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Tuberculosis (TB), a disease caused by the human pathogenMycobacterium tuberculosis, has recently joined HIV/
AIDS as theworld's deadliest infectious disease, affecting around 9.6million people worldwide in 2014. Of those,
about 1.2 million died from the disease.
Resistance acquisition to existing antibiotics,with the subsequent emergence ofMulti-Drug Resistantmycobacteria
strains, together with an increasing economic burden, has urged the development of new anti-TB drugs. In this
scope, antimicrobial peptides (AMPs), which are small, cationic and amphipathic peptides thatmake part of the in-
nate immune system, now arise as promising candidates for TB treatment. In this review, we analyze the potential
of AMPs for this application.We address themechanisms of action, advantages anddisadvantages over convention-
al antibiotics and how problems associated with its use may be overcome to boost their therapeutic potential. Ad-
ditionally, we address the challenges of translational development from benchside to bedside, evaluate the current
development pipeline and analyze the expected global impact from a socio-economic standpoint.
The quest formore efficient andmore compliant anti-TB drugs, associatedwith the great therapeutic potential of
emerging AMPs and the rising peptide market, provide an optimal environment for the emergence of AMPs as
promising therapies. Still, their pharmacological properties need to be enhanced and manufacturing-associated
issues need to be addressed.

© 2016 Elsevier Inc. All rights reserved.
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1. Introduction: tuberculosis - a global emergency

Tuberculosis (TB) recently joined HIV/AIDS on the top rank of the
deadliest infectious diseases, being actually responsible for one fourth
of HIV-related deaths. According to the latest data from World Health
Organization, around 9.6 million people were diagnosed with TB in
2014, having about 1.2 million of those died from the disease (WHO,
2015a). Globally, TB incidence remains highest in Africa, in terms of
new cases per inhabitants, but new TB occurrences are also increasing
in Southeast Asia and Western Pacific regions.

As a result of the implementation of the Millennium Development
Goals in 2000 (WHO, 2015b), which particularly focused on reducing
TB incidence, around 37 million lives were saved between 2000 and
2013 due to effective diagnosis and treatment and since 2007 the treat-
ment success rate has been at or above 85%. Despite all efforts to fight
this disease, its death toll remains elevated and multi-drug resistant
TB (MDR-TB) strains are emerging mostly as a result of overuse or mis-
use of antimicrobial agents (e.g. antibiotics). By definition,MDR-TB is re-
sistant to, at least, isoniazid and rifampicin, the twomost powerful,first-
line (or standard) anti-TB drugs (Onyebujoh et al., 2005). Also, exten-
sively drug-resistant TB (XDR-TB), an even more severe form of MDR-
TB, resistant to even more available medicines, has emerged. XDR-TB
strains are usually resistant to at least isoniazid, rifampicin or any fluo-
roquinolone, and to any of the three second-line injectables (amikacin,
capreomycin, and kanamycin). Noteworthy, about 480,000 people de-
veloped MDR-TB in 2013, being estimated that around 9% of those
cases were XDR-TB. Nonetheless, the term XDR-TB, as well as totally
drug-resistant TB (TDR-TB), have not been clearly defined by WHO
due to technical challenges and limitations of in vitro drug susceptibility
testing.

The approval of the Beijing Call for Action in 2009 and the World
Health Assembly Resolution 62.15 by UN Member States represented a
major commitment towards MDR-TB treatment and control (WHO,
2009). Still, MDR-TB represents a major public health concern within
the European Union (EU), as only a third of MDR-TB patients are suc-
cessfully treated in the EU, one of the lowest rates in the world. This
has led EUmembers to implement an Action Plan against antimicrobial
resistance, which started in 2011 (European Commission, 2011).

Within this context of multi-drug resistance strain emergence, a
new class of drugs – antimicrobial peptides (AMPs) – arises as promis-
ing candidates for TB treatment.

2. Mycobacteria: made to resist

Although over 170 species and subspecies of mycobacteria have
been reported (http://www.bacterio.cict.fr/m/mycobacterium.html)
only a few are described as pathogenic, namelyMycobacterium tubercu-
losis, Mycobacterium leprae and Mycobacterium ulcerans (Gaspar et al.,
2008). Mycobacterial species are Gram-positive, non spore-forming,
aerobic bacteria, which feature a characteristic thick cell wall that con-
fers them a unique impermeability to many molecules, namely antimi-
crobials, and comprising several distinct layers (Jarlier and Nikaido,
1994; Neyrolles and Guilhot, 2011). The innermost is composed of pep-
tidoglycan. External to the peptidoglycan is a covalently linked polymer
of sugars, arabinogalactan, to whichmycolic acids are esterified. Finally,
a variable mixture of glycolipids and lipoglycans are thought to interact
via their acyl groups with themycolic acids through hydrophobic inter-
actions. Fig. 1 schematizes this unique cell wall and shows how it com-
pares with the cell walls of Gram-negative and Gram-positive bacteria.
A capsule composed of non-covalently linked loosely associated gly-
cans, lipids and proteins has been shown to decorate the outer surface
of the mycobacterial envelope. Noteworthy, the prevalence of mycolic
acid molecules covalently linked to arabinogalactan in the intermediate
layer confers its high hydrophobicity and decreased permeability to ex-
ternal compounds (Gaspar et al., 2008; Jarlier and Nikaido, 1994;
Neyrolles and Guilhot, 2011).
In addition to the intrinsic basis of antimicrobial resistance of
mycobacteria related to their peculiar cell wall, both life-style and path-
ological consequences of infection dictate additional levels of difficulty
in obtaining effective chemotherapeutical drugs. Mycobacteria are
able to replicate inside the macrophage.

In the case of lung infections by M. tuberculosis, mycobacteria are
first phagocytized by alveolar macrophages and quickly spread locally
in the lungs and eventually to other organs via lymphatic and blood cir-
culation (Guirado et al., 2013). Once inside phagosomes, mycobacteria
impair the recruitment of proteins and phosphoinositides, required for
intracellular trafficking, to the phagosomal membrane, which results
in phagosome maturation arrest (Guirado et al., 2013; Hmama et al.,
2015). Through this process, mycobacteria avoid the subsequent
phagosomal fusion with lysosomes and the contact with potent hydro-
lytic enzymes and antigen-presenting organelles within the host mac-
rophage (Fratti et al., 2004). At tissue level, both infected and non-
infected macrophages will be organized within granulomas, which fre-
quently undergo central necrosis (caseous necrosis) or may be found
scattered in the alveolar spaces in pneumonic forms (Hunter, 2011).
The heterogeneity of the lesions in human tuberculosis will certainly
impact on the bioavailability of anti-tubercular drugs, as recently ob-
served by Prideaux et al. (2015). Finally, freely replicatingmycobacteria
have been found in biofilms lining the aerial side of cavities (Orme,
2014), further complicating the issue of the access of the drugs to
their targets.

3. The TB drugs pipeline

3.1. Standard treatments

Mycobacterial infections are very difficult to treat. Bacille Calmette-
Guérin (BCG) vaccine, a live attenuated strain of Mycobacterium bovis,
is the only vaccine available. Although quite effective in the prevention
of childhood TB, adults can have new infections (Roy et al., 2014;WHO,
2012).

Current therapeutics rely mostly on the use of antibiotics (antimi-
crobials, by definition) of natural or chemical origin, that kill or inhibit
the growth of infectious agents (O'Toole, 2003). Indeed, the discovery
of streptomycin in 1944 (Bugie and Waksman, 1944) brought forth
the first anti-tuberculosis drug. Soon after, many other drugs have
been developed, including para-aminosalicylic acid, thiacetazone and
isoniazid (Fox et al., 1999). Together with streptomycin, these drugs
constituted thefirst TB treatment regimen (Stehr et al., 2014). However,
long-lasting treatment (18–24 months), along with painful injections
and toxic effects deterred the use of this regimen, until rifampicin ap-
peared around 1959, reducing therapy length to 6 months (Sensi et
al., 1959).

Current standard treatments for non-resistant TB are based on an in-
tensive 2-month administration of a multi-drug cocktail consisting of
isoniazid, pyrazinamide, rifampicin and ethambutol, followed by a sec-
ond 4-month treatment of rifampicin and isoniazid (first-line therapy).
These four drugs combine different actions: both isoniazid and etham-
butol inhibit cell wall synthesis, rifampicin causes the inhibition of
RNA synthesis and pyrazinamide disrupts the plasma membrane and
energy metabolism (Somoskovi et al., 2001). However, despite being
highly active against replicating mycobacteria, these drugs (especially
isoniazid) are ineffective against mycobacteria in stationary phase or
with very low proliferation rates (Onyebujoh et al., 2005; Sosnik et al.,
2010). In addition, lack of patient compliance with the 6-month treat-
ment, along with adverse drug reactions and interactions, resulted in
the emergence of MDR-TB (Gaspar et al., 2008). Treatment of MDR-TB
is based on the administration of pyrazinamide together with second-
line drugs, such as ethionamide, prothionamide, cycloserine,
capreomycin or fluoroquinolones (Mukherjee et al., 2004). Standard
recommendations for TB therapy, including the treatment duration,
according to the resistance pattern of each strain, are summarized in



Fig. 1. Comparison between cell envelopes of mycobacteria and other bacteria. a) The innermost layer of the mycobacterial cell envelope is composed of peptidoglycan and is lined by a
layer of arabinogalactan. The presence of mycolic acids covalently bound to arabinogalactan, as well as the interaction of glycolipids and lipoglycans with mycolic acids in the outer layer,
confers high hydrophobicity to the mycobacterial cell wall; b) Gram-negative cell walls contain a thin peptidoglycan layer that lines the plasma membrane and an outer membrane
composed of lipopolysaccharides, responsible for their antigenic properties; c) the cell walls of Gram-positive bacteria are thick and mainly composed of a peptidoglycan layer
adjacent to the plasma membrane.
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Table 1. MDR-TB treatment still poses a great challenge due to the high
toxicity, as well as elevated costs and reduced activity, of second-line
drugs (Sosnik et al., 2010). Also, their bioavailability can be reduced
under certain clinical conditions (e.g. HIV) or due to interactions with
other drugs: for example, the intestinal absorption rate of rifampicin is
greatly reduced in the presence of isoniazid (Mariappan and Singh,
2003).

