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Abstract 

Myopia affects approximately 25% of the World population, being a public health 

concern due to the socioeconomic impact and to the risk of vision loss related to other 

co-morbidities. If current trends continue, half the world’s population (almost 5 billion) 

will be short-sighted in just over three decades, with one-fifth of those expected to have 

a significantly increased risk of blindness.  

Clinical evidence from animal models and human clinical trials seems to indicate 

that the peripheral refraction pattern plays an important role in the regulation of eye 

growth. Lower progression rates have been reported over the last years in myopic 

children wearing orthokeratology (ortho-k) or special design contact lenses, when 

compared with those wearing traditional ophthalmic lenses. To date, the only 

justification for this effect seems to lie in the significant myopization effect induced by 

these alternative forms of correction beyond the foveal area, but despite the moderate 

results obtained researcher’s still lack knowledge of the exact mechanism behind this 

effect and why does it work better in some subjects than others. In this thesis a frame 

work was developed to model the possible impact of the eye’s posterior shape and the 

optical changes produced by ortho-k in myopia progression.  

Optical modeling and biometric eye length measures were used to calculate the 

retinal contour in 55 myopic subjects, with an accuracy of tenths of a micron. The results 

show that there is large inter-subject variability in the shape of the posterior pole, even 

among subjects with similar refractive errors. An exhaustive characterization of the 

ortho-k cornea was also conducted to analyze the main morphological, topographical 

and optical changes induced by these treatments and their possible implications in the 

peripheral refractive error and accommodative response. The results suggest that the 

reported effects in the retention of eye growth, supposedly due to the peripheral 

myopization produced by ortho-k treatments, might be dependent on pupil size. Optical 

quality analysis revealed that although the increase in positive spherical aberration is 

the main cause of the loss of retinal image quality in the unaccommodated eye after 

ortho-k, it also seems to have a positive effect, as it extends the depth of field of the eye 

and may contribute to a better image quality in subjects with accommodative lag during 

high contrast near vision tasks.  
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Resumo 

A actual prevalência mundial da Miopia (25%) é já considerada um problema de 

saúde pública devido ao impacto sócio-económico e ao risco de perda de visão 

relacionada com outras co-morbidades. Se as tendências actuais se mantiverem, 

metade da população mundial (quase 5 mil milhões) será míope daqui a pouco mais de 

três décadas, e cerca de um quinto deverá ter um aumento significativo do risco de 

cegueira. Evidências clínicas baseadas em modelos animais e ensaios clínicos com 

pacientes humanos parecem indicar que o padrão da refracção periférica desempenha 

um papel importante na regulação do crescimento axial do olho. Níveis mais baixos de 

progressão têm sido reportados ao longo dos últimos anos em grupos de crianças 

míopes corrigidas com ortoqueratologia (orto-k) ou lentes de contacto com geometrias 

especiais, em comparação grupos de controle compensados com lentes oftálmicas 

tradicionais. Até à data, a única justificação plausível para estes resultados parece residir 

no efeito miopização periférica induzido por essas formas alternativas de correção para 

além da área foveal, mas apesar dos resultados moderados obtidos ainda falta 

conhecimento do exacto mecanismo por trás deste efeito e porque o efeito é maior em 

alguns indivíduos que em outros. Nesta tese foi desenvolvido um quadro de trabalho 

com o objectivo de modelizar o possível impacto da forma do polo posterior do olho e 

a das alterações estruturais induzidas pela ortoqueratologia na progressão da miopia. 

O contorno da retina de 55 indivíduos míopes foi calculado com recurso a 

modelização óptica e medidas biométricas do comprimento do olho, com uma precisão 

de décimos de micras. Os resultados demonstram que existe uma grande variabilidade 

inter-individual na forma do pólo posterior do olho, mesmo entre indivíduos com erros 

refractivos semelhantes. Foi também realizada uma caracterização exaustiva da córnea 

pós orto-k, com o objectivo de analisar as principais alterações morfológicas, 

topográficas e ópticas induzidas por estes tratamentos e as suas possíveis implicações 

no erro refractivo periférico, assim na resposta acomodativa. Os resultados sugerem 

que os relatos de uma menor taxa de progressão da miopia em olhos tratados com orto-

k, supostamente devido à miopização periférica produzida por estes tratamentos, pode 

ser dependente do tamanho da pupila. A análise da qualidade óptica revelou que, 

embora o aumento da aberração esférica positiva após orto-k seja a principal causa da 
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diminuição da qualidade da imagem retiniana no olho desacomodado, também 

aparenta ter um efeito positivo na extensão da profundidade de campo, o que poderá 

contribui para um aumento da qualidade da imagem retiniana em indivíduos com atraso 

acomodativo durante tarefas de alto contraste em visão próxima. 
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Chapter 1: Introduction 

1.1. Peripheral Refraction and Myopia Progression  

Myopia progression is a serious public health concern. Beyond the limitations 

caused by refractive error, moderate to high myopia is associated with an increased risk 

of serious ophthalmic diseases like primary open angle glaucoma, retinal detachment, 

sub-capsular posterior cataract or macular degeneration.1,2 

 Clinical evidence indicates that the peripheral refraction pattern plays an 

important role in the regulation of the growth of the human eye, as first reported by 

Hoogerheide et al.3  who found that, in a group of 214 young pilots entering the Danish 

Army, those who showed greater myopic progression over time also developed more 

hyperopic peripheral defocus. Another example is the lower progression rates in 

children wearing orthokeratology (ortho-k)4-8 lenses, when compared with those 

wearing spectacle or contact lenses. One possible justification for this behavior lies in 

the significant myopization effect induced by the ortho-k treatments beyond the foveal 

area.9,10
 This has led to the development of soft contact lenses attempting to reproduce 

similar refractive patterns of peripheral myopic defocus, which have already proved 

effective in slowing myopia progression.11,12 Furthermore, animal studies have 

confirmed that locally induced hyperopic defocus causes a local increase in the axial 

length in chicks13-15 and that central vision is not essential for guiding the 

emmetropization mechanism,16 while the peripheral retina seems to be more relevant 

in this respect. This was also demonstrated in the studies by Smith et al.17-19, who 

reported that myopia could be induced even after laser photoablation of the fovea, in 

rhesus monkeys. This peripheral hyperopic refraction is believed to be responsible for 



2 
 

myopia development, as the eye’s visually-guided growth mechanism tries to 

compensate with further elongation for the imposed peripheral defocus even in the 

presence of an optimal central correction and a perfectly focused central image. 

An obvious problem is how this supposed visually guided growth mechanism is 

able to perceive the defocus signal. Like all optical systems, the eye suffers from oblique 

astigmatism. Thus, rather than there being a unique image surface at each point in the 

periphery, there are two surfaces, corresponding to the radial (sagittal) and tangential 

focal line images of each object point. The tangential focal lies anterior to the sagittal 

focal. There is great evidence that the peripheral retina has neurons tuned for different 

orientations20-22 and that it makes use of the two astigmatic foci to recognize the 

defocus signal.23 Bearing this in mind, the peripheral retinal neuron circuits might have 

distinct levels of sensitivity for the tangential and sagittal foci inputs. A similar process 

is used in some optical devices such as compact disc players which use an astigmatic lens 

to optimize the focusing mechanism. When one axis is better focused than the other, 

dot-like features on the disc are projected into elliptical shapes. The orientation of the 

major and minor elliptical axes indicates which axis is better focused, and hence in which 

direction the lens needs to move to compensate for it. In a similar fashion, it could be 

hypothesized that the ocular growth mechanism in the peripheral retina might also use 

similar orientation cues to assess the two astigmatic image shell “positions” and thus 

compensate for peripheral hyperopic defocus when the relative peripheral sagittal focal 

line “stands behind” the retina, as previously suggested by Howland.24 This hypothesis 

is also consistent with the experiments described in US patent 7,025,460 by Smith et 

al.25 who reported a trend for the eye, in the presence of mixed astigmatism, to grow in 

order to reposition the retina with the most “posteriorly positioned” astigmatic focal 
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line. This process may then start over when new lenses are prescribed to compensate 

for the increase in central myopia; furthermore, as the eyeball elongates, the retina 

becomes steeper, thus increasing the hyperopic trend in the periphery. 

 In fact, by comparing two groups of progressive (P) versus non-progressing (NP) 

myopes, Faria-Ribeiro et al.26 demonstrated that the myopic patients in the P group had 

a more hyperopic relative astigmatic defocus than the NP group. Even when mean 

refractive error (M) assumes values close to zero or slightly myopic, it still seems that 

the hyperopic stimulus provided by the sagittal foci can be sufficient to induce axial 

growth in the P group. The authors also found a strong correlation between eye shape 

and peripheral refraction along with high differences in shape and refraction between 

both groups in the nasal retina that may be indicative of a distinct sensitivity ‘‘weight’’ 

between the two retina hemifields. Although not include in this thesis the cited paper 

was the starting point for the work developed in the next chapters, were the influence 

of eye shape in peripheral refraction and myopia progression is investigated using 

optical modeling.   

 

1.2. Optic Biometry: The IOLMaster   

The IOLMaster (Carl Zeiss Jena GmbH) is a commercially available device which 

uses partial coherent interferometry (PCI) to measure axial length. Accurate 

measurement of the axial length (AL) of the eye is critical in several research and clinical 

applications. PCI is the actual election method for total or partial measurement of intra-

ocular dimensions as a main variable for intra-ocular lens calculation.27 Figure 1.1 is a 

schematic representation of the IOLMaster operating principle.  



4 
 

 

Figure 1.1. IOLMaster setup. Reproduced from Haigis et al.28 

The instrument uses infrared light (peak λ=780 nm; bandwidth 3-4 nm) of short 

coherence length (~160 μm).29 In physics, coherence length is the propagation distance 

over which an electromagnetic wave maintains a specified degree of coherence. The 

light emitted by a laser diode (LS) is split in a Michelson interferometer setup into two 

separate coaxial beams E’ and E’’, with E’’ being delayed by twice the displacement d of 

the measuring mirror M’’ (Figure 1.1). Both partial beams illuminate the eye to be 

measured and are reflected at the cornea (C) and the retina (R), more specifically at the 

pigmentary epithelium. This introduces an additional path difference of twice the optical 

length (L) of the eye between the two beams reflected at the cornea and the two beams 

reflected at the retina, respectively. After passing through a beam splitter, all beam 

components are detected by a photodetector (PD). Interference is stronger when the 

paths taken by the two interfering waves differ by less than the coherence length.  

 Eye length L is defined in this technique as the path integral of the group 

refractive index ng of the eye media along the geometric path from the anterior surface 

to the retina ∫ 𝑛𝑔. 𝑑𝑠, with the group index defined by the following equation: 
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𝑛𝑔(𝜆) =  𝑛𝑝(𝜆) −  𝜆
𝑑𝑛𝑝

𝑑𝜆
                                                                                               𝐸𝑞. (1.1)                                                                                                   

 where ng(λ) and np(λ) are group and phase refractive indices at wavelength λ, and 
𝑑𝑛𝑝

𝑑𝜆
 

is the derivative of np with respect to λ. 

The IOLMaster determines optical path lengths (OPL) and converts them into 

geometric/anatomical lengths by assuming estimate values for the eye internal 

refractive indices. It uses a unique average index (1.3549) based the average group 

refractive index of a Gullstrand’s 24 mm model eye for an envelope of waves at the 

instrument’s infrared radiation wavelength peak. The obtained results are then 

calibrated to match the geometric length values to the ones measured using 

ultrasonography by using the equation 2 wired in the instrument’s firmware.28 

𝑂𝑃𝐿

1.3549
 =  𝐴𝐿𝑢𝑙𝑡𝑟𝑎𝑠𝑜𝑢𝑛𝑑  × 0.9571 − 1.3033                                                             (𝐸𝑞 1.2) 

  

Table 1.1. Group refractive indices ng of the eye media for λ = 780 nm.29 

Cornea Aqueous Lens (mean) Vitreous Mean n 

1.3856 1.3459 1.4070 1.3445 1.3549 

 

 Atchison et al.30 calculated the errors that this assumption might induce in axial 

length measurement during accommodation, and more recently in retinal shape 

estimation.31 However, no correction factor was suggested within the normal range of 

AL and crystalline lens thickness (LT) which might have an impact in the final estimations. 
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This potential source of error was addressed in chapter 2 and a correction factor was 

proposed. 

As previously demonstrated by Faria-Ribeiro et. al, peripheral refraction is highly 

correlated with retinal contour, as eyes with more curved retinas tend to have more 

peripheral hyperopic defocus.26  Personalized eye models based on the patient’s real 

data are a primary tool to help understand these relations between optics and eye 

anatomy. PCI measure techniques are fundamental for the estimation of the eye 

internal dimensions and shape, but eye length measured by PCI does not represent the 

real distance from the cornea to the retina intercept, as the IOLMaster off-axis 

measurements fails to account for refraction within the eye and ignores differences in 

refractive indices along the optical path, particularly along oblique directions inside the 

crystalline lens. The methodology in chapter 3 proposes a solution to overcome this 

problem.  

 

1.3. Optical Models of the Human Eye: Predicting Function from 

Structure 

Optical models of the human eye are an important tool to study the optical 

performance of devices such as ophthalmic, contact or intraocular lenses.32-38 Their 

application in vision sciences can be used to predict the average optical/image quality 

performance of a population,32,39-45 or in a personalized approach to “tailor” custom 

optical solutions, such as myopia control contact lenses. In the statistical eye model 

approach, average population optical quality features, such as spherical aberration, 

mean biometric internal dimensions, oblique astigmatism, etc. are used to calculate the 

eye model surfaces curvatures and asphericities that closely match average population 

data.46-48 Throughout the last 150 years several models have appeared with different 
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levels of sophistication, from anatomically closely accurate models capable of predicting 

on- and off-axis optical function—often called finite or wide angle models—to less 

sophisticated and simple models such as the Indiana two surfaces eye model that 

despite the unrealistic anatomy still preserves good functionality when predicting off-

axis astigmatism and chromatic aberrations.40,49  

Despite the degree of sophistication of some of those eye models, they are still 

generic models with average features and can only be used as approximation when 

studying the optical function of a subgroup of individuals such as myopes. Although 

some authors have closely studied the anatomy and optics of myopic eyes, with the 

purpose of designing a refraction dependent myopic eye model, the variations among 

individuals are large50 thus, individual optical performance cannot be accurately inferred 

from the structure of such models. 

Peripheral optics are an important aspect concerning the study of myopia 

progression and development of personalized optical solutions. Retinal shape is closely 

related to peripheral refraction and can be predictive of myopia development.51 

Knowledge of the posterior retinal contour is potentially useful to understand the 

mechanisms of emmetropization and myopia progression. Furthermore, the current 

knowledge in this field suggests that it might be possible to interfere with myopia 

progression by customizing the relative position of the peripheral image focusing 

regarding the retinal surface.52,53 To achieve a true customization of these treatments it 

will be essential to know the actual position and shape of the retinal surface in order to 

design an optical device able to change the refraction in the desired way. Theoretical 

results suggest that partial coherence interferometric instruments can be used for 

estimating retinal shape with good accuracy, if improvements are made to correct for 

distortion by using optical modeling.31 

To achieve customization through modeling several biometric data are needed, 

such as corneal topography, lens topography/geometry, refractive indices and internal 

ocular dimensions. However, designing a realistic customized eye model can be very 

complex due to lack of detailed measurements of the front and back surface of the lens 

and its gradient index. Conversely, there are a number of commercial systems available 

to obtain highly precise measurements of the corneal topography of the eye. Taking into 
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account that PCI measures cornea-to-retina optical path length (OPL),27-29 and that the 

cornea sagittal heights at the points of intercept can vary significantly between subjects, 

it can be presumed that corneal topography will be an essential part of the eye model 

that should be used to obtain reliable data of the retinal contour from PCI measures. On 

the other hand, considering the relatively small changes in refractive indices within the 

eye it might not be critical to know in detail the internal optics to compute the contour 

of the retina with an acceptable error margin.  

 

A modeling customization approach has been used in chapter 3 based on the 

Navarro eye model54 to compute the individual retinal contour based of PCI measures 

and ray tracing. This generic eye model possesses interesting features such as aspheric 

surfaces and dispersive media, adjusted to fit the experimentally observed chromatic 

aberration of the eye and is also accommodation-dependent.  

 

 

Table 1.2. Unaccommodated Navarro Eye Model parameters. Radius of curvature (R) 

and thickness (t) are expressed in millimeters. Q and n refer to the conic constant and 

refractive index, respectively. Total paraxial refractive power equals 60.42 diopters. 

