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Abstract

This thesis investigates the possibility to design novel composite materials by
addition of carbon nanotubes to polymer matrix. Despite the extensive research
in this field the problem of achieving stable electrical conduction, anticipated by
early theoretical studies, still constitutes a significant challenge. One approach
to circumvent this problem is apply the recently synthesized tetrakis-Schiff zinc-
complexes as a guiding agents for nanotubes. The remarkable ability of such com-
plexes to self-assemble in molecular networks, incorporating nanotubes, opens a
promising possibility to achieve good conductivity at extremely low concentra-
tions.

In order to understand the scattered electrical properties obtained from the
experiments, this thesis studies the effects of agglomeration and alignment of
carbon nanotubes in polymer matrix as the possible sources of high deviations
in experimentally measured direct current resistivities. It is shown with Monte
Carlo simulations that, with the contemporary methods of industrial processing,
the nanotube agglomerates can be reduced to the limit where their impact on
composite’s conductivity is negligible. Thus, the alignment of nanotubes must be
viewed as the main source of electrical properties deviation. It was also shown us-
ing molecular dynamics simulations that bending of nanotubes, expected at high
concentrations, results in diminishing of their benefits for composite’s mechanical
properties.

Using the simple Monte Carlo approach it is shown in this thesis that employ-
ment of self-assembling tetrakis-Schiff zinc-complexes as guiding agents allows the
formation of connected networks at extremely low nanotube concentration. This
thesis also reports the extensive molecular dynamics studies of the of tetrakis-
Schiff complexes behaviour in solvent environment and suggests a possible mech-
anism, explaining all the experimental findings concerning the formation of mo-
lecular networks of connected rings available so far. The suggested mechanism is
supported by free energy calculations for association of tetrakis-Schiff molecular
chains in solvent.
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The findings reported in this thesis support the emerging direction in poly-
meric composites design, within which composite morphology is controlled via
molecular self-assembly.
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Resumo

Esta tese investiga a possibilidade de serem desenvolvidos novos materiais com-
pósitos através da adição de nanotubos de carbono a matrizes poliméricas. Ape-
sar da extensa investigação nesta área, a dificuldade em obter condução elétrica
estável, prevista em estudos teóricos iniciais, continua a ser um desafio maior.
Uma nova abordagem para ultrapassar este problema é a aplicação a estes com-
pósitos das moléculas de “tetrakis-Schiff zinc-complexes”, com capacidades de
auto-organização, para servirem como agentes orientadores para os nanotubos de
carbono no interior da matriz polimérica, abrindo a possibilidade de se obter boa
condutibilidade elétrica para concentrações de nanotubos extremamente baixas.

Através de simulações de Monte Carlo mostrou-se que, com os métodos atuais
de processamento industrial, os aglomerados de nanotubos são reduzido a um
limite onde o seu impacto na condutividade do compósito é insignificante. Assim,
o alinhamento de nanotubos deve ser tido em conta como a principal fonte de
variação nas propriedades elétricas. Através de simulações de dinâmica molecular
demonstrou-se que a flexão de nanotubos, esperada a concentrações elevadas,
resulta numa diminuição dos seus benefícios para as propriedades mecânicas do
compósito.

Usando o método de Monte Carlo, é mostrado nesta tese que o uso das molé-
culas de “tetrakis-Schiff zinc-complexes”, com capacidades de auto-organização,
em compósitos poliméricos com nanotubos de carbono, permite a formação de
redes de nanotubos para concentrações extremamente baixas. Esta tese também
apresenta um estudo detalhado sobre o comportamento de complexos tertakis-
Schiffe em solvente, usando o método de dinâmica molecular, e sugere um meca-
nismo possível para a formação de redes moleculares de anéis interligados nestas
moléculas, explicando todos os resultados experimentais disponíveis até à data.
O mecanismo sugerido tem por base cálculos de energia livre da associação de
cadeias moleculares de tetrakis-Schiff no solvente.

Os resultados apresentados nesta tese sugerem que a direção a ser seguida
no desenvolvimento de novos compósitos poliméricos com propriedades elétricas
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estáveis, deverá ser aquela em que a morfologia do compósito é controlada através
de auto-organização molecular.
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Chapter 1

Introduction

1.1 Motivation

Possibility to design novel materials by addition of nano-sized inclusions to poly-
mer matrix attracts increasing attention in the last decades as a potential way
to prepare functional composites, the properties of which could be fine-tuned by
varying the nanoadditives’ concentration and alignment inside polymer. Carbon
nanotubes (CNT) and graphene nanoribbons are widely used as highly promising
additives when high mechanical strength and good electrical conductivity are de-
sired. However, development of such hybrid materials with predefined properties
constitutes a hard challenge due to significant properties’ variations depending on
inclusion’s distribution and interaction. The poor interaction of nanotubes with
surrounding matrix and tendency to form agglomerates lead to decline of ma-
terial properties’ improvement with increasing concentration [1]. This problem is
further complicated by high deviation of measured resistivities of nanotube-based
microelectronic devices, depending on the nanotube types and geometry of the
contact.

One approach to circumvent this problem is to use an additional compon-
ent as a guiding agent for filler particles. The recently discovered ability of
tetrakis-Schiff zinc-complexes to self-assemble into extended networks, composed
of micrometer-sized rings, connected with thin rods, and to incorporate carbon
nanotubes, present in solution in this self-assembled structure [2] opens the pos-
sibility of increasing control over CNT distribution and alignment inside polymer
matrix and reduce the filler content require to achieve the stable properties. In
turn, this approach replaces the problem of the optimal way to mix CNTs with
polymer properly, by the challenge of molecular self-assembly studies inside poly-
mer and in combination with the nanotubes.
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In this thesis these challenges are approached using modern computer sim-
ulation techniques. To understand structure-property relations in pure CNT-
polymer materials optical image analysis and numeric modelling are widely used,
however matching such data with properties’ measurements for industrial nano-
composites requires a link to be established between experimental and modelling
length scales. In this work a software tool was developed to create a model
composite structure with a predefined distribution probability of inclusions using
NVIDIA CUDA GPGPU approach. The code is capable of randomly popu-
lating and analysing samples of the typical size of microphotographs used for
experimental characterization and typical nanoinclusions’ concentrations avoid-
ing unphysical intersections and, thus, allowing to correlate the results of both
optical characterization and statistical computer modelling. The initial probab-
ility distribution can be taken from experimental samples and further varied to
investigate the effect of distribution on a desired property. In this thesis the tool
is applied to study the effect of nanotube agglomerates on the polycarbonate
samples’ electrical resistivity.

A number of ways to deposit filler particles in a patterned way are known
by present moment. This includes application of patterned matrices, thermody-
namic effects, leading to formation of circular structures in evaporating solvents,
as well as targeted self-assembly of ring-like macrocycles. The possibility of self-
assembled networks of tertakis-Schiff zinc-complexes to surpass the limitations
for the pure CNT-polymer composites is studied in this thesis using a simple
Monte Carlo approach, using the available results of flat networks characteriza-
tion. This study is followed by abinitial and molecular dynamics studies of such
molecules behaviour in solvent environment to show. These studies are aimed
to show that the formation of “rings-and-rods” like networks indeed occurs due
to peculiar character of intermolecular interactions in such systems and could
be explained without addressing to the aforementioned macroscopic effects. The
significance of this fact is that the morphology of the networks (and, hence, of the
carbon nanotubes containing composites and films) is determined by the chemical
structure of the molecular complexes and, thus, could be controlled by synthesiz-
ing novel compounds with the structure optimized for the targeted self-assembly
parameters.
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1.2 Objectives

The main research objective of this thesis is to study the potential to obtain CNT-
polymer composites with stable electric properties via application of tetrakis-
Schiff zinc-complexes as guiding agents for nanotubes. To achieve this goal, the
following intermediate objectives are outlined:

• Investigate the effect of CNT agglomeration and alignment on the polymer
composites, processed with contemporary methods;

• Evaluate the potential of self-assembled “rings-and-rods” like molecular net-
works to serve as the CNT guiding agents for production of transparent films
and polymer composites;

• Study the detailed behaviour of the tetrakis-Schiff zinc complexes in solvent
environment and to suggest an explanation for the experimentally observed
formation of self-assembled networks only from phenyl-functionalized com-
plexes in dichloromethane out of other attempted structures and solvents.

1.3 Thesis outline

The thesis is structured as follows.
Chapter 2 summarizes the current state of the art in the field of carbon nan-

otubes (CNT) and materials, including them, with the special focus on their
electrical properties and the sources of resistance. This chapter also introduces
the methods currently used to form ring-like structures and names several ex-
amples, where such methods were used in combination with CNTs. Concluding
this chapter is the brief overview on the development of Schiff-based metal-organic
compounds and their self-assembling properties.

The literature review chapter is followed by chapter 3, which describes the the-
oretical foundations of the three simulation methods, used in this thesis: Monte
Carlo (MC), molecular dynamics (MD) and abinitial quantum chemistry (QC)
calculations. As several different implementations of these methods are used
throughout this thesis, each of the following three chapters begins with a short
methods section, naming the software tools and the details of the simulation
procedure used in that chapter.

Chapter 4 describes computer simulations using simple Monte Carlo approach,
augmented with non-uniform distribution of CNTs, derived from the data ob-
tained by our colleagues from microscopic studies of experimental samples.

Chapter 5 describes Monte Carlo studies of the percolation characteristics
of flat “rings-and-rods” like networks, basing on the statistical parameters re-
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ported for experimentally observed tetrakis-Schiff networks [2]. With caution,
the same procedure was extended to 3D case, where the self-assembled networks
were also observed, but for which no reliable statistics could be measured so far.
Predictions on the percolation threshold values of the CNT content in films and
composites, where the self-assembled networks used as a guiding agent, are given
in this chapter, showing the high potential of such complex structures for this
application.

Chapter 6 describes the extensive studies of the tetrakis-Schiff zinc-complex
molecules using modern molecular dynamics techniques. Basing on these studies a
mechanism of self-assembling process is suggested and supported with free energy
calculations for multi-molecular associates, serving the essential blocks of thus
assembled molecular networks.

The key findings of this research are summarized in concluding chapter 7. Sev-
eral directions for the future work are also outlined there as well as approbation of
the research results via peer-reviewed publications and international conferences.
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Chapter 2

Literature review

As was stated in the motivation section, the focus of this review is the application
of the recently discovered tetrakis-Schiff molecules, capable of self-assembling into
networks of interconnected rings, to guide carbon nanotubes in transparent and
conducting films and novel composites. The aim of this chapter is to explain the
benefits of such guiding as well as the specific character of this material among
the vast variety of other self-assembling molecular structures. For this purpose
a concise summary is provided here, reviewing the current state of the art in
the field of carbon nanotubes in material design, with the special attention to
their electric properties, and different approaches leading to formation of ring-
like structures. It also introduces the reader to the field of Schiff-base complexes,
especially salphen derivatives, and the recent advances in controlling their self-
assembling properties.

2.1 Carbon nanotubes in polymer composites

Although evidences exist that the first electron microscopy images of tubular car-
bon nanofilaments were published as early as 1952 by Radushkevich and Lucky-
anovich in Russian Journal of Physical Chemistry [3], it was the observation of
“helical microtubules of graphitic carbon” by Sumio Iijima in 1991 [4] that ignited
the active research of this phenomenon throughout the international scientific
community and became a turning point in several branches of modern science
and technology, including chemistry, electronics and material design. Subsequent
studies have clarified the growth mechanism [5] of so-called carbon nanotubes
(CNT) and have shown that they can be up to 1 layer thick [6,7], such nanotubes
are called “single-walled” (SWCNT), and can withstand significant deformation
without damage to their lattice structure [8]. Typically closed at both ends with

5



fullerene- like “caps” [5] they can be opened with thermal treatment and filled to
transform into fibers with various properties [9].

It was also shown that CNT can have a variety of possible structures, de-
pending on the direction in which the graphitic hexagonal lattice is rolled up to
form the tube [10]. The tube’s structure is commonly characterized by a pair of
indexes (n,m) representing the direction of the vector ~C, the endpoints of which
are joined to form nanotube’s circumference, in the terms of hexagonal lattice
vectors ~a1 and ~a2: ~C = n~a1 + m~a2, - as shown on the figure 2.1. Basing on the
values of n and m an SWCNT can be of “armchair” (n −m), “zigzag” (m = 0)
or chiral type (n 6= m 6= 0).