3.2. New developments in anti-TB therapy

Due to the growing global concern over multidrug-resistant bacteri-
al strains, efforts have been made in recent years to develop new drugs
against TB (WHO, 2014). Also, this concern has already resulted in the
creation of the consortium More Medicines for Tuberculosis
(www.mm4tb.org) and the Working Group on New TB Drugs (http://
www.newtbdrugs.org) (Zumla et al., 2012).

Some older drugs, like fluoroquinolones and rifamycins have been
re-purposed to obtain higher efficiencies and, among the novel drugs,
diarylquinolines and nitroimidazoles seem the most promising
(Gaspar et al., 2008; Zumla et al., 2013).

Fluoroquinolones act by inhibiting DNA topoisomerase IV and DNA
gyrase, and show favorable pharmacokinetics, easily penetrating into
tissues and host macrophages (Tomioka, 2006). One such example is
Table 1
Recommended strategies for TB therapy.

Regimen

Susceptible TB 2 months INH + RIF + PZA + EMB, followed by
Multidrug-resistant TB

Resistance pattern
INH, RIF PZA + EMB + FQN + 1 SLD (entire course) + IN
INH, RIF, (EMB or PZA) (PZA or EMB) + FQN + 2 SLD (entire course) +
INH, RIF, EMB, PZA FQN + 3 SLD (entire course) + INJ (first 6–12 m
INH, RIF, EMB, PZA, (FQN or INJ) (INJ or FQN) + 3 SLD + TLD (entire course)
INH, RIF, EMB, PZA, FQN, INJ INJ + all available SLD + TLD (entire course)

Resistance pattern is based on the results of Drug Susceptibility Tests. INH: isoniazid; RIF: rifam
(e.g. streptomycin, kanamycin); SLD: second-line drugs; TLD: third-line drugs (e.g. clarithromy
moxifloxacin (Avelox®), which has shown a high in vitro activity
against M. tuberculosis. However, the high level of resistance to
fluoroquinolones limits their use (Wang et al., 2007). A combined ad-
ministration of rifapentine (a rifamycin derivative modified from, but
more potent than, rifampicin) with isoniazid is highly effective against
latent TB (Sterling et al., 2011).

A promising new drug, already in phase III of clinical trials, is
bedaquiline (also known as TMC-207 or R207910), a diarylquinoline
developed by Janssen Pharmaceuticals found to inhibit ATP synthase
(Andries et al., 2005). Bedaquiline was shown highly effective in vitro
against M. tuberculosis and results so far indicate bactericidal activity
in patients suffering from drug-susceptible TB (Stehr et al., 2014). Clin-
ical trials against MDR-TBwere recently approved by FDA, although ad-
verse effects (e.g. arrhythmia induction and even mortality) have been
described (Cohen, 2013).

Nitroimidazoles are a class of compounds described as active against
tuberculosis (Zumla et al., 2013). PA-824 and the more potent
delamanid (OPC67683) are two examples of nitroimidazoles that are
currently in Phase III clinical trials for the treatment of MDR-TB (Gler
et al., 2012; Tasneen et al., 2015). Delamanid (Otsuka Pharmaceutical
Co., Ltd), in particular, acts by inhibiting the synthesis of the
mycobacteria cell wall components, namely mycolic acid. (Gler et al.,
2012).
Total duration
(months)

Nr of drugs Costs per patient

4 months INH + RIF 6 4 US$ 19–22

J (first 6 months) 18–24 5–6 US$ 4000–6000 (ex works)
INJ (first 6 months) 18–24 5–6
onths) 18–24 5–7

N 24 5–7
N 24 5–7

picin; PZA: pyrazinamide; EMB: ethambutol; FQN: fluoroquinolones; INJ: injectable drugs
cin, amoxicillin, linezolid). All treatment administrations are performed on a daily basis.
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Thousands of molecules were synthesized based on the 1.2-
ethylenediamine core of ethambutol (considered the weakest link in
the standard regimen) and screened for activity againstM. tuberculosis.
(Lee et al., 2003). The diamine SQ109 (Sequella, Inc.) was selected due
to its high efficiency after in vitro and in vivo testing against strains resis-
tant to standard drugs, such as ethambutol, isoniazid and rifampicin
(Protopopova et al., 2005). Although the exact mechanism of SQ109's
action remains unclear, it is believed to inhibit cell wall synthesis
(Tahlan et al., 2012). Phase II trials are currently ongoing (Zumla et al.,
2013).

Oxazolidinones (e.g. linezolid) are a novel class of compounds that
inhibit protein synthesis in bacteria, targeting the 23S rRNA in the 50S
ribosome subunit (Shaw and Barbachyn, 2011). Although promising
candidates for TB therapy, many of these drugs present adverse side ef-
fects (e.g. thrombocytopenia, peripheral neuropathy) and inadequate
pharmacokinetics profiles that may actually hinder their use (Lee et
al., 2012). However, two of these compounds, AZD5847 and Sutezolid
(PNU-100480) are currently in Phase II clinical trials, having shown im-
proved mycobactericidal activity compared to other oxazolidinones
(Balasubramanian et al., 2014; Wallis et al., 2014).

Q203 is a promising new imidazopyridine amide, which targets the
respiratory cytochrome bc1 complex in M. tuberculosis, preventing its
growth, and has shown activity against MDR M. tuberculosis in clinical
isolates at a nanomolar range and in a mouse tuberculosis model at a
dose lower than 1 mg/kg body weight (Pethe et al., 2013). This drug
has recently entered Phase I clinical trials.

There are other promising drugs aiming TB therapy currently in pre-
clinical trials: SQ609, a dipiperidine that interfereswith cellwall synthe-
sis showed the highest in vitro and in vivo anti-tubercular activity in a
screening study (Bogatcheva et al., 2011); SQ641, a capuramycin ana-
logue that inhibits translocase I (involved in cell wall synthesis),
showed a remarkable in vitro activity against M. tuberculosis, but its
poor hydrosolubility and poor intracellular activity stand as major
drawbacks (Nikonenko et al., 2009); TBI-166 is a clofazimine analogue
showing higher activity against intracellular and non-replicatingM. tu-
berculosis, being less lipophilic and presenting reduced plasma half-life
compared with clofazimine, thus resulting in decreased accumulation
(Li et al., 2014); CPZEN-45 is a caprazamycin isolated from an actinomy-
cete strain, which targets the biosynthesis of mycobacterial cell wall
constituents inM. tuberculosis (Ishizaki et al., 2013); PBTZ169 is a piper-
azine-containing benzothiazinone that binds to, and inhibits, the essen-
tial flavo-enzyme DprE1 (deca-prenylphosphoryl-beta-D-ribose-2-
epimerase), responsible for the biosynthesis of key cell wall compo-
nents in mycobacteria and has shown additive activity against TB,
when combined with other anti-TB drugs (except bedaquiline)
(Makarov et al., 2014).
Table 2
Pipeline of new anti-TB drugs.

Drug Class Sponsor

AZD5847 Oxazolidinones Astra Zeneca

Bedaquiline (TMC-207,
R207910)

Diarylquinoline Janssen Pharmaceuticals

Clofazimine (TBI-166) Riminophenazine Institute of Materia Medica (Sh
CPZEN-45 Caprazamycin Institute of Microbial Chemistry

Japan)
Delamanid (OPC6768) Nitroimidazole Otsuka Pharmaceutical Co., Ltd.
PBTZ-169 Benzothiazinone Innovative Medicines for Tuber
Pretomanid (PA-824) Nitroimidazole TB Alliance
Q203 Imidazopyridine

amide
Qurient Technologies

SQ109 Ethylenediamine Sequella, Inc.
SQ641 Capuramycin Sequella, Inc.
Sutezolid (PNU-100480) Oxazolidinones Sequella, Inc.

n.a. – non-applicable.
Regardless of the latter listing of new drugs, summarized in Table 2,
the pipeline remains very short and other major challenges still need to
be addressed such as the duration of therapies and how to prevent drug
resistance (Zumla et al., 2012).

3.3. Economic burden of the disease

Calculation of total treatment costs is highly difficult to perform,
since each country has its own health system, as well as its own
methods for monitoring and registering costs. Moreover, pharmaceuti-
cal companies charge different prices for identical drugs, depending
on the country's gross domestic product (GDP) and the degree of occa-
sional sponsoring by non-profit organizations. As such, data regarding
total treatment costs is heterogeneous (Diel et al., 2014).

In 2001, the Stop TB Partnership Global Drug Facility (GDF) was
established, functioning as a one-stop mechanism to provide grants
and procurement services to countries in need (Global Drug Facility,
2014). Regarding medicines alone, GDF has estimated a six-month
first-line treatment against susceptible TB to cost around $19–22 per
patient (WHO, 2014). On the other hand, the cost of a 24-
month second-line treatment comprising four drugs (capreomycin,
moxifloxacin, 4-aminosalicylic acid and cycloserine) ranges between
US$4000–6000 ex works (Médecins sans Frontières, 2012). It should
be noted that the exact price also varies among individuals, due to dif-
ferent patient's drug resistance profiles. In general, GDF announced
that the total value of orders in 2013 was US$226.4 million (a 56% in-
crease compared to 2012), of which US$128 million concerned sec-
ond-line treatment (83% more than in 2012) (Global Drug Facility,
2014).

The Tuberculosis Network European Trials Group (TBNET) is an Euro-
pean network that promotes clinically-oriented research in the field of
TB, through exchange of ideas and protocols among its members
(Giehl et al., 2012). A study carried on behalf of TBNET in 37 European
countries evaluated the availability and cost of anti-TB drugs in Europe
(Gunther et al., 2014). Costs of standard treatments for either suscepti-
ble, MDR or XDR TB were compared using a purchasing power analysis
and affordability was evaluated relatively to monthly GDP per capita.
This study demonstrated that at least one second-line injectable and ei-
ther moxifloxacin or levofloxacin were available in all countries. More
importantly, it revealed that treatment for drug-susceptible TB repre-
sents an average of 8.5% of themonthly GDP across countries, increasing
to 30% or even to more than 100% for MDR and XDR TB, respectively.

Expenses with infection control, laboratory support and psychoso-
cial care and counseling add up to the cost of production and distribu-
tion of anti-TB medicines (Médecins sans Frontières, 2012). In a 2009
study, Kik et al. (2009) calculated the average costs of a household
Target Stage
Clinical trial
ID

Protein synthesis Phase II (on
hold)

NCT01516203

ATP synthase Phase III NCT01600963

anghai, China) DNA synthesis Preclinical n.a.
(BIKAKEN, Tokyo, Cell wall synthesis Preclinical n.a.

