachers that came in my path since

1994, you all taught me something and established the base for me to be here now.

I would also like to thank my parents, Celso and Natália. You both gave me the strength to

continue, to always accomplish more, to not be afraid of whatever may come my way. Without

you I wouldn’t be here today! Thank you mom! Thank you dad! (One down, one to go!)

To Liliana, my sister, for the nagging. Now that you are where I was a few years ago, enjoy

it to the fullest, you can go wherever you want to!

To Marta, my girlfriend. You appeared in the beginning and in the end, in a time where

everything was going downhill and somehow you managed to help me getting back on track. ”Get

out of bed, you have got to work!”

To Susana, for making me get on track five years ago and for the sharing.

To all my brothers from other mothers, for being with me all these years. For the adventures

we had together, for the long nights studying, for the jokes, for the brotherhood and most of all

for being my friends.

To all of you, that helped me to be where I am now, thank you!

v

Resumo

Monitorizar consiste em observar, supervisionar ou controlar um sistema. Como tal, todas as

aplicações de monitorização desempenham uma função semelhante em sistemas diferentes. Sendo

assim, pode dizer-se que todas as aplicações de monitorização são desenvolvidas sobre uma base

comum, uma vez que a tarefa a desempenhar é semelhante, sendo os dados diferentes entre

aplicações. Pode assumir-se então, que desenvolver uma aplicação deste tipo de raiz consome

mais recursos que o necessário.

Existem muitos sistemas embebidos que necessitam de monitorização, alguns têm até o acesso

f́ısico restringido, criando a necessidade de monitorização remota. Este projecto tem como ob-

jectivo responder a esta necessidade através da criação de uma ferramenta capaz de implementar

aplicações de monitorização remota que utilizem a Web como meio de comunicação, fornecendo

uma arquitectura para que sistemas embebidos possam comunicar com o utilizador através da

Web.

O Desenvolvimento de Software Orientado a Caracteŕısticas (FOSD) é utilizado como método

de desenvolvimento nesta ferramenta, permitino o desenvolvimento de uma Linha de Produção

de Software (SPL) para o domı́nio de monitorização remota de sistemas embebidos.

O resultado deste trabalho é uma SPL capaz de implementar aplicações de monitorização

remota constitúıdas por um interface do utilizador, um interface com a plataforma, uma base de

dados e um conjunto de serviços Web que estabelecem um daemon de comunicação, de forma

simples através da utilização do plug-in para o Eclipse, Feature IDE.

Esta solução facilita o processo de desenvolvimento e reduz drasticamente o time-to-market

de uma aplicação de monitorização espećıfica. Utiliza também os conceitos FOSD e SPL, que

podem ser úteis em outros domı́nios.

vi

Abstract

Monitoring consists on observing, supervising or controlling a system. Therefore, all monitoring

applications carry a similar task, only in different systems. Knowing this, one can easily say

that monitoring applications are built upon the same base, since the task is similar, only the

data changes. Thus, developing a monitoring application from scratch usually consumes more

resources than needed.

There are many embedded systems that need to be monitored, some of them are even hard

to reach, creating the need for remote monitoring. This project aims to answer this need by

creating a tool that is able to implement remote monitoring applications that use the Web as

communication infrastructure providing an architecture for embedded systems to communicate

with a user via the Web.

Feature-Oriented Software Development (FOSD) is used as the fundamental development method-

ology to develop this tool, allowing the development of a Software-Product Line (SPL) for the

remote monitoring of embedded systems domain.

The result is a SPL, able to implement remote monitoring applications comprising a user inter-

face, a platform interface, a database and a set of Web services, that establish a communication

daemon, in a fast and easy way by using the Feature IDE plug-in for Eclipse.

This solution greatly eases the development process and reduces drastically the time-to-market

of a specific remote monitoring application. It also uses the FOSD and SPL concepts, that can be

useful in many other domains.

Keywords: Feature-Oriented Software Development, Software-Product Lines, monitoring, Feature-

Oriented Domain Analysis (FODA), Feature-Oriented Software Implementation (FODI), Feature

IDE, Web services, REST, AJAX, HTML5

vii

List of Abbreviations

AJAX Asynchronous JavaScript and XML

API Application Programming Interface

CGI Common Gateway Interface

CRUD Create, Read, Update and Delete

CSS Cascading Style Sheets

DAO Database Access Object

DEI Industrial Electronics Department

DOP Delta-Oriented Programming

FIFO First In, First Out

FODA Feature-Oriented Domain Analysis

FODI Feature-Oriented Software Implementation

FOP Feature-Oriented Programming

FOSD Feature-Oriented Software Development

FST Feature Structure Tree

GCC GNU C Compiler

GUI Graphical User Interface

viii

HTML Hypertext Mark-up Language

HTTP Hypertext Transfer Protocol

IBM International Business Machines

IDE Integrated Development Environment

IPC Inter-Process Communication

IP Internet Protocol

JSON JavaScript Object Notation

JVM Java Virtual Machine

MIME Multi-purpose Internet Mail Extensions

ORM Object-Relational Mapping

OS Operating System

PDF Portable Document Format

POJO Plain Old Java Object

RIA Rich Internet Application

RAM Random Access Memory

REST Representational State Transfer

RDBMS Relational Database Management System

RPC Remote Procedure Call

SOAP Simple Object Access Protocol

SPL Software-Product Line

SOAP Simple Object Access Protocol

ix

SQL Structured Query Language

TCP/IP Transmission Control Protocol/Internet Protocol

UM University of Minho

URI Uniform Resource Identifier

URL Uniform Resource Locator

URN Uniform Resource Name

W3C World Wide Web Consortium

XML eXtensible Mark-up Language

x

Table of Contents

Page

Acknowledgements . v

Resumo . vi

Abstract . vii

List of Acronyms . viii

Table of Contents . xi

List of Figures . xiv

Chapter

1. Introduction . 1

1.1. Motivation . 1

1.2. Objectives . 2

1.3. Contents and Organization . 3

2. Domain Analysis . 5

2.1. State Of the art . 6

2.1.1. Software Product Lines . 6

2.1.2. Web Technologies . 11

2.2. Problem Space Specification . 14

2.2.1. Domain problem specification . 15

2.2.2. User Interface . 16

2.2.3. Server . 20

2.2.4. Monitored Platform . 26

2.2.5. Feature Diagram . 30

xi

2.2.6. Cross-Tree Constraints . 34

3. Domain Implementation . 37

3.1. Tools and techniques . 37

3.1.1. Eclipse . 38

3.1.2. Feature IDE . 38

3.1.3. Jersey and JAX-RS . 44

3.2. SPL Implementation . 45

3.2.1. Server . 49

3.2.2. User Interface . 59

3.2.3. Platform Interface . 63

4. Instantiation . 66

4.1. Requirement Analysis . 67

4.2. Software Generation . 69

4.2.1. Web service deployment . 70

4.2.2. User Interface and database deployment . 72

4.2.3. Platform Interface deployment . 74

5. Results . 77

5.1. Test Systems Specifications . 78

5.1.1. Servers . 78

5.1.2. Client . 78

5.1.3. Platforms . 78

5.2. Basic Application . 79

5.3. Full Application . 82

5.4. Test conclusions discussion . 86

6. Conclusion and Future Work . 88

6.1. Conclusion . 88

6.2. Future Work . 90

References . 92

Appendix

A. 95

xii

A.1. Feature Diagram . 96

A.2. Feature description . 97

A.2.1. Platform features . 97

A.2.2. Server features . 97

A.2.3. User interface features . 101

A.3. Feature constraints . 102

B.Domain Impementation . 105

B.1. Flowcharts . 105

B.2. User interface site map . 122

B.3. Web service path hierarchy . 123

B.4. Web services specification . 124

B.4.1. Action service . 124

B.4.2. Alert service . 125

B.4.3. Authentication service . 126

B.4.4. Management service . 127

B.4.5. History service . 130

B.4.6. Miscellaneous service . 133

C.Instantiation . 134

C.1. Editing the Database connection properties . 134

C.2. Example of a web.xml deployment descriptor . 135

xiii

List of Figures

2.1. Evolution of software reuse . 6

2.2. Functionality types of a functionality diagram . 9

2.3. Top view of the framework architecture . 16

2.4. Web application block diagram . 17

2.5. Web service block diagram . 25

2.6. Monitored platform block diagram . 27

2.7. User interface feature diagram . 31

2.8. Web services feature diagram . 32

2.9. Database feature diagram . 33

2.10. Monitored platform feature diagram . 34

2.11. Constraints definition flow . 35

3.1. Java code and FST of artifact BaseDB, taken from the Berkeley DB case study[1] 43

3.2. Composition of two Java methods in FeatureHouse[3] 43

3.3. Framework architecture divided into levels . 47

3.4. SPL main branches . 47

3.5. Web services data flow . 50

3.6. Web services feature diagram . 52

3.7. Database feature diagram . 56

3.8. Database relational diagram . 57

3.9. User interface feature diagram . 60

3.10. Platform feature diagram . 64

xiv

4.1. Configuration for the case at hand. 69

4.2. Dynamic Web project creation . 70

4.3. New Connection Profile Wizard . 73

4.4. SQL execution result . 74

4.5. Platform interface compiling and running . 75

4.6. The details file before and after being edited to reflect the platform communication

ports and the Web service Uniform Resource Identifier (URI) for new alerts 76

5.1. Test case connection diagram . 79

5.2. Login page . 80

5.3. Home page for the basic application . 81

5.4. Unanswered alerts warning . 81

5.5. Troubleshooting page - Received alerts . 82

5.6. Troubleshooting page - Received alerts . 82

5.7. Platform command line output . 83

5.8. Detail file used for the basic configuration . 83

5.9. Home page for the full application . 84

5.10. No privilege page . 84

5.11. Actuator Bay management page . 85

5.12. User management page . 85

5.13. User History page . 86

A.1. Feature diagram . 96

B.1. Login Web service flowchart . 106

B.2. Check privilege Web service flowchart . 107

B.3. Logout Web service flowchart . 108

B.4. Add Web services flowchart . 109

B.5. Edit Web services flowchart . 110

B.6. Delete Web services flowchart . 111

B.7. List history Web services flowchart . 112

xv

B.8. Find history Web services flowchart . 113

B.9. Delete entry from history Web services flowchart 114

B.10.Clear history Web services flowchart . 115

B.11.Current alert Web service flowchart . 116

B.12.Current action Web service flowchart . 117

B.13.List Web services flowchart . 118

B.14.GET request flowchart . 119

B.15.POST request flowchart . 120

B.16.Platform interface flowchart . 121

B.17.Web service URI hierarchy . 123

C.1. DBconnection.properties before and after editing 134

C.2. web.xml definition example . 135

xvi

Chapter 1

Introduction

1.1 Motivation

Embedded systems are often used as control systems to larger systems, electronic or not. When

this is the case there is the need of monitoring the system operation by receiving feedback from

the system sensors and taking actions, if that is the case, using the system actuators. Some of

these systems may be hard to reach or even physically unreachable, thus creating the need of

remote monitoring.

The development of remote monitoring applications is a time consuming task, taking consider-

able amounts of time, making the development process longer and increasing the time-to-market

of a given system. The monitoring of a system is just a part of the system as a whole and all the

monitoring applications perform similar tasks, namely user authentication, data acquisition and

presentation, alarm report and actuation, being the the biggest difference between on the data

values and their meaning. Thus, all these applications share a common base where the task at

hand is the same. This makes it possible for the development of a tool capable of implementing

this common base, easing the design process of a specific system and reducing its time-to-market.

Since monitoring is done remotely, there is the need to transfer data between two terminals

that can be apart for thousands of kilometres. To do so, there is no better communication

infrastructure than the Internet, which implements the broadest communication platform ever

developed by the human being, allowing a rapid transfer of large amounts of data between two

1

terminals, even if one of the terminals is in a remote area.

1.2 Objectives

The main objective of this work is to implement a framework for remote monitoring applications

that use the Web as a communication platform, by using a SPL approach.

By using a SPL it is possible to develop a framework that is easy to use and intuitive for the

application developer, allowing the rapid implementation of monitoring applications that need

minor tweaking to fit a specific system/problem. Therefore the main goal is to study the remote

monitoring domain and implement SPL capable of implementing Web based remote monitoring

applications, following a FOSD approach, allowing the characterization of the domain and the

implementation of a framework for the domain.

The implemented framework should be able to generate applications comprising a communi-

cation architecture able to establish communication between the user interface and the remote

systems to be monitored, a database server for data storage and a user interface supported by a

Web browser, using the latest Asynchronous JavaScript and XML (AJAX) and HTML5 techniques.

The framework must implement a basic user interface, since this is the part of the system that

can vary greatly from application to application.

The implemented architecture must keep a list of monitored systems as well as an history for

all the data transactions performed between the system elements, all accessible by the user. The

user must also be able to perform administrative tasks on the system, being able to add, edit or

remove the details of the system components.

Between all the tasks to be carried, the following main tasks can be identified:

1. Define data sources to be monitored;

2. Define the database from the above characterization;

3. Identification of the messages to be traded;

4. Implementation of a set of Web services to allow the interaction between users, monitored

systems and the database;

2

5. The specification and implementation of a SPL for the specified domain;

6. Testing of the framework by instantiating it;

Finally, the framework must also be open-source, meaning that its code is freely available

for anyone who wants to use it and to improve the tool. This makes way for the creation of a

community that can use and maintain the framework in the future, potentiating the improvement

and evolution of it.

1.3 Contents and Organization

This work aims to specify how to design and implement a SPL by using FOSD. Therefore, this

document is structured according to the FOSD development phases, providing a Domain Analysis

on chapter 2, comprising a study of the State of the Art of the technologies used to develop

this project and an analysis to the remote monitoring of embedded systems domain, specifying

the domain components and how they communicate. This chapter also divides the domain into

features presenting a feature diagram that results from this process, relating all the domain

features between them.

On chapter 3, Domain Implementation is presented, specifying the tools and techniques used

to implement the framework and explaining how the code is structured, as a way to help the

understanding of the SPL.

Chapter 4 ends the FOSD development phases , by specifying the last two phases, Requirement

Analysis and Software Generation, stating how to instantiate the SPL to a specific problem within

the remote monitoring of embedded systems domain. This chapter, which has a structure similar

to a tutorial, specifies the necessary work flow to implement and deploy a monitoring application

for a specific problem by using the SPL.

On chapter 5, instantiation results will be exposed, showing the ability of the framework to

automatically generate fully functional systems that need little customization to address specific

problems within the domain.

At last, in chapter 6, conclusions of the development process of this project will be discussed,

stating if the work was well performed and what can be improved. Future work identified thus

far is also presented.

3

After these chapters appendix A will show and explain the schematics resulting from the

Domain Analysis phase of the project, appendix B will demonstrate schematics resulting from

the Domain Implementation phase, namely the flowcharts of the implemented code, the site map

of the user interface and how to connect to the Web services. appendix C will expose useful

advices on the instantiation process.

4

Chapter 2

Domain Analysis

The proposed project consists on the design and implementation of a framework for the develop-

ment of remote monitoring applications for embedded systems. However, embedded systems are

computer systems and monitoring an embedded system remotely imposes almost the same con-

straints as monitoring a regular computer system, thus making this project also suitable for the

remote monitoring of a computer system that is not an embedded system, as long as it respects

all the constraints imposed by the framework.

All the applications developed with this framework have the same structure, therefore all of

them will have a user interface, provided by a web application running on a Web browser, a set of

Web services responsible for storage and data redirection, and the monitored systems, referred as

platforms. Since embedded systems have a vast nature, the framework must be prepared for the

implementation of small monitoring applications, such as house security monitoring, but must

be as well prepared for large applications, such as monitoring offshore wave power generation

platforms in high seas. Because all applications within the remote monitoring domain address

different problems, being different from each other in their specific function, they all share a

common base, having a great number of functionalities in common, thus creating the need for a

mechanism that is able to handle these common aspects while leaving space for the development

of the functionalities that makes each application unique. This mechanism, which has a rapidly

growing user base, is the Software-Product Line development process and will be explained further

ahead.

5

2.1 State Of the art

This section presents a study on the State of the Art of all the concepts present on the project.

Since SPL development is one of the core concepts, it will be exposed first. Later an insight on

Web Technologies, with special attention given to Web Services will also be given, since this is

also one of the core concepts.

2.1.1 Software Product Lines

According to Bosch, the notion of constructing a software system by composing components

has been discussed since the late 1960s, where reuse was accomplished by the systematic usage

of subroutines. During the following decades several module-based approaches were proposed,

most remarkably the development of object-oriented frameworks, composed of abstract classes

through which concrete classes can be implemented by inheritance. This effort to achieve software

reuse led to the acceptance of two very important lessons, being the first that opportunistic

reuse, the act of salvaging code for use in other applications, is not effective because a successful

reuse programme must be a planned and proactive effort. The second lesson is that bottom-

up reuse does not function in practice[4]. Successful reuse, like most developing techniques, is

accomplished by employing a top-down approach. However, if there are existing components,

such as communication protocols that need to be used, the design process may also have some

bottom-up decisions. During the 1990s and the following decade, the combination of software

architectures with component and service based software development led to the notion of SPL.

Figure 2.1 shows the evolution of software reuse techniques, from the usage of subroutines in

the 1960s to SPLs in the 2000s.

Figure 2.1: Evolution of software reuse

A Software-Product Line can be described as a software engineering methodology that allows

6

the exploring of common functionalities within a product family, in a way that is possible to create

a new product from a common base [5]. The focus of SPL is not to develop a single solution for

a given problem, but to develop different products through the same software framework, in this

particular case for the product family within the embedded system remote monitoring domain.

The SPL development effort is incremental and makes it possible to develop the SPL core, as

well as the architecture and some features first, then develop one or more products/applications,

and then develop more features in a cyclic way, where SPL usage will create more features that

can be used to develop other applications. This means that the usage of the SPL will make it

evolve to a more solid solution for the achieving of a greater level of automation.

The way a SPL is planned, implemented and instantiated is a process known as FOSD [30].

This process is divided in four distinct phases, which have different aims:

1. Domain analysis Intends to specify where a software domain varies and where it does not

vary, resulting in a feature model. This process is also known as Feature-Oriented Domain

Analysis (FODA).

2. Domain implementation Implementation of all software systems simultaneously. Features

are mapped into code. This process is also known as Feature-Oriented Domain Implemen-

tation (FODI).

3. Requirement analysis Mapping a problem requirements to features and selection of the

features needed to a specific software system. The result is a configuration.

4. Software generation Automatic building of a software system, using software composition,

based on a given configuration.

A closer look to the previous list shows that the first two phases are specific to the domain

engineering, where a domain is analysed and its features specified and implemented, leading to

the creation of the SPL. The other two phases are specific of the application domain, where a

specific problem is analysed and the features that can answer that problem are selected from the

SPL, allowing the implementation of an application for the specific problem.