Figure 2.1: Atomically resolved electron microscopy image of CNT structure (left) and
its representation as the stripe of a single graphite layer [10] (right)

Using these indexes and the length of graphitic average bond length aCC =
1.42 Å, other CNT geometry characteristics can be expressed, such as diameter
(dCNT , eq. 2.1.1), circumference (cCNT = |~C|, eq. 2.1.2), lattice period in the
direction of tube axis (TCNT , eq. 2.1.3) and the number of atoms in such lattice
(NCNT , eq. 2.1.4) [11]:

dCNT = aCC
√

3
π

√
n2 + nm+m2; (2.1.1)

cCNT = a0

√
3(n2 + nm+m); (2.1.2)

TCNT = 3a0

√
n2 + nm+m2

GCD(2n+m,n+ 2m) ; (2.1.3)

NCNT = 4(n2 + nm+m2)
GCD(2n+m,n+ 2m) ; (2.1.4)

where GCD(I, J) - is the greatest common divisor of the two integers I and J .
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The electric properties of CNT also strongly depend on (n,m): if the dif-
ference of the two indexes is the multiple of 3, the CNT’s electronic structure
has a crossing of bands at the Fermi level and, therefore, has conductivity of a
metallic type, in the opposite case the nanotube is semiconductor with a bans
gap of ∼ 0.5 eV [10]. Furthermore, being an exceptional example of long ex-
tended π-conjugated system, CNTs possess a specific conduction mechanism -
ballistic conduction, due to which the minimal resistance of a single SWCNT in
the absence of defects and thermal noise can be as low as 1/2G0 ∼ 6.5 kΩ, where
G0 = |e−|2/π~ = 77.5µS is the conductance quantum - the conductance of a single
channel in the absence of scattering (multiplied by 2 to account for electron spin),
e− being the charge of electron and ~ - reduced Plank constant, which was proved
by experimental measurements under ultra-low temperatures [12,13].

In a number of studies the unique properties of CNTs were employed to design
single-molecule transistors [14–17]. The field effect transistor properties were
demonstrated for individual semiconducting SWCNT under room temperature
conditions in [14]. In [15] Shea, Martel and their co-workers have fabricated
ta number of multiwalled carbon nanotube (MWCNT) three terminal devices
that proved to have metallic type conductivity with the full device resistance of
∼ 100 kΩ as was expected for this kind of tubes. This behavior was altered if the
CNT contact points were pressed to collapse into almost flat layers: the resistance
was found to vary from 76 to 120 kΩ. Attributing all conductivity only to the
outer shell the single wall conductivity was estimated to be ∼ 32 kΩ. In [17] single
CNTs were folded into ring-like coils, held by strong van der Waals attraction
between the segments, without loss of metallic conductivity with the resistance
∼ 10 − 15 kΩ. Transistor properties were also observed for “intramolecular”
junctions: for fused silicon nanowire-CNT [18] and metallic-semiconducting CNTs
[19] junctions. In the former case the resistance across the junction was measured
to be 608 kΩ, while the resistances of the tubes were 56 and 101 kΩ. In general,
the properties of such junctions strongly depend on the band structure details of
the parts of junction, so one has to employ quantum level calculations to describe
each individual junction type [20].

As it follows from the experimental observations, the single metallic CNTs
generally has resistances of the order ∼ 100 kΩ, so the contact resistance become
non-negligible. In [16] for a SWCNT-bundle transistor with the golden electrodes
Lui and co-workers estimated the tube-electrode contact resistance of ∼ 3.3MΩ.
In the previously mentioned work [15] Shea and Martel also report a contact
resistance as high as ∼ 1.1MΩ for a SWCNT device (although for MWCNT
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in the same paper the contact resistance was estimated to be only ∼ 23 kΩ).
So high contact resistances may originate from the presence of impurities or
charge transfer between CNT and metal with different work function: electrons
redistribute between the tube and electrode in the contact region until Fermi
levels are aligned, creating a Schottky barrier [21].

The problem of contact resistance becomes even more important for CNT
intermolecular junctions. Fuhrer and co-workers have measured the contact res-
istances for a number of crossed SWCNT of different types [22]. Their setup
represented a 4-terminal device where each of the crossing CNTs was attached to
a pair of electrodes forming almost 90◦ angle between the tubes. The contact res-
istances measured by them for junctions of two metallic CNTs varied in the range
of 90-360 kΩ (corresponding to conductance of 0.04-0.14 G0), while for junctions
of semiconducting SWCNTs the resistance up to 1.3 MΩ (0.01 G0). The con-
ductance of metallic-semiconductor type junctions were two orders of magnitude
smaller indicating the formation of a Schottky barrier. In [23] the resistance over
crossover points of individual CNTs and their bundles were studied using con-
ductive atomic force microscope. It was shown that such junction resistance can
vary from 98 kΩ for individual metallic SWCNT junctions and 230 kΩ for single
SWCNT-small diameter bundle to 2.7 MΩ for the crossings of large diameter
bundles.

In [24] the authors studied the contact between individual nanotube and
graphite sheet depending on the angle of rotation and report contact resistance
oscillations from 1 to 45 kΩ with the period of 60◦. The minimal resistance was
found for so-called “in registry” mutual orientations, for which the two hexagonal
lattices are stacked as the two layers of graphite, so the Fermi wave vectors are
parallel and, therefore, the electron moment is preserved upon crossing of the
contact. The same problem of lattice matching was also studied theoretically for
the contact between the two metallic nanotubes in [25]. In agreement with the
aforementioned experimental works, oscillations of conductivity with the lattices
mismatch angle was found. The “in registry” contact resistance for the crossed
CNTs was evaluated as 2 MΩ for the rigid nanotubes, but decreased to 682 kΩ
when the atomic geometries were relaxed and to 121 kΩ if additional forces were
applied to simulate the effect of substrate surface adhesion. The “out of registry”
resistance was found to be 3.36, 3.21 and 1.66 MΩ under the same assumptions.
Furthermore, the effect of the contact length was studied for the two parallel semi-
infinite CNTs. For the two armchair nanotubes oscillations of the conductance
from almost 0 to 0.3-0.4 G0 with the period equal to half of Fermi wavelength.
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For zigzag type tubes the oscillations had the period of hexagonal lattice and
were related to the overlap of atomic positions. It was also reported that the
contact resistance increases with the tubes diameter as the weight of the contact
region decreases for the conducting channel, spread over larger circumference.

An interesting approach to the contact resistance problem was suggested in
[26]: by passing electric current through junction of two CNTs the authors were
able to locally decompose metal-containing precursor vapor by the heat generated
in the junction and “solder” it with Pb or HfB2. This resulted in ∼ 6 times
increase of direct current.

Even more sophisticated the question of electrical conductivity becomes for
flat and bulk materials, containing CNTs. In the aforementioned [23] the direct
current (DC) conductivity σDC = 6 · 105 S/m for acid treated films of CNTs that
decreased to σDC = 9 · 104 S/m after thermal annealing (corresponding to sheet
resistance 110 and 285 Ω/�1) with transmittance ~78-79 %. This is 1-2 orders of
magnitude lower than the conductivity of individual CNTs measured in the same
work: σDC = (4.4 ± 1.6) · 107 S/m for SWCNT and σDC = 8 · 106 S/m for MW-
CNT. The authors of [27] have studied the conductivity of SWCNT films as the
function of the films’ thickness and temperature. They have observed that the
very thin (thickness of the order of one CNT bundle, transmittance in range 30-95
%) have semiconducting type of conductivity, for which the resistance decreases
with temperature. Conductivity of a thick film (∼ 35µm) was found to have a
large metallic component, staying finite even at very low temperatures and pos-
sessing a maximum at room temperature, after which the resistance increases due
to thermal scattering or CNT expansion. This occurs because of SWCNTs with
different conductivity type are mixed in such networks: for the thinnest films the
conductivity is dominated by Schottky barriers in metallic-semiconducting CNT
junctions; in the same time in the thick film contacts between highly conductive
metallic CNTs dominate the film performance. The non-linear character of res-
istivity with temperature was explained by electron tunneling between metallic
CNTs, at the temperature ∼ 230 K electron-phonon scattering starts to dominate
the resistance and, thus, its temperature dependence changes to metallic type.

In [28] the decrease of film conductivity as temperature decreased was also
observed for a 100 nm thick SWCNT network. As in the previously reported work,
the authors employ the “fluctuation induced tunneling” mechanism to explain this
behavior. This mechanism describes the current through the CNT-CNT junction

1“Ohm per square”, the unit used to characterize resistivity of flat conductors originating
from the fact that a square film of any size would have the constant resistance.
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via electron tunneling, additionally introducing the change of voltage between the
conducting sides due to thermal fluctuations, it follows then that the conductance
of such tunneling junction has the following temperature dependence [29]:

σ = σ0 exp
(
− T1

T + T0

)
; (2.1.5)

where σ - is the electrical conductivity, T - temperature, σ0, T1 and T0 are used as
fitting parameters. The authors of [28] estimated T1 as 289± 79K and T0/T1 as
0.3± 0.19, thus at room temperature the increase of conductivity due to thermal
fluctuations is small and metallic type resistivity dependence is restored. In con-
trast, the authors of [30] prepared a bulk material of densely packed MWCNT and
graphite particles and studied its conductivity over wide range of high temperat-
ures: from 328 to 958 K. They have shown that for such material even at high
temperatures the conductivity maintains a weak growth from 1.02 to 1.38 S/m,
unexpected for metallic systems. The authors explained this in terms of fluctu-
ation induced tunneling between CNTs and electron hopping between graphite
particles. However, thermal expansion of CNT diameters, suggested of one of the
possible sources of conductivity temperature dependence in [27], was completely
neglected, although at high temperatures in such dense bulk materials it can lead
to an increased contact area, unlike the thin film case.

As the flat films of CNTs are viewed as a perspective conducting transparent
electrode material various groups have studied so-called “percolation” behavior
of such films’ conductivity [31, 32]. The term “percolation” is used to describe
the transport processes in random media. Applied to materials, where electric
conductivity is created by randomly distributed conductive particles, it speaks
of the formation of “culsters” of connected particles, i.e. a collection of particles
through which the charge can travel due to pairwise electric contacts between
them [33]. Modelling CNTs as the sticks of infinitely small thickness, the authors
of [31] have shown that the experimental measurements for transparent CNT
networks are well described by the percolation law:

σ ∼ (N −NC)δ ; (2.1.6)

where δ - is the parameter called “percolation exponent” and dependent on the
particle geometry and dimensionality of space, N - is the number of CNTs per
surface area, NC - the percolation threshold, according to theory, the value of N ,
for which an infinite conducting cluster appears, i.e. the threshold after which a
macroscopic sample becomes conductive. The later quantity was estimated using
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the formula for a collection of randomly dispersed sticks of equal length [34] :

l
√
πNc = 4.236; (2.1.7)

where l - is the length of a stick (CNT). In [31] found NC ∼ 1.2 CNTs per µm in
close agreement with 1.43, predicted by equation 2.1.7. The best fit was achieved
for the value of percolation exponent δ = 1.5 compared to 1.33 as was predicted
theoretically. In [32] the equation 2.1.7 was rewritten in terms of CNT volume
fraction - the ratio of the CNT volume to the film volume. The authors found
the percolation exponent to be 1.65 and the volume fraction of metallic CNTs at
percolation threshold ∼ 5.5 · 10−3. This is 1/3 of the CNT content as only about
the third of all CNTs are metallic. Below this value the films conductivity type
changed to semiconducting up to the CNT fraction of ∼ 9 · 10−4, where the films
represent non-connected networks.

An important contribution to the understanding of CNT films conduction was
done by an international group of researchers in [35]. The authors compared the
morphologies and properties of the CNT networks, deposited from vapor by four
different methods: electrostatic or thermal precipitation, filtration with either
subsequent press transfer or dissolving the filter, and inspected the networks
characteristics for optoelectronic application: charge mobility (directly related to
network conductivity) and electric current change as the function of gate electrode
voltage (ON/OFF ratio). Although the CNTs were produced the same way and
all networks consisted of single SWCNTs and bundles of 2-7 CNTs, the deposition
technique strongly affected network density and morphology and thus electrical
properties.