Cell wall synthesis Phase III NCT01424670
culosis (iM4TB) Cell wall synthesis Preclinical n.a.

Cell wall synthesis Phase III NCT02342886
Cytochrome bc1
complex

Phase I NCT02530710

Cell wall synthesis Phase II NCT01218217
Cell wall synthesis Preclinical n.a.
Protein synthesis Phase II NCT01225640

ctgov:NCT01516203
ctgov:NCT01600963
ctgov:NCT00608959
ctgov:NCT01597505
ctgov:NCT02343627
ctgov:NCT01158235
ctgov:NCT01225640


928 J.P. Silva et al. / Biotechnology Advances 34 (2016) 924–940
with a TB patient treatment, in the Netherlands, as being €2603. Of
those, only €353 resulted from direct costs. The gross remainder was
due to hospitalization and time loss (about 2.7 months), indicating
that the highest burden was mainly due to indirect costs, namely loss
of productivity.

Recently, Diel et al. (2014) performed a cost-assessment analysis of
TB treatment in Europe, to build a case for investing in a newvaccinede-
velopment. These authors analyzed the cost of TB treatment throughout
the different European Union (EU) members, considering direct and in-
direct costs. Loss of productivity was considered in the total sum of TB
treatment costs. As such, the total average cost of TB per case for the
first 18 EU members was €10,282, €57,213 and €170,744 for the treat-
ment of susceptible, MDR and XDRTB, respectively. In the other nine re-
cent EUmembers, the corresponding total average cost was determined
to be €3427 (susceptible) and €24,166 (MDR and XDR TB) (Diel et al.,
2014).

Overall, and according to recent data, considering direct and indirect
costs, TB andMDR-TB together cost the EU €5.9 billion per year (http://
www.fighttb2015.eu). Moreover, it should be noted that the burden re-
lated with TB treatment is also relevant in high-income countries, as
demonstrated by Blaas et al. (2008), who analyzed four XDR-TB cases
in Germany and concluded that even in this developed country, the dis-
ease setting had a tremendous impact on life quality and total cost of
health resources.

4. Antimicrobial peptides (AMPs)

The emergence ofmulti-drug resistant strains, togetherwith ineffec-
tive and expensive therapeutics has paved the way to the development
of new antimicrobial compounds able to act through different mecha-
nisms (Khara et al., 2014). Among those, antimicrobial peptides
(AMPs) show particular interest, either for administration as a mono-
therapy or combined with other drugs (Padhi et al., 2014). AMPs are a
diverse group of molecules found in most living organisms and recog-
nized for their relevant role in the innate immune response (Giuliani
et al., 2007). They are usually short in length (20–60 amino acid resi-
dues), cationic, amphipathic and have a broad spectrum of activity
against bacteria, fungi and viruses. The amphipathic and cationic nature
of AMPs enables them to interact in both aqueous and lipid-rich envi-
ronments, and bind the negatively charged membranes of bacteria
Table 3
Representative AMP families and sub-families of the major structural AMP classes.

Structural classes Family/sub-family Examples

α-Helix Bacteriocina Nisin, pediocin, lactococcin G
Bombinin Maximin 1, Maximin H1
Buforin Buforin I
Cecropin Cecropin A, Cecropin B
Cathelicidin LL37
Dermaseptin Dermaseptin S4
Magainin Magainin 2

β-Hairpin/loop (one disulfide bond or
cyclic peptide chain)

Brevinin Brevinin-1, Brevinin-2
Cathelicidin Bactenecin
Cyclotide Circulin-A, Cycloviolacin-1
Esculentin Esculentin-1
Ranateurin Ranateurin-2

β-sheet (2 or more disulfide bonds) Defensin α-Defensin 1, β-Defensin 1, θ
Diptericin Diptericin A, Diptericin B
Penaeidins Penaeidin-1, -2, -3
Protegrin Protegrin-1, Protegrin-2
Tachyplesins Tachyplesin-1, Polyphemusin
Thionin α-Thionin, β-thionin

Linear, non α-helical Apidaecin Apidaecin IB
Cathelicidin Bac5, PR-39
Histatin Histatin-1, -3, -5

Some families, like cathelicidins, are very heterogeneous and peptides with different structure
a Exceptions to the α-helical structure of bacteriocins comprise, for example, bovicin HJ50, w
(Hancock and Lehrer, 1998; Yamasaki and Gallo, 2008). Overall, AMPs
can be classified into four major classes, according to their secondary
structure:α-helix,β-hairpin structure or loop (formed by a single disul-
fide bond at the carboxy end and/or cyclization of peptide chain), anti-
parallel β-sheet (restrained by two ormore disulfide bonds), and linear,
non α-helical peptides (Zasloff, 2002). Some examples of AMP repre-
sentative of these classes are given in Table 3. The ultimate proof of
AMPs involvement in mammalian innate immunity was achieved after
observing that the deletion of the gene Cnlp (which expresses CRAMP,
a murine cathelicidin) in mice resulted in a decreased ability of isolated
mast cells to kill the pathogen S. pyogenes (Nizet et al., 2001). The diver-
sity of these peptides is evident in the different AMP collections, such as
the multifunctional Antimicrobial Peptide Database (APD), established
in 2003 with the aim of promoting research and information exchange
in the field (Wang et al., 2009). An update to this database was per-
formed in 2012 with the Dragon Antimicrobial Peptide Database
(DAMPD) (Sundararajan et al., 2012). Over 1200 AMPs were manually
selected from a wider peptide list retrieved from UniProt and GenBank
databases. Only peptides with experimentally validated antimicrobial
activitywere included inDAMPD.More recently, a comprehensive data-
base linking AMPs (LAMP), describing the antimicrobial activity and cy-
totoxicity of over 5500 entries of both natural and synthetic AMPs, was
developed to aid in the design and discovery of new peptides (Zhao et
al., 2013).

4.1. Mechanisms of action

Different mechanisms have been described to explain the killing of
bacteria by antimicrobial peptides (Yeaman and Yount, 2003). Some
of these are summarized in Fig. 2. Positively charged AMPs associate
with the anionic lipopolysaccharides and phospholipids of the bacterial
membrane through electrostatic interactions, resulting in their dis-
placement or in the modification of membrane structure due to alter-
ations in surface tension (Aoki and Ueda, 2013; Giuliani et al., 2007).
This further results in membrane disruption that causes leakage of cel-
lular contents or the translocation of the peptide through the outer
membrane in gram-negative bacteria, as proposed in the Shai-
Matsuzaki-Huang model (Matsuzaki, 1999; Shai, 1999; Yang et al.,
2000). Three different main models have been further proposed, de-
pending on the peptide insertion state: i) in the “carpet” model the
Origin Length (a.a.) Activity

Bacteria 22–70 Bacteria (Gram + and −)
Frog 20–27 Broad-spectrum
Frog 21–39 Broad-spectrum
Insect 31–37 Bacteria (Gram + and −)
Mammals 23–37 Broad-spectrum
Frog 27–34 Bacteria, Fungi
Frog 21–26 Broad-spectrum
Frog 24–31 Bacteria (Gram + and −)
Mammals 12–18 Broad-spectrum
Plant 28–37 Broad-spectrum
Frog 18–46 Bacteria, Fungi
Frog 27–32 Broad-spectrum

-Defensin Vertebrate and invertebrates 18–45 Broad-spectrum
Insect 82 Bacteria (Gram + and −)
Crustaceans 23–31 Bacteria, Fungi
Pig 16–18 Broad-spectrum

-1 Horseshoe crab 17–18 Bacteria, fungi
Plant 45–48 Bacteria, fungi
Insect 18–20 Bacteria (Gram −)
Mammals 39–80 Broad-spectrum
Animal 24–38 Bacteria, fungi

s can be found within the same family.
hich contains a rare disulfide bond, or the cyclic peptide AS-48.

http://www.fighttb2015.eu
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Fig. 2. Examples of the different mechanisms used by antimicrobial peptides to induce killing of bacteria: a) targeting of key intracellular processes (e.g. inhibition of protein or DNA
synthesis) that lead to bacteria cell death without membrane disruption; b) positively charged AMPs bind to the anionic bacterial membrane through electrostatic interactions,
resulting in bacterial membrane disruption. Three models (carpet, barrel-stave and toroidal pore models) help explain the different mechanisms that AMPs use to create pores on the
membrane; c) AMPs can bind the host cells' toll-like receptors, inducing an immune response.
Modified from Duplantier and van Hoek (2013)).
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peptide aligns parallel to the surface of the membrane, forming an ex-
tensive layer (or carpet) that eventually increase the surface tension
of the membrane to a point of disruption; ii) in the “barrel-stave”
model, the peptides (referred as staves) are inserted in a barrel-like
ring inside the membrane, forming pores with their hydrophobic sur-
faces facing towards the membrane and the hydrophilic surfaces
forming the pore lining; iii) in the “toroidal pore” model, the attached
peptides intercalate with themembrane lipids, bending the lipidmono-
layer through the pore, so that the head groups of both peptides and
lipids face towards the center of the pore (Brogden, 2005; Duplantier
and vanHoek, 2013; Yeaman and Yount, 2003).Wenzel et al. (2014) re-
cently described a complementary model for the peptides RWRWRW-
NH2 (also referred as MP196) and gramicidin S. In this model, AMPs in-
tegrate themembrane anddelocalize peripheralmembraneproteins es-
sential for respiration and cell wall biosynthesis (cytochrome c and
MurG, respectively), thus affecting energy metabolism and cell wall
integrity.

Other models have also been proposed to help explain the AMP-in-
duced membrane disruption. In 1999, Miteva and co-workers (Miteva
et al., 1999) suggested the involvement of a molecular electroporation
mechanism. Using NK-lysin (a 78 amino acid peptide secreted by por-
cine natural killer cells) as a model, the authors observed that the pres-
ence of a highly charged α-helix in a peptide was responsible for
creating an electric field upon peptide binding to the bacterial mem-
brane. The high electrostatic potential thus formed further resulted in
pore formation. Pokorny et al. (2002) described a model in which an
amphipathic α-helical peptide aggregates into a trimer and rapidly
translocates across the membrane, similarly to a sinking raft. During
this process, efflux of lipid vesicle contents and lipid flip-flop occur
due to the transient, peptide-induced membrane instability. Some pep-
tides have been described by Wimley (Rathinakumar et al., 2009) as
having the ability to promote membrane destabilization by causing re-
arrangements in lipid organization upon partitioning through the inter-
facial zone of the bilayer. This phenomenon, described as interfacial
activity, is usually associated to peptides that bind well enough to the
membranes and are imperfectly amphipathic, meaning that their
polar and nonpolar groups are segregated in an imperfect way. This im-
plies that lipids must deform and disrupt their hydrocarbon core to ac-
commodate the peptide's polar and nonpolar groups (Wimley, 2010).