7

Domain Analysis

The first step for successfully implementing a SPL is the domain analysis. Domain analysis consists

on the analysis of a given domain, determining its requirements and where the domain can vary

or not.

Feature modelling, proposed as a part of FODA [14], is used to specify these variations. Feature

modelling is represented using feature diagrams, which provide graphic representation of domain

features and establish an easy way to determine the variations of the domain.

These diagrams represent system features in a hierarchical way, and at the same time specify

their relations. The top node is the base node, representing the concept and the descending nodes

represent the functionalities of the domain. The selection of the needed features to answer a

specific problem results in a configuration. This configuration does not have all the features of

the diagram and is unique, since each configuration specifies a specific application type.

Therefore, one can easily conclude that the reason to use such diagrams is to generate several

different configurations, which generate specific applications, answering different problems within

a given domain.

Since not all configurations are valid and specify useful software systems, constrains specified

during the domain implementation will later specify which configurations are valid within a do-

main. Also, features can be mandatory or optional, cumulative or alternative as shown on figure

2.2.

Figure 2.2 specifies four types of functionalities:

a) Cumulative Functionalities Functionalities that are cumulative. An analogy can be made with

the logical OR operation.

b) Alternative Functionalities The use of one functionality excludes all others.

c) Mandatory Functionalities Functionalities that are mandatory to every configuration, usually

these are application specific core functionalities.

d) Optional Functionalities Functionalities that are optional and are only used when needed

In a feature diagram, features can also be abstract, meaning that they are not mapped to

implementation artifacts, or concrete, meaning that they are mapped to implementation artifacts.

8

(a) Cumulative features (Or) (b) Alternative features

(c) Mandatory features (d) Optional features

Figure 2.2: Functionality types of a functionality diagram

Abstract features help the analysis and reasoning of the set of program variants which can be

generated from a domain implementation and feature model [30] by completing the SPL feature

model with a visual component that helps the understanding of the SPL structure, where a concrete

feature also implements code. A model can also have composition rules, that are basically cross

tree constraints which are propositional formulas to further aid in the configuration. For example,

feature1 implies feature2 means that if feature1 is selected, then feature2 must also be selected.

Feature models specify variability within a domain and have a strict set of semantics, as stated

by figure 2.2. When configuring a feature model to a specific problem, the selection of a feature

implies the selection of the parent feature. If a feature is selected, then all mandatory sub-features

are selected as well. In an OR group at least one feature must be selected and in an alternative

group only one feature can be selected. Finally all the composition rules must be respected. If

all this is respected, then a configuration is valid and can be used, otherwise it is invalid.

Domain Implementation

The use of feature models allows to specify the variations of a domain without knowing which

variation technique will be used during implementation. The main goal of implementing a SPL

9

is to map features to source code, enabling the automatic generation of a software system for a

specific configuration. There are several techniques to implement SPL. However, these techniques

are usually based on a specific program language, referred to as host language.

• Feature-oriented programming Proposed by Christian Prehofer [19] as an extension to object-

oriented programming, this technique decomposes Classes into feature modules, where each

implements a certain feature. A feature module can contain methods and fields from several

classes and can be composed to a program based on a given configuration and a certain

order of features.

• Delta-oriented programming This variation technique, proposed by Schaefer et al. [21],

proposes a core module, written in the host language (C++, Java, etc.) and a set of delta

modules. Each delta module can add or remove methods, fields and classes, and even change

the super class of a given class.

In the configuration phase of SPL development, a composer identifies the delta modules

that fulfil an application condition and applies them to the core module, resulting in the

generation of a software system.

• Aspect-oriented programming According to Kiczales et al. [13], aspect-oriented programming

provides a meta language to transform existing object-oriented programs. A specific position

in the control flow of an object-oriented program is called a join point, and pointcuts specify

a set of join points. A piece of code injected at a pointcut is called an advice. An aspect

defines pointcuts and advices to inject in the code of the host language. One generates a

new software system when implements a subset from a set of implemented aspects.

• Preprocessor (Conditional Compiling) Other technique for SPL implementation are prepro-

cessors [11]. Preprocessor directives1 are inserted as comments in a given host language.

Upon a certain configuration, the preprocessor comments out the annotated parts with a

false application condition.

1#if, #endif

10

Requirement Analysis

After the SPL is implemented, it is ready to be instantiated by the domain problems. To do so,

the SPL user must analyse the problem at hand, identifying which are the specific requirements

and constraints, relating them with the SPL features. After doing so, a configuration is generated

with the selected features. As stated previously every configuration is unique and addresses a

specific problem.

Software Generation

This is the last fase of the FOSD and consists on the automatic generation of the software system,

based on the previously defined configuration, by using a domain implementation technique. Since

a configuration is unique and the software generation depends directly on the configuration, it

can be said that every generated software system is also unique within the domain.

2.1.2 Web Technologies

The Internet represents the greatest communications platform ever, either in size and in scope,

connecting almost 6 billion people around the world. However, the Internet is just an interlinked

network of computers that communicate using the TCP/IP protocol that provides an address

for every computer connected within the network. To make the Internet useful there is a large

number of resources and protocols that can be used, being one of them the Hypertext Transfer

Protocol (HTTP) provided the basis for the World Wide Web, referred from now on as the Web.

The Web is a system of interlinked hypertext documents that are accessed via the Internet

using a web browser and was proposed in 1989 by Sir Tim Berners-Lee [31], who is currently the

director of the World Wide Web Consortium (W3C)2. This system uses a client-server architecture,

where a server receives and processes request sent from a client, usually a web browser. The

communication does not rely on any operating system and it is done using the HTTP methods3

from the HTTP protocol.

Since the first implementation in 1991, the Web as been rapidly evolving from a static Web,

2International community responsible for maintaining the World Wide Web and whose mission is to lead the
Web to its full potential

3GET, PUT, POST and DELETE are the most common ones

11

where an user only went to get information, to a dynamic Web, where the user has an active role

and where the information will adjust in the way the user wants. To make this possible there

is a number of technologies running both in servers and clients to provide the aspects described

previously.

Client Side Technologies

Usually a Web client is a Web browser that renders web pages to the user. In the last few years

websites have become more attractive and dynamic, and currently there are powerful web appli-

cations that resemble native applications running on a local machine. Although this applications

communicate with the server and a part of the processing is done in the server side, most notably

data access, the client side programming also plays a crucial role. For example, with HTML5,

the candidate4 standart for the Hypertext Mark-up Language (HTML) language specified by the

W3C in 2011, the development and rendering of dynamic web pages is now easier, replacing older

technologies like Apache Flex5, that are harder to program and impose a great load on the client

side as well as bearing the need of external plug-ins to render the page elements such as video or

animations that react to the user. Popular Web pages like Youtube and Grooveshark are currently

porting to HTML5.

Javascript is also a programming language executed on the client’s side to provide even more

advanced capabilities such as user interaction, browser control, document alteration after dis-

play and asynchronous communication. Javascript is a scripting language that can be used with

HTML5 and that has a syntax influenced by the C language and copies some names and conven-

tions from Java, hence Javascript. This language is also a multi-paradigm language that supports

object-oriented, imperative and functional programming. Even tough its major use is in web

pages, there are traditional applications, such as PDF documents or desktop widgets that use

Javascript.

By merging HTML5, JavaScript and Cascading Style Sheets (CSS) one can create powerful

Rich Internet Applications (RIAs) that communicate asynchronously with the server by using

AJAX techniques that allow a Web application to carry on its operation while waiting for the

4HTML5 has been submitted as candidate for the next HTML standart on August 6, 2013[]
5Flex is a Flash based framework that has been passed from Adobe to the Apache Foundation, to be maintained

as an independent project, enabling Adobe to focus on HTML5 development.

12

server response, thus resembling to a native application running on the computer. Currently, every

time there is a reference to HTML5, what is referenced is the junction of the previously referred

technologies that provides the resources for the creation of powerful dynamic Web applications.

Server Side Technologies

In the first days of the Web servers only answered requests sent from clients. However, the

evolution of the Web created the need for processing information sent by the client. This is

accomplished by the server when it allows that the processing is done by an application running

in the server machine. The server pre-processes a request and sends it to the application using

CGI or its alternatives, the request is then processed by the application and sent back to the server

that is responsible to answer the client’s request. These applications can be programmed using

several programming languages:

• Java

• ASP/ASP.NET

• Python

• PHP

• Perl

• ColdFusion

• LUA

• Ruby

• C/C++

CGI was the first method that made advanced processing available at the server side and,

although it has suffered many upgrades over the years, such as FastCGI or SCGI, it is being

replaced by other architectures, such as Java Enterprise Edition, that runs Java code in a Java

servlet container in order to provide dynamic content to the client. These servlet containers often

run Web services that communicate with the client using HTTP methods. According to the W3C

a Web Service is a software system designed to support the interoperability between software

applications running in a variety of platforms [9]. This communication is done using XML or JSON

messages encapsulated into communication methods like Remote Procedure Call (RPC) or Simple

Object Access Protocol (SOAP)6 [6] that encode the XML or JSON messages with the data into

6SOAP is the successor of RPC and has the same transport and interaction neutrality as well as the same envelope,
header and body

13

envelopes and send it using the HTTP methods. In 2000, Roy Fielding proposed, in his Ph.D. thesis,

a new and simpler approach called Representational State Transfer (REST) [8] that defines that

all the data sent between server and client encoded on the Uniform Resource Locator (URL) of the

request instead of a data envelope. This approach is currently experiencing a rapid usage growth

because, unlike RPC is stateless, and therefore easier to design and to integrate with different

software parts. The data from each call being stored in the request URL makes the interaction

with the web service Application Programming Interface (API) much simpler, due to the fact that

POST data is not stuffed in the client, and the debugging of client code becomes simpler. Also,

since REST is fully compliant with the HTTP protocol, this approach makes it possible to reuse

HTTP libraries, that exist for almost every programming language, and to use HTTP reverse proxies

that can be used to implement advanced features such as caching, authentication, compression,

logging or redirection.

2.2 Problem Space Specification

When developing a framework one can’t think in answering a specific problem, but must think

how to answer all the problems within a given domain, the problem space. To do so commonalities

and variabilities in the domain must be identified, through the use of feature modelling. This

technique allows the capturing an managing of the common and variable aspects in a product line

throughout all the phases of product-line engineering[7].By using SPL engineering new products

within a domain can be created rapidly, based on a common set of reusable assets, such as system

architecture, models, components, development processes, among many others.

As stated previously, there are four phases when developing a SPL using FOSD, being the first

the domain analysis. In this phase the domain is analysed and verified. From it results a feature

model specifying the variable and common aspects within a domain, as well as the constraints

imposed by the domain.

The following sections will give an insight on this development phase by using the proposed

framework as an example.

14

2.2.1 Domain problem specification

Many embedded systems are designed to operate without direct feedback to the user. There are

also some embedded systems that operate in remote locations where user access is difficult and

there are systems that are distributed, being composed by a number of subsystems, meaning that

there may be a need to monitor a number of different devices at the same time. Developing

applications for these situations usually takes a lot of time and consumes a great number of

resources. Therefore it is desirable to reduce the time taken and the resources consumed.

It also intended to make possible the development of remote monitoring applications for em-

bedded systems using the Web as the communication infrastructure. Applications developed using

the proposed framework must be capable of, at least, the following:

• User profile management.

• Event registry and alert windows.

• Basic GUI generation (HTML5 application in browser).

• Remote system communication Daemon.

• Database.

By having a top-down approach to the problem domain, one can determine that all the appli-

cations developed using the framework will have the architecture shown on figure 2.3 in the top

level. The architectures of the framework components will be shown further ahead.

Even though applications developed using the framework consist of three main components7,

the framework only focuses on the monitoring part of the application. This means that applica-

tions developed using the framework will only address the user interface, the server components8

and the interface between the platform and the server, leaving the platform software that will

control and retrieve data from the platform to be implemented by the developer. The interface

between the server and the platform implemented by the framework will impose constraints on

the application developer, creating the need of respecting the communication constraints imposed

by the rest of the system. These constraints include the communication protocols between the

platform interface and the ”language” the system defines for communication.

7User interface, Server and monitored platform
8Web services and database

15

Figure 2.3: Top view of the framework architecture

Since the framework will be composed by three distinct components, to ease the development

process as well as the usage process of the framework, every component represents a specialization

level of the SPL that will be designed and implemented separately, meaning that the SPL is

composed by three distinct feature models, one for the server, one for the user interface and

another for the platform interface. The existence of three distinct feature models creates the

problem of lack of consistency between them when instantiating the SPL, features chosen for the

server may not correspond to the features chosen for the user interface, creating an impossible

configuration. To avoid this, a set of feature model constraints must be defined, assuring that

if a feature is selected in the user interface feature diagram, then the corresponding feature will

also be selected in the server feature diagram. By doing this, consistency between subsystems is

assured and all the generated applications will function as intended.

2.2.2 User Interface

The user will interact with the monitored platforms by using a Web application through a Web

browser. This Web application will be developed in HTML5 and Javascript, and will use AJAX

techniques for dynamic communication with the server. These are implementation constraints

that must be followed.

16

AJAX implements a set of asynchronous communication techniques that allow the creation

of very powerful Web applications with improved functionality of what has been seen until this

point. Web sites are no longer static and require a large amount of data transaction between the

client and the server and if these transactions are not made asynchronously there will be a huge

performance loss, because the site will always wait for an answer from the server to continue its

operations. The usage of asynchronous techniques allows the site to carry other tasks while it

waits for an answer, improving performance and usability. Figure 2.4 shows the block diagram

of the Web application. As it can be noted, the Web application is divided into two distinct

subcomponents that transact data between them, the communication back-end, responsible for

Web communication with the Server, and the User Interface front-end that has direct interaction

with the user.

Figure 2.4: Web application block diagram

Since all the communication with the server is done using the Web, the communication back-

end does not have a great degree of variation. In this part of the system the greatest variation

is on the data that is transmitted, but that is architecture independent because there is no data

analysis on this stage.

The User Interface front-end interacts directly with the user. Different applications mean

different interfaces, the degree of variation in the implemented pages is not huge but applications

may seem completely different form each other visually after completed, due to the usage of differ-

ent visual components. The User Interface has a structure composed by many different windows

with different purposes, such as a management window, a history window or a troubleshoot win-

dow. Every window has visual elements such as images, text, buttons or even multimedia content,

17

these elements differ both in type and format as in number. One window my have three images

and a text box and another may have only one image but have a video and a list.

This makes the task of dividing the user interface into features simple, since each windows can

be represented as a feature from the user interface. Each window also has different sub features,

selected depending on the tasks that must be carried by a window. The following list defines the

windows that can be selected and their function:

1. Login window User authentication prompt

2. Not Allowed window The user is redirected to it when it has insufficient access privileges

for a given window

3. Home window This window is the user interface lobby, where the user can select which

window he wants to use

4. Troubleshoot window Where the user can receive and analyse alerts and send actions to a

platform

5. Management window Used to manage the several components of a system (e.g. users,

platforms)

6. History window Used to show system logs. This window shows what happened in the system

and when it happened

To access the application the user must input his access credentials. This means that the

access will be limited to authorized users, and it also means that users can have distinct access

privileges, which means that specific actions are only available to those who have access to it.

In other words, one can only access an User Interface resource if he has permission to do so.

For example, a technician can access error windows and do troubleshooting but the system ad-

ministrator can access these windows but can also access the management window and manage

users and platforms. By imposing user privilege levels, and since the only way to affect platform

operation is through the User Interface, the system guarantees that only authorized users can

operate specific resources, the chance of human error by under-qualified staff.

18

Even though the SPL implements a user interface based on the web, the application developer

is free to implement a user interface as a native application running on a computer system. This

is possible because the interface between user interface and server is made using REST which

uses HTTP methods to establish communication. Therefore, if there are libraries that make

HTTP communication possible for a given programming language (e.g. libCurl for C or cpp-

netlib for C++), as long as the constraints imposed by the server are respected9, the developer

can implement a user interface for a given computer system and use it instead of using the one

generated by the framework.

Since each application will have a distinct user interface, there are variation spots and com-

monalities that have to be identified in order to establish what are the common and variable

aspects between the user interfaces that are able to be generated by the framework.

The base of each user interface is common and is composed by a login page, a home page and

a troubleshooting page. These pages will be a part of every user interface and match the basic

requisites of the domain, providing the most basic way a user has to monitor platforms, consisting

only on accessing alerts sent by a platform and the taking of actions in case of need.

Along with these common, and mandatory, aspects there are also other aspects that can be

added to implement a more complete interface that depend mostly on the specific problem require-

ments. These aspects vary from system to system and depend on a specific system requirements.

These variable aspects focus on management and logging needs that a specific system can have.

There may be systems where there is the need to manage system components, such as plat-

forms, sensor or users. This creates the need for a management page that can vary it’s structure

depending on what are the systems components. While a system may need to manage plat-

forms and users, another system may need to manage users, platform groups, platforms and the

platforms sensors, creating variations points inside variation points.

Among with management, there are systems that can have as a requirement the logging of

troubleshooting or management actions, thus creating another variation spot in the user interface.

Inside the history page there can also be variations because what a system may need to log may

not be what other system needs to log, creating variation points inside this page as well.

9namely the Web services URIs and their path parameters, the HTTP methods used by each Web service and
the return types for the Web services response

19

Web pages have a visual aspect, implemented in CSS. Even though the goal of this project is

no to implement the final user interface, a basic interface that is usable has to be implemented,

thus there are also styles to be applied to a specific user interface. These styles are different

between them and are exclusive, meaning that only one can be used in a specific user interface

and along with the other features chosen for it, it will distinguish the user interface from all the

others in the system.

2.2.3 Server

The architecture exposed on figure 2.3 states that the server establishes the frontier between the

user interface and the platform. Therefore all the data transmitted between these two sub-systems

passes through the server, where it is processed and stored. Basically the server acts as a data

repository from where the user interface gets data from the various components of the system and

redirects actions from the user interface, where they are defined and sent, to the correct platform.

Using a server establishing this frontier is not strictly crucial, since each embedded system,

being a computer system, can implement a web server where it can host a web application, that

could be used as the user interface for the platform and also host a database server, where data

could be stored. However, this would impose too much load on the embedded systems and could

affect their operation, and there would be a separate user interface for each platform, which would

create the need to check each user interface at the time for problems in the platforms, imposing a

usability problem that could affect user monitoring of the platforms. Also, in case there is limited

connectivity with a platform, sending an action to it would be impossible, creating the need for

the user to check manually if the connectivity to the platform is restored in order to send and

action to it, which is not desirable since the user may end up by not addressing all the alerts sent

by a platform.