Electrostatic precipitation resulted in dense deposition and high amount of
bended CNTs, causing band-gap opening and, hence, change of metallic conduct-
ivity type to semiconducting. Such networks had the highest ON/OFF current
ratio ∼ 5·105, but low charge mobility (∼ 2−13 cm2/Vs). The networks obtained
via thermal precipitation had the lowest density of CNTs with preferred orienta-
tion, tuning deposition time allowed to achieve ON/OFF ratio up to 105-106 while
keeping carrier mobility at 20 cm2/Vs. It is interesting that the networks pro-
duced via filter dissolution exhibited the highest carrier mobility (40-50 cm2/Vs),
but lowest ON/OFF current ratio (2-8). This attributed to large number of Y-
junctions, formed by solvent, having lower resistance due to larger contact area.

The same challenges of the contact resistance, percolation and morphology
emerge in the area of polymer composites. The number of works in this field over
the past years has increased exponentially due to advances in research methods
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on the one hand and high industrial potential of such engineered materials on the
other. The detailed review of these works can be found in outstanding overviews
[36,37]. Here only the key issues and approaches will be mentioned.

One moment needs to be cleared here to prevent confusion. There are two
ways to characterize the CNT content in such composites: the fraction of filler
volume (vol.%) and the fraction of filler weight (wt.%) in the final composite.
The former is commonly used in theoretical estimations, where only geometrical
parameters matter. However, experimental studies usually report the results in
the terms of weight fraction as, unlike the volume fraction, this property can be
directly measured.

From theoretical point of view the conductivity of such composites is de-
scribed by percolation of conductive CNTs. This was especially convincingly
demonstrated in [38] by straining the stripes of CNT-polyethylene oxide compos-
ite, where the nonlinear conductivity curve, characteristic for percolation type
behavior, was clearly observed. However, in contrast with the case of flat films,
in bulk composites the percolation threshold must take into account finite thick-
ness of CNTs as they are not allowed to intersect. This is taken into account by
the excluded volume theory [39]. Within it the estimate of percolation threshold
for randomly distributed “sticks” or rod-like particles in a 3-dimentional space
(φ3D) is given by inequality:

1− exp
(
−1.4V
〈Vex〉

)
≤ φ3D ≤ 1− exp

(
−2.8V
〈Vex〉

)
; (2.1.8)

where V is the volume of a stick (equal length and thickness are assumed for
all particles) and 〈Vex〉 is the “excluded volume” - volume of the space around
particle’s center, in which the center of another particle cannot be found, averaged
by angle between the stick’s axises. For a cylindrical filler particle the length
of which is 1000 times larger than its diameter (typical CNT aspect ratio) the
estimated percolation threshold is of the order of 0.1 vol. %.

Despite quite promising estimates form the equation 2.1.8, the main problem
standing between laboratory studies and commercial production is the stability
of the results. As can be seen from the tables in [36, 37], the composites of the
same polymer matrix with CNT of similar type may have from several times to
order of magnitude difference in final mechanical and electric properties due to
details of the composite processing. For example, for MWCNTs with aspect ratio
∼ 103 in epoxy the percolation thresholds achieved by several groups varied from
0.011 to 0.03 wt.% and maximum conductivity of the composite - from 0.01 to
0.4 S/m.
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A number of experimental studies of thermal and concentration dependencies
of such composites’ electrical properties have shown that their conductivity is
dominated by tunneling in CNT-CNT contacts, rather than CNT resistance it-
self [40,41]. However, tuning the CNT distribution morphology inside the polymer
matrix to enable good electrical contacts is yet more sophisticated task then for
the case of thin films. The main problem here arises from the fact that CNTs, be-
ing extended conductors, attract each other via quite strong van der Waals forces,
but interact poorly with the surrounding polymer. As the result the nanotubes,
embedded into polymer matrix, aggregate into micron-sized agglomerates [42].

To improve exploitation of CNTs properties different approaches exist. One of
them is pre-processing of CNT material using sonication [42] or treatment with
dispersing agents [43] to break the agglomerates, initially present in the CNT
powder. Intensive stirring in also used to break the remaining agglomerates with
shear forces on the mixing stage [44]. The effect of polymer matrix composi-
tion on the percolation characteristics of the dispersed CNTs was also studied
in [45]. Chemical functionalization of CNTs was also used to improve the CNT-
polymer interaction [46, 47]. In [48] an interesting approach was demonstrated:
the short fragments of CNTs were connected “end-to-end” with linker chains to
create a dendrite structure. However, chemical treatment damages the outer shell
of CNTs, the most responsible for conductance, so non-bonding or wrapping func-
tionalization is actively studied for the applications where the best conductivity
is required [49].

However, the influence of CNT agglomeration on the composites’ electric con-
duction is not strictly negative. It was shown in [50] that, besides reducing the
effective fraction of CNTs, employed in electric conduction, the agglomerates also
increase the CNT-CNT contact surface, therefore improving overall conductivity.

Furthermore, it was demonstrated in [51] that CNT alignment by post-fabrication
stretching of composites can enhance the conductivity by the factor of 2. This
phenomenon was also studied theoretically in [52]. It was shown that conductivity-
alignment dependence is not linear: although alignment can increase the aniso-
tropic conductivity by creating the paths for current with fewer junctions in the
preferred direction, it also decreases the probability of intertube contact, increas-
ing percolation threshold beyond certain point.

13



2.2 Formation of the ring-like structures

Ring-like structures and their networks of different molecules were observed by
various groups for more than 15 years. To show how the “ring-and-rods” net-
works of tetrakis-Schiff molecules are different from those studied before, a con-
cise summary of the main ring forming mechanisms studied by far is given here.
This includes the dewetting processes, where the ring shape is “inherited” by the
solute molecules from the circular rim of the evaporating solvent, toroid globule
formation in semi-flexible polymers and self-assembly of nanometer-sized ring-like
molecules.

Figure 2.2: Schematic explanation of the “coffee-ring” and “pinhole opening” effects [53]

One of the most studied and controllable ways to produce ring-like structures
is the so called “coffee-ring” or “coffee-stain” effect (figure 2.2). It borrows the
name from a well known observation that a spot after a drying coffee drop would
have the rim colored more intensively than its middle part. This occurs because
the higher the curvature of the liquid’s surface the faster its molecules evapor-
ate. This difference between the curvature on the sharp edge of droplet and its
almost flat central part creates the gradient of evaporation speed that results in
the lateral flows of solvent molecules from the droplet center to its periphery,
bringing the solute molecules to the rim [54]. In general, this effect represents a
problem, when the uniform deposition is required [55]. However, it can also be
a convenient tool to form the standalone rings of the solute material with well
defined diameter and position. Ring-like structures of amorphous carbon were
produced this way in [56]. Rings of metal-organic compounds were also reported
in [57]. Combined with ink-jet printing technique this mechanism was success-
fully employed to produce networks of CNTs with 80% transparency and sheet
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Figure 2.3: PtP molecule structure (left) and their self-assembled rings observed by
transmission electron [60] (center, scale bars equal to 1 µm for a, b and d and 30 nm
for c) and confocal fluorescence [61] (right, all scale bars represent 10 µm) microscopy

resistance as low as ∼ 150 Ω/� [58]. The CNT rings obtained with this method
are 100s of µm in diameter and about 300 nm in height, so their rims are formed
with dense bundles of CNTs. To achieve such results a complex equipment was
required to deposit several layers of drops precisely displacing the next layer to
create overlapping rings. Furthermore, the transmittance of 80%, although being
a great achievement for the field, speaks of a quite significant surface fraction of
CNTs that is quite far from the theoretical predictions for random distribution
of CNTs on surface.

The so called pinhole mechanism, observed in flat evaporating films, is tightly
linked to the “coffee-ring” effect being, in certain sense, complementary to it (fig-
ure 2.2). It has the same driving force - the lateral flows induced by the difference
of evaporation speed that drags the solute molecules closer to the circular rim.
However in this case the liquid occupies the surface around the opening hole,
hence the name of the effect. The surface of the thin liquid film exist in an un-
stable equilibrium so the hole formation can be triggered by any irregularity, for
example by a particle or drop of non-mixing liquid, accidentally “punching” the
film and initiating a growing 2D “bubble” (figure 2.2) [59]. Unlike the previously
mentioned “coffee-ring effect” it can be used to create wast connected networks
on a substrate. Furthermore, it is possible to control the concentration and size
of the such formed rings by controlling the concentration of “seeds” - the particles
or droplets, used to initiate pinholes.

Pinhole mechanism was used to explain the formation of self-assembled mi-
crometer sized porphyrin platinum dichloride (PtP) rings, observed after solvent
evaporation in [60,61] (figure 2.3). Schenning at al. studied the effect of concen-
tration on the forming structure: it was reported that at PtP concentration of
10-6 M separate, well defined rings could be observed, while at higher concentra-
tions (∼ 10−2 M) ta honeycomb lattice is formed. The same paper also reports
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Figure 2.4: Porphirin disk-shaped molecule [53] (left) and the suggested hierarchical
structure of the micrometer scale self-assembled from it [62] (right)

the effect of solvent and found that the most ideal rings could be obtained from
carbon tetrachloride (CCl4). Replacing it with chloroform (CHCl3) or dichloro-
methane (DCM, CH2Cl2) led to less perfect structures. This was linked to the
increasing speed of evaporation as the formation of the perfect ring requires more
time. When tetrahydrofuran (THF) or toluene (TOL) were used as solvents, no
rings were observed. The authors specifically outlined that, in general, the PtP
must be present as standalone monomers in solvent to form the rings. Comparing
the possible explanation of the rings’ formation, the authors also considered the
formation of aggregated porphirin domains that undergo a circule-torus trans-
ition, but rejected this possibility on the grounds that such mechanism is concen-
tration dependent, while the porphyrin “wheels” were observed in a wide range
of concentrations.

Hofkens at al. has also observed PtP rings with an irregular structure [61].
Using confocal fluorescence microscopy they showed that the large rim of the
ring in turn consists of smaller rings. It was suggested that smaller rings arrange
around small gas bubbles that then fuse together in a larger ring due to a pinhole
dewetting.

Self-assembled rings were also observed by [53] and [62] for aggregates of por-
phirin hexamer and dodecamer molecules (figure 2.4). Lensen and co-workers
suggest that such molecules, having almost flat disk-shape, assemble into colum-
nar stacks. These columns aggregate in hexagonal packs and align around pinhole
by solvent flow, oriented perpendicularly to it. The resulting ring has the rim
thickness equal to the stack height (∼ 200 nm) and height of the ring is equal to
the diameter of agglomerate of stacks (15-20 nm). Such model was supported by
fluorescence microscopy study by [62], indicating uniform symmetric distribution
of the molecule dipoles along the ring. Jeukens et al. also studied intensively the
effect of a various substrates on the formation of rings by pinhole mechanism.
They report that the well defined rings were formed both on hydrophilic and
hydrophobic glass, however, untreated glass, mica or pyrolytic graphite results
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into no rings or network of merged rings. Furthermore, high humidity (≥ 60%)
is required for the formation well defined and uniform in size rings. These obser-
vations speak in favor of pinhole mechanism as it requires slow evaporation and
uniform substrate surface.

Takazawa et al. produced 5-30 µm rings of thiacyanine (TC) molecules with
wave-guiding properties from evaporating chloroform solutions as reported in [63].
Again, high humidity was needed to enable the rings formation. Takazawa and
co-workers were able to control the rings quality by tuning solute molecules in-
teractions. This was achieved by changing the length of the functional group,
connected to TC base. “Short-tailed” TC molecules (with 2 monomer long side
group) strongly bind to each other by π − π interactions are capable of self-
assembling into ∼ 100µm long fibers under normal conditions. Such molecules
begin to stack early and, in humid environment, formed rings with irregular outer
rim. Increasing the length of the side groups (4 and 8 monomer long) reduced
TC molecules “stackability”, allowing the aggregation only in the highly concen-
trated region around the pinhole. Thus smooth regular rings were formed from
such molecules. In contrast with the porhyrin rings, where the fluorescence ima-
ging showed the radial orientation of molecular stacks around the pinhole, TC
molecules were divided into regions with uniform dipole orientation. To explain
this Takazawa and co-workers suggested that the domains are formed in solvent
yet before the pinhole opening and remain during the dewetting stage.