Pore formation has also been suggested by Fuertes et al. (2011) as an
intrinsic property of lipid bilayers. According to the authors, phase coex-
istence, as well as different internal and external sources of tension (in-
cluding the binding of nonlipidic molecules), increase the probability of
pore formation. Binding of amphipathic peptides to membranes acts as
a tension factor and reduces the activation energy barrier, thus enabling
pore opening. Peptides further act by reducing the line tension, which
results in pore stabilization. In this lipocentric pore model, peptides
are best described as pore-inducers rather than pore-forming
molecules.

All the previous models induce bacterial killing through membrane
disruption. However, AMPs can target key intracellular processes that
lead to bacterial death without necessarily disrupting the membrane.
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Such processes include the inhibition of cell wall components, DNA or
protein synthesis, protein folding and metabolic turnover (Aoki and
Ueda, 2013).

Lantibiotics are a class of AMPs containing the cyclic thioether amino
acids lanthionine and/or methyllanthionine, which are produced by,
and act against, Gram-positive bacteria (Bierbaum and Sahl, 2009).
These peptides divide into two main groups based on their structures
and modes of action - type A and type B lantibiotics - often combining
different killing mechanisms in the same molecule. For example, type
A lantibiotics (e.g. nisin, Pep5, epidermin) affect both cell wall biosyn-
thesis and form pores in the lipid membranes through interactions
with lipid II, a precursor of the cell wall (Asaduzzaman and Sonomoto,
2009; Wiedemann et al., 2001). Type B lantibiotics also inhibit cell
wall biosynthesis but unlike type A molecules, they do not form pores.
Duramycin, for example, binds membrane-bound phospholipids, thus
inhibiting phospholipase A2, whereas mersacidin and actagardine di-
rectly complex lipid II (Brötz and Sahl, 2000).

Lipid II is also the main target of glycopeptide antibiotics, a class of
actinomycete-derived AMPs composed of tri- or tetracyclic
heptapeptides cores, which are usually glycosylated and may also com-
prise lipophilic fatty acid side chains. Examples of glycopeptide antibi-
otics include vancomycin, teicoplanin or bleomycin (Butler et al.,
2014). Contrarily to lantibiotics, which bind the head group of lipid II,
glycopeptide antibiotics complex the acyl-D-alanyl-D-alanine side
chain of the peptidoglycan (Bierbaum and Sahl, 2009).

At a different level, buforin II, a 21-amino acid, broad-spectrum AMP
derived from the stomach tissue of the Asian toad, inhibits DNA and
RNA function (Park et al., 1998). Suppression of heat shock proteins,
specifically DnaK and GroEL results in the inhibition of protein folding
and has been reported to be the target of insect-derived drosomycin,
apidaecin and pyrrhocoricin (Otvos et al., 2000). Pleurocidin, aα-helical
peptide isolated from winter flounder, has been reported to inhibit the
synthesis of both proteins and nucleic acids (Patrzykat et al., 2002),
mechanisms also shared by human neutrophil protein-1 and -2 (HNP-
1 and HNP-2) (Lehrer et al., 1989).

Recently, Scheinpflug et al. (2015),while studying a cyclic R-,W- rich
hexapeptide cWFW, described a novel mechanism of action, based on
preferential partitioning into particular lipid domains containing both
phosphatidylethanolamine and cardiolipin. However, it is not clear
how exactly this mechanism affects lipid function irreversibly. Alterna-
tively, magainins, a class of AMPs isolated from the skin of African
clawed frog Xenopus laevis (Zasloff, 1987), or LL37, a human cathelicidin
(Agerberth et al., 1995), prevent the binding of lipopolysaccharide (LPS)
to macrophages, thus avoiding the secretion of pro-inflammatory cyto-
kines by those cells (Rosenfeld et al., 2006). Some AMPs (e.g. LL37) can
also indirectly induce bacterial cell death through the regulation of the
host's innate and adaptive immunity, due to their chemokine-like and
immunomodulatory properties, including the chemotaxis of leukocytes
(Durr and Peschel, 2002; Torres-Juarez et al., 2015).

Although mycobacteria present a different composition of the cell
wall, there are studies reporting activity of natural AMPs, such as LL37
and human neutrophil defensin against M. tuberculosis at higher con-
centrations (Jiang et al., 2011; Kisich et al., 2002).

4.2. Antimicrobial resistance

The ability to resist against AMPs may be regarded as an impressive
challenge for bacterial evolution. However, the few bacteria that exhibit
AMP resistance, such as Staphylococcus aureus and Salmonella spp. have
a survival advantage and are recognized as important human pathogens
(Nizet, 2006).

One of themost common approaches developed by bacterial species
to attain AMP resistance is the modification of the anionic constituents
of their cell surfaces, thus avoiding the attraction of cationic AMPs
(Ernst et al., 2001; Nizet, 2006). For example, modifications of teichoic
acid composition, namely the incorporation of significant amounts of
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D-alanine, in S. aureus cell wall, reduces its negative charge (Peschel
2002). Also, some species (e.g. from the generaMorganella and Serratia)
reduce the amount of peptide-binding sites by establishing an inappro-
priate density of acidic lipids on cell surface; another resistance mecha-
nism includes the extracellular proteolytic degradation or
neutralization of AMPs (Nawrocki et al., 2014), like for example in the
case of Porphyromonas gingivalis (Zasloff, 2002). Alternatively, this can
be achieved either directly through bacterial surface-associated or se-
creted proteins or indirectly by inducing the release of molecules that
bind and inactivate AMPs before they reach the cell membrane (Nizet
2006). S. aureus produces staphylokinase, an enzyme that in addition
to its proteolytic activity can bind and inactivate human neutrophil-de-
rivedα-defensins (HNPs) (Jin et al., 2004). However, it should be noted
that some AMPs, like the ones that include proline-rich sequences, pos-
sess a relative resistance to proteolytic degradation, since proline pre-
vents the cleavage of the scissile bond by serine proteases (Shinnar et
al., 2003). Proteolytic degradation can also be prevented by the intro-
duction of D-amino acid substitutions and by head-to-tail cyclization
as demonstrated by Molhoek et al. (2011) using chicken cathelicidin-2
as a model. Such modifications also reduce the peptides' cytotoxicity
and do not alter their antimicrobial activity.

Moreover, some bacteria can actively extrude AMPs from the bacte-
rial membrane, a process achieved through energy (ATP or proton mo-
tive force)-driven pumps (Levy, 2002). Pseudomonas aeruginosa, for
example, possesses several multidrug efflux pumps able to export a
broad range of molecules. Many human pathogens are also able to up-
or downregulate their virulence factors according to environmenta
cues found in the host. Some examples are the PhoP/PhoQ components
of Salmonella typhimurium (Ernst et al., 2001), the response regulator
ArcA of Vibrio cholerae or the covRS locus of Group A Streptococc
(GAS) (Nizet, 2006). Interestingly, some bacteria have also been found
to regulate the production of AMPs by the host. Indeed, the DNA plas-
mid from Shigella spp. was reported to mediate the downregulation o
LL37 and β-defensin-1 in epithelia surfaces upon infection, thus
promoting bacterial adherence and invasion of the host epithelium
(Islam et al., 2001). A schematic representation of the different
resistance mechanisms employed by bacteria against AMP is shown in
Fig. 3.

Acquisition of resistance has been reported to have a fitness cost, af-
fecting the bacteria capability to survive and reproduce, which typically
reflects in a reduced growth rate. In this sense, Andersson and Hughes
(2010) suggested that a decrease in the use of antimicrobialswould the-
oretically result in a reduced frequency of resistant bacteria, in a natura
selection-mediated process, since susceptible bacteria (displaying
higher growth rates) would outmatch resistant ones upon a decrease
in the selective pressure. However, bacteria can ameliorate the costs o
resistance through acquisition of additional fitness-compensatory mu-
tations. In fact, acquisition of specific mutations is a mechanism that
cross-features bacterial resistance against AMPs and conventional anti-
biotics. For example, mycobacterial mechanism of resistance to isonia-
zid and ethambutol is obtained by mutating the katG and ethA genes
respectively, which encode the expression of enzymes responsible for
the activation of those two antibiotics. By preventing their activation
M. tuberculosis avoids the inhibition of InhA, an enoyl-acyl carrier pro-
tein reductase, thus securing the biosynthesis of mycolic acids
(Vilcheze and Jacobs, 2014). Resistance to rifampicin is usually related
with a mutation within the rpoB gene, which encodes the β subunit o
bacterial RNA polymerase, the target of rifampicin (Goldstein, 2014)
Similarmechanisms have also beendescribed in AMP resistance. Vanco-
mycin resistance, for example, occurs due tomutations in genes that en-
code enzymes involved in peptidoglycan biosynthesis, ultimately
resulting either inmodification or removal of vancomycin's binding tar-
get (Courvalin, 2006). Also, an accumulation of single nucleotide poly-
morphisms has been identified in mprF, a multipeptide resistance
factor gene involved in the synthesis of cell membrane in daptomycin-
resistant S. aureus strains. Overexpression of the dlt operon, responsible



Fig. 3.Mechanisms of bacterial resistance against AMPs. One of themost common approaches involves themodification of cell surface charge, either by: a) adding D-alanine to teichoic acid
composition (e.g.Gram-positive bacteria like S. aureus); b) altering the density of acidic lipids on cell surface by the incorporation of aminoarabinose in LPSmolecules or by the acylation of
the lipid A unit, also in LPS (e.g. Morganella sp., Serratia sp.). c) Extracellular proteolytic degradation of AMPs, which occurs after protein secretion and binding to AMPs in the extracellular
environment or by binding of cell surface proteins to AMPs (e.g. P. gingivalis). d) Active efflux of AMPs (e.g. P. aeruginosa). e) Induction of the downregulation of AMPs expression by host
cells (e.g. Shigella spp.).
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for the D-alanylation of teichoic acids present in the cell wall, was also
reported in the same resistant strains (Bayer et al., 2013). Studies also
performed in S. aureus by Pietiainen et al. (2009) showed the involve-
ment of vraDE (an ABC transporter) overexpression in resistance to
bacicatrin.