By having a server establishing a proxy between the user interface and the platforms, the

load imposed by the user interface, as well as all the web services running to support it, and

the database, is taken off the embedded system and put in another computer system with higher

resources available. Thus the embedded system only needs to monitor its data and send it, if

needed to the server, saving the embedded system resources for the monitoring of the platform,

which is the intended task for the embedded system. By having a single data repository, where

20

the data from all the platforms is stored, there is only the need to have a single user interface

where all this data can be accessed, improving usability and making the monitoring performed by

the user more efficient. Finally, in case the user sends an action to a platform and the connectivity

is limited, the Web service responsible for action handling can check periodically if connectivity

is establshed with the platform, and send the action when this happens.

When a platform issues an alert the server stores it in the database, established a ordered list

of alerts that need addressing. The user interface polls the database periodically for new alerts

and presents them to the user who takes action on the chosen alert. When taking action the user

interface sends the action to the server, that redirects it to the correct platform and removes the

alert from the database. Since all the systems in this domain will operate over the Web, there can

be times when there is no Web connection between the server and the platform, in this case the

action is put in a queue that periodically tries to send the action to the platform, thus assuring

that an alert is answered.

The server may also provide other services to the user besides troubleshooting. Management

does not affect platforms directly but allows a user to manage all the aspects related to a platform

namely the sensors and actuators of a platform, if a platform is inserted in a group and even the

platform details, such as ID and location. User management is also provided by the server,

enabling the addition and removal of authorized users from the system and the editing of user

details.

Other main service that can be provided by the server is history, that keeps a log of the

selected operations performed on the system10, if selected from in the feature model. History is

stored in the database with all the information relative to the system action and a time stamp

from when it happened.

Database

The database plays a crucial role in the system. As it was exposed, almost all the actions taken

upon a given system are reflected on the database. User authentication for example, allows access

to only the users present in the database. Alerts are also stored in the database before being

10These operations comprise not only actions taken on platforms but also alerts issued by platforms, management
and authentication

21

answered and actions that are being taken are also stored in the database if there is no connection

to the platform. Information about platforms and their components are also stored in the database

and in case there is the need to keep a log, it is kept in the database as well. Therefore, it can

be said that the database describes a monitoring system and the relation between the system

components.

By analysing the problem domain, there are some tables that can be identified as common to all

the systems and others that may not be present if not needed. Every system has users, therefore,

there must be a users table specifying a user details. Since every user must be authenticated to

have access to the user interface, there must also be a session table, where a session ID and the

corresponding user are kept.

Like users, every system also has platforms, therefore there must also be a table describing

these platforms. Every platform is connected to the Web, thus having web details, stored in

another table. A platform has sensors and actuators, thus there is the need for platforms also

describing both sensors and actuators. These sensors and actuators may be grouped in sensor and

actuator bays, depending on function of the platform, thus there must also be tables describing

these bays. At last, platforms may also be grouped and thus, if this is the case, there may also

be a table describing the platform groups.

Platforms issue alerts, receive actions and must also ”speak the same language” as the user,

therefore there must be tables defining the alerts and the actions that can be transacted between

the user and the platform, as well as a table that implements the alert queue and another that

implements the action queue, in case there is no connection to the platform.

If there is the need to keep an history, there must also be tables to store this information. These

tables describe the history of alerts emitted by the platforms, actions taken, user authentication

and on the management of platforms and their components.

The previous paragraphs state which tables can compose the database of any given system

developed using the framework. However there are some systems that are more complex than

others, and therefore the tables may not always be all necessary. The most basic system must

have the users, session, platform, platform web, action, current action, alert and current alerts

tables in order to function properly, these tables are common to all the systems. Other tables

may be added depending on the needs of a more complex system.

22

At this point, all the possible tables in the database are defined, but a specific system may

not implement a full database as it was described. All these systems have platforms, users, alerts,

actions, sensors, and actuators. But not all implement platform groups sensor and actuator bays,

and may even not need to keep an history, varying with what a specific system needs. When

this is the case, the tables present in the database will correspond to the system components,

thus making the database of a specific system different from the database of other specific system

created using this framework.

The chosen server was the MySQL community server because it is open-source and free, it is

enough for what this domain needs and has a large user base that embodies a large community

that gives support to the server. Also, since it is developed by Oracle, that is one of the biggest

database providers in the world11, it provides a solid solution for this framework needs. The

MySQL community server is also supported by Java, providing an easy API for accessing the

database, and establishing the connection between Java code and the database via a connector

that abstracts the programmer from the complexities of the database connection.

Web Service

Data will be transmitted between all the components, but the server establishes a frontier between

the platform and the user interface. Since the framework only implements the platform interface

with the web service, the platform application is now a black box with a set of sensors and

actuators and a defined communication method.

When communicating with a Web service, a client (platform or user interface) sends a request

to a specific URI12, thus addressing a specific web service, with a specific function. After the Web

service action is performed, a response is sent back to the client with the operation result.

Data sent from platforms and user interface to the server depends on its origin. A platform

sends alerts with details about the origin of the alert, that can be an error or simple information

regarding the platform, to the Web service. The user interface, however, can send different types

of requests to the Web services. It can be a request on a management action, where it specifies the

11The Oracle RDBMS is widely used in key market segments such as banking and healthcare with proven reliability
since 1978.

12A URI is different from a URL. The URI only defines the address where to send requests, the URL is composed
by the URI and the arguments sent to the server. (e.g www.myuri.com = URI; www.myuri.com?myarguments =
URL

23

the action to be taken and the data that corresponds to it, it can be an authentication request to

grant access to a user or it can be an action sending request so that the Web service can redirect

it to the platform, among other requests. The Web services responds to all the requests in XML

format, with each response depending on what was the request. Responses can vary from OK,

stating that the request associated actions were carried out successfully, to a list of unanswered

alerts or users registered in the system. In case there is an error while processing a request, the

Web services answer with the exception code.

In order to be able to send an action, received from the user interface, to a platform without

a request from the platform, the web service establishes socket communication with the platform

and sends the action code to it. Upon receiving the code, the platform applies it in order to solve

whatever issue it is destined for.

Every system in the domain must have at least a set of Web services that establish commu-

nication between a platform and the user, a Web service to receive alerts and another to send

actions to the platform, establishing a communication channel with the user.

Authentication is also mandatory in every system, therefore there must be a Web service

responsible for logging in a user, another for logging out and lastly, since the access to user

interface pages is made based on privileges, there must also be a service to retrieve a given user

privilege from the database and pass it to the user interface.

The previous Web services are common to all the applications in the domain providing user

authentication in the system and a communication channel between the platforms and the user

interface. However, more complex applications may also have the need to implement management

options and even to keep an history of what has happened in the system. Therefore, a system

may also have a set of Web services responsible for managing system components and another set

of Web services that keep an history from all the actions taken upon the system.

By now, it is noticeable that there is a close relation between the Web services and the

features selected for the user interface. This happens because the Web services process all the

data displayed by the user interface and the user interface addresses a given Web service directly

when requesting data from the server.

Web service architecture is based on a 3 tier architecture, shown on figure 2.5, composed

of three distinct layers, each with a specific function. This architecture is used to make code

24

editing easier, since it logically separates the service layer, responsible for the interface with the

user interface, from the business layer, where data is processed, which is also separated from the

data layer, which makes the interface with the database. This favours code edition and reuse by

allowing localized changes in specific parts without affecting the rest of the code and by defining

the code for the different layers in different libraries, which makes it possible to port it to other

projects.

Figure 2.5: Web service block diagram

The set of Web services varies from application to application. The basic set assures the basic

functions carried out by the user in the user interface, therefore each application will have an

authentication service to assure user authentication, and alert and action dealing web services to

provide the ability to troubleshoot problems.

To establish Web service communication with the database there is a DAO layer. This layer

implements features that are common to all the systems, such as access to user, platform, action

and alert tables, that provide troubleshooting and authentication access to the database. However,

25

depending on what are a specific system needs this layer can also implement other features, such

as sensor and actuator access to the database, varying from system to system depending on what

a specific system needs.

Model features exist to map database tables content in the Web services so that it can be used.

These models depend on the DAO layer and its features have the same DAO layer features variation

and commonalities, varying where the DAO features vary, depending on system requirements.

In case there is the need to manage system components, there are also management features

that implement management web services and vary from system to system. These features are

related to the management features in the user interface and vary in the same way. These are

the features that grant data processing and database access for management in the user interface,

providing the data that will be shown to the user in the user interface.

Like management features, there can also be logging features that also correspond to the

history features in the user interface. These features have the same variation points as the

correspondent features in the user interface and grant data processing and database access for

logging related tasks in the user interface.

Finally there are features that can be useful for a system to have, depending on its needs.

These features are not strictly necessary for system functioning but can improve the way some

tasks are carried in a system.

2.2.4 Monitored Platform

The final sub-system of the system is the monitored platform. A specific application might be

composed by several platforms, however all the platforms will run the same code to perform

monitoring actions and can be described as the same. A platform has a unique identification that

is done at least by the IP address, but it can also be identified by an ID code assigned by the

system.

Platform monitoring consists on sending sensor data to the Web service via HTTP, that will

send it to the proper recipient and on receiving actions, through a socket, from the user to

implement via the platforms actuators. Figure 2.6 gives a better insight on a possible architecture

of the monitoring program running on a platform.

26

Figure 2.6: Monitored platform block diagram

Each platform has sensors and actuators that carry out troubleshooting actions at the platform

level.

A sensor is the device that converts a physical parameter related to the system (e.g. temper-

ature, proximity, acceleration, humidity, etc) and converts it into an electrical signal that can be

measured by the embedded system performing the monitoring. Sensors have a set of parameters

that determine their functioning and that assure their correct functioning under pre determined

conditions.

• Accuracy Determining how accurate a read value is and how much it can deviate from the

real value.

27

• Environmental conditions Limiting the usage in certain physical conditions, such as tem-

perature and humidity, than can influence the measured values.

• Range Measured limit of the sensor, outside of which it can’t read.

• Calibration In order to adapt the sensor readings to the environment.

• Resolution Smallest increment in the read value detected by the sensor.

• Repeatability Repeated measurement of a reading under a given environment.

On the other hand, while a sensor reads values related to the physical environment, an actu-

ator acts upon the surrounding environment by transforming an electric signal into motion (e.g.

activating a fan when temperature is too high). Actuator action depends on the values read by

the sensor in order to establish control of the system. The parameters that define actuators are

performance metrics and define how an actuator will operate under certain circumstances.

• Force Force applied by the actuator on a load. It is measured in dynamic and static loads,

where the dynamic load is the actuator force capability while in motion and the static load

is the force capability while the actuator is stopped.

• Speed Maximum speed at which the actuator can create motion. Its maximum value is when

there is no load attached to the actuator and it decreases invariably as the load increases.

• Operating Conditions Operation conditions under which an actuator can operate.

• Durability Amount of time that an actuator can function properly under certain usage and

actuator quality conditions.

• Energy Efficiency Amount of energy spent by the actuator to carry on a task correctly in a

certain time interval. A lower energy spending level in a fixed amount of time means that

the actuator is more efficient.

Each sensor and actuator have an ID code and a type associated. This allows the user

to monitor not only the platform as a whole, but to monitor at a sensor and actuator level,

increasing the granularity, making it possible to detect and correct specific problems, since failure

28

is not always general, but can be in a specific part of the device. The sensor bay is responsible

for reading sensor data periodically and to send it, a suitable approach would be to read the

sensors sequentially after a given time interval and send their data sequentially. Analogically, the

actuator bay receives actions that must be carried by a given actuator and applies commands to

the actuator to carry it. These are the main sensor actions, but there are other operations that

can be performed on both sensors and actuators, like requesting the current status of the sensor

or actuator.

Even though an explanation on a platform architecture is presented in this subsection, the SPL

will only implement the interface between the platform and the server. The application developer

is responsible for developing the monitoring application running in the platform, having the

freedom to implement the application in the most suitable language for the problem and with

the features he desires. However, the system treats a platform as a black box able to receive and

send data, this imposes a problem in case of the occurrence of a critical error or if there is no

connection between the platform and the server. Thus, in case of critical error the application

must be able to take preliminary action (e.g. Halt, Wait) on the platform while waiting from

user input. Also, after issuing an alert on a smaller error a platform must enable a timer and

wait for an action, if the action is not received in that amount of time, then the platform must

halt, resuming operation when the action is received, this will prevent that a small error creates

a bigger error due to the lack of correction.

By following these recommendations the developer will assure the correct functioning of the

system.

Even though the platform is a black box, the SPL must define it to aid in the understanding

of the SPL architecture, since the features for the rest of the system depend on the platform

components. Therefore a platform interacts with the server by sending alerts and receiving actions,

this is common to all the possible platforms within this domain. Then a platform has elements

that are used to specify its structure. Thus each platform has an ID in the system, and can have

other aspects such as sensors and actuators, but also bay of sensors and actuators, these features

vary from system to system.

The last commonality between platforms is that each platform runs on an embedded system

that can runs an operating system. This operating system is not the same to all the platforms

29

and varies from platform to platform. As in all computer systems, two operating systems cant

run concurrently on a platform, thus a platform only runs an operating system at any given time.

2.2.5 Feature Diagram

The main product of domain analysis, besides all the architecture definition, is the feature dia-

gram.

Analysing the proposed architecture, the domain can be divided in three main components,

the platform, the server and the user interface, each with a set of sub features that specify a part

of the component function. The following subsections will demonstrate each of the three main

branches of the feature diagram

User Interface

The user interface is constituted by Web pages, where each carries a specific task, therefore each

web page is a distinct feature in this user interface.

1. Login Specifies the authentication mechanism visually, providing the user with a login

prompt and other authentication mechanisms.

2. Home Specifies the home page for the user interface. It has a hTop and a hBottom features,

implementing the top and the bottom of the home page. This page is extended by other

features and this guarantees code correction and a correct interpretation by the web browser.

3. Troubleshoot This page is where the user interacts with the platform directly, providing a

visual feedback from alerts and a prompt to take actions

4. Management Where system components are managed. Providing a visual interface for

adding, editing and deleting system components.

5. History Provides the interface where the user can access the logs from every aspect of the

system.

Since this interface is implemented using HTML5, there are also styles for it, defining the

basic colors and the placement of buttons in the web page.

30

The generator feature is used to generate the HTML, JavaScript and CSS files that compose

the user interface.

Figure 2.7 shows a feature diagram with all the features that compose the user interface,

providing a visual representation of their relations and hierarchy.

Figure 2.7: User interface feature diagram

There is a close relation between the Web services and the user interface. The user interface

implements most of the features of the Web services on the client side.

Server

In this framework scope the server is composed of two distinct systems, the Web services and the

database server. Both systems are also divided into features and it makes sense to expose them

separately, providing a better understanding of each system.

As it was referred previously, the platforms need to communicate with the user. To achieve

this goal there is a set of Web services that receive data from the platforms and send it to the

user, and receive data from the user and send it to a specific platform.

These Web services reflect almost all the system requirements. Basically they process in the

server side the tasks carried by the user interface and also implement data redirection between

platforms and user interface.

There are six main sub features:

1. Authentication All systems have privilege based access where a user has login credentials

31

(user name and password) and a privilege associated.

2. Alerts Defining the web services responsible for the handling of the alerts sent by platforms.

3. Actions Were the web services that send actions from the user to the platform are defined.

4. DAO Corresponding to the Web services interface with the database server. Each sub

feature of this feature corresponds to a specific database table, implementing the interface

with that table, making it possible to retrieve data correctly from the database.

5. Model This feature specifies the data models, mapping the database tables to code, so that

data can be manipulated easily by the Web services code.

6. Manage Where management operations are defined. Providing a management daemon for

the user to administrate the system.

7. Hist Providing logging ability to the system. Specifies features that implement this ability.

8. Utilities Intended to be extended in the future, currently only provides features to list system

components. Implements features that are not specified in the objectives but may be useful.

The relation between these features is shown in the feature diagram depicted on figure 2.8.

Figure 2.8: Web services feature diagram

32

The database will provide a persistent data storage mechanism. This feature diagram, shown

on figure 2.9, is simple and each feature corresponds to a database table.

Each table describes a part of the system, such as platform data or the user details. There

are platforms that depend on others to work correctly.

The features dbTop and dbBottom specify the top and the bottom of the database script

generated by these features and are therefore mandatory, otherwise the script may not run in the

database server.

Figure 2.9: Database feature diagram

Platform

A deeper analysis in the platform system helps to determine that each platform has a set of

elements that work to together to carry on the platform task. The elements are the sensors,

actuators and their bays, as well as platform related details, such as the platform ID and the

group where a platform is inserted. Since there is a large number of different platforms, not all

these elements may be always needed, therefore only the platform ID is mandatory, since every

platform must have an ID.

Platforms must also communicate with the rest of the system, therefore it emits alerts and

receives actions from the user. By doing so a platform can be controlled by a user, who takes

actions, and can also alert the user if there is a problem.

33

To establish this communication the platform must have a communication interface with the

rest of the system. This interface depends on the operating system of the platform because it uses

system resources and these are different depending on the operating system architecture. Since a

platform only runs a determined operating system at the time, these features are alternative.

All these aspects that define a platform are related, and that relation is shown on 2.10.

Figure 2.10: Monitored platform feature diagram

2.2.6 Cross-Tree Constraints

The definition of cross-tree constraints in the feature diagram is crucial for the functioning of the

code generated using this SPL. Constraints guarantee that there is consistency between features,

because there are features that may need other features to work correctly, or there even may be

conflicts between features that are not on the same branch. In this SPL the three specialization

levels need to establish communication channels between them and need to be consistent between

them, for example, if a platform has sensor bays, these bays need to have a representation in

the server and in the user interface. Thus creating the need to establish constraints between the

branches of the feature diagram.

In this case constrains are helpful for the configuration process as well, easing it. They are

defined in a way that the server is the center of the system, and even though it has features

that can be selected by the user, constraints select the server features automatically based on

the selections on the platform and the user interface levels. Figure 2.11 shows the constraint

definition flow, stating that features selected on the two top components are reflected on the lower

34

one.

In other words, since the platform is the base of the system, when making a new configuration,

one must start by selecting the features in the platform level. These features correspond to the

platform characteristics. Then one must proceed to the user interface level where the operations

to be performed in the system, such as management or history keeping, are selected. By selecting

features in this two levels, the corresponding features on the server level will be selected auto-

matically, since there were constraints defined for this, guaranteeing that the developed system is

consistent throughout all the levels and that it will work as expected.

Figure 2.11: Constraints definition flow

Constraints have not only been defined as cross level constraints, but also been defined within

a level, for example in the server, the ActuatorDAO feature, that implements the methods for

database operations regarding actuator information, needs the Actuator feature that implements

the actuator model and, of course, it also needs the tActuator feature which implements the

database table that describes the actuators.

There are also redundant constraints, meaning that they aren’t strictly needed in the feature

diagram, because the diagram definition implements them automatically (e.g mandatory or al-

ternative features). This happens because this constraints refer to mandatory features. However,

these constraints were defined because these features may not be mandatory in the future, thus

35

assuring the correct functioning of the SPL in case that happens.