The ultimate application of the hydrostatic forces to produce arrays of micrometer-
sized rings or connected honeycomb lattices controllable way is the method of
“breath-figures”: the solvent film, containing polymer chains, evaporates under
the flow of humid air, as the solvent temrepeture decreases below the dew point,
droplets of water condense on the liquid surface, arranged in a hexagonal lattice
by the capillary forces and convection of raising solvent vapor, as the solvent
evaporates and the droplets cool down, they dip into the solution, serving as the
seeds initializing pore formation in the solvated polymer [64].

Nanosized rings of symmetrical phthalocyanine nickel-complexes with irreg-
ular outer rim were observed in [65]. Although the authors suggest that the
same solvent evaporation-driven mechanism as for the aforementioned porphyrin
rings is behind the ring shape formation here, in this study aggregation of solute
molecules occurs not due to their deposition on a solid substrate, but on the
air-solvent interface. Due to this the rings in this study were smaller compared
to those observed by the groups of Schenning and Hofkens (inner and outer dia-
meters of 50 nm and 70-150 nm correspondingly). A striking difference here, is
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that the formation of the rings of phthalocyanine molecules was observed even
at very small initial concentrations, which indicates that aggregation occurs due
to the strong intermolecular forces between the complexes and not only due to
the pinhole opening. Change of the functional groups an decrease of the tem-
perature hindered the formation of the rings. In case of the lower temperatures
nanocrystals formed instead of the rings.

The authors of [66] report a successful self-assembling of sparse networks with
circular pores or honeycomb lattices formed by protoporphyrin molecules. In
contrast with the “porphyrin wheels”, observed by Schenning at al., in this case
the networks could be deposited from the polar solvent (dimethyl sulfoxide), while
no assembly was observed in non-polar chloroform. To explain this Bhosale and
co-workers suggest that polar solvent does not interact strongly with the molecules
due to hydrophobic chains, thus protoporphyrin self-assemble into long fibers that
form network or lattice structure. The circular shape of pores in this case, most
probably, is still induced by hydrostatic effect, however, unlike the aforementioned
results of Jeukens and Takazawa, molecular aggregation occurs in liquid phase
rather then in the pinhole rim region, thus the long fibers are wrapping the holes
and not aggregate radially or in some preferred domain orientation like the shorter
columnar stacks reported in [62,63].

Carrol et al. have reported the deposition of toroids of poly(n-hexyl isocy-
anate) from evaporating solvent film on mica surface [67]. The polymer was
functionalized with chiral photochromic side chains to induce helical structure of
backbone. The toroids were 40-60 nm high and had an external diameter ∼ 2µm
and internal - in the range of 400-900 nm. This behaviour was observed in chlo-
roform, tetrahydrofuran and toluene without significant changes. Although not
completely excluding the possibility of pinhole mechanism, the authors still point
out that in this case the deposited polymer most likely would collapse into a
droplets, rather then stay in ring form as observed here. Also no toroidal struc-
tures were observed without the aforementioned functionalization. Instead it is
suggested that the polymer, having a preferred helical shape, folds into a coil,
oriented perpendicularly to the surface, as the solvent evaporate.

Chains of certain polymers can assume toroidal shape upon condensation even
without special groups due to specific elastic properties [68]: on the short range
such chains are quite rigid, however, on the larger scale small rotations adds up
and the chain behaves as a flexible string, different parts of which can move inde-
pendently. This behaviour is called “semi-flexibility”. Elasticity of such polymers
is characterized by “persistence length”: the distance along the chain at which
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movement of two monomers can be considered independent. Due to this prop-
erty, when the chain condensates upon changing the solvent conditions (solvent
evaporation or replacement with incompatible solvent), segments shorter then
persistence length cannot bend freely and align parallel to each other, however
the segments that were further away along the chain can come in contact with the
former and became the part of the same packing with them. Thus if the initial
metastable loop is created, the chain folds upon it to form a stable donut-like
structure [69]. Formation of a number of rod- and ring-like structures according
to this mechanism was observed for xanthan complexes in [70] and the stability
of torus shape was demonstrated with thermal annealing. Although the chains
much longer then the persistence length of the polymer should, theoretically, be
flexible enough to form spherical globules, it was shown in [71] that even in such
case the stage of toroidal globule can exist as a metastable intermediate state
between extended coil and compacted spherical globule, thus the chains can be
kinetically “arrested” in this state by freezing or if the solvent evaporates too
fast.

One of the most intensively studied examples of such behaviour is the forma-
tion of rod-like and toroidal structures by DNA molecules [72]: in solvent environ-
ment DNA is charged and residues of the same charge repel, forcing the molecule
to unfold into a coil, however, if the oppositely charged ions are present in solu-
tion, the electrostatic repulsion is shielded and DNA folds back into a rod-like
or toroidal globule. Using transmission electron microscopy it was shown in [73]
that the shape of toroid cross-section can also be controlled by the choice of the
condensation agent. The typical size of such toroids is ∼ 100 nm [74] that can
be explained by the competition between the surface energy, entropy and impact
of topological defects [75]. The shape of such globule can be varied from rod
to toroid by using different condensing agents [76]. Although initially partially
folded globules were thought to be unstable [77] such structures were observed
in the form of “necklace” [78] and “rings-on-string” [79] globules (figure 2.5) and
explained as the result of balance between electrostatic and entropic effects [80].

Bazler et al. also observed rings of self-assembled fibers in [83]. However
unlike previous examples, where the change of the solvent conditions caused the
ring-like structure formation, here the nanostructures were formed by deposition
of p-phenilene directly from gas state in vacuum chamber. In this case, support-
ing surface determined the type of nanostructure that was assembled on it: on
hydrophilic mica surface needle-like rods of p-phenilene grew directly on mica
surface and were oriented by strong surface dipole fields, however, if treated with
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Figure 2.5: “Rings-on-a-string” globule of
compacted DNA [81]

Figure 2.6: Formation of nanorings by self-
assembly of Zn-substituted porphyrin tri-
mers [82]

water or methanol, the mica surface became hydrophobic and the molecules de-
posited parallel to the surface and self-assembled into curved strings or closed
rings 2-6 µm in diameter.

Finally, microcycles of several zinc-substituted porphyrin dimers and trimers
were synthesized by [82, 84, 85]. In this assemblies the porphyrin bases are con-
nected by π−π and cation-π interactions between imidazole residue and zinc ion
or ferrocene bridges resulting in formation of a stable nanosized ring-like associ-
ation (figure 2.6). It is reported that such coordination interaction can be formed
in non-polar solvents and decomposes in polar. Although such macromolecular
cycles are a few nm in size and not suitable for network formation or CNT guid-
ance, these works represent an important examples of ring-like structures formed
only due to the molecule shape and non-bonding interactions, rather than due to
external hydrostatic effect.

2.3 Metal-organic complexes of Schiff bases

Schiff base is a common name for chemical compounds with the general formula
R2C−−NR′, where R′ 6=H [86]. Schiff-base compounds where R contains a hydroxyl
group are well known for the ability to bind metal ions with negatively charged N
and O atoms, which gives them valuable catalytic properties [87]. To improve the
later significant scientific effort was devoted to study the influence of molecular
structure on chemical and electronic properties of such compounds.

Benefiting from their ability to form nanoscale supramolecular aggregates due
to hydrogen bonds or oxygen-metal ion interaction between adjacent molecules a
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number of multi-metal center clusters were synthesised [88, 89]. Since such mo-
lecular agglomerates are connected only with non-covalent bonds, their structure
and properties are strongly affected by interactions with solvent molecules. In
several papers acetate ion was reported to act as a binding agent bridging two
Zn-salphen complexes together [90, 91]. Using XRD analysis it was shown [90]
that Zn ion is displaced from its original position in N2O2 plane due to interac-
tion with anion. Zn-O bond length was measured to be 2.0269(8) Å, compared to
1.9590(9) and 1.9733(10) Å for Zn-O(salphen). Varying the solvent in which the
reaction between ligand and copper salt occurs, the authors of [87] obtained the
four different compounds, representing a ligand dimer stabilized by additional Cu
ions and solvent molecules. Methanol, ethanol and n-butanol produced partially
deprotonated complexes with two Cu ions each enclosed in N2O2 cite of each
ligand and additionally coordinated by oxygen of solvent molecules. Yet another
Cu ion was found to bond the two ligands together interacting with four oxygen
atoms, two from each ligand. However, a different structure was found for n-
propanol: this time ligands were completely deprotonated and bonded by a pair
of additional Cu ions, while the ions, enclosed in N2O2 cites were additionally co-
ordinated by water molecules. Another intriguing feature of that last compound
is that hydroxyl groups of propanol molecules participate in hydrogen bonds with
one of the ligand’s deprotonated oxygens and with hydrogen of the coordinated
water molecule. Thus a molecular bridge is created binding Cu-ligand dimers
into potentially infinite supramolecular structure.

Due to π−π interaction between aromatic side groups such molecular aggreg-
ates can further assemble into crystal structures in solid state. As an interest-
ing indication of relative strength of the interactions involved, in the work [92]
photoluminescence spectra were compared for zinc-substituted complexes of tri-
dentate2 Schiff based ligands in different solvents. It was noted that the two
distinct dimeric assemblies could be obtained from the same ligand by reaction
with Zn2(ClO4)2 and Zn(NO3)2. In solid state both have a crystalline structure
stabilised by π−π interactions, which is easily dissolved. However, in the former
case the the two Zn ions of the adjacent complexes are well separated and molecu-
lar dimer holds due to hydrogen bonds that remains in DCM, but decomposes
in THF. In the later Zn and oxygen ions interact directly and complexes remain
dimerized in both solvents.

An experimental observation of Schiff-base zinc compounds dimerization effect
on the compound’s electronic properties was reported in [93]. Five bis-Schiff

2i.e. binding metal ion with 3 negatively charged atoms.
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base Zn complexes with different side-groups were produced two estimate their
performance as OLED materials. For those three out of them, which had a planar
geometry, a red shift of solid-state photoluminescence spectre peak was observed
with respect to liquid-state. In the same time the two non-planar complexes
showed a blue shift. The authors explained this with strong inter-molecular
interactions, appearing from Zn-O attraction in dimeric aggregates.

A special type of Schiff compounds are symmetric salen and salphen ligands
(figure 2.7), obtained by adding 2 equivalents of salicylaldehyde (C6H4CHO-2-
OH) to 1 equivalent of ethylenediamine (C2H4(NH2)2) or ortho-phenylenediamine
(C6H4(NH2)2) respectively [94].

Figure 2.7: Salen (left) and salphen (right) ligands.

Salen/salphen-based complexes were thoroughly studied by several groups as
potential building blocks for molecular self-assembly [95]. The reason for this
is that in case of symmetric and almost planar salen/salphen ligands Zn ion
binds an oxygen atom of the adjacent monomer in axial position, i.e. in the
direction perpendicular to the ligand’s plane [96]. Due to this binding anisotropy,
supramolecular assembly of zinc-salphen complexes into microscale fibrils and
gels was demonstrated by the group of MacLachlan in [97]. The formation of
continuous assembly was attributed to consequent binding of zinc and oxygen
ions of adjacent monomers rather than to commonly expected pi-pi interactions
or hydrogen bonds, as complexes containing Ni centers produces poorly defined
complexes compared to Zn based complexes, while Cu or vanadyl based complexes
showed no fiber assembly. It was also shown that fibrils parameters could be
controlled by addition of functional groups. Soluble groups (such as glucose and
galactose for methanol) narrowed the fiber diameter down to 5-7 nm, compared to
tens of nm before. In the same time functionalization with tert-butyl groups was
shown to prevent aggregation, which was attributed to high steric stress induced
by them. Self-assembled gels were produced by condensation of metal-salphen
complexes from aromatic solvents such as benzene, toluene and o-xylene. In the
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same time pyridine was shown to disrupt gelation.
Thorough study of a number of zinc-salphen based compounds was conducted

in [98]. It was reported that dimerized compounds were the dominant form both
in solid state and in solution for most of the studied compounds except for the
compound, functionalized with two tert-butyl groups, preventing association. It
was also reported that at high concentrations (10:1) pyridine can suppress zinc-
salphen dimerization by coordinating zinc cation.