Still, acquisition of resistance against AMPs may be considered very
rare. This may be attributed in part to the non-specificity of these pep-
tides' mode of killing, as well as the combination of different killing
mechanisms in the same molecule, and the fact that mutations that
grant bacteria increased AMP resistance involve metabolically
expensive biochemical modifications. Moreover, these mutations may
not be advantageous to the organisms upon epithelial colonization or
host-to-host transmission (Kapoor et al., 2011; Nizet, 2006; Peschel
and Sahl, 2006). A summary of these mechanisms, as well as the most
suitable models for their study were recently described by Bauer and
Shafer (2015). Development of resistance by M. tuberculosis occurs ex-
clusively through spontaneous mutations in the chromosomes (rather
than through plasmid-mediated mechanisms) that affect the drug tar-
get or bacterial enzymes that activate the prodrug. These mutations
were selected by mycobacteria based on reduced fitness costs (Bottger
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and Springer, 2008). To date, many natural AMPs, including LL37 and
human neutrophil peptides (HNPs) have been reported to kill
mycobacteria, although at higher concentrations than the ones used to
kill other microorganisms (Fattorini et al., 2004; Jiang et al., 2011;
Ramon-Garcia et al., 2013; Santos et al., 2014). Interestingly, Limoli et
al. (2014) reported that sub-inhibitory levels of LL37 inducedmutations
in the DNA of P. aeruginosa, encouraging it to overproduce a protective
coating (a process referred asmucoid conversion), which ultimately re-
sults in resistance to higher concentrations of LL37 or even rifampicin.

5. AMPs: the road to market and clinic

The road to market new AMPs can be long and costly. Following the
identification of an AMP as a drug candidate, this has to be produced in
large-scale by GoodManufacturing Practices (GMP) (Uhlig et al., 2014).

5.1. Manufacturing

Different processes, including chemical synthesis, recombinant DNA
technology, cell-free expression systems and transgenic plants or ani-
mals have been used to produce AMPs in a cost-effective fashion (Li
and Vederas, 2009). Indeed, high manufacturing costs can be a major
problem, as the large-scale production of a cationic AMP may reach
US$50–400 per gram (depending on the production method, peptide
length and purification requirements), in comparison with less than
US$1 per gram of antibiotic (Marr et al., 2006). However, strategies
like recombinant technology may help circumvent this problem. In-
deed, a recombinant version of LL37 was previously produced in
Escherichia coli using a cost-effective method that allowed the mainte-
nance of the peptide's antimicrobial and pro-angiogenic activities
(Ramos et al., 2010; Ramos et al., 2011). Bacterial systems, in particular
E. coli, are the most commonly used for heterologous AMP expression.
These are expressed as fusion proteins, masking their lethal effects to
the host while protecting them from proteolytic degradation (Li,
2011). Nevertheless, AMP expression in other systems has been ex-
plored as a means of obtaining higher yields and lower costs. In this
scope, Novozymes Inc. described the production of plectasin in a fungal
system at large scale and high purity through recombinant technology
(Mygind et al., 2005). Moreover, production of recombinant peptides
in plants is viewed as safe, efficient and cost-effective, yielding biomass
at 10- to 50-fold lower costs as compared to the production in E. coli
(Kusnadi et al., 1997). These peptides are synthesized with the correct
folding and plant cells direct them to environments that reduce degra-
dation, thus increasing stability (Horn et al., 2004). Recently, Zeitler et
al. (2013) successfully produced the peptide SP1–1 as a fusion protein
in Nicotiana benthamiana, using the tobacco mosaic virus strategy. The
use of strains (usually bacteria or fungi) specificallymutated to enhance
protein synthesis, secretion and foldingmay further increase the yield of
a recombinant peptide production up to 1000-fold, compared to non-
modified strains (Li and Vederas, 2009). On the down side, recombinant
peptides require extensive design and development, as well as a rigor-
ous quality control to meet the regulatory requirements. As such, even
if the costs of the starting material are negligible, all the downstream
processing to produce a large-scale GMP-grade lot of recombinant pep-
tide can reach US$1 million with a lead-time of over 1 year (Lax, 2010).
Noteworthy, recombinant technology changed the mindset of the pep-
tide manufacturing industry. Before that, peptide production was con-
sidered expensive and complicated, and most of all, the industry had
few or no interest in producing molecules lacking oral bioavailability,
as is the case of peptides (most of them are degraded in the upper
gut). Indeed, oral alternatives were favored in relation to peptides, in
order to increase patient compliance. After the introduction of long-act-
ing therapies based on the release of peptides encapsulated in biode-
gradable polymers, requiring only alternate injections, interest on
non-orally administered drugs resurfaced and recombinant expression
emerged as a cost-effective method for large-scale peptide production
(Lax, 2010).

Chemical synthesis processes, which include solid-phase, solution-
phase and hybrid, provide an interesting alternative for large-scale pro-
duction of AMPs (Vlieghe et al., 2010). These are faster and allow the
production of much higher peptide quantities. In addition, they use ge-
neric chemical and purification procedures and require less personnel
for production, quality and regulatory issues management (Lax, 2010).
As a result, production costs are highly reduced compared to other pep-
tide production methods. If this process is set at a plant with a capacity
to produce ~100 kg peptide per year, costs should be around US$7.5–10
per gram per amino acid residue. But if the plant is able to produce
N1 ton per year, the cost may drop to less than US$1 per gram per
amino acid residue (Bray, 2003). Also, chemical synthesis provides
more flexibility in terms of peptide design, allowing the incorporation
of unnatural amino acids, for example. Small to medium sized peptides
are preferably synthetized through solution-phase, providing signifi-
cant advantages in terms of isolation, characterization and purification
of the intermediate products, while solid-phase is usually preferred for
larger peptides (Lax, 2010).

A major challenge in peptide manufacturing is matching equipment
and other resources with the customer needs. Usually small annual
amounts (10 g–10 kg) are required for clinical trials or other research
purposes, being larger quantities (100 kg–1 ton) needed only sporadi-
cally. This represents a problem, since larger-scale production requires
larger equipment, whose acquisition andmaintenance costs are difficult
to justify if it stands idle. Moreover, it exposes the manufacturer to in-
creased expense risks should this equipment fail to operate. Also,
large-scale production is often associated with longer hold times be-
tween intermediate processes, which favor degradation and/or aggre-
gation of the peptide. In this sense, a solution considering the use of
smaller equipment organized in tandem or parallel configuration is fa-
vored to diminish risks associated with large-scale peptide production
(Lax, 2010).

5.2. Quality control

Quality control of active pharmaceutical ingredients (APIs) is essen-
tial. Guidelines defining specific testing and validation criteria for APIs
in general, are included in the Code of Federal Regulations from Food
and Drug Administration (FDA) (2015), the Q7A-Good Manufacturing
Practice Guide for Active Pharmaceutical Ingredients of the International
Conference on Harmonization (ICH) (2000) or in the Rules Governing
Medicinal Products in the European Union from the Directorate-General
of the European Commission (2014). However, there is only one FDA
guideline that specifically addresses peptides, issued in 1994, entitled
Guidance for Industry for the Submission of Chemistry, Manufacturing
and Controls Information for Synthetic Peptide Substances Center for
Drug Evaluation and Research (CDER) and Center for Biologics
Evaluation and Research (CBER), (1994). This guideline determines
the lot-release information that should be provided to guarantee the
identity, purity, strength and quality of the peptide, as well as to show
lot-to-lot consistency, by defining a set of differentmethods and criteria
for peptide control testing. Purity identity assessment, in particular,
constitutes a major additional cost for companies. Currently there are
no clear guidelines that define a threshold for the amount of impurities
allowed, so manufacturers usually adopt very narrow limits to prevent
any regulatory issues. However, if one considers the lowdoses used, set-
ting the impurity threshold to very low amounts can be catastrophic re-
garding the final cost of the product, as further unnecessary costswould
result from additional purification steps (Lax, 2010). Moreover, higher
purity implies increasedmanufacturing costs, as it requiresmore equip-
ment, chemicals and time to achieve the same amount of peptide with
less purity (Swietlow and Lax, 2004). On the other hand, the identity
of the peptide is established by the amino acid composition, sequence
and chirality, usually combining the use of expensive mass
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spectroscopy, amino acid analysis and High-Performing Liquid Chroma-
tography (HPLC) (Bartolomeo and Maisano, 2006; Rutherfurd and
Gilani, 2009; Sherman et al., 2009). The proper selection of the purifica-
tion method is essential to obtain high-purity peptides (Andersson et
al., 2000). The assessment of the purity profile of these chemically
synthetized peptides assumes extreme relevance. Indeed, the presence
of an elevated amount of impurities may result in a cocktail of more
than one pharmaceutically active substance, which may alter the main
peptide's interactionwith biological systems (Lax and Verlander, 2006).

5.3. Regulation

Regulation of new peptides represents a great challenge for compa-
nies, in part due to some ambiguity in their classification by regulatory
entities. For the FDA, distinction between protein and peptide is solely
based on size, the defined upper size threshold being set at 40 amino
acids, according to the literature. In this sense, any polymer composed
of 40 or less amino acids is considered a peptide, while larger ones
falls within the definition of a protein. This difference in definition has
implications for protein and peptide classification under the Federal
Food, Drug & Cosmetic (FD&C) Act. Indeed, the term “protein (except
any chemically synthesized polypeptide)” has been included in the def-
inition of a “biological product”. According to the FD&C Act, this defini-
tion comprises sugars, proteins, nucleic acids (or any combination of
these), or living entities (e.g. cells, tissues) used for the treatment or pre-
vention of diseases in human beings. Peptides, which fall within the def-
inition of “chemically synthesized polypeptide” (meaning any alpha
amino acid polymer made entirely by chemical synthesis and contain-
ing b100 aa), are commonly regulated as “drugs”, which are usually de-
fined as pure chemical substances of small size and known structure.
Thus, consistent with data from the literature, describing peptides as
smaller, less complex (absence of a 3D structure), able to perform
fewer functions, of easier characterization and compared to proteins,
FDA excluded peptides from the term “protein” in the statutory defini-
tion of “biological product”. Nevertheless, exceptions, such as peptide
vaccines, meet the requirements to be defined as “biological product”
(Food and Drug Administration, FDA, 2009).