36

Chapter 3

Domain Implementation

In the previous chapter a domain analysis was presented. It showed the system components and

their relations while specifying the domain variabilities. In this chapter the tools and techniques

used to implement the framework will be demonstrated. Furthermore, the SPL implementation

will be shown level by level, giving a deeper insight on how the framework code is structured.

3.1 Tools and techniques

One of the constraints of this project is that the developed framework has to be open-source. This

also imposes that the tools and programming languages used in the implementation phase are

open-source as well, otherwise, there would be no point in developing an open-source framework

if the end user1 would need to acquire proprietary tools to use this framework.

It is also desirable that the used tools have a large user base or a developing team that is able

to provide solid support to the usage of the tools. The end user may encounter tool problems and

because the framework will most certainly evolve in the future and its developers may not always

be the same.

This section specifies used tools, what they are able to do and how they were used. It also

specifies which programming languages were used and why.

1The end user of the framework is the application developer

37

3.1.1 Eclipse

One of the tools that provides support to a vast array of programming languages and methodolo-

gies, being used widely around the world in many different fields is Eclipse.

Eclipse has grown since its inception in 2001. What was originally developed by a team at

IBM, in 2001, and supported by only a group of software vendors, evolved into an independent

foundation to maintain the project and act as a host to the giant eclipse community, constituted

by individuals, but also by organizations from a cross section of the software industry.

Eclipse2 is an IDE that provides tools to manage workspaces, build, launch and debug ap-

plications and allowing an easy customization of the programming experience. Eclipse provides

a platform with an architecture that allows indefinite extension with more sophisticated tools.

Therefore, one can say that Eclipse provides a basic workspace built on a mechanism for discov-

ering, integrating and running plug-in modules[20]. Eclipse also provides a marketplace where

plug-ins can be downloaded and easily added to the workspace, a user can also add plug-ins by

specifying the on-line repository where the plug in is available.

Currently Eclipse has a vast range of community developed plug-ins that allow the customiza-

tion to suit the software developer needs. In the scope of this project, Eclipse uses Java devel-

opment plug-ins, Java EE development plug-ins, database development plug-ins and the Feature

IDE plug-in. The first three plug-ins provide development support for Java and Java EE as well

as database development, Feature IDE is a specific plug-in that makes Eclipse support FOSD and

will be explained later on this chapter.

By using these plug-ins, Eclipse supports all the phases of the FOSD and allows the implemen-

tation of the framework at hand. On top of this, it also allows the implementation of a specific

application after instantiation, making it the ideal tool for the implementation process. The used

Eclipse version for implementing the framework was Eclipse Juno (4.2).

3.1.2 Feature IDE

Feature IDE is an open-source Eclipse plug-in for FOSD development maintained by the Database

Workgroup from the Faculty of Computer Science from the Otto Von Guericke University Madge-

2Detailed information on Eclipse can be found on the Eclipse project page: http://www.eclipse.org

38

burg. Currently it has a growing user base stemming from all over the world and the latest version

is 2.6.5, which is based on Eclipse 4.2.

It provides a coherent user interface and task automation for what previously required the

use of complex tool chains, while supporting several software composition techniques, which have

very identical user interfaces, making it qualified for usage in teaching and comparison of SPL

implementation techniques. Since it provides a solid tool, with support from a team of developers,

that abstracts many of the aspects of FOSD development, Feature IDE is also suited to be used

in business environments for the generation of frameworks3 for a vast array of different domains.

Since 2004, when it was first presented, Feature IDE has greatly evolved and currently supports

the following FOSD tools and languages:

• Feature House - Software composition framework supported by a corresponding toolchain[1]4;

• Feature C++ - C++ extension to support FOP[2];

• AspectJ - Simple and practical aspect-oriented extension to Java[12];

• Delta J - Java instantiation of DOP[21];

• Antenna - Set of Ant tasks for the development of wireless Java applications[18];

• Munge - Purposely-simple Java preprocessor[27];

As stated, Feature IDE supports all four phases of FOSD.

The result of the first phase, domain analysis, is a feature model. Feature IDE allows the

graphical construction of a feature model by providing a graphical editor, which allows the easy

addition and removal of features. Feature models can change a lot over time, therefore this editor

provides a way to move features, with its sub-features, to a new parent feature. Feature models

are stored in eXtensible Mark-up Language (XML) format and can be edited both graphically or

textually simultaneously because Feature IDE provides a function that allows the change between

both views easily. These models can also be exported to external tools and stored in several

graphic formats as well as PDF.

Feature models can also contain cross-tree constraints, which serve to relate features between

them by using boolean relations, for example if feature x is selected, feature y must also be

3Successful SPLs have been implemented with up to 10 000 features and cross tree constraints.
4Supports: Java, C, C#, Haskell, Alloy, JavaCC, XHTML, XMI/UML and Ant

39

selected, or, if feature w is selected, then features r and z can’t be selected. For this purpose,

Feature IDE provides a constraint editor with content assist and syntactic and semantic checking.

In Feature IDE, features mapped to implementation artifacts (e.g: classes, interfaces, methods,

etc.) are called concrete features. However, Feature IDE also supports abstract features which

aren’t mapped to any artifact. This distinction is necessary for the automated analysis and

reasoning on the set of application variants that can be generated from a feature model and its

corresponding domain implementation. Basically, abstract features can be described as features

which are used to structure a feature model but dont’t have any impact at implementation level,

because they aren’t mapped to any code[29].

Domain implementation in Feature IDE consists on the mapping of concrete features to the

different features by using one of the different SPL implementation techniques described above.

The mapping depends on the chosen SPL implementation technique.

The third stage of FOSD is requirement analysis. Feature IDE provides a configuration editor

to meet this end. This editor gets the feature model as the input and provides the several

configuration choices, based on the feature model disposition.

The user selects the desired features and saves the selections into a configuration file. There

can be many configurations at the same time, but only one can be marked as current configuration,

for which source code is composed and compiled. During configuration, the editor marks it as valid

or invalid. Invalid configurations don’t respect the feature model constraints and don’t result in

composed application code. Configuration choices are only given according to the feature model,

so that its constructs are respected. Therefore mandatory features cannot be eliminated and two

alternative features cannot be selected at the same time.

The last phase to be covered by Feature IDE is software generation. This is accomplished

automatically by using the feature model, the implementation artifacts and a valid configuration.

The build is made in the standard Eclipse way and, if the automatic build option is enabled, a new

build is performed every time a source file changes. Feature IDE composes files to a specific folder

which is then used as the input folder for the compiler of the host-language. Therefore all build

options (e.g. build path and build parameters) can be configured as usual for the host-language

40

in its development tools (e.g. JDT5, CDT6). Feature IDE provides a way to define feature order.

This defines the order on how software artifacts are composed, assuring that composed code has

a logically correct sequence.

While generating new applications, programming errors may arise in the generated code,

detected by the Eclipse compilation plug-ins. However, this isn’t where errors must be corrected,

errors must be corrected at their source, in the feature code where they first appear. Feature

IDE provides error propagation, which is the ability to locate the exact position of an error in a

feature when only the error position in generated code is known.

Feature IDE provides integration for the four phases os FOSD by supporting dependencies

between particular phases. This means that when the feature model is changed, all configura-

tions are checked for validity, which may result in valid configurations turning into invalid. The

renaming of features is also covered by propagating the changes to configurations and domain

implementation. Feature IDE also synchronizes changes by checking the existence of features in

the domain implementation.

Feature House

Feature IDE generates code by using a valid configuration that defines which features are to be

used to generate a new application. Since code is directly mapped to features, there must be a

way to join their code in a way that it can be usable as a whole defining an application code.

This process is named software composition.

Software composition can be defined as the construction of software applications from com-

ponents that implement abstractions pertaining to a particular problem domain[16]. By doing

this software composition methods raise the abstraction level for the application developer, im-

proving the way to deal with complexity. Even tough there are some benefits on using software

composition, the biggest one is in the increased flexibility of the composable software systems.

Thus, a system built from components should be easily recomposable as a way to address new

requirements for different problems within a domain[17].

Feature House is a software composition tool chain, used by Feature IDE, based on three main

5Eclipse Java Development Tooling
6Eclipse C/C++ Development Tooling

41

ideas:

1. Language independent model of software artifacts;

2. Superimposition as a language independent software composition paradigm;

3. Artifact-language specification based on attribute grammars;

This tool chain supports a range of programming languages7, including Java, and uses the

basis of superimposition into which new languages can be plugged on demand, by merging software

artifacts corresponding substructures[1].

Feature House results from previous work, integrating a previous software composition tool, the

FSTComposer[3], which uses Feature Structure Trees (FSTs) as a model of the software artifacts

structure that represents the essential structure of a software artifact while abstracting it from

language specific details. Each node of a FST has a name that corresponds to a structural element

and a type that represents the syntactic category of a structural element. A FST is, basically, a

stripped-down syntax tree containing the necessary information to specify the modular structure

of an artifact and for its composition with other artifacts.

FSTs are composed by inner nodes, called nonterminals, and leaves, called terminals. Nodes

denote the artifact modules8, while leaves carry the modules content9. Figure 3.1 demonstrates

the relation between the code, in this case Java, of an artifact and the graphic representation

of the FST where the code is contained. As it can be noted, the first two nodes represent the

packages com and sleepycat and the third represents the Database class, these are all nonterminal

nodes, the terminal nodes that represent the contents of the Database class, state and triggerList

are private variables of the class (fields), and notifyTriggers is a protected method of the same

class.

Software composition is then accomplished by the superimposition, denoted by ’l’ of cor-

responding FSTs, made by merging their nodes, identified by their names, types and relative

positions, starting from the root and descending recursively. This merging is done by overriding

one method with the other.

7Java, C#, C, Haskell, JavaCC, Alloy and UML
8Classes and packages
9Method bodies and field initializers

42

Figure 3.1: Java code and FST of artifact BaseDB, taken from the Berkeley DB case study[1]

FeatureHouse uses the original keyword to define the method to be overridden, hence defining

how merging is accomplished. A code parser is used to classify original as a method name, locating

every occurrence of the original keyword while composing two method bodies and substituting

each occurrence with the original method body, wrapping it. This makes the original keyword

unable to be used as a method name or as any other kind of identifier. Figure 3.2 shows an

example of how code composition is achieved. It shows the original method, the method that will

override the original method and the result of the merging of both methods.

If the programming language used to implement the code has original in its grammar, then

FeatureHouse restricts its semantics, limiting the usage of the original keyword, so that it is

able to support composition of method bodies. The result of this process, which is completely

transparent to the user, is syntactically correct code.

Figure 3.2: Composition of two Java methods in FeatureHouse[3]

43

Feature IDE uses feature diagrams as FSTs defining the code structure. A top feature imple-

ments the original method that can be overridden by the methods defined in features located in

a lower position of the feature diagram. FeatureHouse is then used to parse the features code

and to merge it, based solely on the features chosen by the SPL user and their relations, creating

syntactically correct code that is fit to be used to implement an application.

3.1.3 Jersey and JAX-RS

Java was chosen for implementation because it offers wide support for web service development,

and its usage as SPL development language makes sense since the Web service part of the system

represents the most of the SPL implementation.

Although there are a few Web service implementation protocols, being SOAP the most used,

REST was chosen as the implementation protocol because it simplifies the interaction between

client and web service, and since it is fully compliant with HTTP, makes it possible for the use of

HTTP libraries existing for Java. To implement RESTful Web services Java provides the JAX-RS

API that uses Java SE 5 annotation to simplify the development and deployment process of Web

service clients and endpoints. Furthermore, JAX-RS is extended by several implementations,

from which are included Apache CXF, RESTeasy, Restlet, Apache Wink, WebSphere Application

Server, WebLogic Application Server and Jersey, where Jersey is the reference implementation

of JAX-RS, and thus more suitable for this project, since it does not depend on any specific

application server.

Jersey extends JAX-RS by providing its own API which implements additional features and

utilities that make RESTful Web services and client development easier[25].

JAX-RS concepts and resources include:

• Root Resource Classes: Plain Old Java Objects (POJOs) annotated with @Path and have

at least one method annotated with @Path or a resource designator1011;

• Parameter Annotations: used to annotate resource parameters so that information can

be extracted from a request. These annotations include: @PathParam, @QueryParam,

10@GET, @PUT, @POST, @DELETE, the HTTP methods
11@Produces and @Consumes are also Root Resource Classes and specify the MIME media types of the data

exchanged by the service and the client

44

@DefaultValue,@QueryParam, @MatrixParam, @CookieParam and @FormParam;

• Sub-resources: methods of Root Resource Classes where the @Path annotation is also

used, enabling common functionality for a number of resources to be grouped together a

potentially reused;

Every HTTP request has an associated life cycle, REST requests are essentially HTTP requests

and therefore have a life cycle too. Since a new instance of a root resource class is created

every time the request URI path matches the root resource, its life cycle matches the request

life cycle. This makes way for a simple programming model where constructors and fields can

be used without the concern for multiple concurrent requests on the same resource. This does

not create performance issues, since, due to the optimization of the Java Virtual Machine (JVM),

many objects will be created and discarded to serve the HTTP request and response.

3.2 SPL Implementation

To implement the SPL that will give body to the framework, defining a generic set of software

artifacts that can be used to compose a specific software application[17], the domain must be

divided into pieces, called features, specified in the feature diagram. These features are mapped

directly to code, in this case Java code.

Since the Web services represent the main and biggest part of all the architecture and Java

provides a useful API and other resource for their implementation, the SPL is implemented using

Java. Thus, SPL features are directly mapped into Java code, even though there are subsystems

that are programmed in other languages, their features are also implemented using Java. Java is

then used to generate the code in other programming languages.

By selecting different features12, to suit different problems, one can create a range of different

applications to answer specific problems that are different between them. Chapter 4 will show

how to do this, by specifying how to instantiate the SPL to a specific problem. The final code is

generated by using the software composition technique described in section 3.1.2.

Taking a first look at the architecture defined in chapter 2, one can easily divide it in three

12Configuration

45

distinct levels, one for each part of the architecture13. Thus, it makes sense to also divide the SPL

into three levels (specialization levels), corresponding to the architecture subsystems defined in

figure 2.3.

Comparing figure 2.3 with figure 3.3 it is easily noticeable the relation between the levels

defined for the SPL and the subsystems defined by the architecture. There is a platform level,

corresponding to the platform interface running on the platform subsystem, a user interface level,

that corresponds to the user interface subsystem that does the interface with the user, and there

is a server level matching the server subsystem. In the layered architecture of the server, the

three outer layers (service, business and DAO) correspond to the Web services part of the server

and the inner layer (core) is the database server, where data is stored.

Figure 3.3 also shows the interface between all the levels. It can be noticed that the user

interface communicates with the service layer, to where it sends HTTP requests that are processed

and then answered in the form of a HTTP response. There is also an interface between the platform

and the server. Platforms send alerts as HTTP to the service layer but notice that the server sends

actions to the platforms via a socket, and not as HTTP requests, thus sending data from the

business layer and not from the service layer. The usage of sockets, instead of HTTP, is done so

that the server can send data to the platforms without a request, otherwise this would not be

possible, this also reduces the message overhead because unlike HTTP it only the data is sent.

Even though it is easier and more simple to implement a feature diagram for each level, feature

IDE doesn’t yet support cross diagram constraints that are used to assure consistency between the

levels. Therefore, all the architecture must be described in a single feature diagram composed by

three main branches, where each main branch represents a level of the SPL. Feature IDE supports

cross-tree constraints, assuring consistency between levels, since it allows the automatic selection

of one or more features depending on a previous logical condition (e.g. if one is selected then two

is also selected).

Currently the SPL is comprised of 120 distinct features, that describe the domain components.

From these 120 features, 92 are concrete and 28 are abstract. This means that 92 of these features

are mapped to code, while the remaining 28 are not and exist to help describe and understand

the domain. The 92 concrete features are coded in Java following the composition rules specified

13User Interface, Server and Platform Interface

46

Figure 3.3: Framework architecture divided into levels

Figure 3.4: SPL main branches

by FeatureHouse in sub section 3.1.2. This means that each feature implements one or more

Java methods and some of these methods are defined in more than one feature, in this case one

feature implements the basic code, and is overriden by another feature that uses the original

keyword where the basic code is needed. By doing this the second feature defines the entry

point to the method and when it needs the code of the original method invokes it by using

the original keyword. Whenever the software composer finds the original keyword it looks for

the original implementation of the method, defines a wrapper for that method and replaces the

original keyword with the wrapper, thus calling the original method and combining both features.

The following code listing shows the Login method from the business layer overriden when the

user selected the feature that defines the logging of user actions. The software composer changed

the name of the Login method to Login wrappee Authentication and the second method, that

47

defines the entry point for the authentication, calls it. So the first method logs in a user in the

system and the second registers it in the user history. If the history feature had not been selected,

the Login method would have not been overriden and would be the entry point for the login.

private String Login__wrappee__Authentication (String username, String password)throws Exception

{

String status = null;

DAOFactory monitor = DAOFactory.getInstance("monitor.jdbc");

UserDAO userDAO = monitor.getUserDAO();

User dbUser = new User();

dbUser = userDAO.FindByUsername(username,password);

if(dbUser.getUsername().equals(username))

{

status = userDAO.CreateSID(dbUser);

}

else

{

status = "NOK";

}

return status;

}

public String Login(String username, String password)throws Exception

{

//Override the original method declared in the authetication feature

//don’t forget to add function arguments in generated code [Login(username,password)]

String status = Login__wrappee__Authentication(username, password);

DAOFactory monitor = DAOFactory.getInstance("monitor.jdbc");

UserHistory uHistory = new UserHistory();

UserHistoryDAO uHistoryDAO = monitor.getUserHistoryDAO();

if(status == "NOK")

{

uHistory.setUserID(username);

uHistory.createTimestamp();

uHistory.setDescription("User with username: "+uHistory.getUserID()+" tried to log in at "+uHistory.

getTimestamp());

uHistoryDAO.Create(uHistory);

}

else

{

uHistory.setUserID(username);

uHistory.createTimestamp();

48

uHistory.setDescription(uHistory.getUserID()+" successfully logged in at "+uHistory.getTimestamp()+"

with sID: "+status);

uHistoryDAO.Create(uHistory);

}

return status;

}

Now that the way code is composed is explained, there is only one thing left to understand,

the feature diagrams of each level of the SPL. Even though the feature diagram is a product of

the Domain Analysis, since features are mapped to code it makes sense to expose the feature

diagrams at the same time that their operation is also explained.

3.2.1 Server

The server receives data as HTTP requests and carries on a number of operations that depend

on what Web service is addressed through the URI. Requests are received in the service layer,

processed in the business layer and stored in the database, which communicates with the Web

services via the DAO layer. The following subsections expose the way data flows between all the

layers and also define the database and how it describes the system.