Medium n R Q t 

Air 1.000       

Cornea 
1.376 7.72 -0.26 0.55 

  6.50 0 
3.05 

Aqueous 1.337     

Lens 
1.420 10.20 -3.132 4.0 

  -6.00 -1.00 
16.404 

Vitreous 1.336     

Retina   -12.00     

 

 

All modeling was performed in Zemax-EE ray trace software.55 Zemax is an 

optical design software that is used to design and analyze imaging systems such as the 
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human eye. It works by modeling the propagation of rays through an optical system. It 

can model the effect of optical elements such as aspheric lenses, gradient index lenses, 

mirrors, and diffractive optical elements. To model the different elements of the eye 

several surfaces can used that allow to account for the difference in sagitta along a 

radius r.  The simplest one—the Standard surface—is defined by the equation of a conic 

surface plus an expansion of higher order aspheric terms. A Standard surface can be a 

plane, spherical, or conic aspheric surface, which is followed by a homogeneous material 

such as air, corneal tissue, vitreous, etc. The only parameters required are a radius 

(which may be infinity to yield a plane), a thickness (distance from one element to the 

other), a conic constant (the default zero value indicates a sphere), and the name of the 

glass type. The name of the glass should be specified in Zemax’s glass catalog, along with 

its dispersion data.  

Although this surface can be used to model the best conic that fits each subject’s 

topography, in practice the topographies of real corneas do not match exactly any of 

these ideal models, but, rather, they exhibit different irregularities and departures from 

that basic geometry. The difference, or residual, between the actual topography and the 

ideal basis surface model is often adjusted to some sort of orthogonal polynomial 

expansion, or interpolating functions such as splines. The Zernike polynomial expansion 

is the most commonly used method. Accurate representations of real corneal shape can 

be achieved in Zemax’s environment by using a Zernike Standard Sag surface. Zernike 

Standard Sag surface is defined by the same polynomial as the Standard surface (regular 

conic basis) plus additional aspheric terms defined by the Zernike coefficients. The 

surface sagitta z is of the form: 

𝑧 =  
𝑐𝑟2

1+ √1−(1+𝑄)𝑐2𝑟2
+  ∑ 𝐴𝑖𝑍𝑖(𝜌, 𝜑)                                                                        (𝐸𝑞 1.3)𝑁

𝑖=1                                               

Where N is the number of Zernike coefficients in the series, Ai is the coefficient 

on the ith Zernike Standard polynomial, is r the radial ray coordinate in lens units, c is the 

conic surface inverse radius (curvature), Q is the conic constant (-eccentricity2), ρ is the 

normalized radial ray coordinate, and ϕ is the angular ray coordinate. Zernike Standard 

polynomials are expressed in millimeters. Zemax supports the first 231 Zernike terms. 

Note that the Zernike Standard Sag surface describes surface deformations, not 
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wavefront error directly. Each polynomial represents a surface deformation mode, and 

its correspondent coefficient the magnitude of the deformation.  

These models are much more general and realistic and, in fact, they are able to 

fit real corneal topographies with very low Root Mean Square errors (RMSe < 0.5 

microns for a normal anterior cornea fitted with a 6th order Zernike expansion). In the 

semi-customized eye model approach, the front corneal surface of the Navarro eye 

model was replaced with a Zernike Standard Sag surface computed from the 

topographic data of the subject. The Medmont E300 (Medmont, Australia) topographer 

allows to export elevation data given in a polar coordinates grid (300 spokes going 

counter clockwise with the first at the horizontal 3 o’clock position, and 32 rings). 

Individual data obtained from anterior elevation topography were fitted to the Zernike 

Standard Surface equation by a least-squares method implemented in Matlab (The 

MathWorks, Natick MA).  

 

 

1.4. Wavefront Refraction 

Clinical assessment of refractive sate is a common task in Optometry and 

Ophthalmology practices. The gold standard technique—subjective refraction—consists 

in a sequential strategy to search the best sphere and cylindrical lens combination that 

yields the best image quality, according to the patients subjective criteria and the spatial 

visual task performed during this process.56 Over the last years there has been a great 

interest in developing objective metrics that can replicate the patient’s subjective 

criteria in an autonomous way.57-61 Those would be quite useful in clinical practice such 

as for refracting eyes with irregular corneas, children, patients with especial disabilities, 

and also in myopia progression for objective assessment of peripheral refraction and 

visual quality.  

Peripheral refraction can be obtained using an open field autorefractor as 

described in previous works,10,26,62 but the working principle of this equipment―uses a 

near infrared 2.3 mm ring-like target to illuminate the test eye and calculates second 

order refraction based on the size and shape of the rings’ reflected image63—makes the 
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equipment insensitive to the increased aberration contribution from larger pupil 

diameters as well to irregularities in the wavefront that lie inside the rings’ area.64 This 

is particularly relevant when measuring refraction over anti-myopia contact lenses or in 

eyes treated with orthokeratology, due to the increase in high order aberrations.  

Modern wavefront aberrometers like the Shack–Hartmann wavefront 

aberrometer, for example, can yield a comprehensive description of the eye’s optical 

aberrations and display the result in the form of an aberration map that describes the 

variation in optical path length (OPL) from source to retinal image through each point in 

the pupil. From this information, retinal image can be computed using the theories of 

physical optics to determine the refractive state of the eye. Although this can be straight 

forward for foveal vision, in the periphery things became complicated due to some 

inherent problems:65  

 

 When seen from off-axis eccentricities circular pupils become elliptical.   

 For larger eccentricities the scattered light from the retina does not fill 

the entire pupil, so it is easy to make a mistake by assuming the oval array 

of spots is due to viewing a circle obliquely.  

 When measuring the aberration map over bifocal contact lenses some 

spots in the Shack–Hartmann array may become double which can 

produce an incorrect estimation of the wavefront.  

 

Another effective way of measuring peripheral refraction and optical quality is 

through the combination of real anatomical/structural measures of the eye combined 

with optical modeling (customization). Real optical changes can be calculated using a 

computational model, thus avoiding the challenging task of actually measuring 

peripheral refraction.  

In the past a variety of methods for quantifying the optical quality of an eye 

based on analysis of wavefront aberrations using pupil plane metrics and analysis of 

retinal image quality using image plane metrics has been proposed that can be somehow 

divided in (i) pupil and (ii) image plane metrics.57-59,61,66-68 Image plane metrics compute 

retinal image quality based either on the point spread function (PSF) or from its Fourier 
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transform, the optical transfer function (OTF). Passing from the wavefront W to the PSF 

(or OTF) involves two nonlinear stages. The generalized pupil function, P, is first 

calculated as:69 

𝑃 =  𝐴𝑒𝑖
2𝜋𝑊

𝜆                                                                                                                         (𝐸𝑞. 1.4) 

Where A can either denote a circular pupil aperture with a unit amplitude function, or 

in alternative the Stiles-Crawford effect can be incorporated into the pupil function by 

using an amplitude Gaussian model in A. The incoherent PSF is calculated as the squared 

modulus of the Fourier transform (FT) of the generalized pupil function P: 

𝑃𝑆𝐹 =  |𝐹𝑇(𝑃)|2                                                                                                               (𝐸𝑞. 1.5) 

As a result, in order to find the prescription (best correction) from image plane 

metrics one has to solve a nonlinear optimization problem. This nonlinear search is not 

trivial and can become time consuming since it involves a 3-dimensional search of the 

three unknown variables: sphere, cylinder and axis of the correcting lens that yields the 

maximum value according to a certain pre-defined criterion (visual quality metric). 

Computationally this can be achieved by adding to the wavefront a series of defocused 

spherical and cylindrical wavefronts that simulate the trial lenses employed during a 

subjective refraction examination.  It is well known that nonlinear optimization methods 

in a multidimensional space can stagnate in local minima and usually require departing 

from an initial guess not too far from the solution (global minimum). Marsack et al.,59 

has suggested that in the presence of spherical aberration Paraxial and Zernike 

refraction appear to locate each of the limits of the depth of field of the eye, 

consequently the optimum focus should lie somewhere between these limits.  Thus, one 

possible strategy to minimize computation time is to confine the 3-dimensional search 

to the interval of vergences between these two points. Alternatively, it is always possible 

to adopt a sequential strategy similar as the one used in clinical refraction, by searching 

first for the best sphere, and then for axis and magnitude of cylinder; later adding the 

spherical equivalent, etc. This approach has revealed itself more difficult and less 

accurate, since it implies to retrieve the astigmatism axis from the PSF orientation—in 

an analogy to the subjective clock dial—which in off-axis locations, where the wavefront 

can suffer from high amounts of coma, can become quiet challenging.   
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 Nevertheless, an even more challenging issue is which criteria to use to define 

the best possible correction since that different image quality metrics may eventually 

give different results. The next paragraphs resume some of those metrics that were used 

or considered in chapter 5 of this thesis. 

 

Pupil Plane Metrics 

Zernike and Paraxial refraction 

One obvious strategy for objective refraction used by most commercial 

aberrometers is to prescribe correcting lenses based on a Zernike polynomial expansion 

of the aberration map. Modern Aberrometers normally use the coefficients of these 

expansions to estimate refraction from wavefront data with two different criteria. The 

first, named Zernike refraction, specifies the vergence of a point source that focuses a 

‘‘disk of least confusion’’ into the image plane, defined by the retinal layer where the 

aberrometer’s probe beam reflects. The vergence concept is based on the geometrical 

concept of longitudinal ray aberrations that is illustrated in Figure 1.2. 

 

 

Figure 1.2. Geometry of the wavefront vergence definition. The z axis indicates the 

direction of the chief ray, which is not necessarily perpendicular to the exit pupil 

(reproduced from Nam et al.70) 

 

Differentiating W(x,y) with respect to radius(r) generates the radial slope of 

wavefront, which when divided by r, produces the radial vergence of the wavefront. 

Zernike refraction calculates the corrective lens prescription based on the assumption 

that the second order Zernike polynomial coefficients 𝑐2
0 corresponds to defocus M and 
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𝑐2
2 and 𝑐2

−2 to a Jackson crossed-cylinder of power J0 with axes at 90º and 180º, and a 

Jackson crossed-cylinder of power J45 with axes at 45º and at 135º,71 respectively. 

Consequently, one can estimate the considered power vectors as: 

𝑀 =  
−𝑐2

04√3

𝑟2
 

𝐽0 =  
−𝑐2

22√6

𝑟2
                                                                                                                     (𝐸𝑞. 1.6) 

𝐽45 =  
−𝑐2

−22√6

𝑟2
 

Where the Zernike polynomials coefficients and r in are express in meters. The power 

vector notation is a cross-cylinder convention that is easily transposed into conventional 

minus-cylinder formats used by clinicians, using the equations previously described  by 

Thibos.71 

Eliminating second-order Zernike aberrations is somehow equivalent to calculate 

the corrective lens vergence that minimizes the Root Mean Square error (RMSe) of the 

wavefront, but this minimization does not necessarily optimize the quality of the retinal 

image.72 This correction is optimal only when high order aberrations (HOAs) are small, 

which under the Marèchal criterion occurs when the RMS wavefront error is below 1/14 

λ. However, this is not the case for human eyes, which usually show higher values of 

HOA.73-75 

In a second approach named Paraxial refraction, the Zernike coefficients used in 

the previous metric are expanded to higher orders (truncated at 6th order in the example 

below):61  

  

𝑀 =  
−𝑐2

04√3 + 𝑐4
012√5 − 𝑐6

024√7 

𝑟2
 .  .  . 

𝐽0 =  
−𝑐2

22√6 + 𝑐4
26√10 −𝑐6

212√14

𝑟2
 .  .  .                                                                   (𝐸𝑞. 1.7) 

𝐽45 =  
−𝑐2

−22√6+ 𝑐4
−26√10 −𝑐6

−212√14

𝑟2
 .  .  . 

 

This metric criterion is somehow equivalent to calculate the vergence of a point 

source that focuses paraxial rays into the plane of reflection of the aberrometer’s probe 

beam. In the absence of HOAs, Zernike and Paraxial refractions are identical, but in eyes 
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highly aberrated these criteria may become biased in different ways.  For instance, in 

the presence of positive spherical aberration Zernike defocus will tend to yield more 

myopic refractions as the pupil becomes larger, whereas Paraxial refraction, by 

definition, will not be affected by the wavefront error of the non-paraxial regions of the 

pupil, such as in the case of spherical aberration. Therefore, the main difference 

between these two metrics is that the Zernike refraction can be highly influenced by the 

effects of HOAs, whereas Paraxial method is insensitive to HOAs. Thus, none of this 

methods may be robust enough to obtain an unbiased estimation of refraction,76 

especially for aberrated wavefronts such as the ones measured off-axis, in eyes treated 

with orthokeratology or fitted with anti-myopia contact lenses. 

 

Refractive Error Sensing 

As it can be perceived from Figure 1.2, standard refraction is directly linked to 

longitudinal aberration. The main difference between early and modern aberrometry is 

that modern Shack-Hartman aberrometers measure transverse displacements of light 

spots (transverse aberration) instead of longitudinal shifts and then compute the 

wavefront error by numerical integration.77-80 Thus, as Navarro suggested,68 refractive 

error can be obtained from the lateral displacements of spots measured by the 

aberrometer, and that wave aberration (optical path differences) might be less relevant 

to this subject. This metric is based on the principle that for each small sampled point in 

the pupil the local refractive error can be calculated from the mean principle curvatures 

of an infinitesimal wavefront at that point, obtained directly from differentiation of the 

raw aberrometry data. The formulism, based on differential geometry concepts, directly 

relates the principal local curvatures of the wavefront to the prescription sphere, 

cylinder and axis: 

𝑆 = − 
1

2
(𝑊′′

𝑋𝑋(𝑥, 𝑦) +  𝑊′′
𝑌𝑌(𝑥, 𝑦))  

𝐶0 =  −
1

2
(𝑊′′

𝑋𝑋(𝑥, 𝑦) −  𝑊′′
𝑌𝑌(𝑥, 𝑦))                                                                   (𝐸𝑞. 1.8)    

𝐶45 = − 𝑊′′
𝑋𝑌(𝑥, 𝑦) 

 

Where 𝑊′′
𝑋𝑋(𝑥, 𝑦) and 𝑊′′

𝑌𝑌(𝑥, 𝑦), are the second derivatives of the wavefront error—

or the first derivatives of the wavefront slopes—along the horizontal and vertical directions 
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at point (𝑥, 𝑦), and 𝑊′′
𝑋𝑌(𝑥, 𝑦), is the crossed second derivative. Thus, S, C0 and C45 in 

equation 1.8 describes the local refractive error in a similar fashion as Thibos el al. power 

vectors, but here C is positive. The clinical sphere is SC = S - C/2. These elements are not 

constant over the pupil but are functions of the coordinates S(x, y), C0(x, y), and C45(x, y). In 

presence of HOA, refractive errors are different for each infinitesimal portion of the pupil.81 

Therefore, a complete correction is not possible with standard ophthalmic lenses. The best 

correction must then be calculated with one of different possible strategies, to obtain a 

global refractive error from each local infinitesimal wavefront. An efficient strategy is to 

choose a value for the correction that minimizes the resulting set of refractive errors. 

Although the mean seems like a good strategy, as it maximizes the number of sampled 

points corrected, it can be highly sensitive to outliers (i.e., a few samples with high values 

may strongly bias the mean) and needs a high number of samples to have an accurate 

estimation. Another possible approach adopted by Navarro68 is to subtract the mode from 

all points. In this case the mode seems to be a better candidate to estimate the best global 

refractive correction, as it is equivalent to maximizing the number of points (or pupil area) 

corrected, which is expected to produce a higher impact retinal image quality.   

 

Image Plane Metrics 

Visual Strehl Ratio 

Although it is unknown which criteria the human eye actually uses for focusing 

and the ideal optimization method is yet to be determined, Cheng and co-workers58 

found that when HOAs are significant, image plane quality metrics such as the Visual 

Strehl ratio computed in frequency domain (MTF method) (VSMTF) are less biased by 

the high levels of spherical aberration (SA). This metric takes into account that different 

frequencies respond differently to defocus and neural sensitivity varies with frequency 

in accordance to visual channel theory, which establishes that the visual pathway 

decomposes the input signal into frequency bands.  

The theoretical estimation of the retinal image quality can be calculated 

according to the VSMTF expression: 

 

𝑉𝑆𝑀𝑇𝐹 =  
∫−∞

∞
∫−∞

∞
CSF𝑁(fx,fy)⋅MTF(fx,fy)dfxdfy

∫−∞
∞

∫−∞
∞

CSF𝑁(fx,fy)⋅MTFDL(fx,fy)dfxdfy
                                                          (𝐸𝑞. 1.9)                                                
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VSMTF is a normalized measure of image quality defined as the volume under 

the visually-weighted modulation transfer function (MTF) for an aberrated eye divided 

by the corresponding volume for an optically perfect eye (diffraction limited). CSFN is the 

nominal neural Contrast Sensitivity Function and the MTF is the one computed in the 

eye model. MTFDL is the diffraction limited MTF corresponding to the pupil diameter 

used. This image quality metric provides a single value normalized between 0 and 1. 

For objective refraction without considering any particular visual task, the VSMTF 

ratio seems an especially interesting metric. It has a twofold meaning as the peak 

intensity of the PSF and as the volume under the MTF. Roughly speaking, volume is 

proportional both to the covered area of spatial frequency plane (resolution) and to the 

mean height (contrast), so that the VSMTF seems a good compromise of the two main 

image quality criteria of contrast and resolution, heighted for the spatial frequencies 

that matter most to the eye. This choice of metric is further supported by evidence that 

visual Strehl ratio is monotonically related to visual acuity over a large range of 

aberration magnitude in normal58,82 and abnormal eyes.83,84 According to those studies, 

a 0.22 change in log visual Strehl ratio corresponds on average to a clinically significant 

change of 0.1 logMAR (1 line on a letter chart) in visual acuity. 