In Europe, the EMA defines peptides according to their origin: if of
natural sources or produced using recombinant technology they are
regulated as biological products; if chemically synthetized, they are
treated as conventional small molecular chemical substances
(European Commission, 2001, 2003). Nevertheless, a peptide may be
considered as a significant therapeutic innovation, thus accelerating
the process for obtaining marketing authorization (European
Medicines Agency, 2011).

In terms of clinical trials regulations, the recognition of the difficul-
ties to approve new antimicrobials led to the creation by FDA of the An-
tibacterial Drug Development Task Force, in 2012. This task force aimed at
facilitating the design and performance of clinical trials for this class of
medicines, particularly by dropping the requirement of the demonstra-
tion of its superiority as compared to existing ones. Moreover, by incor-
porating parts of the Generating Antibiotic Incentives Now (GAIN) Act in
that task force, new antibiotics of interest can be nominated asQualified
Infectious Disease Products (QIDPs), which allows them to have priority
review and fast-track status, along with five-year exclusivity if they are
licensed (Fox, 2012). Also in 2012, the European Medicines Agency
(EMA) released newguidelineswith clearly defined criteria for the eval-
uation of new antimicrobials in clinical trials. Moreover, COMBACTE
(Combating Bacterial Resistance in Europe), a consortium of different
European universities and corporations with a budget of nearly €195
million, was launched to promote innovative trials for new antimicro-
bials, as well as design better diagnosis systems that allow a more suit-
able monitoring of treatment responses, thus identifying best
performing treatments (Fox, 2013).

Approval of new drugs is usually based on their therapeutic efficacy,
safety and product quality. However, due to the limited global financial
resources, a drug approval step concerning pricing and reimbursement,
dubbed “the fourth hurdle”, was introduced. This criterion involves the
analysis of the product cost-effectiveness and is required even if all the
other criteria are met (McGhan, 2010).

5.4. AMPs in clinical trials

Since the approval of daptomycin (Cubicin®, Cubist Pharmaceuti-
cals) by FDA in 2003, several companies have been forced to abandon
the development of new AMPs, mostly due to reduced antimicrobial ac-
tivity (in comparison to existing treatments), safety problems and/or or
lack of funding (Eckert, 2011; Fox, 2013). For example, iseganan
(Intrabiotics Pharmaceuticals, Inc.) reached Phase III trials for the treat-
ment of pneumonia but was withdrawn due to toxicity issues (Eckert,
2011). Pexiganan® (also known asMSI-78), a magainin variant isolated
from an amphibian and developed by Magainin Pharmaceuticals
(Gottler and Ramamoorthy, 2009), was also removed from Phase III tri-
als after manufacturing costs proved too high and demands to change
the direction of the clinical study ensued. Nevertheless, this same pep-
tide recently re-entered clinical trials for the treatment of diabetic foot
ulcers-associated infections, under the name of Locilex® (Dipexium
Pharmaceuticals). The development of Omiganan®, also referred to as
MX-226 (Migenix Pharmaceuticals), a peptide designed to prevent bac-
terial colonization of catheters (Rubinchik et al., 2009), also came to a
halt after failing to reach important regulatory endpoints during Phase
III clinical trials.

A boost in the number of clinical trials exploring the therapeutic po-
tential of AMPs followed after the onset of the Antibacterial Drug Devel-
opment Task Force by FDA, in 2012. Indeed, there are currently several
AMPs undergoing clinical trials for the treatment of bacterial and fungal
infections. After the FDA approval of daptomycin for clinical use, other
AMPs have followed. Some examples include polymyxins, gramicidins,
bacitracin, vancomycin (as well as its derivatives dalbavancin and
oritavancin) and telavancin (data obtained from http://www.fda.gov).
Plectasin®, a defensin obtained from the fungus Pseudoplectania nigrella
that proved quite effective in an in vivomodel of endovascular infection
with methicillin-resistant S. aureus (MRSA) (Xiong et al., 2011), was
shelved by Sanofi-Aventis a few years after having it licensed from
Novozymes. Other promising AMPs under clinical development in-
clude: surotomycin (CB-315), a lipopetide developed by Cubist Pharma-
ceuticals, is in Phase III trials also for the treatment of Clostridium difficile
infections (Fox, 2013); NovaBiotics' lead compound Novexatin®

(NP213), a cyclic cationic peptide, is in Phase II trials against fungal in-
fections of the toenail (O'Neil, 2010); Lytixar® (also referred as LTX-
109), a synthetic, membrane-degrading peptide developed by Lytix
Biopharma currently undergoes Phase II trials for the treatment of
MRSA nasal infections (Saravolatz et al., 2012); C16G2, a synthetic pep-
tide designed to specifically target Streptococcus mutans (Kaplan et al.,
2011), is currently being tested for the treatment of dental caries
(Phase II); hLF1–11, which corresponds to an 11 amino acid sequence
derived from human lactoferrin (van der Does et al., 2012) has reached
the Phase II stage of clinical trials for the treatment of both bacterial and
fungal infections; LL37 is currently in the Phase I stage of a clinical trial
to evaluate the efficacy of its intra-tumoral administration in cutaneous
or subcutaneous tumors. Moreover, lantibiotics, which are peptide anti-
biotics derived from lactococcal bacteria and containing lanthionine
(polycyclic thioether) amino acids, showed quite promising results at
pre-clinical level and are currently in clinical trials. The lantibiotic NAI-
107, developed by Sentinella Pharmaceutics, Inc., showed great efficacy
against MRSA, as well as vancomycin- and penicillin-resistant patho-
gens. Table 4 provides a list of AMPs that are currently under develop-
ment (in preclinical trials) or already in clinical trials. This table also
includes some examples of AMPs that were withdrawn at later stages
of clinical trials, with the respective reason for the withdrawal.

So far, the only AMP that concluded pre-clinical trials for the treat-
ment of tuberculosis, after showing promising activity against both



Table 4
Past and current clinical trials (CTs) involving AMPs.

Drug Description Indication Stage/outcome Sponsor Clinical trial ID

Iseganan Protegrin Pneumonia Phase III (2005)/withdrawn due
to toxicity issues

Intrabiotics Pharmaceutical,
Inc.

–

Pexiganan
(MSI-78)

Magainin analogue Diabetic foot ulcers Phase III (1999)/withdrawn due
to high manufacturing costs

Magainin Pharmaceuticals –

Pexiganan
(Locilex®,
MSI-78)

Magainin analogue Diabetic foot ulcers Phase III Dipexium
Pharma/MacroChem/Genaera

NCT00563394

Omiganan
(MX-226)

Synthetic peptide derived from
indolicidin

Bacterial colonization of
catheters

Phase III (2009)/withdrawn after
failing regulatory endpoints

Migenix Pharmaceuticals –

Omiganan
(CLS001)

Synthetic peptide derived from
indolicidin

Rosacea Phase II BioWest NCT00608959

Plectasin Defensin isolated from
Pseudoplectania nigrella

Treatment of Gram-positive
infections

Preclinical (2010)/withdrawn
for commercial reasons

Novozymes, lic. to
Sanofi-Aventis

–

Surotomycin
(CB-315)

Lipopetide Treatment of C. difficile
infections

Phase III Cubist Pharmaceuticals NCT01598311
and
NCT01597505

Novexatin
(NP213)

Cyclic cationic peptide Fungal infections of the toenail Phase II NovaBiotics NCT02343627

Lytixar®

(LTX-109)
Synthetic, membrane-degrading
peptide

Treatment of MRSA nasal
infections

Phase II Lytix Biopharma NCT01223222
and
NCT01158235

NAI-107 Lantibiotic Treatment of Gram-positive
infections

Preclinical Sentinella Pharmaceutics, Inc. –

MU1140 Lantibiotic M. tuberculosis infections Preclinical Oragenics Inc. –
OP-145 Synthetic 24-mer LL37 analogue Chronic otitis Phase II (completed) OctoPlus, lic. to Dr. Reddys

Laboratories
ISRCTN84220089

LL37 Cathelicidin Melanoma Phase I M.D. Anderson Cancer Center NCT02225366
C16G2 Specifically targeted antimicrobial

peptide (STAMP)
Dental caries (specific for
Streptococcus mutans)

Phase II C3 Jian, Inc. NCT02254993

hLF1-11 Human lactoferrin-derived
peptide

Bacterial and fungal infections Phase II AM-Pharma NCT00509938

Ghrelin Peptide hormone Airway inflammation, cystic
fibrosis

Phase II Papworth Hospital NCT00763477

PMX-30063 Arylamide oligomer mimetic of a
defensin

Acute bacterial skin infections
caused by Staphylococcus spp.

Phase II PolyMedix, Inc. NCT01211470

PAC-113 Synthetic 12-mer peptide derived
from histatin 3 and histatin 5

Oral candidiasis Phase II Pacgen Biopharmaceuticals NCT00659971

To date, there is only one AMP in the pipeline to enter clinical trials against M. tuberculosis infections (labeled in bold).
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active and dormant M. tuberculosis, is Oragenics Inc.'s lead compound
MU1140 (a lantibiotic, derived from S. mutans). In addition, this peptide
has shown activity against MRSA and Bacillus anthracis (responsible for
anthrax) (Ghobrial et al., 2010; Padhi et al., 2014). Nevertheless, compa-
nies that have promising candidates in clinical trials still struggle to find
funding to support the late and more expensive stages of those studies.
Moreover, the synthetic nature of some of these new AMPs, together
with the fact that they present a similar mode of action as biological
molecules, may lead to regulatory issues that delay their development
(Fox, 2013).

5.5. The anti-TB drug market: time for AMPs?

It is very difficult to define the market value for anti-TB drugs, since
companies usually do not report reliable sales data for themarketsmost
affected by TB. Nevertheless, it is estimated that in theUS, sales of rifam-
picin reached near US$14.5 million in 2005. Additionally, the market is
fragmented, due to existence of several local manufacturers and large
generics pharmaceutical companies (Harper, 2007). Further market
fragmentation derives from the fact that the Global Drug Facility (GDF)
supplies anti-TB drugs for low-income countries, contributing to a de-
crease in the overall cost of treatments. A report from the TB Alliance
in 2000 estimated the TB market value in US$412.5–$470.5 million
per year. Of that, only US$12.5 million was for the treatment of MDR-
TB (Global Alliance for TB Drug Development, 2001).