Web services

As it was explained earlier, the Web services have a layered architecture. When a request is

received it is propagated through all the layers and its data is processed, after processing is done

the server sends a response back to the client, thus satisfying the client request. When a client

sends a request to a specified Web service, what really happens is that the client is addressing a

Java method that is mapped to a Web address by using the @Path annotation that defines the

method access path. @GET and @POST annotations define what HTTP method is allowed to

be used with the Web service, @Consumes defines what type of data the Web service consumes

(receives). In the implemented code all the Web services consume data encoded in the Web service

URL. @Produces defines the encoding of the data sent from the Web service to the client as a

response to a request, in the Web services implemented all these responses are encoded in the

XML format.

49

For example, the server sends a GET request to the /user/list Web service, requesting the list

of users and their details. Upon reception of the request, the service layer invokes the appropriate

method from the business layer, that invokes the DAO method responsible for fetching the user

list from the database. The data received from the database is then sent back up in the reverse

way, the DAO layer method returns to the business layer that returns to the service layer that

sends the requested list as a response in XML format.

This data flow is shown of figure 3.5.

Figure 3.5: Web services data flow

In order to simplify the way the layered architecture of the Web services is implemented,

promoting a modular implementation so that a possible changing of code is easier, the layers are

not only implemented in different Java classes, but also in different Java packages. This makes

is possible to change a complete layer by just changing the package or to change part of it by

50

changing a class, as long as the method interfaces are respected. The implemented packages are:

• mon.spl.srv for the service layer;

• mon.spl.biz for the business layer;

• mon.spl.dao for the Database Access Object (DAO) layer operations;

• mon.spl.model defining Java beans14 that are used to provide a database table model in

Java code where data can be temporarily stored for processing and transmission;

While defining the feature diagram, shown on figure 3.6, one of the goals was to abstract

these layers and to define the features of the Web services as the tasks the Web services can carry.

Therefore features are divided in platform interaction features, Actions and Alerts, Management

features, History features, Authentication and Utilities, that implement Web services that may

be useful, such as lists. The only layer that is explicitly defined in the features is the DAO layer

and also the data Model. The DAO layer is explicitly defined because by doing so it helps the SPL

evolution on supporting other database systems. Currently the framework only supports MySQL

databases, however the need to use another Relational Database Management System (RDBMS)

(e.g. Oracle database, Microsoft SQL server, Sybase, IBM DB2) may arise. If this happens, and

since the DAO layer is different for each RDBMS, the DAO layer will represent a variation point in

the system where the framework user can select a DAO layer for a specific database system from

an array of available DAO layers, each specific to a database system.

In this diagram it can be noticed the usage of abstract features, in light blue, to group feature

groups. For example the Model feature does not implement any code, but groups all the models

as derived from the Model branch.

Starting by the Authentication feature, this feature implements three Web services, Login,

Logout and Check Privilege. It is intended to provide the user interface with login ability and

since the access to the user interface windows is based on privilege, it provides a way to get the

access privilege of a user using the session ID. When a user logs in the system, a random session ID

is created, stored in the database and sent to the user interface as a response to the login request.

While the user navigates through the user interface, every time he accesses a new window, the

14A Java bean is a class with only data fields and their getters and setters that is, among other things, serializable

51

Figure 3.6: Web services feature diagram

user interface requests the user access privilege to the server, to where it sends the session ID.

This session ID is used as a select argument to the database, because it is related to the user

name, to get the user privilege. After the session ID is retrieved from the database, it is sent to

the user interface as a response to the client. When the user logs out, the user interface sends the

session ID to the server that uses it to remove the session ID from the database, thus logging the

user out.

The Alerts feature implements all the services related to alerts. Both management Web

services as well as Web services to store current alerts15 in the database. This feature provides

a way to manage the available alerts, defining which are the possible alerts to be sent by a

platform, by implementing Web services to add, edit and delete alerts from the database. These

are basic Create, Read, Update and Delete (CRUD) operations on the database, and therefore

when addressed they just access the database to perform the desired database operation (insert,

select, update or delete), sending the feedback of the operation back to the user interface. Besides

these services, this feature also provides Web services to deal with alerts sent by the platform

15Current alerts are defined as all the alerts sent by the platform to the server that have not been addressed by
the user

52

to the server. The platform is also a client of the server and sends alerts by accessing the

alert/current/new Web service. This service stores the alert received from the platform in the

database, on a table specific for that end. The user interface then polls the database for alerts

sent by platforms in a periodic basis and the Web service responds the user interface by sending

a list of all the alerts that have not been attended that are present in the database. This list is

then shown the user that selects the an action to address each alert. To avoid confusion, note

that the response the server sends to the platform upon receiving a new current alert is generic

(”OK”), stating only that the alert was received by the server, and not the action to address that

alert.

Actions are closely related to alerts in the way that they can be used to address the alerts

sent by the platform, however actions can be sent without an alert being issued. Like the Alerts

feature, the Actions feature, provides Web services to perform CRUD operations in the table that

defines the possible actions to be taken upon a platform. But it also provides a Web service to

send actions to a platform. This Web service, receives the code of the desired action to be sent to

the platform with the code of the alert associated to it and the user session ID. It then proceeds

to remove the alert code from the current alert table in the database and send the code of the

selected action to the platform via a socket. This action is sent directly from the business layer

and not from the service layer as it is the result of business operations. When the action is sent

successfully the Web service sends the response to the user interface proving that the action was

sent successfully. In case of a socket connection error, a socket exception is thrown and the action

is not sent, in this case the alert stays in the current alert table so that it can be addressed later.

The Manage feature is abstract and groups all the different management features on the

server side. These features perform CRUD operations on the database, providing a way to manage

system components such as platforms, sensors and actuators, as well as users. Even though there

are seven distinct management features, their operation is the same, only performed on different

database tables. For example, the mUser platform provides Web services to add a new user

to the system, to edit a given user details and to delete a user from the system. The same

is valid for all the remaining six management features, mActuator, for actuator management,

mActuatorBay for actuator bay management, mSensor, for sensor management, mSensorBay, for

sensor bay management, mPlatform, for platform management and mPlatformGroup for platform

53

group management. These features are completely independent from each other.

As a way to provide the ability of a system to record all the actions taken upon it, the Hist

feature was implemented. This abstract feature groups a set of features that override methods

that belong to other features as a way to give them logging ability. For example, the basic

operation of the Login Web service is to generate a session ID and to store it in the database

every time an user logs into the system. The hUser feature overrides the Login method in the

business layer and after the generation of the session ID and its registry in the database, the new

Login method invokes the DAO layer method that will register in the user history table the user

login with the corresponding time stamp, thus creating an history of user actions. The same is

done by hAction, that creates the history of all the actions taken, hAlert, that creates the history

of all the alerts received and hSensor, hActuator and hPlatform that create histories of all the

management actions in the respective components.

The DAO feature is mandatory, since it implements the DAO layer of the Web services. Its chil-

dren can be mandatory or not depending to what system component they relate. The DAO feature,

besides grouping the other DAO features, implements a DAO library that allows the connection

to the database, this library implements classes and methods to access the database with excep-

tions control, in case there are any errors in the database connection or in the transferred data

between the DAO layer and the database. The remaining DAO features implement the lower level

code to perform CRUD operations on the database tables. Each DAO feature implements database

operations for its corresponding system component, thus UserDAO relates to user management

and authentication operations, ActionDAO relates to action management and action handling

operations, AlertDAO relates to alert management and alert handling operations, ActuatorDAO

and ActuatorBayDAO relate with actuator and their respective bays management, SensorDAO

and SensorBayDAO relate with sensor and sensor bay management and PlatformDAO and Plat-

formGroupDAO relate with platform and platform group management respectively.

Model features, grouped by the abstract feature Model, implement a class each that defines

a Java bean to store the data retrieved from the database. These models are simple classes only

with data fields and their getters and setters that are serializable and can be easily encoded to

XML by using the @XmlRootElement and @XmlElement annotations. This makes it possible to

transform a model, coded in Java, directly into XML and send it to the user interface as a response

54

to a request. These models can be mandatory or optional and are directly related to the DAO

features, that in turn can also be mandatory or optional and are directly related to the mandatory

and optional components of the system.

The last set of features, is the Utilities group of features that only implements lists for the

components of the system. The List features provide methods, for troubleshooting and manage-

ment classes, that select all the data from a given database table, maps each entry of the database

to an instance of a Java bean defined by a Model feature and adds that instance to a list. Since

models are easily encoded in XML the full list is also encodable in XML and it can be sent as a

response to the user interface.

Database

To store all the details and records associated with this system and to provide ease of access when

data is needed, a database was implemented. This database was implemented in MySQL and it

was also divided into features, where each table represents a feature from the feature diagram, as

shown on 3.7.

Unlike the Web services the database is not implemented in Java code, being implemented as

a SQL script that can be run in the MySQL server to generate the database. The SQL code is

written in a file using Java file writing methods. When a feature is selected it adds the table code

to the file. In the end the file is generated by a process that must be run after configuration.

dbTop and dbBottom implement the top and the bottom of the SQL file, corresponding to

functional code related to the database that is going to be created instead of code that implements

database tables.

In order to understand all possible database configurations one must understand how the full

database, depicted on 3.8, works. Therefore the database will be exposed as a whole specifying

tables and their relations. The following list makes a match between the features of the database

feature diagram and the table that each feature implements:

• dbTop - Implements the top of the database script

• dbBottom - Implements the bottom of the database script

• tUser - Implements the User table

55

Figure 3.7: Database feature diagram

• tSession - Implementes the Session table

• tUserHistory - Implements the UserHistory table

• tPlatform - Implements the Platform table

• tPlatformWeb - Implements the PlatformWeb table

• tPlatformHistory - Implements the PlatformHistory table

• tAction - Implements the Action table

• tCurrentAction - Implements the CurrentAction table

• tActionHistory - Implements the ActionHistory table

• tAlert - Implements the Alert table

• tCurrentAlert - Implements the CurrentAlert table

• tAlertHistory - Implements the AlertHistory table

• tSensor - Implements the Sensor table

• tSensorHistory - Implements the SensorHistory table

• tActuator - Implements the Actuator table

• tActuatorHistory - Implements the ActuatorHistory table

56

• tPlatformGroup - Implements the PlatformGroup table

• tSensorBay - Implements the SensorBay table

• tActuatorBay - Implements the ActuatorBay table

Figure 3.8: Database relational diagram

The central part of the system is the Platform, a platform is characterized by an ID and has a

location defined by latitude and longitude values. It also has a description. Directly associated to

a platform, in a 1:1 identifying relationship are the Web details of a platform, these details specify

the IP address of a platform and the port used for communication. The platform ID relates both

tables.

Platforms can be grouped, a group is constituted by one or more platforms and is identified

by an ID. Each group also has a description.

A platform can have one or more sensors that are identified by an ID, have a type and are

characterized other aspects, such as range, calibration, resolution, accuracy, resolution and the

57

environmental conditions they can work in. These sensors can be grouped into sensor bays that

have one or more sensors and are also identified by an ID. Each platform has one or more sensor

bays.

Like sensors a platform can also have one or more actuators, these actuators are identified by

an ID and have a type. Actuators can be grouped into actuator bays that have an ID and also

belong to, one or more, to a platform.

Alerts are emitted by platforms every time data is sent to the server, therefore every outgoing

message from a platform is an alert. Upon reception of a request from the platform, in this case

a POST request with all the alert related details, the Web service creates a current alert entry

in the database, specifying that the received alert has not yet been addressed by the user.

Current alerts are related to system components since they are originated by them and emitted

by the platform. Thus a sensor, or any other platform element, can be the source of an alert which

will have an associated code as well as all the other aspects related to it, such as a description of

the alert, a time stamp and the value registered by the source of the alert16.

To address an alert, the user interacts with the user interface to send actions to the server that

redirects it to the platform. Available actions are defined by a code and also have a description.

When the user issues an action to a platform, the action becomes a current action that is applied

in a platform by a user, thus it is characterized by the action code, the platform where is going

to be applied and by user name of the user who sent it. A user can be responsible for sending

one or more actions to a platform.

Users are also characterized in a database table by their user name, their password, privilege

level and e-mail. These fields are used for user authentication that produces a session ID. This

session ID is stored in the session table that has a 1:1 identifying relationship with the user table,

directly relating a give user name to a session ID.

In order to provide logging ability to the system there are tables that are responsible for

holding the data related of the operations carried out in or by the system.

Sensor history is defined by the sensor ID or the sensor bay ID, it also holds the platform ID

and adds a time stamp to this information, defining when the operation took place. A description

defines what happened in a given sensor at a given time.

16This can be used when a sensor is the source of the alert to send the sensor registered value to the server

58

The actuator history has the same structure as the sensor history, but holds data related to

operations carried upon actuators. Therefore it has the actuator ID, the actuator bay ID and

the platform ID. A time stamp defines when the operation took place and a description specifies

which operation was carried out.

Platform history is also present and is characterized by the platform ID and the platform

group ID, a time stamp and a description of which operation was carried on a platform at a given

time.

The logging of alerts allows the user to keep track of what alerts were issued by a platform.

Therefore this table bears all the same fields and the current alert table, plus a time stamp and

a description of the emitted alert. Since logged alerts have a value field, this is where registered

values can be stored for further consulting.

Actions, that can also be logged, are identified by the action code, the platform ID of the

platform where the action was taken, a description of the taken action, a time stamp that specifies

when it was taken and the user name of the user who took the action.

Finally, the user history table specifies all the user related operations, except the actions, that

were carried in the system. This table is characterized by three fields specifying the user name,

a description of what operation the user did and a time stamp, specifying when the user carried

out the operation.

3.2.2 User Interface

The user interface provides a way for the user to interact with the system. By accessing it,

depending on what features are selected, the user can log into the system, troubleshoot the

system platforms by sending actions and receiving alerts, manage system components by adding,

editing or remove their details from the database, and even consult what events have occurred in

the system in the past.

Earlier in this chapter it was specified that features in the SPL are mapped to Java code.

However, the user interface is implemented using HTML5, JavaScript and CSS, that work together

to implement a Web application that sends request and receives responses asynchronously from

the server. Since all three languages are scripting languages that are interpreted by the Web

browser, the used strategy was to use Java to generate files with the respective language code

59

written. By doing this HTML5, JavaScript and CSS code is basically mapped to Java code which

is also mapped directly to features, thus creating a way to map these Web languages to features.

Features in the user interface feature diagram, shown on figure 3.9, are grouped into three

main branches, that are mandatory. The first branch specifies the Pages that compose the user

interface, the second branch specifies their visual Styles that provide a more appealing visual

feedback to the user and the third implements the Generator. This Generator feature is the only

concrete feature from the three main features and implements the Main class.

The Main class is implemented not to be run in a server, like all the other implemented classes,

but to be compiled natively on the development machine. This class is a part of a standalone

package that is not related to the other implemented packages, and is responsible for the generation

of the script files that compose the user interface and the database, depending on the features

chosen at instantiation. The process of compiling this class and running the generated executable

file is simple and makes it possible for the easy generation of the files that compose the user

interface on demand.

Figure 3.9: User interface feature diagram

The Styles are a mandatory part of this interface as well. HTML5 itself does not implement rich

visual components, thus there is the need to have CSS scripts to accomplish that. There are three

different styles, Style1, Style2 and Style3, that can be used on the user interface. These styles can

only be used one at the time and provide basic usability by defining where HTML components are

placed, how they are shown, their colors and other visual aspects that help to improve the user

60

interface usability. Creating a new styles in the SPL is accomplished by creating a new feature for

it, cloning the class of the other styles, and editing the Java file writer string in order to create

the desired CSS file.

The last group of features defines the Pages that compose the user interface. These features

are closely related to the features of the Web service because they provide a way for the user to

interact with the Web services, thus they match almost all the features that compose the Web

services feature diagram.

Authentication is the part of the system that gives the user a way to log in the system, it is

also the feature that sends the user access privilege to the user interface. Therefore the Login

feature, that presents the user with a login page sends the user credentials to the Login Web

service and receives the session ID, as a response, in case the user is allowed to access the system,

is directly related to the Authentication feature in the Web services feature diagram.

The Login page presents the user with a regular login prompt. Upon sending the user creden-

tials to the server, in case the input credentials match the ones on the database, the user interface

receives a randomly generated session ID as the server response. This session ID is stored in a

persistent variable provided by the browser and is passed to other pages when the user accesses

them. Every time a user accesses a page the page access level is compared with the stored user

privilege level, and if the user privilege is bigger than the page access privilege then the user is

allowed to acces the page, if not it is redirected to a page that presents a ”not allowed” message.

This page only presents a text message and is implemented by the NotAllowed feature.

When the user is granted access to the interface it is redirected to the home page. This home

page is very simple, only presenting the user with a text message and buttons that act as links to

the other user interface pages, and is implemented by two concrete features, hTop and hBottom.

The first feature implements the top of the home page, the head and the top part of the body,

and the second the bottom. This happens because the HTML format has a clear syntax on how

Web pages are organized, a web page starts with a head section (< head > ... < /head >) that is

followed by a body (< body > ... < /body >). Since there are features from other branches that

extend the home page, by adding buttons that link to other pages, the hTop feature implements

the top of the page, then features from other branches implement their code in the home page

file and to finish hBottom adds the tag < /body > to the home page file, marking its end.

61

Since Feature IDE provides a way to define the order on which feature code is composed, if

the features that implement the bottom of the Web pages are after the features that implement

the rest of the Web pages, correct composition is assured resulting in a correctly composed Web

page.

The most crucial feature of the user interface is the Troubleshoot feature. This feature im-

plements a way to let the user receive alerts from the platforms and to send actions to address

those alerts. It is a mandatory feature that starts by adding a button for the troubleshoot page

to the home page. After that it implements a HTML page that displays a table where alerts are

shown and a return button, and a JavaScript file that implements the communication back-end

with the server. When the troubleshoot page loads it requests the list of current alerts to the

server, upon receiving it the page creates a table where it displays all the current alerts and their

details. A select button on each line of the table provides a way for the user to choose an alert to

be addressed, when an alert is chosen the page substitutes the alerts table by another table that

displays the available actions to be sent to the platform. When the user selects an action, the

action code and all the details of the corresponding alert are sent to the server that is responsible

for sending the action code to the correct platform. This page also implements a way to send

actions to a platform without receiving an alert. When accessing the troubleshoot page there is

a button that displays the available actions table to the user and a drop-down list where the user

can select the platform where the alert is to be sent.

As a way to know when there are alerts that need to be addressed, and since the server can’t

send data to the user interface without a request from it, all the pages from the user interface

send a request for the existence of alerts to the server, every twenty seconds, or any other period

that can be defined by editing the code of the HTML files. If the response is not null then there

are alerts that need to be addressed and the user is prompted to access the troubleshoot page.