 

1.5. Orthokeratology 

 

Orthokeratology (ortho-k) changes the ocular refraction by the programmed 

application of reverse geometry rigid gas permeable contact lenses (CLs). To correct 

myopia, the central cornea is flattened to induce a reversible change on the epithelial 

thickness profile. The central epithelial layer thins and the front surface corneal power 

decreases over the central 4 to 5 mm central zone.85 The paracentral zone of 1.5 to 2.0 

mm surrounding the treatment zone increases in curvature, in a direct relationship with 

the amount of central flattening needed to correct the myopic refractive error. This has 

the effect of changing the shape of a normal cornea from an average prolate ellipsoid to 

a less prolate/more oblate average ellipsoid.  
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Figure 1.3. Topographical tangential power maps from a subject before ortho-k (left) 

and after (right). 

 

For myopic correction the ortho-k CLs are fitted with a base curve flatter than 

central corneal curvature to apply pressure to the central area of the cornea. Reverse 

geometry ortho-k CLs have three main different fitting parameters: optic zone, reserve 

zone depth and landing zone angle or equivalent in other lens designs/brands. The optic 

zone is fitted taking into account the myopic refraction of the patient and the flatter 

corneal curvature. The other two parameters are modified to obtain a well centered fit 

of the CLs. The difference in thickness of the tear film between the posterior surface of 

the CL and the anterior corneal profile creates a positive relative pressure in the center 

of the cornea and a negative pressure in the middle-periphery. It is believed that this 

difference of pressures helps to reshape the cornea86 (Figure 1.4). 

 

 

Figure 1.4. Diagram of the forces that act during the myopic ortho-k treatment. Courtesy 

of Paragon Vision Sciences (Mesa, Arizona, USA). 
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These anatomical changes have huge optical consequences. Besides the correction 

of central myopia, as the pupil dilates the quality of vision deteriorates due to the 

significant increase in optical aberrations—especially spherical aberration (SA)—87-89as well 

as fluctuations in vision over the course of the day due to the temporary and reversible 

nature of the treatment. To maintain the ortho-k effect, retainer CLs must be worn every 

night, or in the case of slow regressions every second or third night. Once the correct 

corneal shape is well-established the visual performance of ortho-k patients will then rely 

on the centration, area and power distribution of the central flattened zone (treatment 

zone or optical zone) and the surrounding steepening zone (transition zone).  

 

Ortho-k in myopia control 

Over the last decade, systematic research reports, including randomized and 

controlled clinical trials, confirmed that ortho-k reduces the rate of axial length increase 

by 40% to 60% when compared with single vision spectacles or contact lenses.90 The 

mechanism behind these results seems to be related with the change in peripheral 

optics after ortho-k. There is evidence that the posterior retinal contour of myopic eyes 

is relatively more prolate—or relatively less oblate—than that of emmetropic and 

hyperopic eyes. This difference in shape seems to produce a difference in the field 

curvature of the myopic eyes, making them relatively more hyperopic in the periphery 

compared to emmetropic or hyperopic eyes. This relative hyperopic peripheral 

refractive error might be a risk factor for the onset and progression of myopia in 

children, and traditional spectacle lens designs do nothing to reduce or eliminate 

peripheral hyperopic defocus. Furthermore, there is evidence that myopia correction 

with single vision spectacle lenses induces absolute hyperopic defocus on the retinal 

periphery of low and moderate myopic eyes.91  



20 
 

 

Figure 1.5. Diagram of the field curvature of the uncorrected myopic eye (left) and 

corrected with traditional strategies such as ophthalmic lenses (right).  

 

On the other hand, ortho-k seems to increase the eye’s field curvature, 

hypothetically due to the more curved transition zone. According to Queirós et al., at 

30° and 35° of field eccentricity, the amount of myopia induced in terms of spherical 

equivalent has an almost 1:1 relationship with the amount of baseline spherical 

equivalent refraction to be corrected, mostly due to the high increase in peripheral 

astigmatism.89  

 

  

Figure 1.6. Diagram of the field curvature of the myopic eye corrected with ortho-k 

(Adapted from Pauné Vision). 
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Despite the good results obtained with ortho-k in myopia control, researcher’s 

still lack knowledge of the exact mechanism behind this effect and why it is not observed 

in all subjects. It seems that until now results rely only on an observed side effect. To 

attain better outcomes in myopia control, treatments need to be directed for myopia 

retention instead of just its correction. Understanding the exact mechanism behind 

myopia control is therefore a priority in vision sciences. An exhaustive analysis of the 

morphology, topography and optics of the ortho-k cornea was conducted in chapter 4 

of this thesis.  

When considering the peripheral myopization theory, one obvious variable that 

comes to mind is the pupil diameter. The effect of peripheral myopization has to be 

somehow pupil dependent, since smaller pupils will tend to block light refracted from 

more peripheral locations of the cornea. In fact, Chen et al.92 found that larger pupil 

diameters were associated with a higher control effect, hypothetically as a result of a 

larger retinal area being exposed to the peripheral myopic defocus. This supposed pupil 

dependence was investigated in chapter 5. Peripheral refraction was calculated by ray-

trace for different pupil sizes using eye models semi-customized with the anterior 

corneal topography each ortho-k patient. 

An alternative theory to the peripheral myopization focus its attention on foveal 

vision during near tasks. Hypothetically, a subject with accommodative lag might 

experience a decrease in retinal image quality (RIQ) when performing near vision 

activities. This decreased in RIQ is due to the presence of central hyperopic defocus and 

it might act as a trigger effect for more eye growth, in a similar fashion as the peripheral 

refraction hypothesis. 93 

Based on this theory, the increase in positive SA is seen as possible explanation 

for the myopia control effect, not only after ortho-k but also with different treatments 

targeted to alter the eye’s SA, due to a hypothetical change in behavior of the 

accommodative system. This hypothetical effect was investigated in chapter 6. 
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Chapter 2: Errors Associated with 
IOLMaster Biometry as Function of 
Internal Ocular Dimensions 

2.1.  Abstract 

PURPOSE: To evaluate the error in the estimation of axial length (AL) with the IOLMaster 

partial coherence interferometry (PCI) biometer and obtain a correction factor that 

varies as function of AL and crystalline lens thickness (LT).  

METHODS: Optical simulations were produced for theoretical eyes using Zemax-EE 

software. Thirty-three combinations including eleven different AL (from 20 to 30 mm in 

1 mm steps) and three different LT (3.6; 4.2 and 4.8 mm) were used. Errors were 

obtained comparing the AL measured for a constant equivalent refractive index of 

1.3549 and for the actual combinations of indices and intra-ocular dimensions of LT and 

AL in each model eye. 

RESULTS: In the range from 20 to 30 mm AL and 3.6 to 4.8 mm LT, the instrument 

measurements yielded an error between -0.043 and +0.089 mm. Regression analyses 

for the three LT condition were combined in order to derive a correction factor as a 

function of the instrument measured AL for each combination of AL and LT in the 

theoretical eye.  

CONCLUSIONS: The assumption of a single “average” refractive index in the estimation 

of AL by the IOLMaster PCI biometer only induces very small errors in a wide range of 

combinations of ocular dimensions. Even so, the accurate estimation of those errors 

may help to improve accuracy of intra-ocular lens calculations trough exact ray tracing, 

particularly in longer eyes and eyes with thicker of thinner crystalline lenses. 

 

KEYWORDS: intra-ocular lens calculation; IOL calculation; axial length measurement. 
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2.2.  Introduction  

Accurate measurement of the axial length (AL) of the eye is critical in several 

research and clinical applications. Partial coherence interferometry (PCI) is a non-

invasive objective method to measure axial length (AL) and is the election method for 

total or partial measurement of intra-ocular dimensions1;2 as a main variable for intra-

ocular lens calculation. It is also used in clinical trials involving emmetropization and 

myopia progression3 and, recently, to evaluate the actual shape of the posterior 

segment of the eye.4;5 However, such biometers determine optical path lengths (OPL) 

and convert them into geometric/anatomical lengths by assuming estimate values for 

the eye internal refractive indices. In the case of the IOLMaster (Carl Zeiss Meditec, Jena, 

Germany), it uses a unique average index (1.3549) based the average group refractive 

index of a Gullstrand’s 24 mm model eye for an envelope of waves at the instrument’s 

infrared radiation wavelength λ=780 nm.6   

Atchison et al.7 calculated the errors that this assumption might induce in axial 

length measurement during accommodation, and more recently in retinal shape 

estimation.8 However, no correction factor was suggested within the normal range of 

AL and crystalline lens thickness (LT) which might have an impact in the final estimations, 

as the authors acknowledge.  

Beyond solely measuring AL and other biometric parameters, current intra-

ocular refractive surgical procedures require a high level of accuracy in the estimation 

of the power of the intra-ocular lenses (IOL) to be implanted. This is particularly relevant 

in patients with very good preoperative visual acuity as in the case of presbyopic 

patients undergoing clear lens exchange (CLE) with implantation of multifocal IOL’s.9  IOL 

power calculation has evolved from the initial empirical methods to the newest 

generation formulas.10  The potential errors involved in AL measurement within the 

normal range seem to be assumed by correction factors in the IOL formulas, but for eyes 

with out-of-the-normal-range internal dimensions significant errors might be 

involved.11;12   

In the search for more accurate estimations several authors have made 

significant efforts to develop new customized methods to estimate the IOL power 
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trough optical modelization13 based on the patient´s own data, obtained with the most 

recent methods of ocular imaging.14 As the axial length of the patient’s eye is paramount 

in these efforts for higher accuracy, better estimations of the AL should be useful to 

improve the accuracy of these models.  

The goal of this paper was to evaluate the impact of different combinations of AL 

and LT in the measurement obtained with the IOLMaster through optical ray tracing 

simulation, and to derive a correction method for such measurements.  

2.3.  Methods 

Optical design programs are used to model and analyze different kinds of 

imaging systems including the human eye. They use Snell’s law to trace the propagation 

of light through the surfaces of an optical system.  Using ray-tracing software Zemax-EE 

(Zemax Development Corporation, Washington, USA) a set of unaccommodated eyes 

were designed based on the Navarro Eye Model.15 Three different LT values (3.6, 4.2 and 

4.8 mm) were combined with eleven eye lengths (from 20 to 30 mm in 1.0 mm steps), 

resulting in thirty-three combinations. The LT values were based on the age related 

changes obtained by Atchison et al.16 who pointed an average LT shift from of 3.6 mm 

to 4.8 from 20 to 70 years of age. An additional 4.2 mm intermediate value was included 

as a value representative of a middle-aged population from 39 to 51 years.17   

Corneal thickness, curvatures and asphericities were kept constant. Anterior 

chamber depth (ACD) was set to vary as a function of the change in LT such that 50% of 

the change in LT resulted in a change in the same magnitude in the ACD. Vitreous 

chamber depth (VCD) was set to vary as a function of ACD and eye length as most of the 

axial elongation of the eye is attributed to VCD elongation.18 This was assumed for 

simplicity after previous simulation demonstrated no implication in the error 

calculations presented. As ACD and VCD have similar refractive indices, the sum of their 

optical path lengths (OPL) will be the approximately the same regardless of their physical 

length distribution. The individual group refractive indices were derived by 

Hitzenberger,6 starting from the known phase refractive indices at λ=550 nm and 

assuming the dispersion of water for the ocular media.   

http://en.wikipedia.org/wiki/Optical_design
http://en.wikipedia.org/wiki/Ray_(optics)
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Unlike ultrasound biometry that measures AL along the optical axis of the eye, 

PCI – as a fixation-bound method – measures AL along the eye’s visual axis. Because of 

the temporal displacement of the fovea in the human eye, the horizontal field angle was 

adjusted so that the chief ray would maintain a 5-degree angle at the 2nd nodal point 

(Figure 2.1). Normal incidence with the first corneal surface was maintained in all 

theoretical simulations. 

 

Figure 2.1. Ray-trace simulation of the IOLMaster infrared beam, in the Navarro Eye 

Model, along the visual axis. Due to the temporal decentration of the fovea the beam 

will be slightly deviated after refraction in the internal surfaces of the eye. 

For the cornea-to-fovea physical distance to be the same between the eye model 

and the instrument estimated AL, the average group refractive index of the eye model 

must equal the one assumed by the instrument for the same wavelength. Whenever 

these values are different, depending mainly on varying distribution of AL and LT values, 

the optical measurement will result in an estimation error. The error was obtained using 

equation 2.1.   

 

𝐸𝑅𝑅𝑂𝑅 =   𝐼𝑛𝑠𝑡𝑟𝑢𝑚𝑒𝑛𝑡 𝐴𝐿 –  𝐸𝑦𝑒 𝑀𝑜𝑑𝑒𝑙 𝐴𝐿                                              𝐸𝑞(2.1) 

                 

 

  Here the instrument measured AL is the result of dividing the calculated OPL by the 

estimated group refractive index “wired in” the instrument (1.3549), and the Eye Model 
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AL is the result of ray tracing simulation by adding each individual surface physical path 

length. 

Linear regression was used to evaluate the error as a function of LT and AL and 

then combined into a single correction equation. In each step the residual error was 

calculated. 

2.4.  Results 

The errors for each one of the eye models under evaluation have been calculated 

and plotted as a function of the axial length, for each crystalline lens thickness. Figure 

2.2 shows the error variations in the instrument measurements for all the thirty-three 

eye model combinations. From 20 to 30 mm axial lengths and 3.6 to 4.8 mm lens 

thickness, the instrument measurements will yield an estimated error between -0.043 

and +0.089 mm. 

 

 Figure 2.2.  Error from the instrument measure as a linear function actual AL and LT 

combinations. 

The slope obtained in the three linear regression equations was the same                  

(-0.007735), with the equation constant values corresponding to the thinner and the 

thicker LT configuration presenting a difference of approximately ±0.028 mm with 

respect to the middle thickness equation constant value (LT= 4.2 mm). The coefficient 
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of determination (r2) was 1.00 for the three equations as expected due to the linear 

relation between the optical path length and the real distance. 

 

Using the parameters in table 2.1, a new regression equation was derived in 

order to predict the variation from the constant terms in each equation for each LT. This 

allowed us to create a combined regression equation that will be able to estimate the 

amount of error as a function of AL and LT within the range of values considered in this 

work (equation 2.2). 

 

Table 2.1. Equations coefficients from the regressions in Figure 2.1. 

LT (mm) Slope R1 Constant R1  

3.6 -0.007735 0.18791  
4.2 -0.007735 0.2156  

4.8 -0.007735 0.2433  

 

 𝐸𝑅𝑅𝑂𝑅 =  −0.007735 ×  𝐼𝑛𝑠𝑡𝑟𝑢𝑚𝑒𝑛𝑡 𝐴𝐿 + 0.046140 ×  𝐿𝑇 +  0.021806               𝐸𝑞(2.2)         

                                                                                                                                                                                                                                         

2.5.  Discussion 

Nowadays, accurate determinations of AL are of paramount importance in 

several research and clinical applications. From the results of the present study we can 

observe that the equivalent refractive index of 1.3549 used by the instrument is 

optimized for an AL value near 24 mm with a LT around 3.6 mm. This does not seem to 

be consistent with the normal LT value found in the general elderly population,16 

especially when considering that these instruments are primarily used in pre-surgical 

evaluation of cataract patients. Although the errors found are quite small, usually lower 

than 0.1 mm, which corresponds to error in the power of the IOL around 0.25 D, these 

errors are expected to be higher for AL values out the range than the ones plotted in 

Figure 2.2 due to the linear relation between the error and the AL. Even so, we stress 

that the correction of the AL measured by the IOLMaster might not be clinical relevant 
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when the calculation of the IOL is done using one of the traditional formulas, due to the 

lack of precision that they offer. On the other hand, personalized eye models can help 

to improve the accuracy of IOL power choice through numerical ray-tracing software like 

Zemax,13 but the biometric data used in the customization of the eye models must be 

corrected for the errors here reported, and the parameters of the IOL geometry other 

than the lens constant must be known. Also better estimates of group refractive indices 

in the infrared are needed; there is not enough information in the literature on 

dispersion in the various ocular media to make better estimates than the ones reported 

by Hitzenberger.6  

 Another important area that might benefit from these corrections is the clear 

lens exchange (CLE) surgery. In CLE, patients expect high precision results.  Improving 

the estimation of the actual axial length will certainly improve the prediction of the most 

accurate post-surgical refraction. 

 In summary the present results demonstrate minor deviations between the AL 

obtained with an optical biometer and the actual value predicted using optical 

modelization. However, correction of AL accounting for distortions induced by refraction 

within the ocular media and variations in the average refractive index of the eye might 

help to progress further towards the desirable error-free biometric calculations in 

cataract surgery and CLE, particularly in longer eyes. 
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Chapter 3: Computing Retinal Contour 
from Optical Biometry 

3.1.  Abstract  

PURPOSE: To describe a new methodology that derives horizontal posterior retinal 

contours from partial coherence interference biometry (PCIB) and ray tracing using the 

corneal topography (CT). 