The comprehensive work and focus on new peptide development
over the past few years has led to the approval of several new peptides
for different therapeutic applications. Indeed, there are currently about
100 therapeutic peptides on themarket worldwide, being cancer thera-
py the major application, holding a 21% share of the peptide market
(Kaspar and Reichert, 2013). According to a recent report (Research,
2015), the peptide market was worth around US$14.1 billion in 2011
(corresponding to a 1.5% share of a globalmarketworth US$956 billion)
and is expected to reach US$25.4 billion by 2018, growing at a Com-
pound Annual Growth Rate (CAGR) of 8.7%. Moreover, considering the
possibility of patent expiration in the near future, it is expected that
the segment comprising generic peptides will grow substantially,
resulting in the overall growth of the peptide market.

Of note is the challenge most biotech and emerging pharmaceutical
companies face today, as they try to reach the perfect balance between
expediency and due diligence. High quality, expedited delivery and a
low unit cost for the product are usually themain expected goals. How-
ever, the absence of proper quality control and/or regulatory depart-
ments at smaller companies often compromises the simultaneous
achievement of all those goals (Lax, 2010). In this sense, analysts foresee
a great potentialmay rise from the collaboration between small peptide
companies andmajor pharmaceutical companies (TransparencyMarket
Research, 2015).

An incremental analysis, a technique that compares one therapy
with another, should help new companies deal with cost and decision
analyses for the introduction of a new peptide in themarket. This infor-
mation is best displayed in quadrants, formed by two axes crossed per-
pendicularly, one relating to cost and the other to effectiveness (the
center point being the comparison or standard therapy). Cheaper and
more effective drugs will be considered as “dominant”, whereas the
more expensive, less effective ones, would be “dominated”. Usually,

ctgov:NCT00563394
ctgov:NCT00608959
ctgov:NCT01597505
ctgov:NCT01597505
ctgov:NCT02343627
ctgov:NCT01158235
ctgov:NCT02225366
ctgov:NCT02254993
ctgov:NCT00509938
ctgov:NCT00763477
ctgov:NCT01211470
ctgov:NCT00659971
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therapies with incremental cost-effectiveness ratios between
US$20,000 and US$100,000 per life year saved are considered accept-
able (McGhan, 2010).

With the rise of AMPs development and with a few of them already
in Phases II/III clinical trials, it is only reasonable to think that these will
also hold a significant share of the market in the near future.

Interestingly, to date there is no AMP in clinical trials for the treat-
ment of tuberculosis. However, considering the conclusion of pre-clini-
cal trials forMU1140 (Oragenics, Inc.) and other recent advances, itmay
be anticipated that AMPs will play an important role in the fight against
TB. Indeed, it has already been demonstrated that LL37 expression is in-
duced in macrophages in response to mycobacterial infections
(Rivas-Santiago et al., 2008; Santos et al., 2014). Mohanty and col-
leagues recently suggested an additive effect in vitro of a LL37 analogue
incorporated into silver nanoparticles against two strains of
mycobacteria, the non-pathogenic Mycobacterium smegmatis and the
pathogenic Mycobacterium marinum (Mohanty et al., 2013). Results
from a clinical trial (NCT01580007) performed on adults with active
pulmonary TB, described byMily et al. (2015), demonstrated the ability
of an orally-administered combination of phenylbutyrate and vitamin
D3 to induce LL37 expression in macrophages and lymphocytes, thus
enhancing the intracellular killing ofM. tuberculosis. Also, intra-tracheal
administration of the innate defense regulator (IDR)- 1018, a modified
version of the bovine neutrophil host-defense peptide bactenecin, re-
duced mycobacterial load in the lungs of animals infected with the
Table 5
Examples of AMPs showing in vitro or in vivo activity against M. tuberculosis and respective me

AMP Mechanisms of action Activity

1-C134mer Pore formation MIC (H37Rv
Azurocidin Bacterial envelope H37Rv: 55%
Bacteriocins (Bcn1-Bcn5) Pore formation MIC (H37Rv
D-LAK analogues Pore-formation, Inhibition of protein

synthesis
MIC (H37Rv
MIC (Vertulo

Granulysin Alteration of membrane integrity H37Rv: 90%
Human Beta Defensins
(hBDs) variants

Pore formation MIC (H37Rv
MIC (MDR cl

Human Neutrophil Peptide-1
(HNP-1)

Pore formation; Immunomodulatory
activity

MIC (H37Rv
In vitro (H37
killing after
In vivo (H37
per mouse

Innate Defense Regulators
(IDR-1002, -HH2, -1018)

Immunomodulatory activity MIC (H37Rv
In vivo (H37
μg/mouse (3
In vivo (MDR
μg/mouse (3

Lactoferrin Iron sequestration; Membrane damage
through binding to LPS

In vivo: 1 log
administrati

LL37 Pore formation; Immunomodulatory
activity

MIC (H37Rv
In vivo (H37
μg/mouse (3
In vivo (MDR
μg/mouse (3

LLKKK18 Pore formation; Immunomodulatory
activity

In vivo (H37
μM (10 ever

Magainin-1 Pore formation; Immunomodulatory
activity

MIC (H37Ra

MIAP Inhibition of ATPase MIC (H37Ra
M(LLKK)2M Pore formation MIC (H37Rv

MIC (CSU87)
Nisin A Inhibition of cell wall biosynthesis, pore

formation (interactions with lipid II)
MIC (H37Ra

PR-39 Inhibition of DNA and protein synthesis H37Rv: 80%
E1380/94: 3
P34/95: 49%

Protegrin-1 Formation of cation-selective channels on
bacterial membrane

H37Rv: 68.4
μg/ml; RM22

W- and R- rich peptides Pore formation MIC (H37Rv

MIC (Minimum Inhibitory Concentration) represents the lowest concentration at which the pe
Vertulo, CSU, RM22, E1380/94 and P34/95 are all multidrug-resistant M. tuberculosis strains.
virulent H37Rv laboratory strain and also with a M. tuberculosis clinical
isolate (Rivas-Santiago et al., 2013a). Some examples of AMPs showing
activity against M. tuberculosis, with respective mechanisms of action
and activities are listed in Table 5. As observed, the plethora of AMPs
currently being studied against this pathogen display diverse action
mechanisms and high antimycobacterial activities, further reinforcing
the huge potential of AMPs as promising candidates for TB treatment.

Additionally, many studies have shown the in vitro and in vivo effica-
cy of different AMPs against multidrug-resistantMycobacterium strains.
For example, PR-39, a proline-arginine-rich antibacterial peptide from
porcine leucocytes, proved effective against multidrug-resistant clinical
isolates of M. tuberculosis (Linde et al., 2001). Fattorini et al. (2004)
showed the inhibition of MDR M. tuberculosis growth by protegrin-1
and human beta-defensin-1 (hBD-1). Jiang and co-workers (Jiang et
al., 2011) tested the Minimum Inhibitory Concentrations (MICs) of
five different synthetic peptides (derived from a previously described
hybrid of cecropin A+melittin B) against aMDR TB strain. Themajority
of these peptides successfully reduced the growth of the MDR strain,
with MICs similar to the ones obtained with the H37Rv (susceptible)
strain. Recently, a group of AMPs containing D-amino acids (belonging
to the D-LAK family) was also reported to inhibit the growth of MDR
and XDR strains of M. tuberculosis both in vitro and ex vivo, although
they were not able to eradicate the mycobacteria (Lan et al., 2014).
The cathelicidin LL37 proved effective in reducing the mycobacterial
growth of either susceptible (H37Rv) or MDR-resistant M. tuberculosis
chanisms of action.

Refs

): 6.6 μM Kapoor et al. (2011)
killing at 100 μg/ml Jena et al. (2012)
): 0.01–1 μg/ml Sosunov et al. (2007)
): 35.2–N200 μg/ml
): 49–100 μg/ml or inactive

Jiang et al. (2011); Lan et al. (2014)

killing at 30 μM Stenger et al. (1998); Toro et al. (2006)
): 12–80 μg/ml
inical isolate): 2.7–13.7 μg/ml

Corrales-Garcia et al. (2013)

): 2.5–50 μg/ml
Rv-infected J774A.1 macrophages): 50%
3 days treatment with 5 μg/ml;
Rv-infected mice): 1-log decrease with 5 μg

Kalita et al. (2004); Sharma and
Morgan (2001); Sharma et al. (2000)

): 15–30 μg/ml
Rv-infected mice): 10–71% killing at 32
× per week, 30-day treatment)
-infected mice): 10–71% killing at 32
× per week, 30-day treatment)

Mansour et al. (2015); Rivas-Santiago
et al. (2013a)

10 reduction after 3 weeks of oral
on of 0.5% lactoferrin, 7-days treatment

Welsh et al. (2011)

): ~5 μg/ml
Rv-infected mice): ~53% killing at 32
× per week, 28-day treatment)
-infected mice): ~45% killing at 32
× per week, 28-day treatment)

Rivas-Santiago et al. (2013b)

Rv-infected mice): 1.2-log reduction at 100
y other day administrations)

Silva et al. (2016)

): 1200 μg/ml Santos et al. (2012)

): 300 μg/ml Santos et al. (2012)
): 125 μg/ml
: 62.5 μg/ml

Khara et al. (2014)

): 60 μg/ml Carroll et al. (2010)

killing at 50 μg/ml
9% killing at 50 μg/ml
killing at 50 μg/ml

Linde et al. (2001)

% killing at 64 μg/ml, 96.7% killing at 128
: 45.1% killing at 128 μg/ml

Fattorini et al. (2004)

): 1.1–141 μM Ramon-Garcia et al. (2013)

ptide inhibits the growth ofM. tuberculosis, after overnight incubation.
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strains in the lungs of infected mice (Rivas-Santiago et al., 2013b).
Around 53% and 45% reductions in mycobacterial levels were achieved
after a 1 month treatment (3 times a week) with 32 μg LL37 per mouse.

To our knowledge, studies considering the use of AMPs against drug-
resistant tuberculosis strains have still not reached preclinical trials.
However, considering the major advances in the field, it is reasonable
to expect that such studies will occur in the near future.

6. Boosting AMP potential

Promising prospects regarding AMPs arise from the clinical success
of daptomycin and vancomycin (as well as its derivatives, like
dalbavancin and oritavancin) in the treatment of bacterial infections.
However, whether AMPs canmake good candidates tofightmycobacte-
rial infections still remains under discussion.