Every time there is an alert request, the server responds with the full current alert list, sending

all unanswered alerts to the user interface. Upon reception of the list the troubleshoot page is

refreshed to match the unanswered alerts in the database.

Although alerts are related to actions, this relation is only meant for logging purposes, the

platform does not receive the alert that triggered an action. The user interface makes it possible to

send actions without alerts by specifying the alert code0 - No Alert and to dismiss alerts without

62

taking real action in the platform also by defining the action code 0 - No Action.

Matching the Manage feature from the Web services feature diagram there is the Manage-

ment feature. This feature implements the management page, with manTop and manBottom

carrying the same tasks as hTop and hBottom. This page is extended by seven other features,

manUser, manActuator, manActuatorBay, manSensor, manSensorBay, manPlatform and man-

PlatformGroup, that add the ability to manage their corresponding system components. The

display for the management of all these components is the same, consisting on a table that shows

the components present in the system and a set of controls that allow adding, editing and the

removal of a given component. These controls implement a set of text boxes that the user fills

out and which data is sent to the server as a request to the matching Web service.

The last group of features is History, matching the Hist feature in the Web services feature

diagram. Like the Home and Management features it also implements the top, hiTop, and bottom,

hiBottom, independently. Like the Management feature there are six features, hiAlert, hiAction,

hiUser, hiPlatform, hiSensor and hiActuator, that extend the history page by adding tables that

display the history of the components related to the system. This page also adds a few controls

that create the ability to use a time stamp to search for a given entry, to delete a specify entry

from the history and to clear the entire history of a system component, in a way that is similar

to the history of a web browser.

Navigation through all these pages is very simple, there are only six distinct HTML files, in

a situation where all the features are selected, and JavaScript is used to generate much of the

elements that are seen, such as tables and buttons, by using AJAX. This gives the interface

dynamic, providing more usability than it would have if the page was static.

3.2.3 Platform Interface

The goal of the subsystems described earlier is to provide a way to monitor and manage platforms.

These platforms are, in what concerns this project, computer systems that monitor and control

the action of other systems. Since there is a broad range of systems to be monitored the systems

can vary widely between them and thus it is better to let the application developer implement

the monitoring application, or platform application, autonomously and just provide a way for this

application to communicate with the rest of the system. The best way to do so is to provide the

63

application developer with a platform interface that provides a fixed way of communication.

The platform interface is implemented as a .zip file that, when unzipped, deploys the code to

be run in the platform to make the interface between the platform and the server.

Even though this code does not vary much, being the only difference the operating system, a

feature diagram, depicted on figure 3.10, was designed for the platform. This feature diagram

describes the interface as the only concrete feature and as a part of a bigger system, the platform.

Figure 3.10: Platform feature diagram

In this diagram the importance of abstract features is heavily noticed, as it uses abstract

featurs to characterize a platform and describe where it can and cannot vary. So a platform has

an INTERFACE feature, that defines the way the platform communicates with the server, it has

an ELEMENTS feature that defines the elements that a platform can have. Each platform has

an ID, can be inserted in a group, can have sensors and/or actuators that can also be grouped

into bays, and a it also has an INTERACTION feature, that defines that the way the platform

interacts with the rest of the system is done by using actions and alerts.

The only concrete part of this feature diagram specifies the operating system that is running in

the platform and implements the interface process that the platform will run in order to be able to

communicate with the server. This interface process communicates with the monitoring process

running in the platform and makes the interface between the monitoring process and the server.

The interface process communicates with the server by using a socket to receive data from the

server, corresponding to actions, and a HTTP client to send requests to the server, corresponding

to alerts.

The interface implements two distinct threads, one that receives data from the platform ap-

64

plication and sends it to the server and another that receives data from the server and sends it

to the platform application. Their operation consists on having a socket server running on each

thread, one listening to requests from the server, redirecting the data via a socket client to the

platform application upon receiving a connection, and the other listening to requests from the

platform application and sending the data to the server by sending a HTTP request to the server

with the alert details. Thus establishing a bridge between both subsystems.

Details concerning the ports of these sockets and the URL the alert web service, to which the

system will send alerts, are defined in a text file, providing the ability for the developer to edit it,

that is read by the platform interface that creates all these mechanisms matching the developer

preferences.

Even though there is a platform interface between the server and the platform, to guarantee

the correct communication and understanding of alert and actions between both components, the

developer must respect the constraints imposed by the rest of the system when implementing

the platform application. The first constraint is that communication with the platform interface

is done using sockets. The second is that in order for the alerts emitted by the platform are

understood by the user and the actions taken by the user are understood by the platform, alert

codes emitted by the platform must match the ones in the alert table on the database, and actions

received the by the platform must also have the same meaning to the platform than the meaning

they have for the user. The third constraint is that platform element identification must match

the database, or there will be a server error when an alert is emitted on an element that does no

exist in the database. If all these constraints are respected, the system shall function as desired.

65

Chapter 4

Instantiation

Chapters 2 and 3 expose the way the domain is analysed and implemented as a way to develop the

SPL that embodies this framework. In this chapter, the work flow used to implement the SPL will

be presented, presenting the user with all the necessary steps to implement a specific application.

SPL instantiation is also a part of FOSD, consisting on the two last phases of this development

process:

1. Requirement Analysis, where a specific problem is analysed and where its constraints and

requirements are identified, resulting in the selection of the features, from the SPL that

better suit a solution for the problem;

2. Software Generation, where a software composition tool joins the selected features, previ-

ously mapped to code developed to suit the software composition tool, and automatically

generates the application code;

Even though the generality of the generated code can be considered final, most of the cases

require a fine tuning of some parts of the code so that it completely suits the problem at hand.

This code editing will mostly be done in the user interface code, since it is the part that can vary

the most.

In this chapter both Requirement Analysis and Software Generation are exemplified by giving

an example on a possible problem statement:

66

An application must be developed to monitor the operation of a set of remote offshore power

generation platforms. The platforms are placed in high seas and have a Web connection, via

GSM, for communication. These platforms have a set of sensors that will send information to

the user, who must also be able to perform actions on the platforms, such as change the state of

the platform. Logs must be kept from actions performed as well as received alerts and user session

logging is also required. Since there may be an increase in the number of platforms in the future,

and there is the possibility of removing platforms due to malfunction, the user must also be able

to add, remove and edit platforms in the system, as well as their groups. All the platforms run

the Linux operating system.

4.1 Requirement Analysis

Before starting the development process of the specific application the developer must have Eclipse

properly configured with Java and Java EE development tools, as well as the Feature IDE plug-in.

A connection between Eclispe and MySQL server is advisable, but not strictly necessary, since

the database can be easily deployed directly in the MySQL server.

To begin the development process, the Feature IDE project containing the SPL must be im-

ported to the Eclipse Workspace from the file system. After the project is correctly imported, the

development process can be started.

By analysing the problem statement the following elements can be identified on the system as

a whole:

1. Platform Groups

2. Platforms

3. Sensors

4. Actuators

Furthermore, the platforms run Linux and communicate remotely via the Web, meaning that

a way must be created to communicate with the platforms, resulting on the need of a Web service

architecture to communicate with the remote platforms.

67

There are also other features that must be present for management and data analysis, these

features will be implemented and accessible via an interface to the user:

1. Platform Groups management

2. Platforms management

3. Alert reception and logging

4. Action taking and logging

5. User session log

After all the system characteristics are identified, the application developer must create a

configuration on the Feature IDE project of the SPL and select the desired features, as shown on

figure 4.1. To ease the feature selection and to make sure that there is consistency between user

interface, server and platforms, cross-tree constrains were defined between the three specialization

levels of the SPL.

These constraints were defined in a way that makes the feature selection easy. The developer

must only select the desired features in the platform and user interface levels of the SPL. Server

features are selected automatically depending on the features selected on the user interface and

platform, assuring consistency between all the subsystems. Constraints were defined this way

because the server is the central part of the system and establishes a proxy between user interface

an the platform. Therefore, server features will match features selected in both the the platform

and the user interface, creating a connection between them. It makes no sense to specify server

features alone when they depend on other selected features, this would be a source for inconsis-

tency in the system and it could create communication problems between platforms and the user

interface.

Therefore, in this case, the developer starts by selecting platform features for this specific

system (Linux, Platform, Platform Group, Sensor, Actuator), and then proceeds to select the

intended user interface features, stated in the problem statement (Platform and Platform Group

management, Action and Alert logging, User session logging).

Even though this process is simple, it is not mandatory that is done in this order, the developer

may select server features directly, but by doing this he will need to select platform and user

68

interface features as well. Since the constraints are only defined to be applied from the user

interface and platform levels to the the server level and not the other way around, by doing this

the developer will take more time and need much more concentration, because he needs to ensure

consistency between levels, being highly prone to errors, that is why this method is not advised

when a full system is being developed.

This process ends when the created configuration is selected as current and the code for the

application is generated.

(a) Platform feature selection (b) User Interface feature
selection

Figure 4.1: Configuration for the case at hand.

4.2 Software Generation

Since Feature IDE is a very automated tool, the software generation process will be transparent to

the developer1. This process which results in a set of different Java packages that are intended for

different ends. Even though the final code is generated after requirement analysis, the instantiation

process is not finalized, there are a few tasks that must be performed so that the system is usable.

1Refer to chapter 3 for automatic software generation details

69

4.2.1 Web service deployment

The Web service code is contained in the mon.spl.srv, mon.spl.biz, mon.spl.dao and mon.spl.model

packages. The developer must change Eclipse to the Java EE perspective and create a new

Dynamic Web Project, generating the web.xml deployment descriptor, as depicted on figure 4.2.

This project will be used to created the Web services deploy, resulting in a .war file that will then

be moved to the server. The web.xml file is the descriptor where Web services related aspects,

such as URL, Servlet name and the Web services entry package are defined.

Figure 4.2: Dynamic Web project creation

After this is done, there are Java libraries that must be added to the project build path2, these

libraries are the JAX-RS libraries and the MySQL Java Connector. Without these libraries the

Web service will not run when deployed in the server.

After this the Web service project is created, the user must now copy the Web service packages

from the src/CONFIGNAME folder in the Feature IDE project to the src folder in the Web service

project.

Right now, the web service is created, the only thing left to do is to register Jersey as the

2Copy the JARs to the WEB-INF/lib folder

70

servlet dispatcher for REST requests. Doing so is fairly easy, it only requires the editing of the

web.xml deployment descriptor to reflect the project specification.

<?xml version="1.0" encoding="UTF-8"?>

<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns="http://java.sun.com/xml/ns/javaee" xmlns:web="http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"

xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"

id="WebApp_ID" version="2.5">

<display-name>webservice.displayname</display-name>

<servlet>

<servlet-name>Servlet Name</servlet-name>

<servlet-class>

com.sun.jersey.spi.container.servlet.ServletContainer

</servlet-class>

<init-param>

<param-name>

com.sun.jersey.config.property.packages

</param-name>

<param-value>mon.spl.srv</param-value>

</init-param>

<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>

<servlet-name>Servlet Name</servlet-name>

<url-pattern>/baseURL/*</url-pattern>

</servlet-mapping>

</web-app>

The details contained in this deployment descriptor reflect the Web service parameters and

its configuration. The package com.sun.jersey.config.property.packages defines where Jersey will

search for the Web service classes, the mon.spl.srv specifies the entry point for the web services,

any other package would render the deployed Web services useless, since it does not define any

URI. In the servlet mapping, there is the definition of a URL pattern. This pattern defines part of

the base URL where the application will be placed (e.g. http://localhost:8080/webservice/rest/*).

Inside the mon.spl.dao package there is a file called DBconnection.properties. This file specifies

the connection properties to the MySQL server and must be edited so that the Web server knows

where to connect, when it needs a database connection, and which user is connecting. Since

71

a MySQL server connection is based on user access and therefore the Web service must be an

authorized user in the database server. After editing this file must be moved from the mon.spl.dao

package to the src3 directory of the project, since that is the place where the Web service will

look for the database address as well as the user credentials.

After all these steps, the Web service is configured and ready to be deployed. To deploy the

Web service the developer must export the Web service project as a .war file, and after the .war

file is created move it to the server folder where it will be run from, in Apache Tomcat the folder

is TOMCATINSTALLFOLDER/webapps4.

Even though the Web service is configured and ready to run, any request sent to it before the

database is deployed will result in HTTP error 500. The developer must first deploy the database

before testing the web service operation.

4.2.2 User Interface and database deployment

The user interface and database deployment are specified in the same subsection because both

result in the generation of scripts by an executable file. Since the generator is the same, generating

both Web pages and MySQL scripts, it makes sense to explain both elements at the same time.

Generating HTML and MySQL code is a simple process, the user must only run the mon.spl.client5

package as a Java application, and a set of HTML, JavaScript and CSS pages will be created, as

well as a MySQL script containing the definition of all the database. As it is expected, these

scripts reflect the features selected during the requirement analysis phase.

Database deployment

There are two ways to deploy the database, one is to deploy it directly into the server by running

the generated MySQL script on MySQL administrative console or by pasting the code in the

MySQL workbench and then commit it to the database server. The second way is by executing

the generated Structured Query Language (SQL) file in Eclipse, which requires that eclipse is

connected to the database server. Both methods require the configuration of server connection

3This is the root directory of the project
4The process should be just as easy when using Glassfish
5Right-click on the package and select run as Java application

72

details, however MySQL workbench does not need a MySQL connector to connect to the database

server, while Eclipse does.

The user should start by creating the monitor database in the MySQL server. After that, on

Eclipse, the user must change the Eclipse view to Database Development, then in the solution

explorer create a new database connection choosing MySQL as the Connection Profile Type and

defining a name for the new database connection. After this, there is the need to define the

database to connect to, its address and the user credentials for accessing the database server, as

well as the MySQL JDBC Driver6, as shown on figure 4.3. To add the driver to Eclipse, click on

the New Driver Definition button and define the driver path and the connection parameters.

Figure 4.3: New Connection Profile Wizard

Now that the Database connection between Eclipse and the MySQL server is defined, return to

the Java EE perspective and execute SQL files by right clicking on the SQL file and choosing that

option. A wizard will appear to select the profile for the file. Specify the database server type, the

connection profile name and the database name and click OK. This will start the execution which

will execute the SQL statements in the file, which define the database, in the MySQL server,

deploying the database.

Figure 4.4 provides an example of the result of the execution of a SQL script, implementing

the monitor database in the database server

6The latest version of this driver can be downloaded from the Oracle website

73

Figure 4.4: SQL execution result

Web page deployment

After the Web pages have been created there must be some editing done to them. The developer

may want to keep the look and the pages as they are generated, but must at least change the URLs

used to communicate with the Web services. Otherwise, such communication will be impossible.

Appendix C defines which lines, in the generated files, must be changed to achieve this goal.

After the pages are edited, they can be deployed directly into a Web server by just putting

them into a directory and moving it to the directory where the server runs Web pages from.

4.2.3 Platform Interface deployment

As it has been stated previously, different systems, mean different platform types, with different

sensors and architectures. Therefore, to give the developer more flexibility when developing a

new monitoring application only an interface with the server is implemented and there are a few

constraints, imposed by the framework, that the developer must follow.

This interface between the server and the platform is deployed as a .zip file, in the mon.spl.platform

74

package. This file must be decompressed and compiled for the right operating system and archi-

tecture with a C compiler. For example if the used platforms are controlled by an Atmel AVR32

embedded system, the files must be compiled using the GNU C Compiler (GCC) compiler for the

AVR32 architecture and linking the compilation with the pThread and libCurl libraries7. After

compiling the developer will get the executable file for the interface and a text file called details,

figure 4.5 demonstrates this process. This text file contains four fields, one per line that must

be edited in order to allow communication between server and platform. The platform interface

reads this file to define which ports and addresses to use.

Figure 4.5: Platform interface compiling and running

The first line is the address of the Web service that receives and processes alerts 8 and the

second line defines the platform port that receives connections from the server (Actions). The

third line defines the port used to receive alerts from the monitoring process in the platform and

the fourth line defines the port used to pass data received from the interface to the controlling

process.

Figure 4.6 provides an example of the contents of the details file, before and after editing.

7A makefile is provided to perform this task
8e.g. http://192.168.0.198:8080/full.cfg/rest/alert/current/new

75

Figure 4.6: The details file before and after being edited to reflect the platform communication
ports and the Web service URI for new alerts

The deployed process just implements an interface between the Web services and the platform.

The developer must implement his own controller application for the platform which will pass data

to this interface via sockets. There must also be a local copy of the alert and action tables from the

database in each platform9 so that both the server and the platform may understand each other,

since communication is made through alert and action codes, where each code has a different

meaning.

9The developer may choose which format to use for this

76

Chapter 5

Results

The best way to prove the correct operation of the framework, is to instantiate it and to carry on

some tests on the resulting applications.

Two distinct test cases were planned:

1. A basic test case, where an application comprising only the mandatory features, representing

the less complex application, is implemented;

2. A full test case, comprising all the features, except mutually exclusive features

By testing the most complex application after testing the most simple application, both im-

plemented by instances of the framework, the ability of the framework to generate applications

from the simplest case to the most complex one. Therefore, if both applications function cor-

rectly,it can be expected that the framework can be used to implement every application with a

complexity between the two test cases, thus being suitable for all the applications of the domain.

These test cases will only simulate applications, since there were no specific systems on which

this framework could be tested. However, this does not impose a problem since if generic infor-

mation can be managed and transmitted from point to point using generic test cases, there is

no reason why it should fail in a specific system when instantiated to it and respected all the

constraints imposed by the framework.

77

5.1 Test Systems Specifications

The code for both applications will run in the same hardware. Since there was not a specific case

to test on, platforms were simulated by out of the shelf computer systems.

5.1.1 Servers

To prove that the system can run even if the Web server and the database server are in different

machines, two distinct machines were used.

• Web server - Quad core Intel Core-i7 3610QM Processor @ 2.3 GHz, 6GB DDR3 1600

MHz SDRAM, 500 GB 7200 Rpm hard disk, 10/100/1000 Base T Ethernet Adapter. 64 bit

Windows 7 Professional and Apache Tomcat v7.0 as Web server and Java servlet container.

• Database server - AMD Sempron 3400+ Processor @ 1.6 GHz, 2GB DDR2 400 MHz

SDRAM, 100 GB 7200 Rpm hard disk, 10/1000/1000 Ethernet Adapter. 64 bit Ubuntu

Server Linux with Linux kernel 3.2.0-51 and MySQL Server version 5.5.

5.1.2 Client

The client machine, where the user interface was tested, was the same as the Web server machine.

Even though the machine is the same, the system will also work if all the systems are distributed,

since the address to where the client directs its requests can be other than localhost.