By joining several salphen ligands with various spacers bonds a number of
macrocycles of three or four zinc-cites (figure 2.8) were reported, capable of form-
ing columnar self-assembling stacks, as well as dinuclear zinc-salphen compounds
(figure 2.9) [96,99]. The later are expected to promote polymerisation via dimer-
ization at each zinc-cite [96]. This property will be of a special interest for this
work.

In dimer the two zinc-salphen molecules are strongly bonded via two Zn-O
bonds forming almost ideal Zn2O2 square. In [100] a polymerization of standalone
zinc-salphen dimers was demonstrated via breaking one of the two Zn-O bonds to
connect with additional salphen complexes at each side. Another experimental-
theoretical study [101] demonstrated self-assembly of bis-Schiff zinc-complexes
into long fibers via two bonding mechanisms: primarily single complexes joined
via Zn-O interaction into chain-like aggregates that in turn stacked into thicker
rods via side chains interaction.

However, ionic attraction is not the only binding mechanism, available for sal-
phen based complexes. Combined spectroscopic and quantum chemistry study of
DNA intercalation with zinc-ligand complex was conducted in [102]. It was shown
that binding of the two molecules occurs via two key mechanisms: electrostatic
attraction between oppositely charged groups and intercalation of the phenyl
rings of salphen complex between the stacked bases of DNA. Such stacking inter-
action between Cu and Ni complexes and DNA was also observed experimentally
in [103], it is especially underlined that, unlike Zn, Cu and Ni ions in such com-
pounds do not form a coordination bond with guanine oxygen, so intercalation
occurs due to π − π stacking and not due to electrostatic interaction.

Apart from self-assembly capabilities due to strong non-covalent bonding
metal-substituted salen/salphen type compounds can participate in electronic
charge transfer. A new thiophene-based salphen-type ligand was synthesized and
studied in [104]. It was reported that replacement of salicylaldehyde with hy-
droxothiophene groups resulted in denser packaging in solid state (intermolecular
distance of 3.253-3.265 Å) due to strong π-stacking and S-S interactions. In solid
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Figure 2.8: Salphen-based macrocycles
synthesised by MacLachlan (reproduced
from [96]) and Kleij [99]

Figure 2.9: Dinuclear salphen-based com-
pounds, synthesised by Kleij and cowork-
ers [96,99]

state Zn- and Cu-substituted compounds showed p-type conductivity with hole
mobility of 1.5 and 0.7 cm2/Vs respectively. It was also reported that methanol
group was found coordinating Zn cation that wasn’t removed when solvent was
changed. No such behaviour was observed for Cu cation. Aforementioned ability
of electronic transport via delocalised π-orbitals in combination with capability
to control self-assembling process via ligand geometry and reaction conditions
makes multi-center Schiff-base compounds a very perspective building block for
advanced materials with controlled properties.

Furthermore, Schiff-based compounds can bind to metallic surface due to elec-
tron transfer between a metal-organic complex and vacant d-orbitals of substrate,
such ability was extensively studied both experimentally and theoretically in [105]
with the focus on corrosion inhibition.

2.4 Concluding remarks

In summary, the composites composed of polymer matrix and CNTs attract ever
growing attention due to their highly valuable properties and flexibility. However,
obtaining the stable electrical conductivity in such composites with optimal filler
loading still represents a significant challenge. One of the perspective approaches
to it is to use the additives, dispersion agents, to enable better distribution of
CNTs inside polymer matrix.

Methods for production of structured arrays and lattices of rings deposited
from evaporating solvents, based on hydrostatic effects, were developed and suc-
cessfully employed. However, since the discovery of "porphyrin wheels" and their
explanation by pinhole mechanism, most of the following works relied on that
explanation for the formation of micrometer-sized ring-like structures. In many
cases no careful numerical studies of rings formation during solvent evaporation
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was actually done. While it is satisfactory for flat thiacyanine and circular-shaped
hexamers and dodecamers, the ring-like structures, obtained by Balzer by depos-
ition from gas, cannot be explained in the same way. Although the examples,
described in this chapter look very similar two the “rings-and-rods” like networks,
reported in [?], pinhole effect cannot explain the formation of the overlapping
rings in 2D networks or loop-like string structures in polymer matrix.

In the same time self-assembled nano- and microstructures of Schiff-base
metal-organic complexes were intensively studied and the possibility to promote
different structures by controlling the ability of such complexes to aggregate via
either ionic or π − π interaction was demonstrated by many groups in various
solvents. Basing on this results a mechanism, different from patterning by the
curved surface of evaporating surface, may be suggested in case of tetrakis-Schiff
zinc-complexes that can have more in common with the formation of cation-π
bonded macrocycles and semi-flexible polymer folding.
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Chapter 3

Methods of computer simulations
of materials

Figure 3.1: Statistics of publications mentioning simulation techniques in material re-
search per year

Although according to a famous expression of Prof. Richard Feynman “the
test of all knowledge is experiment” [106], computer simulation is gaining ever
growing role in science, especially in the field of research of materials structure
and behaviour. Figure 3.1 shows the number of publications per year, containing
keywords “material” and either of “simulation”, “molecular dynamics”, “Monte
Carlo” or “quantum mechanic” according to Scopus online database [107]. This
trend is easy to explain as simulation techniques enable researchers to employ
all previously accumulated knowledge of material properties and behaviour to
predict the potential outcomes of experiments in a consistent and faster way, thus,
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allowing the experimentalists to minimize the number of experiments needed to
verify their expectations. This is especially important for extreme conditions
where experiments are tremendously hard and expensive, but where remarkable
changes of material properties are expected [108].

Figure 3.2: Size scales achievable for various simulation techniques (image from [109])

The objective of current work - charge transport in composite material - de-
pends on factors, existing on different size and time scales. On atomistic scale
these include nanotube’s internal conductance and electron tunnelling across con-
tacts between adjacent nanotubes. In the same time, as was shown in chapter
2 nanotube dispersion quality and agglomeration plays a crucial role in compos-
ite conductivity on macroscale. Despite of the progress in the field of computer
design and computational algorithms, it is still impossible to treat systems of any
size using the same approach. Thus, techniques operating on different levels of
approximations emerged and occupied their niches as demonstrated on figure 3.2.
This chapter briefly reviews the theoretic grounds of the three methods of com-
puter study, employed in the current work: Monte Carlo modelling, molecular
dynamics and quantum mechanical calculations. The details of the application
of each method will be described in corresponding chapters.

3.1 Monte Carlo methods

Monte Carlo (MC) methods is a wide group of methods for statistical calcula-
tions [110]. Basic idea of these methods is to estimate the desired quantities
by generating a large number of random realizations and accept or reject each
realization according to a predefined criterion. Its most easily illustrated by MC
integration: to estimate the area under a curve, defined by a positive function
y = f(x) on any interval x ∈ [a, b], N random points (xi, yi) need to be generated
with uniform distribution in the rectangle (a ≤ xi ≤ b, 0 ≤ yi ≤ max f(x)

a≤xi≤b
), then
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the desired surface is approximated by the ratio NA/N , where NA is the number
of points, for which yi ≤ f(xi).

If the uniform distribution in spherical coordinates is required, a special ap-
proach to generation of the angle coordinates (φ, θ) is used. A two random num-
bers u1 and u2 are drawn from uniform distribution on the interval [0; 1). Then
the following relations produce (φ, θ) uniformly distributed over a sphere:

φ = 2πu1; (3.1.1)

cos(θ) = 2u2 − 1. (3.1.2)

Such choice allows to avoid unwanted concentration of generated points near the
poles (θ = 0 and θ = π).

When a non-uniform distribution is desired, an approach called von Neumann
acceptance-rejection sampling (or in short “rejection sampling”) can be used to
convert a value u1 picked with a uniform random number generator to a random
number with the probability described by an arbitrary function g(u1). To achieve
this one compares another uniform random value u2, drawn from [0; 1), with g(u1)
and accepts u1 in case u2 ≤ g(u1) and rejects otherwise.

In the field of polymer composites modelling a specific type of MC simulation
became popular [111]. Within this approach the composite is represented with a
continuous dielectric media, into which filler particle models are randomly inser-
ted. The particles are modelled with either unpenetrable or “soft” inclusions. In
the former case a newly generated randomly placed inclusion must be rejected if
it intersects any already existing in the simulation volume. In the “soft” case the
intersection is allowed, but restricted to a certain depth.

Basic algorithm of this method is quite simple, however, it allows to control a
wide range of parameters, manipulating the probability distribution functions. In
case of CNT reinforced composites the inclusions are most commonly represented
with either line segments or rigid spherocylinders [112]. Modifying the aspect
ratio (length to diameter ratio) distribution, packing density or distribution of
axis vectors percolation threshold of CNT composites was studied in many studies
[113–117].

However, the application of this method to study a non-uniform, agglomerated
distribution of CNTs on a large scale was not reported so far. In the current work
such study is performed by augmenting this standard approach with rejection
sampling technique.
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3.2 Molecular dynamics method

Starting from the pioneer work of Alder and Wainwright [118] where a system
of 32 hard spherical particles in a rectangular box with Maxwell-Boltzmann ve-
locity distribution was simulated during hours to accumulate several thousands
of collisions, molecular dynamics (MD) method has been employed in more then
284 000 research papers [107]. A special purpose computers are designed to solve
extreme tasks such as study a peptide in explicit solvent folding process during
a millisecond simulation time at the speed ~18 µs/day [119]. Simulating the sys-
tems starting from single molecules up to 4*1012 particles [120], it occupied an
important domain bridging quantum mechanics level of theory up almost to the
lowest boundaries of continuum mechanics [121] and, in some cases, experimental
observation [122]. The general description of the molecular dynamics is given
according to [123,124].

3.2.1 Governing equations

The main idea behind the molecular dynamics method is to represent a molecu-
lar system as a collection of N interacting particles, that obey classical laws of
Newtonian mechanics :

mi
d~r2

i

dt2
=
∑
j 6=i

~Fij + ~Fext, i = −−→1, N (3.2.1)

here: ~ri - the coordinates of i-th particle, ~Fij - the force, with which j-th particle
acts on i-th, ~Fext - the force, acting from external field, such as electric or grav-
itational. To follow a molecular system evolution on a computer, the differenti-
ation by time t in the equation 3.2.1 is replaced with the finite difference over
the timestep δt. There are several approaches to do this including “leap-frog”,
“RESPA” and higher order methods. The most common is “velocity-Verlet” rep-
resentation:

 ~rt+δti = ~rti + ~vtiδt+ ~F ti
2mi δt

2

~vt+δti = ~vti + ~F t+δti +~F ti
2mi

(3.2.2)

where mi is the mass of the i-th particle, ~rti , ~vti and ~F t
i - are the coordinates and

velocity vectors of the i-th particle and the total force acting on it (including
interactions with other particles and the external field if present) at the time t.
δt is the time step of the integration. The set of equations 3.2.2 are, of course, an
approximation and the trajectories of the same particle with an initial perturba-

30



tion, however small, will diverge in time [124]. For this reason the outcome of an
MD simulation is not the exact trajectories of particles, but the average system
parameters, such as thermodynamic quantities or distribution and correlation
functions.