METHODS: CT and PCIB for seven horizontal visual field eccentricities correspondent to 

the central sixty degrees of the posterior pole were obtained in 55 myopic eyes. A semi-

customized eye model based on subject’s CT and Navarro’s eye model was generated 

using Zemax-EE software. The model was used to compute the optical path length (OPL) 

in the seven directions where PCIB measurements were obtained. Vitreous chamber 

depth was computed using the PCIB values obtained at each of those directions. Matlab 

software was developed to fit the best conic curve to the set of points previous obtained. 

We tested the limit in the accuracy of the methodology when it is not used the actual 

corneal of the subject and for two different lens geometry.  

RESULTS: A standard eye model can induce an error in the retinal sagittas estimation of 

the order of hundreds of microns in comparison to the semi-customized eye model. 

However, the use of a different lens models leaves to an error of the order of tens of 

microns. The apical radius and conic constant of the average fit was -11.91 mm and              

-0.15, respectively. In general, a nasal-temporal asymmetry in the retina contour was 

found showing mean larger values of vitreous chamber depth in the nasal side of the 

eye.  

CONCLUSIONS: The use of a semi-customized eye model together with OPL measured 

by PCIB for different angles can be used to predict the retinal contour within tenths of 

microns. This methodology can be useful in studies trying to understand the effect of 

peripheral retinal location on myopia progression as well as modelization of the optics 

of the human eye for a wide field. 

KEYWORDS: coherence optical biometry; IOL Master; retinal contour; myopia; model 

eye for a wide field. 



42 
 

3.2.  Introduction  

Knowledge of the posterior retinal contour is potentially useful to understand 

the mechanisms of emmetropization and myopia progression.1-3 Furthermore, the 

current knowledge in this field suggests that it might be possible to interfere with 

myopia progression by customizing the relative position of the peripheral focalization 

regarding the retinal surface.4 To achieve a true customization of these treatments it 

will be essential to know the position and shape of the retinal surface in order to design 

an optical device able to change the refraction in the desired way.5  

Retinal contour can be derived by a number of techniques, including indirect 

estimation from peripheral refraction measurements,6 Optical Coherent Tomography 

(OCT),7 and advanced imaging techniques such as magnetic resonance imaging (MRI).8 

While these techniques are not usually available in the context of a personalized optical 

prescription, they also lack the resolution needed to achieve a detailed knowledge of 

the retinal contour beyond 30º to 50º away from the fovea, where some of the currently 

available optical treatments aim to have a significant optical effect.9-11  

Mallen and Kashyap used partial coherence interferometry (PCI) to perform 

peripheral biometry using the IOLMaster,12 but their work has not dealt with optical 

distortion in peripheral measures, especially when the IOLMaster infrared beam passes 

through the lens in an oblique direction, pointed by Atchison and Charman as a 

potentially significant source of error.13 Previous work also fails to consider the different 

refractive indices in the eye’s media, as the IOLMaster measures the optical path length 

(OPL) between the corneal surface and the retina (RPE) and uses a single average 

refractive index in order to derive the physical eye length (EL) from the optical path 

length.14    

Atchison and Charman,13 have shown recently that PCIB technology might be 

suitable to measure the retinal contour if the OPL within each component of the eye is 

known. Then authors performed an interesting study theoretical study using a 

Gullstrand eye model to identify the potential errors when using PCIB obtained in two 

different axes. These authors already indicated in their article an eye model together 

with ray tracing and experimental measurements of PCI can be used to find the position 

of the retina as a function of the angle of the incident beam. Authors also mentioned 
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that accurate description of the retinal contour depends on the eye model used. PCIB 

values for different angles are relatively easy to obtain using commercial apparatus such 

as IOL master or the Lenstar. However, to perform a realistic customize eye model can 

be very complex due to lack of detailed measurements of the front and back surface of 

the lens and its gradient index. Conversely, there are a number of commercial systems 

available to obtain highly precise measurements of the corneal topography of the eye. 

Taking in to account that OPL is very sensitive to the corneal topography since it can 

differ very much from a sphere, as is the case of the front surface of the cornea of the 

Gullstrand eye model, we can presume that corneal topography will be an essential part 

of the eye model that should be used to obtain reliable data of the retinal contour. 

However, knowing the relatively small changes in refractive indices within the eye it 

might not be totally necessary to know the internal optics to compute the contour of its 

retina with an acceptable error margin. 

Under this context, the goal of this work was to study the possibilities of using a 

semi-customized eye model to derive the horizontal posterior retinal contours using 

measures of eye length obtained with PCI biometry. The methodology will be use to find 

retinal contour of a group of subjects. 

 

3.3.  Methods 

 

Measurements and subjects. 

Eye length (EL) was measured in a group of 55 non-pathological young 

(22.05±1.78 years) myopes (-2.59 ± 1.29 D) by means of the IOLMaster (Carl Zeiss 

Meditec, Jena, Germany). For each subject, EL measures were obtained in 7 horizontal 

meridians (θ: from 30º nasal to 30º temporal, with respect to the visual axis, in 10º steps. 

Negative and positive values of θ represent nasal and temporal positions in the retina 

plane respectively. The procedure used was similar to the one previously described by 

Mallen et al.12 The axis of the IOLMaster was maintained perpendicular to the corneal 

curvature at each position of measurement. A narrow beam of coherent light coming 

from the IOL Master entrances the eye along the apparatus axis it is captured a narrow 

beam coming out along the same axis and after diffused reflection in the retina. Thus, 
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following Fermat’s principle, the optical paths traveled by the ray going-in and that 

going-out the eye are the same.  

Corneal topography was also measured using a commercial topographer 

(Medmont E-300, Vermont, Australia). For each subject, all measurements were 

performed in the same eye (right eye).   

 

Finding retinal single locations from IOL master measurements. 

Direct measurements of the eye length by IOL master should not be used to 

obtain the position of the retina in the direction of measurement, as has been indicated 

previously.13 However, knowing that IOL master uses an equivalent refractive index, 

neq=1.3549 ,14 we can retrieve the OPL of the rays passing thought the eye at a certain 

angle (θ,multiplying EL by neqθ Then, assuming homogenous refractive index within the 

eye, measurements of EL made by the IOL Master at each θ direction can be related to 

vitreous path length VitreousPL(θ) in the same direction using the following expression: 

 

IOLMasterEL(θ)∗𝟏.𝟑𝟓𝟒𝟗=𝑪𝒐𝒓𝒏𝒆𝒂𝑷L(θ)∗𝟏.𝟑𝟖𝟓𝟔+𝑨𝒒𝒖𝒆𝒐𝒖𝒔𝑷𝑳(θ)∗𝟏.𝟑𝟒𝟓𝟗+ 

+𝑳𝒆𝒏𝒔𝑷𝑳(θ)*𝟏.𝟒𝟎𝟕𝟎+𝑽𝒊𝒕𝒓𝒆𝒐𝒖s𝑷𝑳 (θ)∗𝟏.𝟑𝟒𝟒𝟓                          (Eq. 3.1) 

 

Where 1.3856, 1.3459, 1.4070 and 1.3445 have been proposed to be the group 

refractive indices of the eye for the wavelength used by the IOL master (780 nm) .14 

Using a model eye and a ray tracing software Zemax-EE (Zemax Development 

Corporation, Washington, USA), a ray was traced entering the eye perpendicular to the 

anterior cornea surface at each angle θ. From ray tracing, it can be known the direction 

and the physical distance traveled by the chief ray through the different media within 

the eye model: CorneaPL(θ), AqueousPL(θ) and LensPL(θ).Those distances can be used in 

Eq.3.1 to compute the physical length of the vitreous chamber of the eye model, 

VitreousPL(θ) Seven points (x – semi-chord, z – sag), correspondent to the IOLMaster  

point of reflection in the retinal pigment epithelium (RPE), along the horizontal field of 

view, were obtained according to Zemax ray-trace referential, where the point (x=0, z=0) 

corresponds to the intersection of the visual axis with the retina plane.  
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Semi-customized eye-model. 

For each subject a semi-customized eye model was built using the Navarro eye 

model,15 with the front corneal surface replaced with a Zernike Standard Sag surface16;17 

computed from the topography of the subject. This surface includes a regular revolution 

conic surface plus a Zernike polynomial expansion, which accounts for departures of the 

real surface from the regular basis. Individual data obtained from anterior elevation 

topography were fitted to the Zernike Standard Surface equation by a least-squares 

method implemented in MATLAB (Mathworks, MA).18  

Zemax-EE was then used to compute the ray tracing for each angle θ. As 

refractive index of the eye we have used the same mentioned in Eq. 3.1. In all cases, and 

especially for large negative or positive values of θ the beam from the instrument does 

not travel in a straight line inside the eye and the point where the ray reaches the retina 

does not lie in the direction of measurement as already described.  

 

Estimating retinal contour from retinal single locations. 

Traditionally ocular surfaces are described in terms of conic sections. A software 

was developed in Matlab (matrix laboratory, MathWorks) based in a minimum square 

method to compute the best fit of a conic surface to the seven retinal location points 

obtained using the methodology described above. The software was programmed to 

allow a free orientation of the fitted conic sections in order to express possible 

asymmetry aspects from the retina contour that would be lost if the conic sections were 

fitted in their canonical form. Thus, the program was able to estimate the apical radius, 

conic constant, orientation and apex location of the best conic fit. Once the software 

was applied to all the subjects we computed the mean and SD of the fitting errors to the 

conic curves (RMS) and removed fittings with errors above the mean ±3 SDs. 

 

Testing the validity of the semi-customized eye model. 

Finally, we studied the validity of using a semi-customized eye by did the 

calculations in two different ways. In the first one we computed the retinal contour using 

the anterior cornea from the Navarro eye model, consisting of a rotationally symmetric 

aspheric surface with apical radius of 7.72 mm and a conic constant of -0.26.15 After this, 

the contour was estimated by incorporating the actual corneal topography from the 
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subject (semi-customized approach). Comparing the retinal contour results of the full 

Navarro eye model with those obtained in the semi-customized eyes, will let us know 

the importance of using corneal topography in our methodology.  

In the second study we studied the need for a highly customized eye including 

the internal partial dimensions of the ocular media. We know that the thickness and 

shape of the crystalline lens changes with age becoming larger and thicker.19;20 The use 

of an age-independent lens with a constant shape and thickness in our semi-customized 

model could then result in an important lack of accuracy in determining the retinal 

contour. We have checked this potential source of error by analyzing the change in the 

retinal contour using a full Navarro model eye, and them changing its lens for a 20 and 

70 years lens as proposed by Atchison and collaborators.19  In the procedure we first 

used the full Navarro eye model with a spherical retina of -12 mm radius to obtain the 

readings that the IOL master would produce for the seven angle θ values analyzed. Then 

we computed the changes in retinal contour obtained by modifying the lens geometry. 

3.4.  Results 

Figure 3.1 presents the mean retinal contour obtained in the 55 right eyes by 

using the semi-customized eye model. Error bars showed ±2 times the intersubject 

standard deviation accounting for about 95% of the values. The large value of the error 

bars at ±8 mm from the fovea (corresponding to approximate θ=±30º) indicates the 

large variability of retinal contour between subjects. It can also be noted that there is an 

asymmetry between the nasal and temporal hemifields. An unpaired T-test comparing 

the average sagitta values obtained for both retina hemifields confirmed the asymmetry 

(p<0.001). 

 

Figure 3.1. Average retina contour of the 55 subjects. Error bars represent ±2SDs. 
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Figure 3.2 also shows the mean retinal contour as a function of the angle of 

incidence of the ray, .  We included two particular cases corresponding to those eyes 

that showed the largest, positive or negative, difference between hemifields (nasal-

temporal).  

 

 

Figure3. 2. Average conic fit as a function of angle in object space (dotted line) and Nasal-

Temporal retinal asymmetry of two individuals (squares and triangles).   

 

Table 3.1, shows the statistics of the fitted conics regarding the apical curvature 

radius (R), conic constant (Q) angle of axis rotation (Theta), apex (x0,z0) coordinates and 

RMS as well as the fitted curve to the seven data points.  

 

Table 3.1. 

Range of the values obtained for the 55 fitted conics regarding orientation, tilt, apex 

decentrations, RMS of the residual and the resulting conic fit of the average sagitta 

values.  

  Range  Conic Fit 

RMS (mm) 0.007 to 0.104 0.002 

Radius (mm) -19.06 to -7.26 -11.91 

Q -2.37 to 3.38 -0.15 

Theta (º) -43.47 to 44.51 11.56 

Apex x0 (mm) -1.91 to 1.72 -0.36 

Apex z0 (mm) -0.28 to 0.21 0.02 
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Figure 3.3 plots the average differences in the retina sagittas when using the generic 

cornea of the Navarro eye model instead of the individual corneal topographic data. 

Negative values represent steeper retinas across the posterior 16 mm of the horizontal 

posterior pole when using the generic cornea. 

  

Figure 3.3. Average differences in the retina sagitta values when using a generic anterior 

cornea. Error bars represent ±2SD.   

 Figure 3.4 shows the differences in the retinal sagittas obtained when the lens of 

the Navarro eye model is changed to match that thickness and curvatures of a 20 and a 

70 year old eye.19 Negative values represent steeper retinas across the posterior 16 mm 

of the horizontal posterior pole when using an alternative lens model. 

 

 

Figure 3.4. Differences in retinal sagitta height obtained, through the same method, for 

the 20 and 70 years old lens models.   

 

3.5.  Discussion 

The present work describes a new method to derive a two-dimensional retinal 

contour within the central 16 mm of the horizontal posterior pole using clinically 

available technology to measure intra-ocular dimensions and numerical ray tracing.  



49 
 

As IOLMaster measures the OPL between the cornea and the retina, it can be 

expected that differences in the anterior elevation of the cornea (initial point of the OPL) 

as well as the length of the vitreous chamber (locating the final point of the OPL) and 

thickness of the crystalline lens should be critical when retrieving the retinal shape. Our 

results in 55 eyes agree with this rationale showing that the difference between 

assuming a standard cornea, for instance that proposed in Navarro eye model, and a 

customized cornea can lead to an error in the measurements of the retinal contour up 

to 244 microns (see Figure 3.3), which represents an error in the refraction of about 

0.75D. Although not tested, we can assume that in eyes with pathological corneas, such 

as keratoconus or corneal penetrating keratoplastia, where deviations from a regular 

shape are much larger than in the population study in our study, the retinal contour 

estimates will be much more affected. 

However, the cornea and lens change in thickness with respect the one 

presented in the Navarro eye model are usually lower than 150 and 500 microns, 

respectively. Thus, taking into account that the change in refractive index between those 

two refractive elements and the humors are about 0.04 and 0.06 for the cornea-aqueous 

humor and lens-aqueous or vitreous humor (see Eq. 3.1), we can expect that changes in 

OPL with the lens will differ about 36 microns between different eyes, except for phaquic 

or pseudophaquic eyes. Moreover, our previous simulation work has also shown that 

errors in estimating the actual axial length of the eye with PCI might be biased only by 

56 µm in eyes with different lens thickness within a range of axial length from 20 to 30 

mm.21  

Our simulations in the present work have also confirmed this finding. Figure 3.4 

shows that the difference in the retinal contour for the two lens configurations used in 

the simulations are within the range of tenths of microns. This value is typically in the 

order of magnitude of error in of repetitive measurements of the axial length given by 

the IOL Master,22 and represents changes in the equivalent refractive sphere of the 

order of 0.1 D, which also are in the order of the repeatability of the open field 

autorefractometers usually used in the peripheral refractive measurements.23  

Besides the small difference in the OPL for different optics inside the eye, there 

is also a change in the direction of the ray exiting the lens. This will also modify the retinal 

contour estimate. The actual deviation will depend on the particular model eye used, 
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but taking into account that the distances traveled by the rays within the eye are 

relatively small, it can be expected that a deviation of a few degrees will be traduced in 

a relatively small traverse deviation at the retinal plane. Our results of Fig. 4 also suggest 

that the errors given by this fact should be small for a ±8 mm horizontal semi-chord. 

Moreover, although we have presented the results of the retinal contour in terms of the 

physical distance in millimeters from the fovea (see Figure 3.1), they can be also 

presented as a function of angle θ (Fig.3. 2), which is the most common way of 

presenting the data in the literature.24;25  

It would be complicated to precise the accuracy of our methodology since we 

would need to compare our results with another established methodology that give 

accurate results, to perform the measurements in a real eye with a known retinal 

contour or use an artificial eye that really mimics the human eye. Instead, to limit the 

accuracy of our methodology we used two studies. In one it is showed that using a 

standard eye model as have been indicated13  let us to error in the retinal contour of the 

order of hundreds of microns. The second study indicates that using a standard lens 

model the error in the sagitta of the retinal contour will be of the order of tens microns 

(usually lower than 40 microns).  