Since there are Web browsers known to not yet support fully HTML5 and JavaScript, the

aim of this test is to check browser compatibility with the user interface. Even though the user

interface is basic without many visual elements, there can be some compatibility issues. To achieve

this the system was tested in the three most used Web browsers Google Chrome 29.0.1547.76 m,

Mozilla Firefox 23.0.1 and Microsoft Internet Explorer 10.0.9200.16686, corresponding to the

latest versions available of these Web browsers as of testing date.

5.1.3 Platforms

Two different platforms were used, one simulating a low resource system, even tough not the lower

resource system available, and another simulating a system with higher resources.

78

• Platform 1 - Raspberry Pi Model B: Broadcom BCM2835 SoC (700 MHZ ARM11 with

ARMv6 Instruction Set), 512 MB of RAM, 2 GB Class 4 SD Card non volatile storage, 10/100

Ethernet Adapter. Arch Linux v2011.11 for ARMv6, Linux kernel 3.6.11-12-ARCH+.

• Platform 2 - Dual core Intel Core 2 Duo T2330 Processor @ 1,8 GHz, 2GB DDR2-667

SDRAM, 80 GB SATA 5400 Rpm, 10/100/1000 Ethernet Adapter. Linux Mint 15 ”Olivia”,

Linux kernel 3.8.

The way all these elements are connected between them is the same for both test cases and is

defined by the framework architecture and is demonstrated visually on figure 5.1:

Figure 5.1: Test case connection diagram

5.2 Basic Application

The first test to be performed was to instantiate the framework to the most simple configuration

possible. Only mandatory features and exclusive features that depend on a mandatory upper

feature (e.g. the operating system of the platform) are selected in the SPL, thus simulating the

simplest application that can be developed.

This application only has user authentication ability and troubleshooting ability, thus what

will be tested is the user authentication and the ability to send data correctly from the user

interface to the platforms. Since both test platforms only simulate real platforms, the data sent

will also be simulated, not corresponding to any specific case.

79

There are ten distinct alerts, ranging from al1 to al10 and ten distinct actions that can be

performed to answer the alerts or that can just be sent to a platform.

The test results shown for this application will demonstrate the basic user interface and the

reception of actions by the platform. These tests were performed using the Mozilla Firefox Web

browser with the Firebug plug-in, which allows an efficient debugging of Web pages, allowing the

discovery of potential errors that may appear.

Figure 5.2: Login page

Figures 5.2 and 5.3 show the login and the basic homepage generated. As it can be seen, the

interface is simple, because it is meant to be changed by the application developer, but usable.

Figure 5.4 demonstrates the warning shown when there are alerts that need the user attention,

redirecting the user to the troubleshooting page.

The troubleshooting page with the received alerts can be seen on figure 5.5 and the action

sending can be seen on figure 5.6.

To conclude this test results, the console prompt of the Raspberry Pi (ARM1) is shown. It

demonstrates a server exception code, received as a response, due to sending of an alert from the

platform corresponding to a sensor that does not exist in the database, it also shows the received

actions. As it can be seen, the platforms only receive the action code.

For test purposes, each platform ran the platform interface and two processes that implement

80

Figure 5.3: Home page for the basic application

Figure 5.4: Unanswered alerts warning

a Web socket server to receive actions and a Web socket client to send actions to the server. Both

processes communicate with the platform interface, thus proving its correct functioning. Figure

5.8 shows the details file used in this test. This file is used by the platform interface to define the

web service address and the ports to be used.

81

Figure 5.5: Troubleshooting page - Received alerts

Figure 5.6: Troubleshooting page - Received alerts

5.3 Full Application

This test was performed by instantiating the SPL to the most complex application possible. All

features are selected, thus simulating the most complex application that can be implemented using

the SPL.

82

Figure 5.7: Platform command line output

Figure 5.8: Detail file used for the basic configuration

This application does the user authentication and the troubleshooting that the simplest ap-

plication does as well, but it also implements all management features and all history features,

making it possible for the application user to manage all aspects of a monitoring system. Since the

communication with a platform was performed correctly in the previous test, in this test the focus

will be the history and management parts of the application. Communication and authentication

was also tested in this test case, as shown on figures 5.7 and 5.8, but the results were the same,

as expected, because the selected features for communication and user authentication were also

83

the same.

Figure 5.9: Home page for the full application

Figure 5.10: No privilege page

Figure 5.9 shows the home page of the user interface in the full application. Comparing it

with the home page for the basic application it can be noticed that there are two new buttons,

one to the history page and another to the management page.

84

Privilege based access was also tested, the no privilege page that appears when a user doesn’t

have enough access privilege is shown on figure 5.10. The management page requires a privilege

of 4 or higher to grant access, a user with privilege level 2 tried to access it and it was barred.

Figure 5.11: Actuator Bay management page

Figure 5.12: User management page

Management was tested by adding the several system components, editing them and removing

it. MySQL workbench was used to check if the changed were correctly commited to the database.

85

The system behaved as it was expected in this part.

Figures 5.11 and 5.12 show the actuator bay and the user management pages, demonstrating

the management actions that are possible to be taken on system components.

Figure 5.13: User History page

History was also checked, the system registers every event regarding user authentication, sys-

tem management, alert and actions. It adds a correct time stamp to give a temporal measurement

of the event, as it can be seen on figure 5.13. This part of the system also behaved as expected.

5.4 Test conclusions discussion

After all the tests were performed, some bugs were identified and corrected. The main difference

on both test cases it the number of Web services and user interface features, the basic application

only allows troubleshooting and the full application allows troubleshooting, system management

and history enquiring. For both applications the platform interface is the same, since it is a basic

interface with a very specific task that has no variation and both systems ran Linux.

The implemented applications perform as expected, redirecting the data from the platforms

to the user interface and sending actions from the user interface with the correct platform.

Platform an user administration perform as expected making it possible for the manipulation

of information in the database from the user interface. There are a few small bugs while using

86

Internet Explorer, since it does not yet implement full JavaScript support. However, this is not

a major concern since older versions of Internet Explorer have known compatibility issues when

dealing with JavaScript, Internet Explorer 10 represents only a small market share in Web Browser

usage and Microsoft is working towards full HTML5 and JavaScript support on oncoming versions

of Internet Explorer. Even though there were issues while running the user interface on Internet

Explorer, the user interface ran as expected in both Google Chrome and Mozilla Firefox.

Platforms send and receive correct data without any issue, both in the less resourceful system

and in the more powerful system. However, the transaction of large quantities of data, from

a range of different sources, was not tested, but since it depends not only on the implemented

software but in the hardware infrastructure as well the system should work well with large data

transactions if the hardware infrastructure is capable of handle such transactions.

When instantiating this platform to real systems such as a offshore platform or a domotics

system in a house, the SPL is expected to perform well in both cases, with data transmitted

correctly from the monitored system to the user. Depending on the management and history

features selected both cases can be both as complex or as simple. However, the offshore generation

platform is expected to have less customization performed after instantiation than the domotics

system. This will happen because the offshore monitoring application is intended to be used

by a technician and an offshore platform has less sensors than a house equipped with a domotics

system. The domotics system is expected to have a larger part of its code edited by the application

developer because there can be a great number sensors and actuators in this type of systems and,

since the application is intended to be used by a regular user, without any skills in electronics,

the user interface needs to be more intuitive.The SPL is fit to be used in both systems, being able

to implement a communications daemon between user interface and monitored platforms, and

also implement a user interface with privilege based access and ability to manage all the aspects

related to the systems as well as keeping a log from all the actions taken upon the systems.

In what this framework is concerned, both systems can be similar. Both impose the need

for communication between user and monitored platform as well as user authentication. If the

management requirements and history requirements are alike , then what will differentiate both

these application is the data transactions from platform to user interface, the amount of data

transacted and the editing done after the instantiation process.

87

Chapter 6

Conclusion and Future Work

6.1 Conclusion

Monitoring is a fundamental aspect in many systems that need control. However the development

of monitoring applications can be a resource intensive task, consuming many resources that can

be applied in other projects or that may lead to a the loss the competitive edge in the market.

The development of a framework to aid in the development monitoring applications can reduce

the resources used while developing monitoring applications, improving productivity and final

product quality while decreasing the costs associated with development and the time-to-market

of a product.

The SPL provides the application developer with a good level of abstraction, where the devel-

oper only has the need to know which are the features needed for each subsystem, hiding code

complexities and the technologies used by each subsystem.

Using a SPL approach to implement a framework, is simple. SPLs provides the application de-

veloper with a good level of abstraction, hiding code complexities and requiring that the developer

only defines which features are needed to answer a specific problem.

By analysing a domain, one can easily identify the main features within it, and by employing

a top-down approach sub features can also be identified. This process provides an easy way to

analyse and define which features are common between the systems of a given domain and where

the systems of a domain vary. The usage of feature diagrams to describe a domain and its features

88

greatly improves the understanding of the variations within a domain. A SPL provides a good

level of abstraction to an application developer, since he only needs to identify the features that

a specific system must have from a set of previously defined features related to each other.

Feature IDE provides a tool for the development of SPLs that allows the mapping of code, in

several different languages, to features. This simplifies the SPL development process, since one

can think in features as blocks of code that can relate or extend other blocks, creating a usable

final product with a great level of abstraction and automatic code generation.

In the domain of this project, the usage of Feature IDE to design and implement a SPL

that represents the remote monitoring domain made possible the development of a solution that

implements all the subsystems identified during the domain analysis phase, even though they are

implemented in different programming languages.

The implemented SPL provides a great amount of automatic code generation, implementing

code for all the subsystems based on the selected features. It implements a fully usable monitoring

infrastructure, based on the architecture defined in chapter 2, composed by a user interface, that

provides visual feedback to the user, a server, composed by a database and a set of web services

that embody a communication daemon. A platform interface assures correct communication

between a platform and the server, and also gives the developer the freedom to implement the

platform application in the way that is best for the problem at hand.

Even though the SPL can generate fully usable systems, when instantiated each application has

the need to implement custom code to address its most crucial aspects. Also, after code generation

there is the need to configure the system components1 in order to assure correct communication

between all the subsystems and to assure that data is transacted correctly.

One can say that the usage of SPLs as a methodology for the management of the commonalities

and variabilities of a framework simplifies the framework development process. Feature IDE is

an adequate tool for this end providing a way to map features into blocks of code, easing the

development process even more and providing a way to easily instantiate the SPL to a specific

system, by selecting a few check boxes, abstracting the user from automatic code generation. By

joining both these main factors, the implemented framework fulfils the main project objectives and

is easy to use, with the greatest amount of time during instantiation being the system configuration

1Web server, database server, platform interface and user interface

89

instead of the code generation, proving that it greatly reduces the amount of resources used to

implement a monitoring application. However, this framework still has much to evolve and the

best way to do it is to use it in several different problems within the monitoring domain, this will

identify the main problems and and create the need to improve code and create new features in

order to minimize user intervention and create a more solid solution that can be used in a broader

domain.

6.2 Future Work

Future work should focus on the evolution of the framework to be able to be used as a solid

development tool that can be used reliably by development teams. Since this is the earliest usable

version of this framework, there is still a lot to do to make it a more complete tool that can be

used as a development asset or product. Even though a structure is created in an autonomous

way there were certain aspects, that due to the lack of time, were not implemented or need a

better implementation. These aspects will improve the framework and the resulting applications

usability by implementing new features.

The following list shows the identified future work as of the finishing of the first version, other

missing features may be identified in the future as the framework will evolve through usage.

• HTTPS connection support - Encryption of the data transmitted between clients and server.

• Improvement of the Web service access restrictions - To only allow authorized users to

access the Web services. This can be achieved by sending the session ID in every request

and querying the database for its existence. This can also improve the privilege based access.

• Creation of a deployment wizard - The goal is to provide the framework user with an interface

that allows the rapid configuration and deployment of a new application.

• Scalability support - Allowing the development of any application and not caring about the

amount of data transferred.

• Business Intelligence - Currently, data manipulation in the business layer of the Web services

is simple. However, data can be manipulated in a way to better improve monitoring by,

90

for example, analysing alert data and assigning a severity level to it or even by discovering

patterns in the received data. Data Mining concepts may help to meet this end.

• Improve instantiation automation - Create scripts in order to make the instantiation process

more transparent to the user, reducing the need for source code editing after the final code

is generated.

• Improve the generated user interface - There is much to improve in the user interface. It

can become more intuitive to use and even more appealing visually, with transition effects

and tabs instead of windows.

91

References

[1] Apel, S., Kastner, C., and Lengauer, C. Language-independent and automated soft-

ware composition: The featurehouse experience. Software Engineering, IEEE Transactions

on 39, 1 (2013), 63–79.

[2] Apel, S., Leich, T., and Rosenmüller, M. Featurec++ feature-oriented and aspect-

oriented programming in c++. Tech. rep., Otto-von-Guericke University Magdeburg, 2005.

[3] Apel, S., and Lengauer, C. Superimposition: A language-independent approach to

software composition. In Software Composition (2008), C. Pautasso and r. Tanter, Eds.,

vol. 4954 of Lecture Notes in Computer Science, Springer Berlin Heidelberg, pp. 20–35.

[4] Bosch, J. Design and Use of Software Architectures. ACM Press Books. Addison Welsey,

2000.

[5] Cardoso, N. Middleware and Tools to Develop a Video Surveillance System for Security,

Control and Comfort (SVSC - Toolkit). PhD thesis, University of Minho, 2013.

[6] Cerami, E. Web Services Essentials, 1st ed. O’Reilly, February 2002.

[7] Czarnecki, K., Helsen, S., and Eisenecker, U. W. Staged configuration through

specialization and multilevel configuration of feature models. Software Process: Improvement

and Practice 10, 2 (2005), 143–169.

[8] Fielding, R. Architectural Styles and the Design of Network-based Software Architectures.

PhD thesis, University of California, Irvine, 2000.

[9] Group, W. W. Web services architecture. Tech. rep., W3C, February 2004. 11.

92

[10] Hornby, A. S. Oxford Advanced Lernaer’s Dictionary of Current English, 5th edition ed.

Oxford university Press, 1995.

[11] Kästner, C. Virtual Separation of Concerns: Toward Preprocessors 2.0. PhD thesis,

University of Magdeburg, May 2010. Logos Verlag Berlin, isbn 978-3-8325-2527-9.

[12] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., and Griswold,

W. G. An overview of aspectj. Springer-Verlag, pp. 327–353.

[13] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier,

J.-m., and Irwin, J. Aspect-oriented programming. In ECOOP (1997), SpringerVerlag.

[14] Kyo C. Kang, Sholom G. Cohen, J. A. H. W. E. N. A. S. P. Feature-oriented domain

analysis (foda) feasibility study. Tech. rep., Carnegie-Mellon University Software Engineering

Institute, 1990.

[15] Northrop, L. Software product line essentials. Tech. rep., Software Engineering Institue,

Carnegie Mellon University, 2008.

[16] Osca Nierstrasz, T. D. M. Research directions in software composition. ACM Computer

Surveys 27, 2 (June 1995), 262–264.

[17] Oscar Nierstrasz, L. D. Object-oriented Software Composition. Prentice Hall, 1995,

ch. 1, pp. 3 – 28.

[18] Pleumann, J., Yada, O., and Wetterberg, E. Antenna: An ant-to-end solution for

wireless java, 2013.

[19] Prehofer, C. Feature-oriented programming: A fresh look at objects. In ECOOP (1997),

pp. 419–443.

[20] Roy, D. Faq what is eclipse, 2013.

[21] Schaefer, I., Bettini, L., Damiani, F., and Tanzarella, N. Delta-oriented pro-

gramming of software product lines. In Proceedings of the 14th international conference on

Software product lines: going beyond (Berlin, Heidelberg, 2010), SPLC’10, Springer-Verlag,

pp. 77–91.

93

[22] Scholtz, B. Dao tutorial - the data layer, 2013.

[23] Sommerville, I. Software Engineering, 9th ed. Addison-Wesley, 2011.

[24] Team, J. D. Jax-rs application, resources and sub-resources, 2013.

[25] Team, J. D. Restful wev services in java, 2013.

[26] Team, J. S. D. Secure random (java platform se 7), 2013.

[27] Team, T. M. D. Munge: A pruposley-simple java preprocessor, 2013.

[28] Thüm, T., Kästner, C., Erdweg, S., and Siegmund, N. Abstract features in feature

modeling, 2006.

[29] Thüm, T., Kästner, C., Erdweg, S., and Siegmund, N. Abstract features in feature

modeling. In Proceedings of the International Software Product Line Conference (SPLC)

(August 2011), IEEE Computer Society, pp. 191–200.

[30] Thomas Thüm, Christian Kästner, F. B. J. M. Featureide: An extensible framework

for feature-oriented software development. Science of Computer Programming (May 2012).

[31] Tim Berners-Lee, R. C. World wide web: Proposal for a hypertext project, November

1989.

94

Appendix A

The result of domain analysis is the feature diagram of the SPL. This appendix starts by demon-

strating the feature diagram for the implemented SPL. This diagram shows features hierarchically

going from top features, that perform bigger tasks, descending to lower features, that perform

more specific tasks. A feature description is also provided, describing what is the role of each

feature in the SPL.

In the end of this appendix, the constraints imposed by the feature model are specified. The

constraints assure the correct functioning of the system after instantiation.

95

A.1 Feature Diagram

Figure A.1: Feature diagram

96

A.2 Feature description

A.2.1 Platform features

Feature Name Description Concrete

INTERFACE Describes the interface with the rest of the system No

NoOS Represents a platform running on a single purpose em-

bedded system

No

OS Represents a platform running an embedded system

with an operating system

No

Windows Platform running the Windows Yes

Linux Platform running Linux Yes

ELEMENTS Specifies the elements that compose a platform No

PLATFORM ID Specifies the platform identity No

PLATFORM GROUP Specifies if the platform is within a group No

SENSOR Specifies if the platform has sensors No

SENSOR BAY Specifies if the platform sensors are grouped No

ACTUATOR Specifies if the platform has actuators No

ACTUATOR BAY Specifies if the platform actuators are grouped No

INTERACTION Specifies the interaction between the platform and the

rest of the system

No

ACTION Platform inbound data No

ALERT Platform outbound data No

A.2.2 Server features

Server features are divided in two distinct sets of features. One for the Web services and another

for the database

97

Web service features

Feature Name Description Concrete

Authentication Authentication ability in the server side Yes

DAO DAO layer base Yes

UserDAO Add ability for the DAO layer to access to the user

table

Yes

ActionDAO Add ability for the DAO layer to access the action

table

Yes

AlertDAO Add ability for the DAO layer to access the alert table Yes

ActuatorBayDAO Add ability for the DAO layer to access the actuator

bay table

Yes

ActuatorDAO Add ability for the DAO layer to access the actuator

table

Yes

SensorBayDAO Add ability for the DAO layer to access the sensor bay

table

Yes

SensorDAO Add ability for the DAO layer to access the sensor

table

Yes

PlatformGroupDAO Add ability for the DAO layer to access the platform

group table

Yes

PlatformDAO Add ability for the DAO layer to access the platform

table

Yes

Model Describe the database tables in the Web services No

User Describe the user table Yes

Platform Describe the platform table Yes

Actuator Describe the actuator table Yes

ActuatorBay Describe the actuator bay table Yes

SensorBay Describe the sensor bay table Yes

Sensor Describe the sensor table Yes

98

PlatformGroup Describe the platform group table Yes

Action Describe the user action Yes

Alert Describe the alert table Yes

Hist Add logging ability to the Web services No

hUser User actions logging Yes

hSensor Sensor management logging Yes

hSensorBay Sensor bay management logging Yes

hActuator Actuator management logging Yes

hActuatorBay Actuator bay management logging Yes

hPlatform Platform management logging Yes

hPlatformGroup Platform group management logging Yes

hAlert Received alerts log Yes

hAction Sent actions log Yes

Manage Management ability on the server side No

mUser User details management Yes

mActuator Actuator details management Yes

mActuatorBay Actuator bay details management Yes

mSensorBay Sensor bay details management Yes

mSensor Sensor details management Yes

mPlatformGroup Platform group details management Yes

mPlatform Platform details management Yes

Utilities Features that are not strictly necessary but may be

helpful

No

List Element listings Yes

lUser List all the entries in the user table Yes

lActuator List all the entries in the actuator table Yes

lActuatorBay List all the entries in the actuator bay table Yes

lSensorBay List all the entries in the sensor bay table Yes

99

lSensor List all the entries in the sensor table Yes

lPlatformGroup List all the entries in the platform group table Yes

lPlatform List all the entries in the user platform Yes

Database features

the database is implemented as a SQLscript, table definitions are inserted between the head and

the tail of the script.