Their broad-spectrum activity, together with the potential to en-
hance the effect of other antimicrobials (namely antibiotics) by facilitat-
ing their access to the intracellular milieu (Zasloff, 2002) is regarded as
their main advantages over antibiotics. Nevertheless, the combination
of AMPs with conventional antibiotics may represent a very interesting
approach to improve TB treatment. Kalita et al. (2004) observed that
combining HNP-1 with isoniazid, rifampicin or both, decreased the
MIC of isoniazid/rifampicin against M. tuberculosis H37Rv and signifi-
cantly reduced mycobacterial load in vitro and in vivo. Such results
were suggested to occur due to HNP-1-induced increased permeability
of the cell membranes. Similarly, it has been reported that protegrin-1
or human beta-defensin-1 combined with isoniazid resulted in a signif-
icant reduction of both susceptible and multidrug-resistant M. tubercu-
losis strains, compared to the peptides or the antibiotic alone (Fattorini
et al., 2004). Recently, Khara et al. (2014) reported that the combination
of peptide M(LLKK)2M synergistically interacted with rifampicin
againstM. smegmatis and BCG (most likely due to the enhanced perme-
abilization of rifampicin promoted by the peptide), and additively
against M. tuberculosis.

In addition, AMPs aremainly bactericidal (which is highly desirable),
induce a more rapid killing of pathogens and an increase in concentra-
tion is not required against resistant strains, in comparison with antibi-
otics (Marr et al., 2006). Moreover, as previously mentioned, although
acquisition of antimicrobial resistance to AMPs has been observed, this
is very rare since reconfiguring the bacterial membrane involves high
metabolic costs and compromises its functionality (Nizet, 2006). Anoth-
er advantage is that someAMPs are able to stimulate the innate immune
response, thus helping in the activation or enhancement of the innate
response, while reducing associated harmful inflammatory responses
(Brown and Hancock, 2006).

Some authors have claimed that the large size of natural AMPs lead
to high production costs and that the potential for microorganisms to
develop resistance against AMPs may compromise our own natural de-
fenses against infection (Bell andGouyon, 2003). Nevertheless, different
strategies have been described to address this issue, including the use of
production methods that render higher yields, while decreasing
manufacturing costs, discussed in Section 5.1. An alternative approach
to reduce production costs is the synthesis of smaller, thus less expen-
sive, peptides through conventional or solution-phase synthesis
(Zhang and Falla, 2006). In this regard, the synthesis of smaller ana-
logues of known natural AMPs, such as in the case of LL37, has been re-
ported (Ciornei et al., 2005; Nagaoka et al., 2005). Indeed, several
companies have adopted such approach over the past years.

AMPs are cell selective, a term related to the ability of a molecule to
selectively kill microorganisms without causing toxicity to host cells,
which in the case of these peptides is mainly a dose-dependent effect
(Matsuzaki, 2009). Nevertheless, this cell selectivity may be improved:
1) an increased net positive charge of the peptide up to ~10 has been
found to improve antimicrobial activity without affecting hemolytic ac-
tivity (Zelezetsky and Tossi, 2006); 2) the replacement of amino acid
residues in hemolytic peptides by its D-analogues has been reported
by Shai and Oren, in studies performed with paradaxin, to improve se-
lective toxicity (Shai and Oren, 1996); 3) the same authors also found
that selective toxicity could be increased by cyclization of linear pep-
tides (Oren and Shai, 2000); and 4) PEGylation,which consists in the at-
tachment of a polyethylene glycol (PEG) moiety to peptides, was also
found to enhance in vivo efficacy (Harris and Chess, 2003). In this
sense, short synthetic AMPs have been designed to targetM. tuberculo-
sis, and in vitro selectivity indices (ratio of in vitro toxicity againstmicro-
organisms and THP-1 cells – a monocytic cell line) close to 250 were
described (Ramon-Garcia et al., 2013).

Moreover, AMPs usually present low bioavailability, due to their vul-
nerability to protease activity, aswell as systemic toxicity (Hancock and
Sahl, 2006; Sanborn et al., 2002). Also, partly as a result of this limited
bioavailability, it is difficult to target the AMPs to specific sites of infec-
tion. Nanoparticle-based drug delivery systems can be used to over-
come these problems and their potential has actually been recognized
for TB treatment (Gaspar et al., 2008; Gelperina et al., 2005). Nanoparti-
cles provide enhanced stability, adaptation to different administration
routes, ability to encapsulate either hydrophobic or hydrophilic drugs
and sustained drug release. Therefore, they can increase bioavailability,
while reducing dosing frequency, which can also be beneficial to im-
prove patient compliance to the treatment (Gelperina et al., 2005). Cur-
rently, several drug delivery systems have been used as carriers for anti-
TB drugs. For example, in vivo studies have demonstrated the improve-
ment of antibiotic actionwhen incorporated in liposomes (Gaspar et al.,
2008). Also, Pandey et al. (2003) provided evidence for the sustained re-
lease of different antibiotics encapsulated in poly-(lactic-co-glycolic)
acid (PLGA) nanoparticles after administration via inhalation to guinea
pigs. As such, it is only reasonable to expect that loading of AMPs in
these delivery systems will improve the therapeutic potential of
AMPs. Furthermore, drug delivery systems-associated parameters like
particle size, shape, surface chemistry or mechanical properties have
been described to influence their uptake by macrophages (Ahsan et
al., 2002; Champion et al., 2008). Thus, the delivery of AMPs loaded
within these systems can be further optimized. Using polystyrene parti-
cles of different sizes and shapes, Champion and Mitragotri (2006) re-
ported that particle shape at the point of initial contact with
macrophages is crucial to determine if the particle is phagocytized. Par-
ticle size and charge also largely impact the efficiency of internalization
by macrophages. Studies performed by Tabata and Ikada (1988) with
polystyrenemicrospheres of various sizes showed that maximal uptake
by macrophages occurred for particles within 1.0–2.0 μm. Moreover, it
has been reported that macrophages phagocytize anionic particles
more easily, which is most likely associated with their ability to recog-
nize negatively-charged bacterial membranes (Lunov et al., 2011). On
a different approach, coating of particles with opsonic materials and
amphiphiles, such as gamma-globulin, fibronectin or gelatin, may sig-
nificantly enhance phagocytosis (Ahsan et al., 2002), thus being able
to facilitate AMP targeting to the intracellular milieu.

Proper choice of the administration route also impacts the efficiency
and bioavailability of AMPs. Oral administration, usually associated to
standard anti-TB drugs, provides amore systemic drug distribution, lim-
iting its action on the actual target cells and tissues. Also, orally admin-
istered drugs often display limited bioavailability and poor absorption
(Florence, 2004; Zumla et al., 2014). Systemic distribution is also
attained after intravenous administration. In this case, drug-loaded par-
ticles are endocytosed by macrophages belonging to the mononuclear
phagocyte system and by monocytes in circulation. This method may
be particularly interesting to address TB treatment in the liver, since
the Kupffer cells of the liver preferentially uptake these particles from
the blood stream (Kayser et al., 2003). Given the existence of niches of
M. tuberculosiswhere diffusion of antimicrobials from the blood stream
is difficult to reach (e.g. biofilms in cavities, pneumonic forms in alveoli),
aerogenic strategies for AMP administration may represent powerful
and perhaps themost suitable approaches to TB treatment, provided ad-
equate particle shape and size parameters are met. In addition, this
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method allows attaining a higher concentration at the lungs. Recently,
Kwok et al. (2015) developed inhalable dry powders containing two
D-enantiomeric D-LAK peptides. Spray drying the AMPs with mannitol,
which was used as a bulking agent, produced spherical particles with
particle size adequate for inhalation. Most important, the AMPs pre-
served their secondary structures and the particles showed a good aero-
sol performance, suggesting the potential of this formulation for TB
treatment via the aerogenic route.

Interestingly, a single subcutaneous treatment of M. tuberculosis-in-
fected mice with three standard antibiotics loaded into PLG nanoparti-
cles resulted in an improved anti-mycobacterial effect, compared to 35
daily oral administrations (Pandey and Khuller, 2004). These results ev-
idence the subcutaneous route as a promising alternative for AMPdeliv-
ery, as greater efficacy may be achieved with fewer doses.

Other approaches may also rise, as for example Steinstraesser et al.
(2014) recently developed a new technique aiming atwound treatment
based on the delivery of anAMP (in this case LL37) through skin electro-
poration. However, this approach may not be as adequate for TB treat-
ment, since peptide targeting to the main sites of infection.

7. Concluding remarks

The declaration of TB as a global emergency by the WHO in 1993,
followed by a worldwide increase in MDR-TB episodes in the more re-
cent years, opened new opportunities and urged the need for the devel-
opment of new and more effective medicines for TB treatment.
Currently, some drugs are undergoing mid-stage clinical development,
which means that there may still be a market for new classes of medi-
cines that prove their efficiency against MDR-TB and less susceptible
to the acquisition of resistance over time. Indeed, there are currently
about 10 new AMPs in clinical trials for the treatment of bacterial and
fungi infections.

AMPs are key players of the human innate immune system. Thus,
from a medical and regulatory approval perspective, such molecules
may have a more straightforward and cheaper regulatory pathway.
Also, regulatory entities have realized not only the urgency in develop-
ing new drugs, but also the potential of antimicrobial peptides as thera-
peutic molecules.

A promising strategy for TB treatmentmay comprise the administra-
tion of AMPs in combination with conventional anti-TB drugs. This syn-
ergistic approach would result in enhanced killing of bacteria and
prevention of drug resistance, as suggested by Yeaman and Yount
(2003). On a different approach, Bauer and Shafer (2015) have sug-
gested that finding a strategy to cripple AMP resistance systems may
help ameliorate host defense. Also, the use of AMPs in vaccination has
gained recent interest. Indeed, Cervantes-Villagrana et al. (2013) re-
ported a significant improvement in immunization againstM. tuberculo-
sis strains after DNA vaccines containing β-defensin-2 sequences were
used as an adjuvant in BCG vaccination.

In conclusion, AMPs hold a great therapeutic potential against tuber-
culosis, with several advantages over commonly used antibiotics. Re-
cent changes to the regulations of new drug approval and a rising
peptide market, pave the way for efficient new molecules, namely
AMPs, provided their pharmacological properties are enhanced and is-
sues like manufacturing costs, stability, toxicity and delivery are
addressed.
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