According to our data the study performed in 55 eyes highlights the inter-subject 

differences in the contour of the posterior pole of the eye in mild and moderate myopes 

using a new method that combines actual PCI measures with correction mechanisms 

based on ray tracing (see Figure 3.1 and 3.2). These differences can be as much as 2.3 

mm at the 8 mm semi-chord of the nasal retina.  

Retina sagitta height values as well as asymmetry between nasal and temporal 

hemifields were not correlated to a significant level with axial length or spherical 

equivalent refractive error. The majority of the subjects (48 out of 55) presented a 

positive asymmetry (Nasal Sag – Temporal Sag), i.e. longest vitreous chamber in the 

nasal hemifield (see fig. 1), which is in agreement with other reported results.2;24;26 Thus 

our results indicates that retinal shape can vary considerably for different eyes, 

particularly beyond 4 mm from the fovea, as has been previously reported as a result of 

the stretching and elongation forces during emmetropization and ametropia 

development.27 However, previous studies have also shown that the posterior shape of 

the eye might be related with the level of axial elongation, such that longer eyes will 
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tend to be steeper in the posterior pole. In this study we have not found a correlation 

between the changes in retinal shape and the central refraction. This is not surprising 

considering that all eyes included in our study were low to mild myopes and might have 

not suffered enough stretching or elongation forces that would be reflected in the 

contour of the posterior pole shape. Rather, our sample might be a good example of 

how random the posterior ocular surface might be in myopic eyes within a normal range 

of axial elongation. 

Assuming that peripheral imagery has an influence on the emmetropization 

process and in the development of refractive errors, differences as large as 2 mm in the 

estimation of the retinal location at an angle of thirty degrees and beyond might help to 

explain why eyes with similar refractive error react differently to the same treatment as 

it has been observed in interventional studies that attempt to halt myopia progression 

using orthokeratology or peripheral gradient ophthalmic and contact lenses.28-32 The 

results from the present study strength the need for semi-customized eye models 

incorporating actual corneal topography and actual retinal contour when it comes to 

design optical treatments for wide angles.33 

In a future approach other meridians can be accessed using the same 

methodology to obtain a two-dimensional retinal surface. In that case, more complex 

surfaces than conics will be probably needed.  
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Chapter 4: Morphology, Topography 
and Optics of the Orthokeratology 
Cornea 

4.1.  Abstract 

PURPOSE: The goal of this work was to conduct an objective characterization of the 

external morphology, topography and optics of the cornea after orthokeratology.  

METHODS: 24 patients (age 24±5 years) were fitted with Corneal Refractive Therapy® 

contact lenses to correct myopia between -2.00 and -5.00 D (-3.71±0.94 D). A 

classification algorithm was applied to conduct an automatic segmentation based on the 

mean local curvature. As a result, three zones (optical OZ, transition TZ and peripheral 

PZ) were delimited. Global and zonal fit to a general ellipsoid provided the topographical 

analysis. Ray trace on partially customized eye models provided wave aberrations and 

retinal image quality.  

RESULTS: Monozone topographic description of the ortho-k cornea loses accuracy when 

compared with zonal description. Primary (C40) and secondary (C60) spherical 

aberration (SA) coefficients for a 5 mm pupil increased 3.68 and 19 times, respectively, 

after the treatments. OZ area showed a strong correlation with C40 (r = -0.49, p<0.05) 

and a very strong correlation with C60 (r = 0.78, p<0.01). OZ, as well as TZ, areas did not 

correlate with baseline refraction. 

CONCLUSIONS: The increase in the eye's positive SA after ortho-k is the major 

responsible of the decreased retinal optical quality of the unaccommodated eye. 

 

KEYWORDS: orthokeratology, corneal refractive therapy, spherical aberration, ocular 

aberrations, accommodation, myopia, myopia control, contrast sensitivity function, 

accommodative lag 
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4.2.  Introduction 

Orthokeratology (ortho-k), also known as corneal refractive therapy (CRT), is a safe 

and effective modality to correct low-to-moderate myopia,1 by flattening the central 

cornea with the overnight application of reverse geometry rigid gas permeable contact 

lenses.2 The corneal epithelium is reshaped by thinning in the central cornea and thickening 

in the mid-periphery.2 These anatomical changes have huge optical consequences. Besides 

the correction of central myopia and a small reduction in with-the-rule astigmatism,3 as 

the pupil dilates the quality of vision deteriorates due to the significant increase in optical 

aberrations,4,5 leading to complaints of photic phenomena,6,7 as well as fluctuations in 

vision over the course of the day due to the temporary and reversible nature of the 

treatment.8 Once the correct corneal shape is well-established, the visual performance of 

ortho-k patients will then rely on the centration, area and power distribution of the central 

flattened zone (treatment zone or optical zone —OZ) and the surrounding steepening zone 

(transition zone –TZ). Other authors have attempted to estimate the dimensions of the 

optical and transition zones by visual inspection of the differential topographic maps9 or by 

using an arbitrary criterion for segmentation of the different new formed zones.10  

 Quantitative methods to estimate the optical characteristics of the post ortho-k 

corneal surface will potentially be useful in determining the impact of lens design changes 

on the topographical and visual outcomes.11 Furthermore, the objective characterization 

of the front corneal surface of the orthokeratology cornea may allow better understand 

the impact of t ortho-k corneal optics on visual performance and may eventually allow the 

optimization of  lens designs. Optimal designs could then be used to achieve corrections 

such as regulation of myopia progression, by acting on the peripheral defocus,12  or 

presbyopia correction, by improving the depth of field and/or the accommodative 

response of the eye.13 

Thus, the first goal of the present work was to conduct an objective morphological 

topographical and optical characterization of the ortho-k cornea using an algorithm of 

classification that analyzes the Mean curvature from the post-treatment topographic map 

raw data. Subsequently, the influences of those changes in the optical quality were also 

investigated. Due to the interest in these three types of analysis, three complementary 
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methods were implemented: (1) Automatic determination and morphological analysis of 

the optical, transition and peripheral zones; (2) global and zonal topographical analysis by 

fitting a general ellipsoid topographic model; and (3) ray tracing in partially customized eye 

models of the patients to study their optical performance.   

Throughout this paper the term morphology refers to structure and size changes of 

the limited zones of the anterior post ortho-k cornea, i.e., external morphology. 

4.3.  Material and methods   

Ortho-K patients and measurements 

Twenty-four patients (aged 24 ± 5 years) were fitted with Corneal Refractive 

Therapy® (Paflucon D, Paragon CRT®) contact lenses (CL) nine months (Mean 277±84 

days) prior to data collection, to correct myopia between -2.00 and -5.00 D (Mean -3.71± 

0.94 Diopters) with refractive astigmatism below 2.00 D. Paragon CRT® Dual Axis was 

used in subjects with limbus-to-limbus corneal astigmatism to improve centration of the 

treatment. Trial lenses were derived from sliding table nomograms provided by the 

manufacturer, which have shown high levels of predictability in terms of first trial 

success.14 If needed, during the first two follow-ups, some CL parameters were changed 

to obtain a full correction of the myopic refraction with a well centered treatment. 

Fitting was evaluated according to the recommendations of the manufacturer regarding 

fluorescein pattern, topographical evaluation, and refractive and visual outcomes. All 

the enrolled subjects were able to achieve logMAR 0.0 visual acuity without any further 

compensation. All procedures were performed according to the Declaration of Helsinki. 

Approval for the study was obtained from the ethics committee of Minho University 

School of Sciences.  

Local Mean Curvature maps 

 Left eye anterior elevation topography maps were obtained from all patients 

using Medmont E300 corneal topographer (Medmont, Victoria, Australia), with pupil 

center determined by the topographer as reference. Considering the high repeatability 

of the Medmont topographer only one topography per patient was used to extract the 

anterior elevation data, provided that it scored higher than 99 out of 100.  All patients 
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attending the measurement visit were wearing the lenses overnight for at least three 

consecutive days. The raw elevation data of each patient was exported to Matlab and used 

to calculate the Mean curvature (H) which is the average of the principal curvatures k1 and 

k2, defined as the maximum and minimum curvatures of each sampled point among all 

orientations. Mathematically, the Mean curvature was computed for each corneal point 

according to its expression for functions with the form Z = Z(x, y) so called Monge Patch:15 

 

𝐻 =
(1+𝑍𝑦

′  2) 𝑍𝑥𝑥
′′ −2𝑍𝑥

′ 𝑍𝑦
′ 𝑍𝑥𝑦

′′ +(1+𝑍𝑥
′  2)𝑍𝑦𝑦

′′  

2(√1+𝑍𝑥
′  2+ 𝑍𝑦

′  2)

3                                            (Eq.4.1) 

  
Where 𝑍𝑥

′ , 𝑍𝑦
′ , 𝑍𝑥𝑥

′′   and 𝑍𝑦𝑦
′′ ,  are the first and second derivatives along the horizontal and 

vertical directions, and 𝑍𝑥𝑦
′′ , is the crossed second derivative.  

The Mean curvature can be expressed in keratometric diopters 𝐻𝐷  =  1000 ×

(1 − 1.3375) × 𝐻, by assuming 1.3375 for the refractive index of the cornea. Optically HD 

is the local spherical equivalent which is especially appropriated for our purposes.16,17 

Zonal segmentation 

 To correct myopia, the central cornea is flattened to induce a reversible change 

on the epithelial thickness profile and the paracentral annular zone, of about 1.5 to 2.0 

mm in width, surrounding the treatment zone, steepens in a direct relationship with the 

amount of central flattening needed to correct the myopic refractive error.9 It is then 

expected that a successful treatment will produce a smooth central area with an almost 

constant power, followed by a surrounding zone with an abrupt increment in curvature. 

However, this will depend on the amount of correction and the curvature distribution 

of the anterior corneal surface before treatment. A third zone, corresponding to the 

most peripheral area of the cornea, will then be automatically defined by the limits of 

the steeper zone. The aim of the segmentation algorithm is to identify each of these 

three new formed zones. To achieve this, a cluster segmentation algorithm was 

implemented in Matlab based on the its native k-means function similar to  the one 

described by González et al.18 for LASIK treated corneas. This algorithm was programed to 

conduct an automatic segmentation based on the mean local curvature at each point. 

The algorithm assumes that each of the three sets of points of the different zones have 
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a normal distribution of curvatures. Hence, the global histogram will show a mixture of 

three Gaussians. The k-means algorithm splits these Gaussians, assigning every point of 

histogram to one of the three, according to the normalized Euclidean distance between 

the point and the Gaussian center. The result of the segmentation is that each point in 

the topography is assigned to one of the three zones, each represented by a binary 

mask. The main problem that arises from this approach is that some points from the 

peripheral zone (PZ)—normally more flat—will be assigned to the optical zone (OZ), due 

to their resemblance in curvature after the treatment.  This can be easily solved by 

reassigning the OZ points that lay beyond the transition zone (TZ) to the PZ. The OZ and 

TZ diameter and center coordinates (x0, y0) can be obtained by least squares fitting the 

perimeter of the correspondent binary mask to a free orientated ellipse. Thus, 

coordinates x0, y0 of the center of the OZ represent decentrations of the ortho-k 

treatments with respect to the entrance pupil center. 

In order to compute the Mean curvature maps, the original Medmont topography 

elevation data given in polar coordinates grid (300 spokes going counter clockwise with the 

first at the horizontal 3 o’clock position, and 32 rings) were interpolated and resampled to 

a square Cartesian coordinate grid. A fourth “no data” zone was included in the 

segmentation algorithm to allocate the points that fall out of the measurement area. This 

process provides a direct analysis of the morphological changes induced by the ortho-k 

treatments and allowed for an independent topographic fit of each zone.  

General ellipsoid model fit 

It is clear that topographies of real corneas do not match any ideal models such as 

spheres, ellipsoids, biconics, etc., but rather they exhibit different irregularities and 

departures from these simple geometries.19 In the case of ortho-k corneas it is expected 

that this difference will be higher than in non-treated corneas. One of the problems that 

may arise from the fitting approaches used by most corneal topographers is that the entire 

shape of the ortho-k treated cornea may not be well described by the conic model 

coefficients, leading to biased estimates especially of the conic constants (asphericities). 

 In our approach, topographic data was described in terms of principal apical radius 

Rx, Ry and conic constants Qx, Qy, as well as its position (x0, y0, z0) and orientation (Euler 
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angles ) in the 3-dimensional space. This was accomplished by fitting the elevation 

data correspondent to each of the new formed zones, plus a global fit (monozone), to a 

general ellipsoid with three orthogonal axes and free position and orientation. A detailed 

description of the model and least-squares fit can be found elsewhere.19 This model as well 

as all subsequent computations were implemented using Matlab (The MathWorks Inc., 

Natick, MA).  

Wavefront error 

Optical modeling was used to calculate aberrations of our subjects based on their 

anterior cornea topographic data. We assumed the same internal optics for all subjects, 

which enabled us to estimate the contributions of the ortho-k treatments in the optical 

performance. Two series of twenty four semi-customized eyes models were created in 

Zemax-EE numerical ray tracing software, based on the Navarro accommodative eye 

model,20 with the front surface of the cornea replaced by the individual anterior 

elevation data of each patient (pre and post ortho-k), obtained from Medmont raw data. 

Detailed methodology can be found elsewhere.21 The vitreous length (VL) was adjusted 

to produce emmetropia, through maximization of the Visual Strehl Modulation Transfer 

Function (VSMTF) metric22 (see Retinal image quality section), in the ortho-k eye models. 

The same VL value was used to model the corresponding pre ortho-k eyes. Into-the-eye 

ray trace was performed to calculate on-axis aberrations of the eye models for a 5 mm 

entrance pupil. The wavefronts, sampled in 512 by 512 matrices, were exported to 

Matlab for additional processing. Results were calculated for 555 nm wavelength. The 

ANSI Z80.28 standard was used to represent Zernike aberrations of the eye models.23 

Retinal image quality  

Although it is unknown which criterion the human eye actually uses for focusing, 

and the ideal optimization method is yet to be determined, several metrics have been 

used to estimate refraction from wavefront data.22,24,25 When higher-order aberrations 

are significant Cheng and co-workers22 found that image plane quality metrics such as 

the Visual Strehl ratio computed in frequency domain (MTF method) (VSMTF) are less 

biased by the high levels of spherical aberration (SA). This metric takes into account that 

different frequencies respond differently to defocus and neural sensitivity  varies with 
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frequency26 in accordance to visual channel theory, which establishes that the visual 

pathway decomposes the input signal into frequency bands.27  

The theoretical estimation of the retinal image quality (RIQ) in our model eyes 

was calculated according to the VSMTF expression: 

𝑉𝑆𝑀𝑇𝐹 =  
∫−∞

∞
∫−∞

∞
CSF𝑁(fx,fy)⋅MTF(fx,fy)dfxdfy

∫−∞
∞

∫−∞
∞

CSF𝑁(fx,fy)⋅MTFDL(fx,fy)dfxdfy
                                                            (Eq. 4.2) 

VSMTF is a normalized measure of image quality defined as the volume under 

the visually-weighted modulation transfer function (MTF) for an aberrated eye divided 

by the corresponding volume for an optically perfect eye (diffraction limited). CSFN is the 

nominal neural Contrast Sensitivity Function and the MTF is the one computed in the 

eye model. MTFDL is the diffraction limited MTF corresponding to the 5 mm pupil used 

here. This image quality metric provides a single value normalized between 0 and 1.  This 

criterion was also used for the determination of the refractive state of pre and post 

ortho-K eye models (VSMTF Rx), using a method previously described.28 All eye models 

where assumed to be well corrected for a 5 mm pupil diameter. This was accomplished 

subtracting the VSMTF Rx from the wavefronts before all calculations. 

Statistical Analysis 

In what follows all data are reported as means and standard deviations unless 

otherwise stated. Statistically significant correlations were marked with * and ** for p < 

0.05 and p < 0.01, respectively. 

4.4.  Results 

The upper panels in Figure 4.1 illustrates local spherical equivalent (mean 

curvature) and the lower panels show the results of the segmentation algorithm, for three 

different patients (a, b and c). From these examples it is clear that three independent and 

well delimited zones are formed after the ortho-k treatment is established, although with 

different power distributions.  
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Figure 4.1. Mean curvature maps of three distinct patients (a, b and c) (top). Example of 

the resulting zonal segmentation obtained with the described algorithm (bottom). 

The average results are summarized in Tables 4.1 to 4.4.  

Table 4.1.  Main topographical and morphological results (mean ± standard deviation) of 

the analysis of the ortho-k corneal topographies for the 24 subjects. RMSe represents the 

Root Mean Square error that results from the least squares fit of the anterior cornea elevation 

data to an ellipsoid with three orthogonal axes. Length units are in millimeters, Root Mean 

Square errors (RMSe) are in micrometers.  

 

The morphological data show that the average optical zone diameter is 3.53 mm. 