Feature Name Description Concrete

DATABASE Defines the database No

dbTop Implements the top of the database script Yes

tUser Implements the user table Yes

tSession Implements the session table Yes

tUserHistory Implements the user history table Yes

tPlatform Implements the platform table Yes

tPlatfromWeb Implements the platform web table Yes

tPlatfromHistory Implements the platform history table Yes

tAction Implements the action table Yes

tCurrentAction Implements the current action table Yes

tActionHistory Implements the action history table Yes

tAlert Implements the alert table Yes

tCurrentAlert Implements the current alert table Yes

tAlertHistory Implements the alert history table Yes

tSensor Implements the sensor table Yes

tSensorHistory Implements the sensor history table Yes

tActuator Implements the actuator table Yes

tActuatorHistory Implements the actuator history table Yes

100

tPlatformGroup Implements the platform group table Yes

tSensorBay Implements the sensor bay table Yes

tActuatorBay Implements the actuator bay table Yes

dbBottom Implements the bottom of the database script Yes

A.2.3 User interface features

Feature Name Description Concrete

Generator Generate the userin erface files and the SQL script file Yes

Pages Describes the web pages that compose the user inter-

face

No

Login Implements the Login page Yes

NotAllowed This page appears when a user is not allowed to access

a pert of the interface

Yes

Home Home page implementation No

hTop Implements the head of the home page Yes

hBottom Implements the bottom of the home page Yes

Troubleshoot Implements the troubleshoot page Yes

Management Management page implementation No

manTop Management page top Yes

manUser Interface for user management Yes

manActuator Interface for actuator management Yes

manSensor Interface for sensor management Yes

manActuatorBay Interface for actuator bay management Yes

manPlatform Interface for platform management Yes

manSensorBay Interface for sensor bay management Yes

manPlatformGroup Interface for platform group management Yes

101

manBottom Management page bottom Yes

History User interface for log view No

hiTop History page top Yes

hiAlert Visual feedback of the alert logs Yes

hiUser Visual feedback of the user management logs Yes

hiPlatform Visual feedback of the platform management logs Yes

hiAction Visual feedback of the action logs Yes

hiSensor Visual feedback of the sensor management logs Yes

hiActuator Visual feedback of the actuator management logs Yes

Styles CSS styles for the user interface No

Style1 CSS style 1 Yes

Style2 CSS style 2 Yes

Style3 CSS style 3 Yes

A.3 Feature constraints

Constraints assure the correct functioning of a specific application by establishing boolean rela-

tions between features.

1. PLATFORM ID implies PlatformDAO

2. PlatformDAO implies Platform and

tPlatform

3. Authentication impleis UserDAO

4. UserDAO implies User and tUser and

tSession

5. Authentication implies Login and NotAl-

lowed

6. PLATFORM GROUP implies Platfrom-

GroupDAO

7. PlatfromGroupDAO implies Platform-

Group and tPlatformGroup

8. SENSOR implies SensorDAO

9. SensorDAO implies Sensor and tSensor

10. tSensor implies tSensorBay

102

11. ACTUATOR implies ActuatorDAO

12. ActuatorDAO implies Actuator and tAc-

tuator

13. tActuator and tActuatorBay

14. SENSOR BAY implies SensorBayDAO

15. SensorBayDAO implies SensorBay and

tSensorBay

16. ACTUATOR BAY implies ActuatorBay-

DAO

17. ActuatorBayDAO implies ActuatorBay

and tActuatorBay

18. ACTION implies ActionDAO

19. ActionDAO implies Action and tAction

20. ALERT implies AlertDAO

21. AlertDAO implies Alert and tAlert

22. DATABASE and USER INTERFACE

implies Generator

23. mUser implies UserDAO

24. manUser implies mUser and lUser

25. manPlatform implies mPlatfrom and

lPlatform

26. mPlatfromGroup implies PlatfromGroup-

DAO

27. mPlatfrom implies PlatformDAO

28. manActuator implies mActuator and lAc-

tuator

29. manPlatformGroup implies mPlatform-

Group and lPlatformGroup

30. manActuatorBay implies mActuatorBay

and lActuatorBay

31. manSensor implies mSensor and lSensor

32. mSensor implies SensorDAO

33. manSensorBay implies mSensorBay and

lSensorBay

34. mSensorBay implies SensorBayDAO

35. mActuator implies ActuatorDAO

36. mActuatorBay implies ActuatorBayDAO

37. hiAlert implies hAlert

38. hAlert implies tAlertHistory

39. hiAction implies hAction

40. hAction implies tActionHistory

41. hiUser implies hUser

42. hUser implies tUserHistory

43. hiPlatform implies hPlatform

44. hPlatform implies tPlatformHistory

103

45. hiSensor implies hSensor

46. hSensor implies tSensorHistory

47. hiActuator implies hActuator

48. hActuator implies tActuatorHistory

49. tCurrentAction implies tActuator and

tSensor and tSensorBay and tActuator-

Bay and tPlatform and tPlatformGroup

104

Appendix B

Domain Impementation

B.1 Flowcharts

This section specifies flowcharts of the three subsystems. These flowcharts specify the operation

of the the several components of each subsystem. Each flowchart states its function and the group

of features that it is aimed for.

The User interface flowcharts specify how a GET and a POST request are performed in

this project. GET is used to ask the server for lists of alerts, actions, components and history

and POST is used when a operation is performed that involves sending data to the server, like

management actions, troubleshooting or history management. These requests are received by the

server that processes them depending to which Web service they are aimed to.

Specifying these Web services are also flowcharts that specify Web services operation by group,

since operations in the same group are similar, only differing on the data contents and the database

table addressed, it makes sense to expose flow charts this way.

Ending, there is a flowchart for the platform interface. It specifies the what are the operations

performed by the platform interface to transmit data from the server to the platform monitoring

process.

105

Figure B.1: Login Web service flowchart

106

Figure B.2: Check privilege Web service flowchart

107

Figure B.3: Logout Web service flowchart

108

Figure B.4: Add Web services flowchart

109

Figure B.5: Edit Web services flowchart

110

Figure B.6: Delete Web services flowchart

111

Figure B.7: List history Web services flowchart

112

Figure B.8: Find history Web services flowchart

113

Figure B.9: Delete entry from history Web services flowchart

114

Figure B.10: Clear history Web services flowchart

115

Figure B.11: Current alert Web service flowchart

116

Figure B.12: Current action Web service flowchart

117

Figure B.13: List Web services flowchart

118

Figure B.14: GET request flowchart

119

Figure B.15: POST request flowchart

120

Figure B.16: Platform interface flowchart

121

B.2 User interface site map

122

B.3 Web service path hierarchy

Figure B.17: Web service URI hierarchy

123

B.4 Web services specification

This section specifies the Web services URI, their HTTP methods and their path parameters.

B.4.1 Action service

The action service can be found at the /action path.

1. /new - Insert new action details in the database

(a) HTTP Method: POST

(b) Path Parameters: code, desc

2. /edit - Edit the details of an action

(a) HTTP Method: POST

(b) Path Parameters: code, desc

3. /delete - Delete an action

(a) HTTP Method: POST

(b) Path Parameters: code

4. /list - List all the action in the database

(a) HTTP Method: GET

5. /find - Find an action in the database

(a) HTTP Method: POST

(b) Path Parameters: code

6. /current/new - Insert a new current action in the database

(a) HTTP Method: POST

(b) Path Parameters: alertID, actionID, sID, platID

124

7. /current/list - List all the current actions

(a) HTTP Method: POST

8. /history/list -List all the entries in the action log

(a) HTTP Method: GET

9. /history/delete - Delete a specific entry from the action log

(a) HTTP Method: POST

(b) Path Parameters: code, timeStamp

10. /history/clear - Clear all the action log

(a) HTTP Method: GET

B.4.2 Alert service

The alert service can be found at the /alert path.

1. /new - Insert new alert details in the database

(a) HTTP Method: POST

(b) Path Parameters: code, desc

2. /edit - Edit the details of an alert

(a) HTTP Method: POST

(b) Path Parameters: code, desc

3. /delete - Delete an alert from the database

(a) HTTP Method: POST

(b) Path Parameters: code

4. /find - Find an alert in the database

(a) HTTP Method: POST

125

(b) Path Parameters: code

5. /list -List all the alert in the database

(a) HTTP Method: Get

6. /current/new - Insert new action details in the database

(a) HTTP Method: POST

(b) Path Parameters: code, platID, groupID, sensorID, sensorBayID, actuatorID, aBayID

7. /current/list - List all the current alerts

(a) HTTP Method: GET

8. /history/list - List all the alerts in the alerts log

(a) HTTP Method: GET

9. /history/delete - Delete an entry from the alerts log

(a) HTTP Method: POST

(b) Path Parameters: code, timeStamp

10. /history/clear - Clear the alerts log

(a) HTTP Method: GET

B.4.3 Authentication service

The authentication service can be found at the /authentication path.

1. /Login - User login service

(a) HTTP Method: POST

(b) Path Parameters: username, password

2. /privilege - Ask the server for a user privilege based on the session ID

126

(a) HTTP Method: POST

(b) Path Parameters: sID

3. /logout - User logout service

(a) HTTP Method: POST

(b) Path Parameters: sID

B.4.4 Management service

The management service can be found at the /management path.

1. /user/add - Add a new user the system

(a) HTTP Method: POST

(b) Path Parameters: username, password, priv, email

2. /user/edit - Edit the details of an user

(a) HTTP Method: POST

(b) Path Parameters: username, password, priv, email

3. /user/delete - Delete an user from the system

(a) HTTP Method: POST

(b) Path Parameters: delete

4. /actuator/add - Add a new actuator to a platform in the system

(a) HTTP Method: POST

(b) Path Parameters: id, bayid, platid, type

5. /actuator/edit - Edit the details of an actuator from a platform in the system

(a) HTTP Method: POST

(b) Path Parameters: id, bayid, platid, type

127

6. /actuator/delete - Delete an actuator from a platform in the system

(a) HTTP Method: POST

(b) Path Parameters: id, bayid, platid

7. /actuatorbay/add - Add a new actuator bay to a platform in the the system

(a) HTTP Method: POST

(b) Path Parameters: bayid, platid, desc

8. /actuatorbay/edit - Edit the details of an actuator bay from a platform in the system

(a) HTTP Method: POST

(b) Path Parameters: bayid, platid, desc

9. /actuatorbay/delete - Delete an actuator bay from a platform in the system

(a) HTTP Method: POST

(b) Path Parameters: bayid, platid

10. /sensorbay/add - Add a new sensor bay to a platform in the the system

(a) HTTP Method: POST

(b) Path Parameters: bayid, platid, desc

11. /sensorbay/edit - Edit the details of a sensor bay from a platform in the system

(a) HTTP Method: POST

(b) Path Parameters: bayid, platid, desc

12. /sensorbay/delete - Delete a sensor bay from a platform in the system

(a) HTTP Method: POST

(b) Path Parameters: bayid, platid

13. /sensor/add - Add a new sensor to a platform in the system

128

(a) HTTP Method: POST

(b) Path Parameters: id, bayid, platid, type

14. /sensor/edit - Edit the details of a sensor from a platform in the system

(a) HTTP Method: POST

(b) Path Parameters: id, bayid, platid, type

15. /sensor/delete - Delete a sensor from a platform in the system

(a) HTTP Method: POST

(b) Path Parameters: id, bayid, platid

16. /platformgroup/add - Add a new platform group the system

(a) HTTP Method: POST

(b) Path Parameters: id, dsc

17. /platfromgroup/edit - Edit the details of a platform group

(a) HTTP Method: POST

(b) Path Parameters: id, dsc

18. /platformgroup/delete - Delete a platform group from the system

(a) HTTP Method: POST

(b) Path Parameters: id

19. /platform/add - Add a new platform in the system

(a) HTTP Method: POST

(b) Path Parameters: id, lat, lng, dsc, gID

20. /platform/edit - Edit the details of a platform

(a) HTTP Method: POST

(b) Path Parameters: id, lat, lng, dsc, gID

129

21. /platform/delete - Delete a platform from the system

(a) HTTP Method: POST

(b) Path Parameters: id

22. /platformweb/add - Add the web details of a platform already in the system

(a) HTTP Method: POST

(b) Path Parameters: id, ip, port

23. /platformweb/edit - Edit the web details of a platform

(a) HTTP Method: POST

(b) Path Parameters: id, ip, port

24. /platform/delete - Delete a platform’s web details from the system

(a) HTTP Method: POST

(b) Path Parameters: id

B.4.5 History service

The history service can be found at the /history path.

1. /user/list - List the log entries from all the users

(a) HTTP Method: GET

2. /user/find - Find a specific entry in the user log

(a) HTTP Method: POST

(b) Path Parameters: username, timestamp

3. /user/delete - Delete an entry from the user log

(a) HTTP Method: POST

(b) Path Parameters: username, timestamp

130

4. /user/clear - Clear the user log

(a) HTTP Method: POST

5. /sensor/list - List the log from all the sensors

(a) HTTP Method: GET

6. /sensor/find - Find a specific entry in the sensor log

(a) HTTP Method: POST

(b) Path Parameters: sensorid, timestamp

7. /sensor/delete - Delete an entry from the sensor log

(a) HTTP Method: POST

(b) Path Parameters: sensorid, timestamp

8. /sensor/deletefull - Delete all the log entries for a given sensor

(a) HTTP Method: POST

(b) Path Parameters: sensorid

9. /sensor/clear - Clear all the sensor log

(a) HTTP Method: GET

10. /actuator/list - List the log from all the actuators

(a) HTTP Method: GET

11. /actuator/find - Find a specific entry in the actuator log

(a) HTTP Method: POST

(b) Path Parameters: actuatorid, timestamp

12. /actuator/delete - Delete an entry from the actuator log

(a) HTTP Method: POST

131

(b) Path Parameters: actoatorid, timestamp

13. /actuator/deletefull - Delete all the log entries for a given actuator

(a) HTTP Method: POST

(b) Path Parameters: actuatorid

14. /actuator/clear - Clear the actuator log

(a) HTTP Method: GET

15. /platform/list - List the log from all the platforms

(a) HTTP Method: GET

16. /platform/find - Find a specific entry in the platform log

(a) HTTP Method: POST

(b) Path Parameters: platid, timestamp

17. /platform/delete - Delete an entry from the platform log

(a) HTTP Method: POST

(b) Path Parameters: platformid, timestamp

18. /platform/deletefull - Delete all the log entries for a given platform

(a) HTTP Method: POST

(b) Path Parameters: actuatorid

19. /platform/clear - Clear the platform log

(a) HTTP Method: GET

132

B.4.6 Miscellaneous service

The miscellaneous service can be found at the /misc path.

1. /list/user - List all the users registered in the system

(a) HTTP Method: GET

2. /list/actuator - List all the actuators

(a) HTTP Method: GET

3. /list/actuatorbay - List all the actuator bays

(a) HTTP Method: GET

4. /list/sensor - List all the sensors

(a) HTTP Method: GET

5. /list/sensorbay - List all sensor bays

(a) HTTP Method: GET

6. /list/platformgroup - List all the platform groups

(a) HTTP Method: GET

7. /list/platform - List all the platforms

(a) HTTP Method: GET

8. /list/platformweb - List all the platform web details

(a) HTTP Method: GET

133

Appendix C

Instantiation

C.1 Editing the Database connection properties

For an application to be able to connect to the database there is a file specifying the database

user details, the database address and the database Java connector. This file is called DBconnec-

tion.properties and must be moved from the mon.spl.dao package to the root file of the application

code, so that it can be read by the application.

The user must edit the file as shown on figure C.1, where the top file is the file immediately

after the application generation and the bottom file is the one after edition, for use with a specific

database.

Figure C.1: DBconnection.properties before and after editing

134

C.2 Example of a web.xml deployment descriptor

Figure C.2 shows how a web.xml deployment descriptor can be defined so that the Web services

can be accessible from the Web.

Figure C.2: web.xml definition example

135

	Acknowledgements
	Resumo
	Abstract
	List of Acronyms
	Table of Contents
	List of Figures
	Introduction
	Motivation
	Objectives
	Contents and Organization

	Domain Analysis
	State Of the art
	Software Product Lines
	Web Technologies

	Problem Space Specification
	Domain problem specification
	User Interface
	Server
	Monitored Platform
	Feature Diagram
	Cross-Tree Constraints

	Domain Implementation
	Tools and techniques
	Eclipse
	Feature IDE
	Jersey and JAX-RS

	SPL Implementation
	Server
	User Interface
	Platform Interface

	Instantiation
	Requirement Analysis
	Software Generation
	Web service deployment
	User Interface and database deployment
	Platform Interface deployment

	Results
	Test Systems Specifications
	Servers
	Client
	Platforms

	Basic Application
	Full Application
	Test conclusions discussion

	Conclusion and Future Work
	Conclusion
	Future Work

	References
	
	Feature Diagram
	Feature description
	Platform features
	Server features
	User interface features

	Feature constraints

	Domain Impementation
	Flowcharts
	User interface site map
	Web service path hierarchy
	Web services specification
	Action service
	Alert service
	Authentication service
	Management service
	History service
	Miscellaneous service

	Instantiation
	Editing the Database connection properties
	Example of a web.xml deployment descriptor