Kinetic (K), potential (U) and total energy(E) of the system can be evaluated
directly from the set of simulated particles coordinates and velocities:

K =
∑
i

mi~vi
2 ; (3.2.3)

U =
∑
b

U bond
b +

∑
i

U ext(~ri) +
i 6=j∑
i,j

Unb(|~rj − ~ri|); (3.2.4)

E = K + U ; (3.2.5)

where U bond
b - is the energy of covalently bonded interaction of the bond or angle

with index b, U ext(~ri) is the potential energy of ith particle in the external field
(gravity or electric), Unb(|~rj−~ri|) - is potential energy of non-bonding interaction
between the particles i and j. In rear cases such as metals a many-body term is
also required. Other quantities, such as temperature (T ) and pressure (P ) can
be estimated through thermodynamic and molecular theory relations:

T = 1
kBN

∑
i

mi~vi; (3.2.6)

P = 1
V

(
NkBT + 1

3
∑
i

~ri · ~Fi
)

; (3.2.7)

here kB is the Boltzmann constant, ~vi speed vector of ith atom. Other observables
can be estimated as the average changes of the quantities, described before. For
example, the diffusion coefficient (Ddiff ) can be estimated from the mean square
displacement of the particle:

Ddiff = lim
t→∞

1
6t〈|~ri(t)− ~ri(0)|〉; (3.2.8)

here the brackets 〈...〉 denote ensemble average over either all particles of the same
time in a simulation or all trajectories of a single particle in a set of independent
trajectories. An example of a solute molecule diffusion rate evaluation in explicit
solvent via this approach is given in [125].
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3.2.2 Ensembles

The set of equations 3.2.2 is accompanied by the initial coordinates and velocities
of the particles and simulation box geometry and boundary conditions (which can
be opened or periodic in any or all directions) to form so called microcanonical
or NVE ensemble. The last abbreviation underlines that the number of particles
N, the system volume V and the system total energy E are conserved in the
simulation. This corresponds to adiabatic closed system. This is the simplest
case to implement, however, the experimental conditions in practice rarely satisfy
NVE conditions.

If instead of fixing the energy one desire to keep the temperature this situation
corresponds to a canonical or NVT ensemble. Such conditions correspond to a
system connected to a heat bath. To mimic this connection a thermostating
procedure is needed. The are many ways to perform this, including velocity
rescaling or the approaches of Berendsen or Andersen. The two methods, used
in this work are:

• Nose-Hoover thermostat [126] introduces the additional variable s to rescale
the velocities in 3.2.1 and associated with it mass (Q) and impulse (ps), then
the change of ith coordinate with time becomes:

d~ri
dt

= ~vi
s2 ; (3.2.9)

and the evolution of the new degree of freedom is governed by:

ds

dt
= ps
Q

; (3.2.10)

dps
dt

=
∑
i
miv

2
i

s2 − gkBT
s

; (3.2.11)

where g is the number of independent degrees of freedom.
• Langevin thermostat [127] modifies the equation 3.2.1 introducing the two

additional terms: the viscous dumping (Fvis) and random impulse exchange
from the collision with “virtual” particles representing the heat bath (Frand):

~F vis
i = −γmi~vi; (3.2.12)

~F rand
i = ~Ri(t)

√
2γkBTmi; (3.2.13)

where γ is the dumping parameter, usually ∼ 100, and ~Ri(t) - is a random
vector.
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If the volume is set free, but the target pressure is fixed during the simulation this
corresponds to an isothermal-isobaric or NPT ensemble. Keeping the pressure
fixed is done via algorithm called barostat. As in case of temperature, there
are several schemes for this. In this work the Nose-Hoover approach is used:
the dynamics equations 3.2.1 are extended similar to 3.2.9,3.2.10 and 3.2.11 to
introduce additional variable, this time linking volume and pressure.

3.2.3 Parameter sets

To solve the equations 3.2.1, one more component is needed: forces acting on
particles. In aforementioned abinitial calculations, the forces can be derived as
the gradients of potential energy functional. In classical MD, however, a set of
rules and parameters, connecting the particles displacement and forces acting on
them. Such sets are called “force fields”. There is a significant variety of choices:
AMBER [128], GROMOS [129], DREIDING [130], - to name just a few. In this
work AMBER (more precisely, its generalized version GAFF) and DREIDING
are used. Within both the bonded (or covalent) interactions are described with
harmonic potential:

U bond
b = Kb(ξb − ξ0)2; (3.2.14)

where Kb is spring constant, ξb - is the variable (bond length, flat angle between
two bonds, dihedral angle - the skew angle between bonds linked to two bonded
atoms, improper angle - the angle between a bond and a plane of two other bonds
originating from the same atom), ξ0 is its equilibrium value.

Non-bonding interactions, however, are treated differently by the two force
fields. In AMBER van der Waals interactions are described by commonly used
Lennard-Jones potential:

U
titj
ij = 4εtitj

(σtitj
rij

)12

−
(
σtitj
rij

)6
 ; (3.2.15)

where the indexes i and j refer to the two interacting particles, while ti and tj refer
to their types (elements for atoms), rij - is the current distance between the two
particles, εtitj - is a “potential well depth” (minimum value of the potential energy
for the particles of the two types), σtitj - is the distance at which the potential
3.2.15 equals to 0, related to the minimum distance (rmintitj

) as rmintitj
= σtitj

6
√

2.
DREIDING recommends Morse type potential:

U
titj
ij = Atitj exp(−Ctitjrij)−Btitjr

−6
ij ; (3.2.16)
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where Atitj , Btitj and Ctitj are force field parameters.
Both force fields treat electrostatic attraction or repulsion as Coulomb inter-

actions between point-charge particles:

Uij = qiqj
4πε0εrij

; (3.2.17)

where ε0 is the electric constant, ε is dielectric permittivity of environment,
qi and qj are the charges of the particles. The difference between the two
sets is in the way the charged are assigned. Since the point charge of atom
is just a simplification of real distribution of electrons, arising from quantum
laws, different approaches exist to obtaining a good point-charge approximations.
DREIDING parameters were fitted to the charges derived according to Gasteiger
approach [131], based on elements electronegativity. AMBER uses the charges,
fitted to reproduce electrostatic potential of the molecule, obtained from abin-
itial calculations [132]. The van der Waals parameters were fitted by the force
field developers along the charges to reproduce π − π and cation-π interactions
indirectly. Apart of this DREIDING has a separate term to explicitly account
for hydrogen bonding.

A special issue is the interaction between coordinated ion and ligand. For
a covalently bonded systems, electrostatic interactions between atoms bonded
together are excluded from the potential energy 3.2.4, equilibrium bond length
and spring constant are fitted to reproduce the experimentally observed bonds.
Coordination bond, however, is purely electrostatic in nature. There are two main
directions in the literature to simulate such interactions: in [133] the virtual
bonds were introduced between ion and ligand atoms, while assigning the ion
the charge, typically expected for the free ion in solution (“bonded model”), in
the same time in [134] no explicit bonds were applied, instead the ion charge
was tuned to maintain geometry of ion-ligand complex close to optimized with
abinitial calculations.

Free energy calculation

As it was already stated before, replacement of the equation 3.2.1 by finite dif-
ference representation 3.2.2 is an approximation that only holds as long as the
timestep δt is smaller than the characteristic time of the fastest motion in the
model system. For the all-atom representation of organic molecules this is usu-
ally the period of vibration of hydrogen covalent bonds which is of the order 1 fs
(10-15 seconds) [135]. Thus, it is infeasible to track such processes as evolution
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of conformation of large molecules in solvents, which take millisecond to second
time. Instead to compare the probability to encounter conformations in a solu-
tion a change in a free energy is estimated between them [136]. Free energy is
defined as the amount of energy required to create a system, thus the free en-
ergy difference between various conformations of a molecule in solvent can be
seen as the difference between solvation energies of the conformations. There are
two definitions of a free energy depending on the process conditions (i.e. which
quantities remain fixed): 3.2.18 is a Helmholtz free energy (A) for a system under
constant temperature, volume and number of particles (NV T ensemble), while
3.2.19 is a Gibbs free energy (G) for an NPT ensemble (varying volume, but
constant pressure):

A = E − TS; (3.2.18)

G = E − TS + PV ; (3.2.19)

here E - is the internal energy if the system, consisting of the kinetic of all
particles, the energy of molecular bonds and van der Waals and Coulomb inter-
actions, S - is the entropy, characterizing conformational disorder of the current
state, P , V and T are the pressure, volume and temperature correspondingly. It
is clear from the definitions 3.2.18 and 3.2.19 that in vacuum (P = 0) ∆G = ∆A
and the difference only exist in explicit solvent if the volume change is significant.
Although theory of the free energy methods was initially derived for Helmholtz
free energy, but is routinely used in NPT simulations as an estimate for Gibbs
free energy change as it is the later quantity that determines the probability of
the process under normal conditions (i.e. room temperature and pressure) and,
therefore, is the value of interest for chemists. For this reason in what follows
Gibbs free energy notation (G) is used to avoid confusion.

Thorough evaluation according to the expressions 3.2.18 and 3.2.19 according
to their definition is unfeasible, however changes in free energy of a system in the
two not too different states (denoted with indexes “S” and “F”) can be estimated
numerically using the Zwanzig expansion [137]:

∆GS→F = −kBT ln 〈exp (− (UF − US) /kBT )〉S (3.2.20)

where 〈...〉S denotes averaging by the microstates of the starting state “S”.
Direct evaluation of free energy difference corresponding to molecular con-

formation change and multi-molecular chains fracture in liquid environment would
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require hundreds of independent nanoseconds-long simulations in explicit solvent
that are computationally expensive and, thus, such approach is impractical.
There are several approaches to this task seeking for a balance of the computa-
tional efficiency and precision trade-off. A number of implicit solvent approaches
such as generalized Born [138] and Poisson-Boltzmann [139] models represent the
solvent as a dielectric continuum. This way they allow a more robust evaluation,
although they lack the correct contribution of solvent molecules, which is ex-
pected to have significant impact on the tetrakis-Schiff self-assembly process, as
follows from the studies, reviewed in the section 2.3. Explicit solvent approaches,
in contrary, produce the thermodynamic quantities naturally, but require long
simulation runs. However it is possible to reduce the computational effort using
a thermodynamic principle that the free energy change is not the function of the
process, but only of initial and final state. Benefiting from the later, in the repor-
ted work the change of the free energy during the process, occurring in solvent
environment, can be estimated using the “alchemical transformation” [140] ap-
proach:

∆GS→F
solvent = ∆GF

v→s + ∆GS→F
vacuum −∆GS

v→s (3.2.21)

where ∆GS→F
solvent and ∆GS→F

vacuum are the free energy change for the process in solvent
and in vacuum consequently, ∆GS

v→s and ∆GF
v→s are the solvation free energy

of initial and final states. Following this route the extensive calculations of the
conformational change is done in vacuum for a systems, containing a few hundreds
of atoms, and only limited number of demanding calculations are required to
determine the solvation free energies for initial and final states.

In practice, it is often required to estimate the free energy difference between
two states, corresponding to a pair of local free energy minima separated with
potential barrier. In this case (UF −US) estimated for a system in state 0 is large
and the equation 3.2.20 is not applicable. However, it is possible to separate the
transition from initial to final states into a set of small steps, so that for each
Ith step (UI+1 − UI) ∼ kBT and ∆GI can be estimated via 3.2.20. Then a free
energy profile along such path, also called “potential of mean force” (PMF),can
be calculated as:

∆GS→I =
I−1∑
K=0

∆GK→K+1. (3.2.22)
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Umbrella sampling

If the initial and final states of the system of interest represent two different con-
formations of a molecule, it is convenient to define a number of gradual geometry
changes from one conformation to another as the set of intermediate states in
3.2.22. A generalized parameter, corresponding to the gradual change over such
defined set of molecular geometries, is call “reaction coordinate” (ζ). This ap-
proach is called “Umbrella sampling” (US) [141]. To constrain the molecule to the
intermediate state ζI a restraining potential U I

R(ζ) is added to the systems poten-
tial energy. Then the behavior of the system is described with a restrained state
probability distribution (PIR(ζ)), related to the initial unrestrained distribution
(P(ζ)) as:

P(ζ) ∼ PIR(ζ) exp
(
U I
R

kBT

)
. (3.2.23)

In statistical mechanics the free energy of the system is related to its microscopic
probability distribution as:

G = −kBT log (P(ζ)) . (3.2.24)

Substituting here the relation 3.2.23 one obtains:

GI = −kBT log (PR(ζ))− U I
R + const; (3.2.25)

where the additional constant is the offset, different for different intermediate
states. To combine Gi for different restraining potentials into one PMF the
weighted histogram analysis method (WHAM) is used [142]. Within one of the
free energy values (generally GS) is set to 0 and the following relations are used
self-consistently to evaluate the other GI (which are essentially ∆GS→I now):

P(ζ) =
∑
I

wI(ζ)PIR(ζ); (3.2.26)

wI(ζ) =
NI exp

[(
GI − U I

R(ζ)
)
/kBT

]
∑
K
NK exp [(GK − UK

R (ζ)) /kBT ] ; (3.2.27)

exp
(
− GI

kBT

)
=
ˆ F

S

P(ζ) exp
(
−U

I
R(ζ)
kBT

)
dζ; (3.2.28)

where wI(ζ) are the weighting coefficients, used to renormalize the restrained
probability distributions in 3.2.26 so that ∑

K
wK(ζ) = 1 and ∂σ2 [P(ζ)] /∂wK(ζ) =

0 (σ2 [P(ζ)] is the statistical error).
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Although, theoretically, the free energy difference between initial and final
states does not depend on the choice of intermediate states, careful selection
of the path, along which ζ changes can minimize the number of simulations
required and emerging numerical errors. Ideally, the intermediate states should
sample the maximum probability path, i.e. the path along which the potential
barrier between initial and final states is the smallest. A good approximation to
such path is not always obvious, which is especially true for a complex flexible
molecules, such as studied in this work.