OZ is slightly decentered by an average of about a tenth of mm in the temporal and inferior 

Diameter (mm) 3.53 ±0.56 6.94 ±0.25

x0 0.13 ±0.25 0.08 ±1.21

y0 -0.10 ±0.20 0.00 ±0.00

 HD (Diopters) 42.38 ±0.74 42.20 ±0.72 43.93 ±0.80 41.66 ±0.73 42.98 ±0.24 45.06 ±0.24

RX (mm) 7.68 ±0.16 8.14 ±0.19 7.71 ±0.17 8.44 ±0.21 7.69 ±0.16 8.23 ±0.18

RY (mm) 7.50 ±0.15 7.91 ±0.16 7.54 ±0.15 8.26 ±0.16 7.51 ±0.15 8.03 ±0.14

QX -0.27 ±0.06 0.40 ±0.20 -0.16 ±0.13 1.29 ±0.70 -0.23 ±0.08 0.71 ±0.23

QY -0.29 ±0.06 0.36 ±0.19 -0.17 ±0.13 1.24 ±0.67 -0.25 ±0.08 0.67 ±0.22

RMSe (µm) 1.48 ±0.47 3.48 ±1.03 0.13 ±0.08 0.22 ±0.11 0.96 ±0.38 1.36 ±0.49

Topographic data

Morphologic data

POST POSTPREPREPOSTPRE

Center (mm)

Transition Zone (TZ)Monozone Optical Zone (OZ)
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directions, but the high standard deviation values suggest a marked intersubject variability. 

When considered as a single zone, the mean curvature of the cornea did not change 

significantly following ortho-k treatment (diff=- 0.18D; p>0.05). This was due to the 

flattening of the central cornea corresponding to the optical zone (-2.27 D) being 

counterbalanced by a significant steepening of the cornea corresponding to the transition 

zone (+2.08 D).  The RMS ellipsoid fit error increases from 1.48 micrometers in the pre 

ortho-k cornea up to more than double of that value (3.48 micrometers) for the post ortho-

k cornea, which suggests that after the treatment the cornea can hardly be approximated 

by the ellipsoid model. This is the reason why the multizone model was implemented. The 

fitting errors improve quite dramatically when separate zones are considered instead of 

the monozone approach. In fact, the change in spherical equivalent refraction (calculate 

using the VSMTF criterion) due to the ortho-k treatments seems to agree rather well with 

the mean apical radius change within the OZ, but not when these changes were calculated 

from the monozone model fit (see Table 2). An opposite trend is observed when comparing 

OZ versus TZ. The decreased in Mean curvature inside the OZ is followed by an increase in 

the TZ by a similar amount. Although the apical radii that describe the post ortho-k corneal 

TZ are flatter, their correspondent Q values are much more positive which indicates a 

greater steeping of the corneal curvature away from the apex.   

Table 4.2. Refractive changes (spherical equivalent) induced by the ortho-k treatments 

(mean ± standard deviation), calculated from different corneal descriptors. To convert 

from apical radius to diopters a refractive index of 1.3375 was considered for the cornea.  

  

Figure 4.2. Linear regressions of the results listed in Table 2.  The slope of the linear 

regressions is an indicative of the direct relation between refractive descriptors. 

Mean Refractive Changes ( Diopters)

Baseline Sph. Eq. -3.71 ±0.94

ΔRadius OZ -3.83 ±0.89

ΔRadius Monozone -2.40 ±0.72
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Table 4.3.  Main results (0mean ± standard deviation) of the optical/image analysis of the 

ortho-k corneal topographies for the 24 subjects.  

 

 

Table 4.3 contains data of the optical and image quality parameters. Primary (C4
0) 

and secondary (C6
0) SA coefficients (5 mm pupil) increased by 3.68 and 19 times, 

respectively, after the treatments. This seems to be in agreement with the changes also 

seen in the ellipsoids conic constants passing from negative to positive values (see Table 

1). In addition, the small OZ average diameter means that peripheral rays pass through the 

more curved transition zone, and hence these rays exhibit large amounts of positive SA. 

Horizontal third order coma retains the same mean value but with opposite sign, while the 

vertical component more than doubles, although still maintaining reasonable low values. 

Consequently, due to the high increase in SA, RIQ worsens―almost half VSMTF—in the 

ortho-k eye models compared to the pre-treatment eyes. Although this seems not to affect 

high contrast visual acuity (all subjects achieved LogMAR 0.0), it is expected to deteriorate 

acuity during low contrast tasks.  

It is expected that the changes in anterior corneal shape after ortho-k produce 

changes in the optical performance of these eyes. To test this hypothesis, correlations 

between topographic, morphologic and image quality descriptors were calculated and 

listed in Table 4.4. 

C4
0 0.126 ±0.03 0.464 ±0.12

C6
0 0.001 ±0.01 0.019 ±0.03

C3
1 0.041 ±0.11 -0.041 ±0.29

C3
-1 0.029 ±0.15 0.069 ±0.22

RIQ 0.32 ±0.06 0.18 ±0.06

PRE POST

Optical and Image Quality (5 mm pupil)

(µm)
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Table 4.4. Pearson correlations between morphological, topographical and retinal image 

quality descriptors for the post ortho-k eye models. Only significant correlations are listed. 

  + Pre ortho-k spherical equivalent error. 

It can be seen that both horizontal and vertical coma correlate strongly with the OZ 

decentering (coordinates x0 and y0, respectively). OZ area, as well as the difference 

between the OZ and TZ mean curvatures, showed a strong correlation with primary SA C4
0 

and a very strong correlation with secondary SA C6
0. It seems that higher C6

0 is associated 

with larger OZ’s. As a consequence, RIQ showed a very strong negative correlation with C4
0 

and a strong but positive correlation with C6
0. The low correlation found between C4

0 and 

TZ area can be attributed to the use of a 5 mm entrance pupil, which will restrain part of 

the contribution of this zone to the image formation.  OZ, as well as TZ, areas did not 

correlate with baseline spherical equivalent (PRE SE).  As expected from the results in Table 

4.1 the difference between TZ and OZ mean curvatures (TZ – OZ) is strongly correlated with 

PRE SE, since the change in power tends to be redistributed between these two zones.   

4.5.  Discussion 

The present study combines three complimentary methods of analysis of the 

morphology, topography and optical/image quality of the post ortho-k cornea. The first 

method and algorithm permits the objective quantification of the areas and power 

distribution across the different new formed zones—optical, transition and peripheral 

zone. A similar methodology has been previously applied to the particular case of post-

LASIK corneas by González el al.18 The ortho-k treated cornea is a challenging condition as 

it usually includes significant asymmetries and irregularities. Lu et al.9 delimitated the 

different zones using the difference curvature tangential map and used the size of the 

treatment zone as a metric to correlate with the visual outcomes during the treatment 

HD

OZ  TZ TZ - OZ OZ TZ x0 y0

C3
-1

-0.858**

C3
1

-0.936**

C4
0

-0.488* 0.588** 0.718** 1.000 -0.443*

C6
0

0.780** -0.464* 0.407* -0.695** 0.456* -0.443
* 1.000

RIQ 0.604** -0.697** -0.827** 0.576**

Pre SE+ -0.764** -0.590** -0.529** -0.414* -0.836**

Area
C6

0QXY  OZ 
C4

0
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onset. While this approach could be sufficient for well-defined optic zones, it might become 

difficult and arbitrary in cases with narrow localized areas of flattening surrounded by a zone 

with abruptly increasing curvature. Here the Mean curvature H was used instead, which has 

two crucial advantages. On the one hand H is a physical invariant, which means that it is an 

intrinsic property of the corneal surface regardless of the measuring conditions. On the 

other hand, when multiplied by the increment of refractive index, it provides, in a first 

approximation, the local spherical equivalent.   

For the topographical analysis a general ellipsoid model19 was implemented. It is worth 

mentioning that while the ellipsoid model provides reasonably good fits of normal corneas, 

the model fit gets poor in post ortho-k corneas, similarly to what happens in post-LASIK 

corneas.18 Thus, elevation data fitted to an ellipsoid by a monozone approach will not 

reflect the true shape of the ortho-k cornea. Instead, better fits are obtained when 

individual zones are fitted (see Table 1 RMS values monozone fit vs. zonal fit), which implies 

that the increase in asphericity after ortho-k—especially in the OZ—would be largely 

underestimated by the monozone approach.  

For the optical and image quality analysis the pre and post ortho-k wavefronts, 

computed by ray tracing on partially customized eye models, were compared. The strong 

negative correlation between OZ area and primary SA for a 5 mm pupil diameter seem to 

indicate that larger OZ’s contribute to the decrease in positive C4
0, but increase—with a 

more significant correlation—the contribution of positive C6
0. Contrary to what one might 

expect, wide and well defined OZ’s were not correlated with lower baseline refractions. 

The lack of correlation between zonal areas and baseline refraction suggests that other 

factors rather than the degree of corneal remodeling—such as lid tonus and corneal 

biomechanics—play a more important role in the formation of those zones. It is worth to 

remark that these resulting zones, OZ, TZ, and PZ are defined according to the statistical 

distribution of the Mean curvature descriptor, normalized for each analyzed cornea. This 

means that the resulting OZ is an area where the Mean curvature has relatively 

homogeneous values, and the same applies to TZ and PZ. 
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Figure 4.3. Mean radial wavefront error profiles, representative of the optical path 

difference inside a 5 mm pupil after ortho-k, and their impact in C4
0 and C6

0, for the three 

eyes of figure 1 (patients a, b and c).  

 Larger OZ’s tend to have more homogeneous central zones with less positive Q values 

(r=-0.55, p<0.01). The central flattening creates a wider area of uniform power surrounded 

by a more peripheral steepening zone, as in example (a) of figure 4.3, which increases the 

positive contribution of 6th order SA (C6
0>0) needed to fit the wavefront error profile. On 

the other hand, smaller OZ’s, as in example (c) of figure 4.3, tend to have smoother dioptric 

power changes from the center to the margin of the pupil with narrow and irregular zones 

of flattening, which decreases the positive contribution of 6th order SA (C6
0≤0) needed to 

fit the wavefront error profile. The correlation found between C4
0 and C6

0 (r = -0.44; p<0.05) 

results from the nature of Zernike polynomials, were higher-order polynomials include 

lower-order terms for balancing. Thus, considering the example of Figure 4.3 a) the amount 

of C4
0 needed to balanced 0.06 microns of C6

0 would be about 0.36 microns (C6
0×√7

5⁄ ×5), 

which indicates similar levels of Seidel primary and secondary SA. When considering the 

example of patient c), the contrary is seen. The amount of C4
0 needed to balanced -0.03 

microns of C6
0 would be about -0.18 microns, which indicates a larger amount of primary 

Seidel SA.29 

This increase in the eye’s positive C4
0 is the major factor responsible for the decrease 

in the RIQ of the unaccommodated eye, estimated using the VSMTF metric, and might also 

influence its accommodative response.30-33  

In summary, the present study provides a methodology to better understand the 

morphology, topography and optics of the ortho-k cornea and their influence in the optical 

performance of these eyes. These conclusions might be useful to better understand the 
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influences of ortho-k in myopia progression or to investigate future ortho-k lens designs to 

optimize the correction of refractive errors or presbyopia.  
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Chapter 5: Effect of Pupil Size on 
Wavefront Refraction during 
Orthokeratology  

5.1.  Abstract 

PURPOSE: It has been hypothesized that central and peripheral refraction, in eyes 

treated with myopic overnight orthokeratology, might vary with changes in pupil 

diameter. The aim of this work was to evaluate the axial and peripheral refraction and 

optical quality after orthokeratology, using ray tracing software for different pupil sizes.  

METHODS: Zemax-EE was used to generate a series of 29 semi-customized model eyes 

based on the corneal topography changes from 29 patients who had undergone myopic 

orthokeratology. Wavefront refraction in the central 80º of the visual field was 

calculated using three different quality metrics criteria: Paraxial curvature matching, 

minimum Root Mean Square error (minRMS) and the Through Focus Visual Strehl of the 

Modulation Transfer Function (VSMTF), for 3 and 6 mm pupil diameters.  

RESULTS: The three metrics predicted significant different values for foveal and 

peripheral refractions. Compared with the Paraxial criteria, the other two metrics 

predicted more myopic refractions on- and off-axis. Interestingly, the VSMTF predicts 

only a marginal myopic shift in the axial refraction as the pupil changes from 3 to 6 mm. 

For peripheral refraction, minRMS and VSMTF metric criteria predicted a higher 

exposure to peripheral defocus as the pupil increases from 3 to 6 mm.  

CONCLUSIONS: The results suggest that the supposed effect of myopic control produced 

by ortho-k treatments might be dependent on pupil size. Although the foveal refractive 

error does not seem to change appreciably with the increase in pupil diameter (VSMTF 

criteria), the high levels of positive spherical aberration will lead to a degradation of 

lower spatial frequencies, more significant under low illumination levels.  

KEYWORDS: Pupil Size, Peripheral Refraction, Wavefront Refraction, Orthokeratology 

Visual metrics 
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5.2.  Introduction 

Orthokeratology (ortho-k) changes the ocular refraction by the programmed 

application of reverse geometry rigid gas permeable contact lenses. To correct myopia, 

the central cornea is flattened to induce a reversible change on the epithelial thickness 

profile. The central epithelial layer thins and the front surface corneal power decreases 

over the central 4 to 5 mm central zone. The paracentral zone (transition zone) of 1.5 to 

2.0 mm surrounding the central zone increases in curvature, in a direct relationship with 

the amount of central flattening needed to correct the myopic refractive error.1  

With the advent of highly permeable materials, overnight ortho-k has become 

an effective and safe mode of vision correction for moderate and low myopia and was 

approved by the United Sates Food and Drug Administration in 2002.2 Over the last 

decade, systematic research reports, including randomized and controlled clinical trials, 

confirmed that ortho-k reduces the rate of axial length increase by 40% to 60% in 

children when compared with single vision spectacles or contact lenses.3 Ortho-k is 

currently one of the most effective optical strategies of myopia control, and is at present 

the modality with the largest volume of accumulated evidence relating to the efficacy 

to regulate myopia progression in children.3,4  

Previous research has explored potential predictors of the myopia regulation 

effect with ortho-k. Cho et al.,5 found a moderate correlation between the treatment 

target and the regulation effect. In their cohort of ortho-k lens wearers aged from 6 to 

10 years, higher myopes had a lower axial elongation over a 2 years’ period, while the 

opposite was found in a spectacle control group. This result raises the hypothesis that 

the greater the corneal reshaping effect the higher the regulation efficacy, probably as 

a result of greater peripheral myopic defocus.6,7 However, these trends have not been 

confirmed in other similar studies after 2 and 5 years,8,9  including a controlled and 

randomized study.10 Despite the correlation between treated myopia and peripheral 

myopic shift of about 1:1 seen in ortho-k eyes11 this relationship gets complicated by the 

significantly different eye shapes and meridional asymmetries seen in myopic eyes.12,13 
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Recently an association was found14 between pupil size and myopia control 

effect, in eyes treated with orthokeratology. Larger pupil diameters were associated 

with higher control effect, hypothetically as a result of a larger retinal area being 

exposed to the peripheral myopic defocus. This effect might come as a consequence of 

the peripheral increase in corneal curvature induced by these treatments, and it is 

expected to vary depending on the area of the cornea flattened by the lens treatment 

zone. However, larger pupil size might also change the pattern of relative peripheral 

refraction, either sphere or cylinder and contribute to the difference in regulation 

effects found. Thus, the theoretical evaluation of the effect of the pupil size on the 

effective optical focusing properties of the eye seems to be relevant to improve our 

understanding of the working principles and efficacy of such treatments.  

 Most autorefractors used to assess the effect of ortho-k treatment are limited 

to a measured annular zone of approximately 2.0 to 3.0 mm15-17 irrespective of the 

actual pupil size of the patient. Modern aberrometers normally use two different criteria 

to estimate refraction from wavefront data. One approach, called Zernike refraction, 

specifies the vergence of a point source that focuses a ‘‘disk of least confusion’’ into the 

image plane, defined by the retinal layer where the aberrometer’s probe beam reflects. 

The second approach, Paraxial refraction, specifies the vergence of a point source that 

focuses paraxial rays into the plane of reflection of the aberrometer’s probe beam.18 In 

the absence of higher-order aberrations, Zernike and Paraxial refractions are identical, 

but in eyes such as the ones treated with ortho-k the high levels of positive 4th order 

spherical aberration, and other higher orders,19,20 may bias these metrics in different 

ways.21 Zernike defocus will tend to yield more myopic refractions as the pupil becomes 

larger, due to increased contribution of positive spherical aberration. Paraxial refraction, 

by definition, will not change with pupil diameter if sufficient higher-orders terms are 

used in the calculation. Thus, none of these methods may be robust enough to obtain 

an unbiased estimation of refraction,22 especially for large field angles. Considering that 

all the information regarding refraction and quality of vision in the periphery is derived 

from instruments optimized to measure axial refraction, we hypothesize that ray-tracing 

could be used to isolate the contribution of the different optical elements of the eye and 

bypass some of the encountered limitations in peripheral aberrometry.23 
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The present study aims to test the hypothesis that changes in pupil size induce 

changes in the pattern of axial and peripheral refraction and peripheral optical quality 

using ray tracing software. To this end, a fundamental aspect is to find the most 

appropriate metric for estimating the refractive errors from the wavefronts computed 

in our partially customized eye models. 

5.3.  Methods   

Ortho-K patients and measurements 

Twenty-nine patients (age 24±5 years) were fitted with Corneal Refractive 

Therapy® (paflufocon D, Paragon CRT®) contact lenses (CL) for 9 to 12 months to correct 

myopia between -1.00 and -5.75 D (mean±SD = -3.62±1.11 Diopters) with refractive 

astigmatism below 1.50 D.24 Paragon CRT® Dual Axis was used in subjects with limbus-

to-limbus corneal astigmatism. The initial CLs were fitted following the monograms of 

adaptation of the CRT® manufacturer. If needed, some CL parameters were changed to 

obtain a full correction of the myopic refraction and, at the same time, a well centered 

treatment. Trial lenses were derived from sliding table nomograms provided by the 

manufacturer, which have shown high levels of predictability in terms of first trial 

success.25 Fitting was evaluated according to the recommendations of the manufacturer 

regarding fluorescein pattern, topographical evaluation, and refractive and visual 

outcomes. Parameters of the CRT lenses were as follows: base curve radius (mean±SD 

[minimum, maximum]) = 8.22±0.49 mm [7.80, 8.80 mm], return zone depth (RZD) = 

530.80±19.32 µm [500, 575 µm], and landing zone angle (LZA) = 31.45°±0.88° [31.00°, 

34.00°]. These refer to the final parameters of lenses worn by patients, not necessarily 

the first trial lenses. 

All the enrolled subjects were able to achieve logMAR 0.0 visual acuity without 

any further compensation.  Individual data from anterior elevation topography of each 

patient left eye, was obtained using Medmont E300 corneal topographer (Medmont, 

Victoria, Australia), with pupil center determined by the topographer as reference. All 

patients attending the measurement visit were wearing the lenses overnight for at least 

three consecutive days. Changes in morphology, topography and optics after ortho-k 

can be found in chapter 4 of this thesis. 
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Semicustomized eye models 

Zemax-EE numerical ray tracing software was used to create a series of 29 semi-

customized eyes models based on the Navarro eye model.26 The front surface of the 

cornea of that initial generic eye model was replaced by the Zernike Standard Sag 

surface27 computed from the elevation data of each patient. This surface includes a 

regular revolution conic surface plus a Zernike polynomial expansion, which accounts 

for departures of the real surface from the regular basis.28 The individual data were 

fitted to a Zernike Standard Surface equation by a least-squares method implemented 

in Matlab (The MathWorks, Natick MA). The same internal optics were used in all the 

semi-customized eye models to isolate the contribution of the ortho-k treatments. The 

vitreous length of each model eye was optimized for central vision according to the 

Paraxial focus metric criteria. This was accomplished by minimizing the Root Mean 

Square (RMS) wavefront error with respect to the centroid, at a visual field of 0 degrees, 

of Zemax’s default merit function, using a small entrance pupil diameter of 0.1 mm.  

Wavefront Error  

Into-the-eye ray trace was performed across the central 80º of the horizontal 

field, sampled in 10º steps, at a reference wavelength of 555 nm with entrance pupil 

diameters of 3 and 6 mm. Zemax software can provide wavefront W(x,y) from the optical 

path differences (OPDs). OPD is calculated by tracing a bundle of rays passing through a 

grid of points (x,y) on the exit pupil plane. The effective pupil is a circle on-axis and 

approximately elliptical off-axis. Zemax also provides a modal representation of the 

wavefront expressed in terms of standard Zernike polynomials.27 However, since Zernike 

aberrations can be derived only for circular pupils, the software stretches the off-axis 

elliptical pupil along its minor axis into a circular form, by a factor equal to its aspect 

ratio (minor diameter/major diameter). Using this method, Zernike coefficients were 

calculated up to 6th order and reported using the Optical Society of America standard.29 

Both representations of the wavefront, raw data (values on a 512x512 samples grid) and 

modal (Zernike coefficients), were exported to Matlab for further processing.  
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On- and Off-Axis Refraction from Wavefront Data 

The refractive state of the eye can be measured by subjective or objective 

methods. Although it is unknown which criteria the human eye actually uses for 

focusing, and as such the ideal optimization method is yet to be determined, several 

metrics have been used to estimate refraction from wavefront data.18,30,31 When higher-

order aberrations are significant,  image plane quality metrics such as the Visual Strehl 

ratio computed in frequency domain (MTF method) (VSMTF) seem to be less biased by 

the high levels of spherical aberration.31,32 This metric takes into account that different 

frequencies respond differently to defocus and neural sensitivity varies with frequency33 

in accordance to visual channel theory, which establishes that the visual pathway 

decomposes light in frequency bands.34  

In this work we calculated foveal and peripheral refraction from wavefront data, 

obtained by ray tracing, using the following metrics: 

Zernike and Paraxial Refraction 

For eccentric fields, i.e. elliptical pupils, Zemax stretches the wavefront along the 

minor axis into a circular pupil in order to fit the wavefront OPDs with circular Zernike 

polynomial. Such stretching affects all the Zernike coefficients.35 Recently, Zernike-like 

orthogonal polynomials were proposed for elliptical pupils.36,37 Nevertheless, here we 

were mainly interested in computing the refractive error, so we used the equations 

provided by Atchison et al.38 truncated at 2nd order for Zernike refraction and up to 6th 

order for Paraxial refraction. Since Zemax calculates the approximate shape of the 

wavefront at the exit pupil as seen from the on-axis chief ray image point,27 we 

implemented an improvement which may be important for large field angles due to 

pupil aberrations: Instead of assuming that the minor axis of the off-axis pupil shortens 

by a factor equal to the cosine of the field angle (θ), we calculated the actual aspect ratio 

of the wavefront at the exit pupil. For the sake of simplicity there is no need to alter the 

original equations. The proper correction can be accomplished by substituting θ in the 

original equations by the inverse cosine of the aspect ratio of the exit pupil. Validation 

of this approach was performed with a Matlab script written to stretch the wavefronts 

imported from Zemax along their minor axis into a circular form, fit the optical path 
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differences with Zernike circular polynomials and compare the obtained coefficients 

with the ones computed in Zemax.  All differences between coefficients were below 

0.005 microns, justifying the validity of the approach. 

VSMTF Trough Focus Refraction 

The other approach used to calculate wavefront refraction was similar to the one 

previously described by Guirao and Williams.39 Detailed methodology can be found in 

the cited paper. The procedure executes a search in a three-dimensional space, finding 

the values of sphere, cylinder and axis of the correcting lens that yields the maximum 

value of a visual quality metric. This was achieved computationally by adding to the 

computed wavefronts a series of defocused spherical and cylindrical wavefronts that 

simulate the trial lenses employed during a subjective refraction examination. In 

summary, this procedure finds the spherical-cylindrical wavefront which, when added 

to the ocular wavefront obtained by ray tracing, optimizes the eye model retinal image 

quality according to the VSMTF objective metric criteria:   

𝑉𝑆𝑀𝑇𝐹 =  
∫−∞

∞
∫−∞

∞
CSFN(fx,fy)⋅MTF(fx,fy)dfxdfy

∫−∞
∞

∫−∞
∞

CSFN(fx,fy)⋅MTFDL(fx,fy)dfxdfy
                                                         Eq.( 5.1) 

The quick contrast sensitivity functions (qCSF) curves measured by Rosén et al.40 

at 20 degrees of the nasal and temporal visual fields, were used (courtesy of Linda 

Lundström) to derive the Neural Contrast Sensitivity Functions (CSFN) for each peripheral 

location. The qCSFs for 20 degrees nasal and temporal visual fields were M-scaled for 

the other peripheral locations according to the cortical magnification factor (M) 

equations provided by Rovamo and Virsu,41 and applied in eq. 5.1 as general population 

models of the peripheral CSFN. 

 

Astigmatic Off-Axis Refraction 

Sphero-cylindrical refractions were converted to spherical equivalent (M), with 

or against-the-rule astigmatism (J0) and oblique astigmatism (J45),42 and applied in the 

following equations to calculate the off-axis tangential (FT) and sagittal (FS) power errors, 

considering clinical refractive notation with negative cylinder: 
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𝐹𝑇  =  𝑀 +  𝐽0  

𝐹𝑆  =  𝑀 −  𝐽0                                                                                                Eq.(5.2) 

FS and FT components represent, in this case, the dioptric vergence required to correct 

the power error in the radial and sagittal meridians along the horizontal visual field 

(J45=0). It is worth mentioning that all subjects were treated as stigmatic by removing 

the on-axis J0 and J45 values for all field positions. This way we isolated the effect of off-

axis oblique astigmatism from foveal astigmatism. 

 All the procedures were repeated for entrance pupils’ diameters of 3 and 6 mm. 

The entrance pupil position and center was interactively calculated by Zemax’s robust 

ray-aiming algorithm. Matlab scripts and a Zemax macro were written to automatize all 

the procedures and export the values into data sheets.    

Best Metric Criteria 

In order to establish which metric predicts the best foveal refraction we 

computed the image quality for each eye model, with 3 and 6 mm pupils. The wavefront 

error maps of each patient, at 9 different visual field angles, and 2 pupil diameters, were 

exported from Zemax to Matlab as 512x512 matrices. Each wavefront matrix was used 

to compute the point-spread function (PSF), and the optical transfer function (OTF), 

using standard Fourier optics methods. The PSFs for 0 degrees of visual field were 

convolved with an eye chart template to simulate the retinal image.  

Two random sub sets of 29 images, correspondent to these simulated images 

optimized according to each of the three quality metrics described above, for 3 and 6 

mm pupil diameters, were subjectively evaluated by three well corrected, experienced 

observers. The observers were blinded to the metric criteria used and asked to grade 

with a score between 5 and 0 with terms for general guidance (Excellent, Good, Fair, 

Poor, Bad) each of the images, presented in a 13-inch computer screen at a 50 cm 

distance. Measures were conducted under good levels of illumination (~300 Lux) to keep 

the observes pupillary diameters smaller, and thus diminishing the effect of higher-order 

aberrations. Each of the computed images was presented together with a second image 

of a perfect non-aberrated model eye for reference. A similar procedure has been used 

recently to grade the image quality generated by multifocal lenses by Rio and Legras.43 
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Statistical Analysis  

Statistical analysis was conducted using SPSS v21.0 program (IBM Inc. IL). All data 

are reported as mean and standard deviation unless otherwise stated. Paired t-tests 

were used to compare the differences between the three metrics (FS, FT and M refraction 

components, as well as the aberration Zernike coefficients for primary horizontal coma 

and spherical aberration), for 3 and 6 mm pupils, at all field angles. A p-value < 0.05 was 

considered statistically significant. 

5.4.  Results  

Figure 5.1 shows the refraction profiles across 80º of visual field along the 

horizontal meridian for 3 mm and 6 mm pupil diameters, calculated using three different 

metric criteria. The vitreous length of each eye model was adjusted for emmetropia 

using the Paraxial metric criteria. As a consequence, the eye models present an 

ametropic condition for the other two metric criteria, with more myopic axial refractions 

(-0.47±0.28D and -0.69±0.42D for the VSMTF and minRMS, respectively, for a 3 mm 

pupil). As the pupil dilates from 3 mm to 6 mm, Paraxial metric criteria predicts a 

hyperopic shift in axial refraction (difference = +0.25±0.17D; p<0.01). The other two 

metrics predicted myopic shifts in axial refraction as the pupil dilates from 3 to 6 mm, 

but while the minRMS metric predicts a significant myopic shift in axial refraction 

(difference = -2.66D±0.68D; p<0.001), interestingly, the VSMTF predicts only a marginal 

myopic shift (difference = -0.03D; p=0.043), which is consistent with experimental 

findings.44 
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Figure 5.1. Axial and peripheral refraction for 3 mm (left column) and 6 mm (right 

column) pupil diameters, across 80º degrees of visual field along the horizontal meridian 

calculated using the VSMTF (top), Paraxial (middle) and minRMS (bottom) metrics. 

Negative values of eccentricity represent the temporal retina (nasal visual field) and 

positive values represent the nasal retina (temporal visual field). Error bars represent 

one standard deviation. 

 

As for peripheral refraction, the three metrics refractive components FS, FT and 

M present statistically significant differences between pupil sizes for almost all field 

angles except for the VSMTF metric FT component at -40º and 40º (p = 0.18 and p = 0.09, 

respectively), for the Paraxial metric FT component at 20º (p = 0.41) and M component 

at -20º (p = 0.08). FS, FT and M refractive components also show a strong significant 

correlation between 3 and 6 mm pupil diameters (r>=0.7; p<0.05 except for the 
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locations mentioned above), for all of the three metrics, with the 6 mm pupil refractive 

components always being more negative when calculated using the VSMTF and minRMS 

metric criteria. As expected the correlation between the refractive components 

calculated for 3 and 6 mm pupil diameter were higher (r>=0.97; p<0.01), except for FS at 

10º (r=0.86; p<0.01), when the Paraxial criteria was used. In theory, Paraxial refraction 

should be independent of pupil size. This lack of a perfect correlation, along with a small 

but significant difference (p<0.01 for all angles except for M at -20º and FT at 20º) in the 

peripheral refractive pattern between the two pupil sizes, may be due to the non-

inclusion of higher (than 6th) order terms, such as 8th order spherical aberration, in the 

calculations. 

The change in the peripheral refraction pattern, associated to the increase in 

pupil diameter, is most substantial when using the minRMS than with the VSMTF and 

Paraxial metrics. The peripheral refractive profile of the minRMS metric seems to reflect 

the refractive contribution of the more peripheral zones of the cornea as the visual angle 

increases. With the increase in pupil diameter, there is a clear myopic shift in the most 

central visual fields (more light is refracted by the more curved transition zone), that 

decreases for more peripheral angles as the contribution of the flatter peripheral zone 

of the cornea increases. Curiously, this is the only metric of the three that predicts a 

decrease in oblique (off-axis) astigmatism as the pupil increases (the shift in FS is greater 

than the shift in FT, decreasing the interval of Sturm). The previous pattern is less evident 

when the VSMTF metric is used. This is due to the nature of the peripheral CSF. As the 

visual field increases the peripheral CSF gives more emphasis to the lower spatial 

frequencies of the MTF, which are optimized by a more negative lens.21 

Peripheral refraction M component presents a strong correlation with baseline 

axial refraction (Mbaseline) (0.79> r >0.60; p<0.001 at ±40º, for the 3 metric criteria and 

both pupil sizes). Despite these strong correlations, higher myopes will experience more 

peripheral defocus for both pupil sizes, thus the shift in peripheral refraction with the 

increase in pupil diameter will not be dependent of baseline axial refraction (0.05> r 

>0.003; p>0.5 at ±40º, for the 3 metric criteria and both pupil sizes). 
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Figure 5.2. Primary Zernike spherical aberration (C4
0) and horizontal coma (C3

1) for the 

80º degrees of visual field along the horizontal meridian, for both pupil sizes. Negative 

values of eccentricity represent the temporal retina (nasal visual field) and positive 

values represent the nasal retina (temporal visual field). Error bars represent one 

standard deviation. 

 

Figure 5.2 shows the pattern of primary horizontal coma and spherical aberration 

coefficients for both pupil sizes. The reverse in slope seen in the primary coma near ±20º 

seems to be due to the sudden decrease in power, corresponding to the transition from 

the more curved paracentral zone to the flatter peripheral zone. It can be seen from the 

curve that the treatments are slightly asymmetric, and slightly decentered to the 

temporal side. Third-order horizontal coma showed significant differences between the 

3 and 6 mm pupil size with the exception of values around zero-crossings. Difference 

was maximum at -40º of the nasal visual field (1.24 microns; p<0.001) and lower at the 

center (0.034 microns, p>0.017).  

Fourth-order spherical aberration presented statistically significant differences 

between 3 and 6 mm pupil size for all locations measured (p<0.001). Difference was 

maximum at 0º (0.95 microns; p<0.001), and lower for the ±40º locations (0.29 and 0.20 

microns, respectively; p<0.001). Spherical aberration for a 6 mm pupil diameter presents 

values almost 4 times higher than the ones encountered in untreated eyes.  
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Figure 5.3. Subjective rating of the 2 sets of simulated retinal images using each of the 

three metrics presented to 3 trained observers to rank image quality. 

 

Figure 5.3 shows the average rating of the two sets of images graded by the 

observers to derive a quantitative (though subjective) information on which metric 

would perform better for foveal vision. According to our observers, there are only small 

differences in the perceived image quality for a 3 mm pupil, between the minRMS and 

the VSMFT. The Paraxial metric clearly shows the worst performance. As for a 6 mm 

pupil the VSMTF is clearly superior to both Paraxial and minRMS quality metrics. For the 

larger pupil size Paraxial metric was graded higher than the minRMS metric, as opposed 

to the result found with the smaller pupil.  

The visual quality degradation (foveal vision) as a result of the increase in higher 

order aberrations as a consequence of the increased pupil diameter can be seen in the 

convolved images of Figure 5.4.  
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Figure 5.4. Comparison of the foveal images simulated for a patient with 3 mm (left) and 

6 mm pupil diameter (right) and their respective PSFs (bottom).  