The so-called “nudged elastic band” method (NEB) helps to identify such path
numerically [143]. This approach implies simultaneously running a set of copies
of the same system, called “replicas”, corresponding to the different intermediate
conformations. However, these simulations are not independent. Their potential
energy 3.2.4 is modified to include the spring-like forces between the neighbouring
replicas:

U I(~r) = U(~r)− kNEB
(
~r − ~rI−1

)
− kNEB

(
~rI+1 − ~r

)
; (3.2.29)

where subscript I refers to the number of replica, the spring constant kNEB is
the parameter of the method and the vector ~r represents set of all coordinates
in the subsystem of interest (in this case, of the molecule, the conformation of
which is studied). The expression 3.2.29 is used for all replicas, excluding the
initial and the final, the dynamics of which is modelled around the corresponding
equilibrium states. Coordinate optimization, performed in parallel for all set of
thus connected replicas after the certain period of dynamics simulation at elevated
temperatures, results in a good approximation of the minimum barrier path.

Free energy perturbation

Another way to get the estimation of ∆G in a simulation is the free energy
perturbation (FEP). It was carefully studied for a large collection of simple solute
molecules and can give a very precise results with the relative errors of the order
of 1-2 kcal/mole [144]. The core of the method is extending the model system
internal energy by introduction of the coupling parameter λ, 0 ≤ λ ≤ 1, so
that at the two conformations under study correspond to the opposite ends of
the interval. Then the generalized expression for U in case, when initial state
corresponds to a macromolecule in a vacuum environment and the final state -
to the molecule in solvent, can be written [144] :
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U (λ) = U bonded
MM + U vdW+Coul

MM + U bonded
SLV + U vdW+Coul

SLV + λU vdW+Coul
SLV−MM (3.2.30)

where the indices MM and SLV corresponds to macromolecule’s and solvent
molecules’ contributions: energies of covalent bonds U bonded, dispersion and elec-
trostatic interactions U vdW+Coul, - while the subscript SLV −MM indicates the
contributions due to the interaction between the solvated macromolecule and the
solvent molecules. The dynamics of the system of interest is simulated for a
certain time fixing the λ parameter in 3.2.30 at each value from a predefined
set λI , 0 ≤ I ≤ Nλ (U0 = U(λ0 = 0), U1 = U(λNλ = 1)) and “forward”
(δUFWD(λI) = U(λI+1) − U(I)) and “backward” (δUBWD = U(λI−1) − U(λI))
potential energy change are estimated every few timesteps in the geometry, ob-
tained at λ = λI . Then the free energy change at each interval [λI ;λI+1] can
be estimated via equation 3.2.20 both in forward and backward directions. In
practice the estimation error could be minimized if both forward and backward
potential energy changes are used and the free energy change is estimated via
numerical solution of the following equation:

∑nI
K=1

1
1+exp(log(nI/nI+1)+δUKFWD(λI)/kBT−∆G)−

−∑ni+1
k=1

1
1+exp(log(nI+1/nI)+δUKBWD(λI+1)/kBT−∆G) = 0;

(3.2.31)

where nL is the number of δU values, sampled at λ = λL, L is either I or I + 1.
This approach is called Bennett acceptance ratio (BAR) was introduced in [145]
and became the standard in FEP calculations [146].

Theoretically, free energy of a system does not depend on the root from
state A to state B, but on practice a careful choice of the set of λ values can
significantly improve the simulation stability and final precision of free energy
[144]. Although comparison of several independent trajectories is still required
for error estimation, a strategy to identify the potential pitfalls in λ-schedule
by observing the overlap between the distributions of U(λI) + δUFWD(λI) and
U(λI+1) + δUBWD(λI+1) [147].

Steered molecular dynamics

Another approach to estimate the free energy difference between the two states
is to estimate the work needed to force system from one state to another in an
non-equilibrium process, which is related to a free energy change via Jarzynski’s
equality [148]:
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e−β∆G = 〈e−βW 〉; (3.2.32)

where W is thermodynamic work and β = 1/kBT .
Equation 3.2.32 provides an important tool to estimate the free energy change

of a near equilibrium process from a distribution of work values of a set of non-
equilibrium trajectories, achievable to MD simulation. This approach is called
steered molecular dynamics (SMD) [149, 150]. An extensive study of SMD ap-
plication to a small biomolecule was reported in [149]. Simulation of helix-coil
transition of a 104-atom deca-alanine molecule was performed at various pulling
speeds. Near reversible simulation was achieved at pulling speed of 0.1 Å/ns for
a such small molecule in vacuum due to short relaxation time. The required time
of simulation was 200 ns. Potential of mean force (PMF) - a free energy profile
vs a reaction coordinate - estimated during such simulation was compared to the
PMF obtained with two sets of 100 trajectories each with pulling speeds 10 and
100 Å/ns.

The difficulty of this approach is that, although Jarzynski’s equality holds
regardless of the speed of the process, it is the trajectories with the smallest
work needed that approximate the equilibrium process and contribute the most
to exponential averaging. Those, however, occur rarely in the simulation, which
affects the accuracy of the averages over limited number of simulations. Cumulant
expansion can improve the accuracy of free energy estimation:

log〈e−βW 〉 = −β〈W 〉+β2

2
(
〈W 2〉 − 〈W 〉2

)
−β

3

3!
(
〈W 3〉 − 3〈W 2〉〈W 〉+ 2〈W 〉3

)
+...

(3.2.33)
It was shown, that for a limited number of trajectories 2-nd-cumulant ex-

pansion performs best, while the third cumulant experiences large fluctuations.
The exponential averaging, exact in the limit of the infinite number of samples,
for a limited set of trajectories produces a PMF with small relative fluctuations,
however, with a noticeable bias from the near-equilibrium one. In fact, all meas-
ures suffer from such bias, however, in case of 2-nd cumulant expansion it can be
corrected if an unbiased estimator of variance of a set of M work values is used:

−β∆GM
∼= −β

∑M
m=1Wm

M
+ β2

2
M

M − 1

∑M
m=1W

2
m

M
−
(∑M

m=1Wm

M

)2 (3.2.34)

The first order correction to PMF for a spring constant of 500 pN/Å was
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estimated as 0.5 kcal/mole, which is small, compared to a change of the free
energy of 21.4 kcal/mole. It was also shown that choosing a force constant lar-
ger than necessary can give high fluctuations of PMF, which was attributed to
raising fluctuations of force, needed to keep the pulling speed constant. So use
of unnecessary large spring force is not recommended. The comparable perform-
ance was achieved with US for a set of 10 values of a reaction coordinate and
biasing spring forces of 70 pN/Å, however it was advocated that the analysis is
simpler and better treatment of narrow barrier regions is obtained with SMD (or
non-equilibrium TD integration) due to uniform sampling of reaction coordinate.

The preliminary simulation using the SMD method for the ionically bonded
association of tetrakis-Schiff molecules produced unstable results, so this method
was not used in this work and is described here only for complete overview of free
energy methods. However, this method might be used in future for evaluation of
the association free energy for long self-assembled chains of π − π interactions.

3.3 Electronic structure methods

The previously described MD and MC methods require the initial knowledge of
interaction parameters (MD) and probability distribution functions (MC). How-
ever, in molecular studies these often may be absent (not fitted for a particular
molecule) or the approximations accepted while deriving them may not be valid
(non-negligible polarization during molecular interaction). In this case the mo-
lecule needs to be studied with so-called “abinitial” or “first principles” methods
(“ab initio” from latin “from the beginning”). The general description of these
methods is given according to [151].

In molecular physics and chemistry this term designates the group of ap-
proaches, also known as quantum chemistry (QC), which study molecule’s beha-
viour by solving Schroedinger’s equation:

ĤΨ = EΨ; (3.3.1)

where Ψ and E are respectively the eigenfunction and eigenvalue of the Hamilto-
nian Ĥ, or energy operator, corresponding to multi-electron wavefunction and its
energy. However, the exact solution for such many-body problem is impossible
for a system with more than 2 electrons, so the set of approximations is used to
make 3.3.1 solvable:

1. the first approximation is to separate the heavy atomic nuclei from much
faster electrons and leave in 3.3.1 only their electrostatic potential Vnuc
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(Born-Oppenheimer approximation);
2. the multi-electron wave function Ψ is expressed in terms of single-electron

wave functions (or molecular orbitals) φi in the form of Slater determinant
to ensure wavefunction antisymmetry (the Pauli Principle):

Ψ = 1√
N

∣∣∣∣∣∣∣∣∣∣∣∣

φ1(r1) φ1(r2) . . . φ1(rN)
φ2(r1) φ2(r2) . . . φ2(rN)

... ... . . . ...
φN(r1) φN(r2) · · · φN(rN)

∣∣∣∣∣∣∣∣∣∣∣∣
; (3.3.2)

where N is the number of electronic orbitals in system, ri is a vector de-
scribing the ith electron position (~ri) and spin (si);

3. in turn, the molecular orbitals φi are expressed in terms of linear combina-
tion of atomic orbitals χl (LCAO):

φk(r) =
∑
l

Cklχl(r); (3.3.3)

where the constants Ckl are the expansion coefficients than need to be de-
termined and obey the orthogonality condition for single-electron wavefunc-
tions: 〈φi|φj〉 = δij, where δij is the Kronecker delta-function.

The choice of χl is not unique. In this work the three popular sets are used:
Gaussian-type orbitals [152], numerical atomic zeta-orbitals [153] and non-orthogonal
generalized Wannier functions (NGWF), expanded in terms of periodic cardinal
sine functions [154].

In addition to assumptions 1-3 for atoms of heavy elements electrostatic poten-
tial of nucleus and of internal electron shells may be replaced with a “pseudopo-
tential” V ∗nuc - a function fitted to reproduce their combined effect on the valence
electrons which are left to be treated treated explicitly [155].

If the many-body Coulomb interaction between all electrons in the systems
Hamiltonian is approximated by the sum of pair interactions one reduces 3.3.1 to
the set of Hartree-Fock (HF) equations [151]:

− ~2

2me∆φi(r)− eV (∗)
nucφi(r) + e2

4πε0

[∑
j

´ |φj(r′)|2
|~r−~r′|

φi(r)d~r′−∑
j δsisj

´ φ+
j (r′)φi(r′)
|~r−~r′|

φj(r)d~r′
]

= εiφi(r);
(3.3.4)

where εi is the single electron energy and the superscript “+” designates the
complex conjugation. Here the first term corresponds to electron’s kinetic energy,
second one refers to its energy in the (pseudo)potential of nuclei, the third is the
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Coulomb potential energy of electron-electron repulsion, the last one, so-called
“exchange” energy, accounts for the antisymmetry of electron wavefunctions. In
operator form 3.3.4 can be written as

F̂ φi = εiφi; (3.3.5)

where F̂ is so-called Fock operator. Substituting 3.3.3 in 3.3.5 one receives a
system of linear equations from which the unknown coefficients Ckl can be de-
termined iteratively.