 

5.5.  Discussion 

With this study we aimed to verify the hypothesis that central and peripheral 

refraction, in eyes treated with myopic overnight orthokeratology, might suffer 

variations with changes in pupil diameter. It has been suggested that, in the presence of 

primary spherical aberration, conventional measurements of subjective refraction 

closely match the ones predicted by the Paraxial refraction metric, largely because this 

is optimal for objects whose spatial frequency spectrum is dominated by high 

frequencies, such as small letters.44 Subjective grading of simulated retinal images 

revealed that, although central refraction does not seem to change appreciably despite 

the increase in pupil diameter from 3 to 6 mm, refractive errors estimated using the 

observers preferred metric (VSMTF) tend to be more myopic than the ones predicted by 
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the Paraxial metric for both pupil sizes, and closer to the ones predicted by the minRMS 

metric for a 3 mm pupil, in concordance with the results of Xu et al.21  This result seems 

to be inverted with the increase in pupil size. For a 6 mm pupil, minRMS predicts a large 

myopic shift that does not seem to correspond to the best image, according to our 

observer’s evaluation. From the example of Figure 5.4 it is also clear that the quality of 

the image perceived by these patients is highly dependent of pupil size and probably of 

the spatial content of the visual task as well.45 Although the foveal refractive error does 

not seem to change appreciably with the increase in pupil diameter (VSMTF criteria), 

the high levels of positive spherical aberration will lead to a degradation of lower spatial 

frequencies, more significant under low illumination levels, in agreement with 

subjective complains.46,47 It is expected that in those scenarios patients will benefit of a 

more negative refraction in order to enhance lower spatial frequencies.21,48 As the field 

angle increases, the on-axis spherical aberration becomes coma aberration, contributing 

to the peripheral image degradation. This and other high-order aberrations might 

interact to decrease image contrast in the periphery.  

 The three metrics predict significantly different peripheral refraction profiles as 

the pupil diameter increases from 3 to 6 mm. The subjective process used to grade the 

quality of the simulated foveal images corrected by each metric cannot be used for 

peripheral vision but, it is clear that in the presence of higher order aberrations the 

VSMTF is clearly superior to the minRMS and Paraxial metric criteria, for estimating the 

refractive correction that maximizes visual acuity based on wavefront aberration 

measurements. It is then reasonably to expect that for peripheral imagery, where the 

pupils are nearly elliptical and higher order terms are far more significant than in fovea, 

visual metrics that take neural factors into account should also yield less biased results 

than metrics calculated solely based on the Zernike coefficients. That said, the 

hypothesis suggested by Chen14 that large pupil diameters could facilitate the effect of 

ortho-k to slow axial growth because of enhancement of the myopic shift in the 

peripheral retina, seems to agree with the myopic shift observed in the VSMTF 

peripheral refraction profile when the pupil diameter increases from 3 to 6 mm.  

Our previous studies showed that the peripheral eye length for the average 

myope is shorter in the temporal retina.13 The ortho-k treatments of our sample have 
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shown a displacement towards the temporal side of the cornea, which is in agreement 

with previous reports.49,50 Thus, for a light beam passing at the same distance from the 

center of the pupil, incident light from the nasal visual field will follow a shorter optical 

path towards the temporal retina, compared with the incident light from the temporal 

visual field. Overall, the more curved cornea and shorter eye length, and the flatter 

cornea and longer eye length will tend to compensate each other to render a more 

symmetric peripheral refraction as seen in Figure 5.5. 

 

Figure 5.5. VSMTF refraction calculated by substituting the symmetric retina of the 

Navarro eye model by the average myopic asymmetric retina (AR). Error bars represent 

one standard deviation. 
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In this case, the VSMTF metric for a 3 mm pupil diameter predicts a relative 

peripheral refraction profile similar to the profiles derived from measurements with the 

Grand Seiko open field autorefractor after ortho-k in treatments of the same 

degree.11,51-53 As the pupil diameter increases from 3 to 6 mm the average peripheral 

refraction profile calculated from the VSMTF suffers a myopic shift that can be mainly 

explained by the greater contribution of the paracentral zone of the treated corneas11 

and the lower sensitivity to high frequencies encountered in the peripheral retina. In 

turn, peripheral refraction measured by the autorefractor will not take any of this 

changes into account. The working principle of the Grand Seiko autorefractor  uses a 

near infrared 2.3 mm ring-like target to illuminate the test eye and calculates second 

order refraction based on the size and shape of the rings’ reflected image,54 making this 

equipment basically insensitive to the increased higher order aberrations contribution 

from larger pupil diameters as well to irregularities in the wavefront that lie inside the 

rings’ area.16 

 In the present work, refraction obtained from the VSMTF criterion is adapted by 

M-scaling to the continuously decreasing range of frequencies that are relevant with 

increase visual field angle compared to foveal vision. While the metrics that would best 

predict peripheral refraction are not well established yet, we consider that the present 

approach is the more reliable and robust one as it changes the spectrum of frequencies 

that should be more relevant to refract the eye, as we depart from the foveal region. A 

limitation of this study is that our eye models are only partially customized as we do not 

consider the actual internal optics of each eye. A more complete personalization of the 

eye models55 would require more biometric and aberrometric measurements. However, 

for the purpose of our study, the present approach provides a good comparison 

framework to evaluate the changes in axial and peripheral refraction induced by corneal 

reshaping with overnight ortho-k contact lenses. As the ortho-k treatment acts on the 

anterior corneal surface of the cornea our results show a clearly myopic peripheral 

refraction that can be interpreted as the change that the treatment will induce on the 

whole optics of the eye. 
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Chapter 6: Depth-of-Field after 
Orthokeratology: A theoretical study 

6.1.  Abstract 

PURPOSE: To evaluate the possible effect of orthokeratology on accommodative response. 

The negative half of the depth-of-field was evaluated for the range of target vergences 

from -1.00D to -3.00D, using optical modelization to simulate the optics of pre and post 

ortho-k eyes. 

 

METHODS: Two eye models were designed in Zemax-EE, to mimic the levels of primary and 

secondary spherical aberration found in 24 patients before and after undergoing 

orthokeratology (ortho-k). Five trained observers were subjected to a resolution task to 

identify the negative threshold of the depth-of-field (DoFi) of these model eyes by viewing 

a set of computed images representative of the model eyes trough focus retinal image 

quality for five target vergences (TV), from -1.00 to -3.00 D, in 0.50 D steps. 

 

RESULTS: The differences in the DoFi estimated by the five observers were maximum for a 

-3.00D TV (0.21D), with the post ortho-k model presenting a higher DoFi compared to the 

pre ortho-k model.  Differences were consistent for all five observers and all TV’s. 

 

CONCLUSION: The increase in spherical aberration after ortho-k seems to contribute to a 

small increase in the DoFi. Although small, the benefits might be sufficient to improve 

retinal image quality in eyes with high accommodative lag.   

 

KEYWORDS: Depth-of-Field, Orthokeratology, Accommodative Lag, Myopia   

 

 

 

 

 

 



96 

6.2.  Introduction  

The tolerance of any optical system to focusing errors can be specified by the 

interval of distances over which the object or image planes can be moved without 

producing any perceived degradation, with the former being referred to as depth-of-field 

(DoFi) and the latter as depth-of-focus (DoF). Either term can be used in vision sciences 

however, DoFi seems a more useful definition since it can be measured by changing the 

object’s vergence rather than the retina position. Thus, DoFi can be defined as the vergence 

range of focusing errors that does not result in a significant deterioration in retinal image 

quality (RIQ). This perceive deterioration in RIQ is directly linked to final acceptance of the 

optics worn—e.g. ortho-k treatment— and can be determined according to different 

subjective and objective measures.1 

In this work we proposed that the high increase in positive primary spherical 

aberration (SA) after orthokeratology (ortho-k) might improve the RIQ of eyes with 

accommodative lag due to an increase in the DoFi.2-4  

 

6.3.  Methods 

 Corneal aberrations from 24 patients enrolled in another study (Chapter 5) were 

averaged to determine the mean value of primary and secondary SA before and after 

undergoing ortho-k. Two model eyes based on the Navarro eye model5 were generated 

with ray trace software Zemax-EE (Zemax Development Corporation, Washington, USA). 

The anterior cornea of the Navarro eye model was modeled with a Zernike Standard Phase 

surface6 to mimic the mean amount of corneal 1st and 2nd orders SA of the 24 patients, 

before and after ortho-k. The vitreous length of the post ortho-k average eye model was 

adjusted to make it emetropic for a 5mm pupil diameter, using the Visual Strehl calculated 

from the MTF (VSMTF)7 as an objective visual metric criterion. The pre ortho-k average eye 

model was corrected for his ametropia by adding a wavefront representative of its best 

sphero-cylindrical correction (VSMTF criteria). Wavefront errors were computed by ray-

trace and exported to Matlab in 512x512 matrices.  

Fourier optics routines were implemented in Matlab to design a trough-focus 

experience with the purpose of simulating the changes in RIQ as the eye accommodates 

for five target vergences (TV; -1.00D, -1.50D, -2.00D, -2.50D and -3.00D).  For each of the 
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five investigated TV’s a trough-focus series of computed images was generated to simulate 

the RIQ induced by different amounts of accommodative lag, ranging from -1.00D to 

+0.00D, in -0.1D steps. During this process, proximal miosis as well as the changes in 

primary and secondary SA due to the change in the hyperbolic shape of the lens’ surfaces 

as the eye accommodates were adjusted as a function of TV.8  

Five well corrected trained observers viewed the set of images in a TFT 13’’ screen. 

The size of the computed Snellen letters as well as the distance to the screen were 

adjusted, so that the viewing angle corresponded to a decimal visual acuity of 0.5. 

Measures were conducted under good levels of illumination to keep the observes pupillary 

diameters smaller, and thus diminishing the effect of higher-order aberrations. The 

negative half of the DoFi interval, for the pre and post ortho-k eye models, was determined 

by asking the subjects to indicate the first legible image in the trough-focus interval. The 

value yielded by this resolution task simulates the change on the defocus coefficient C2
0 

produced by the lens curvatures needed to produce an acceptable RIQ for the imposed TV, 

according to our observer’s subjective criteria. This value can also be interpreted as the 

minimum amount of accommodative lag that still allows to maintain acceptable levels of 

RIQ.  For each observer, the procedure was repeated three times and averaged. 

 

6.4.  Results 

Figure 6.1 illustrates a trough-focus experience similar to the one viewed by five 

observers, for both pre and post ortho-k eye models. From the present example it is clear 

the effect of the increased levels of SA. Although the RIQ decreases after ortho-k due to 

the loss of contrast, image resolution decreases less (left to right) with the imposed 

defocus, suggesting a greater DoFi in the post ortho-k condition. 

 

 

Figure 6.1. Trough-focus RIQ simulations for a 5 mm pupil, based on the Navarro 

accommodative eye model plus a SA phase plate to match the average SA values of the 24 
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subjects before (top: C4
0 = 0.126 µm; C6

0 = 0.001 µm) and after ortho-k (bottom: C4
0 = 0.464 

µm; C6
0 = 0.019 µm), for a -3.00 D target vergence (TV). Pupil diameter decreases 0.35 

mm/D of change in defocus with accommodation.  

This hypothesis is confirmed by our observer’s subjective criteria (Figure 6.2). The 

observed differences are not constant trough the TV range, but the variation tendency is 

similar in both conditions, indicating an increased DoFi for higher TV’s probably due to the 

effect of proximal miosis.9  

 

Figure 6.2. Limit of the negative half of the DoFi interval as a function of TV. These values 

also represent the highest amount of lag as a function of TV that still allows to maintain an 

acceptable RIQ, according to the observer’s subjective threshold.  

 

 

6.5.  Discussion 

 It has been hypothesized that the increase in positive SA could provide an 

additional explanation for the myopia control effects obtained by different treatments in 

progressing myopes, due to a change in behavior of the accommodative system.3,10,11 

However, there is controversy in the results from different studies aiming to evaluate the 

actual changes in the accommodative system after corneal reshaping with refractive 

surgery or ortho-k. Karimian12 et al reported an improvement in the accommodative facility 
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in myopes after PRK surgery. Conversely, Felipe-Marquez and collaborators2 did not found 

any significant change in the accommodative function after orthokeratology. In the context 

of the Cambridge Anti-Myopia Study (CAMS), Allen et al12 reported an improvement in the 

accommodative function with lenses that induced negative spherical aberration, but 

myopic corneal reshaping induced positive, rather than negative, spherical aberration. 

More recently, Pauné et al13 reported a decrease in the accommodative lag of progressing 

myopic subjects using soft contact lenses with a peripheral gradient of positive power 

(positive SA) to generate relative peripheral myopia, with the primary aim of myopia 

control. Gambra et al.4 showed that adding negative 4th order SA to an aberration-free eye 

produced a decrease in the accommodative lag, while adding positive 4th order SA 

produced an increase in the accommodative lag (less accurate accommodative response). 

Although the authors do not refer it in their paper, there could be some other effect 

unaccounted for in their conclusions. Adding negative Zernike SA introduces positive Seidel 

defocus —due to the low-order terms balance in Zernike polynomials— which would help 

the eye to compensate for the negative defocus produced by the accommodative lag.  

Even so, from our results illustrated in Figures 6.1 and 6.2, it appears that with the 

increase in positive SA the eye will not need to accommodate as much, at least for high 

contrast resolution tasks such as reading. But judging from the trough focus simulated 

retinal images, this increase in positive SA provides only a marginal extension of the DoFi 

in the ortho-k eye model compared to the pre ortho-k results (mean difference = 0.21D for 

a -3.00D TV). Although clinically small, this results seems to agree with experimental 

findings which showed that the presence of C4
0 increases the DoFi.14-16 This observed causal 

relation might lead to two different results: on one hand, on a patient without 

accommodative lag it is expected to decrease RIQ due to the loss of contrast induced by 

the high levels of positive SA; on the other hand, on a patient with accommodative lag—

where acuity is compromised during near vision—the extended DoFi might increase retinal 

image resolution and therefore acuity for high contrast tasks. Taking into account that the 

increment in positive C4
0 after ortho-k is strongly negative correlated to baseline myopia 

(Chapter 5) and the treatment zone area, it is expected that this effect will be more 

beneficial in moderate myopes with decreased visual acuity at near due to accommodative 

lag and small treatment zones. 
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Chapter 7: Main Conclusions 

As main conclusions resulting from the work developed during this thesis, it 

should be highlighted that the use of a semi-customized eye model together with OPL 

measured by PCIB for different angles can be used to predict the retinal contour within 

tenths of microns. In general, a nasal-temporal asymmetry in the retina contour was 

found, showing mean larger values of vitreous chamber depth in the nasal side of the 

eye. Retinal shape can vary considerably for different eyes, particularly beyond 4 mm 

(about 15º of visual field) from the fovea. Differences in retinal sagitta between subjects 

can be as large as 2 mm, at a field angle of 30º, which corresponds to a refraction error 

of about 3D if an average contour was used. These results strength the need for a 

customized wide angle approach when developing optical treatments to alter the eye’s 

field curvature.  

After ortho-k, the conic model fails to describe with sufficient accuracy the 

elevation of the anterior cornea if a monozone approach is used. Instead better fits are 

obtained if the elevation data from each zone are fitted individually. Although the 

increase in positive SA was the major factor responsible for the decrease in the RIQ of 

the unaccommodated eye, it seems to contribute to an extension of the DoFi which 

might increase RIQ during high contrast near vision tasks, in myopic subjects with 

accommodative lag. Central refractive error does not seem to change appreciably with 

the increase in pupil diameter, but Large pupil diameters could facilitate the effect of 

ortho-k to slow axial growth because of enhancement of the myopic shift in the 

peripheral retina. This effect would not be accounted if an open field AR, such as the 

Grand Seiko, was used to measure peripheral refraction.  

The obtained results seem to show that optical modeling can be a powerful tool 

in myopia research, as it enables the possibility of controlling and isolating some of the 

variables involved in the process, and thus contributing to a better understanding of the 

optical singularities of each individual. 
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Chapter 8: Future Work 

Although this thesis tries to answer some of the questions regarding the optical 

singularities related to myopia progression, it only scratches the surface of this problem. It 

is currently accepted that myopia has multifactorial causes and involves several variables, 

some of them still unknown to us. It seems plausible to affirm that the mechanism 

responsible for the regulation of eye growth, and thus emmetropization, is visually guided 

and therefore the manipulation of its feedback system might allow us to interfere with the 

process. To do so, future work should be focused in identifying biological markers in the 

retinal cells response to different visual signals and formerly identify which of those signals 

might be used to interfere with eye growth. In this field, objective means of 

characterization of the retinal electrical activity such as multifocal electroretinography will 

be of great use to measure and differentiate the retinal response to different visual stimuli. 

Open and crucial questions such as: “How the eye senses the sign of defocus?”  and “Why 

does myopia eventually stops?”, might only be answered if an approach based on retinal 

electrical activity characterization along with heuristic modeling of its neural system is 

used.  

Future work in this field should be directed to the development of a unified model 

of the optical and neural functionality of the myopic eye in order to predict the result of 

optical treatments targeted to interfere with myopia progression.  

 