To improve the speed of such calculation and to approximately account for
electron many-body interaction (named “correlation” energy), disregarded in
3.3.4, the explicit product of orbital wavefunctions may be replaced with the
interaction with a combined density of electron cloud n(r). Then all two- and
many-body interaction terms are replaced with functionals of n(r). This trans-
forms 3.3.1 into Kohn-Sham equations, the key element of electron density func-
tional theory (DFT) [156]:

[
− ~2

2me

∆− eV (∗)
nuc + e2

4πε0

ˆ
n(r′)
|~r − ~r′|

d~r′ +
ˆ
VXC [n(r′)]d~r′

]
φi(r) = εiφi(r);

(3.3.6)
where VXC [n(r′)] is the approximated exchange-correlation functional. The later
term has a variety of implementations, developed in attempts to capture certain
effects such as molecular geometry, excitation energies or non-local interactions.

In this work the initial geometry optimization of the molecules of interest was
done using generalized gradient approximation (GGA) to VXC in the popular ro-
bust parametrization Perdew-Burke-Ernzerhof (PBE) [157] and then refined using
more complex functional composed of Perdew-Wang local density approximation
(LDA) for correlation [158], Becke exchange [159] and non-local correction to
account for van der Waals interactions by Dion and co-workers [160].

Another parametrization, known as Becke 3-parameter Lee-Yang-Parr hybrid
finctional (B3LYP), is commonly used to prepare a single molecule’s geometry
before electrostatic potential is calculated with HF calculation. This functional is
composed of Lee-Yang-Parr correlation part [161] and a combination of exchange
functionals in LDA and GGA forms and exact term from HF theory [162].

In this work, apart from the geometry optimization, ab initio calculations
were used to derive approximate electrostatic charges. Since the atomic charges
are merely approximation for electron cloud around nuclei, there is no unique way
to assign point-like charges to atom models. One approach used in the current
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work is the natural bond orbital analysis (NBO) [163]. Within its framework
single electron wavefunctions, derived with DFT calculations, are projected on
the so-called natural atomic orbitals to estimate the population of each atom
with electrons. Another scheme, more widely used to prepare input parameters
for MD simulations, consists in fitting the atomic charges to reproduce the HF
electrostatic potential (ESP) [132] on a set of points, located on a concentric
spherical surfaces around the atoms at the distance ∼ 1.2 − 2.0 van der Waals
radii from the atomic cores [164].
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Chapter 4

Modelling DC resistivity of the
polymer composite with
non-uniformly distributed CNT

As it was described in the section 2.1 of the review chapter 2, one of the main
problems standing in front of vast industrial application of CNTs is the signific-
ant variation of the properties of CNT reinforced composite materials, especially
when the electrical conductivity is concerned. There are several factors behind
such deviation and some of them, like variation of CNT electrical properties and
Schottky barriers between metallic and semiconducting CNTs, can be controlled
by selection of CNTs with narrow properties deviation, but the most important
- the quality of CNT distribution inside polymer matrix - is inherently connec-
ted with the manufacturing process of the composite. As can be seen on the
microscopic images of such composites, the CNTs distribution can be quite in-
homogeneous and contain micron-scale agglomerates (figure 4.1) that act at a
single, low aspect ratio particle, decreasing the effective volume fraction of the
nanotubes. Although longer processing can decrease the side of such agglomer-
ates, it also increases production cost of the material. Furthermore, the sparser
the CNTs are distributed, the smaller part of them is connected and, thus, par-
ticipates in the charge transfer. To optimize production costs, mechanical and
electric properties of such composite, one have to study the change of its electric
conductivity as a function not only of the CNT content, but also of agglomerates
size and fraction.

This part of study was devoted to provide an insight on the role of agglom-
erates in the composite’s electric conductivity via numerical modelling. For this
purpose a software tool was developed that is capable of modelling the electric
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Figure 4.1: Electron microscopy image of a CNT nanotubes [165] (left) and optical
microphotograph of agglomerated CNT distribution in a CNT-polymer composite [166]
(right)

conductivity of an agglomerated CNT distribution on 100-micron scale, where the
influence of the agglomerates become important. Description of the algorithm and
details of its implementation are given in the methods’ section of this chapter,
followed by verification of the modelling results with the theoretically known per-
colation behavior for low CNT content and experimental data for CNT-reinforced
composite’s samples, provided by our colleagues. Finally, the effect the CNTs
shape change on the composite’s elasticity is studied using molecular dynamics
simulation to highlight important drawback, arising when the high CNT content
is used to achieve electric conductivity.

4.1 Methods

4.1.1 The algorithm in brief

Within the chosen approach a CNT-reinforced polymeric composite is represented
by a network of perfectly conducting particles embedded in insulating environ-
ment. The focus of this work is DC conduction, so the current is assumed to flow
only through CNTs and the junctions between them, where the CNT-to-CNT
distance is smaller than tunnelling distance. The CNTs were modelled as rigid
spherocylinder inclusions1, randomly distributed without intersections in a cu-
bic simulation box. A random distribution of such particles was generated using
a common Monte Carlo technique: the set of spherocylinder model coordinates
~X was generated by picking random numbers within the simulation boundaries
and subsequently checked for intersections of the newly generated inclusion with

1Although the focus of this work is on modelling CNT containing composites, the same
tool could be used to model distributions of a range of similar objects (nanofibers/wires etc.),
so, for generality, the technical terms “filler particle”, “filler” and “inclusion”, common in the
composite material science, will be used across this chapter along with “CNT model”.
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all the other already present in the system. If the distance between the current
and any other filler particle was found smaller than the allowed limit, the cur-
rent set of coordinates ~X was rejected and the process was repeated until the
required volume fraction was achieved. Here ~X is the generalized set of coordin-
ates, including, in addition to a set of Cartesian 3D coordinates of the model
particle’s center ~X, a set of directional coordinates in 3D ~V and the length l of
the cylindrical part of spherocylinder and its diameter d.

As was mentioned in the section 3.1 of Methods chapter 3, such approach was
successfully used in a number of research papers to estimate electrical propertied
of composites. In this study this approach was augmented with non-uniform dis-
tribution of filler particles to simulate a percolation network spanning across com-
pact dense agglomerates and vast regions with sparse distribution of fillers. This
was achieved by exploiting the von Neumann acceptance-rejection algorithm [110]
in a following manner: after the three coordinates of the center ~X were picked,
another random value pi was drawn in the interval [0; 1] and compared to the
probability to find the particle center at this point, evaluated from the predefined
density map p( ~X). The particle center coordinates ~X were accepted if pi ≤ p( ~X)
and rejected otherwise. ~V , l and d were also assigned randomly according to their
distributions p(~V ), p(l) and p(d) in a similar manner independently of each other.

Thus, the modelling procedure consists of three main stages (figure 4.2):
• preparation: generation of probability density map, p( ~X);
• main step: population of CNT spherocylindrical models according to p( ~X),
p(~V ), p(l) and p(d);

• final processing: connectivity check and volume resistivity evaluation.
The required input data for the procedure is:

φvol desired volume fraction of filler particles;
fA fraction of fillers entangled into agglomerates;
{〈D〉 , σD} average diameter of agglomerate and its standard deviation;
{〈l〉 , σl} average spherocylinder’s length and its standard deviation;
{〈d〉 , σd} average spherocylinder’s diameter and its standard deviation;{
~N, σθ

}
vector of preferred orientation of spherocylinders and the half-width of
directional angles’ distribution, where θ is defined as the angle between
~N and randomly generated ~V .

The distribution of the agglomerate’s diameters can be obtained from the
experimental analysis of optical microphotographs as described in [167]: using
computer-aided processing of thin film cuts of the composite’s sample agglomer-
ate’s cross-sectional area can be calculated, form which the average diameter of
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Figure 4.2: Block diagram of the CNT distribution generation process
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agglomerate and its standard deviation can be evaluated assuming the spherical
shape of agglomerates.

On the preparation stage the probability density map p( ~X) is generated using
φvol, fA and {〈D〉, σD} and the desired side length B of the cubic simulation box.
The probability density map is directly connected with the filler density which
equals to the summation of agglomerate’s densities piA, i ∈ [1, NA] (NA - the total
number of agglomerates in the simulated sample), and the uniform background
density pB:

p( ~X) =
NA∑
i=1

piA( ~X) + pB; (4.1.1)

NA = φfAB
3

4
3π
(
〈D〉

2

)3 ; (4.1.2)

pB = φ(1− fA)B3

πd2l + 4
3πd

3 . (4.1.3)

The agglomerates are represented as spherical objects, inside which the prob-
ability density changes with the distance from the agglomerate’s center ~X i

A by
bell-like 4.1.4 or Gaussian-like4.1.5 formula:

piA( ~X) = piA( ~X − ~X i
A) = A

1 +
∣∣∣∣ ~X− ~Xi

A

w

∣∣∣∣δ
; (4.1.4)

piA( ~X) = piA( ~X − ~X i
A) = A exp

−( ~X − ~X i
A)2

2w2

 ; (4.1.5)

where the parameter δ controls the shape of a bell-like function, A is the normal-
ization factor and the width parameter w = D/2 in both cases.

The agglomerates’ models were generated in a fashion similar to spherocyl-
indrical inclusion models: however the center coordinates ~X i

A were assigned as
uniform random numbers, spread within the interval [0;B), and the criteria of
acceptance was that any two agglomerates should be resolvable, i.e. for any pair
of adjacent agglomerates there should be a minimum between their centers. The
diameter of the agglomerate was assigned by acceptance-rejection algorithm ac-
cording to log-normal distribution, for which median and variance were equal to
〈D〉 and σD.

Such defined probability density was renormalized so that its values in any
point of the grid were in the interval [0; 1] and evaluated on a 3D grid. After the
density map p( ~X) was defined the acceptance-rejection procedure, described in
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the beginning of this section, was applied to generateNincl = φvolB
3/
(
πd2l + 4

3πd
3
)

inclusions. The values of p( ~X) between the grid points were evaluated by trilinear
interpolation.

On the post processing stage the sample’s resistance is evaluated. The sphero-
cylinders were considered to be the perfect conductors and electric resistance
arises only from the contacts between them. As was discussed in the literature
review section, the contact resistance of two nanotubes can vary significantly de-
pending on many factors. As the focus of this research is on the composite’s
morphology effect on conductivity, which is mainly described by the number of
contacts between filler particles, within this chapter all the contacts were assigned
a uniform resistance of 1 a.u. (arbitrary unit).

To evaluate sample’s resistance numerically, the periodic boundary conditions
were replaced with impenetrable surfaces in one chosen direction. The inclusions,
intersecting any one of them are treated as belonging to the set of left or right
electrode and are assigned a corresponding potential (VL = 0 for the left or VR = 1
for the right electrode). Than a system of Kirchhoff’s laws can be written for the
sample’s inclusions [168]:


∑
i,j Iij = 0, j 6= i, i, j /∈ {L,R} ;

Ii,j = Vi−Vj
Rij

, j 6= i, i, j ∈ {L,R,N};
⇒

⇒ Vi
∑
j∈N aij = ∑

j∈N aijVj + VR
∑
j∈R aij + VL

∑
j∈L aij = 0⇒

⇒ (I −A) V = B;

(4.1.6)

where aij - are the conductances of particle-particle contacts (set to 0 if there is
no contact between the two particles), L is the , set R - correspondingly the right
electrode set indexes and N - the set of indexes of those inclusions that belong to
an interconnected network of spherocylinder models, but do not belong to any of
L or R. I is the identity matrix and the elements of the matrices A and B are:

Ai,j =
[

aij∑
j∈N aij

]
; Bi,j =

[∑
j∈R aij∑
j∈N aij

]
. (4.1.7)

The inter-particle conductances aij and the matrices A and B are evaluated
from the inclusions coordinates. The sparse linear system of equations 4.1.6 can
then be solved with a standard linear solving library [169].
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4.1.2 GPU Implementation

The described algorithm was implemented for execution on NVIDIA CUDA en-
abled GPU. The main functionality (i.e. generation of non-overlapping inclusions)
is architecture independent, however floating point atomic functions are used in
statistics collection, so compute capability 2.0 (“Fermi” architecture GPU) is
required for currently implemented data processing kernels.

The inclusion model is described by its’ own class containing inclusion para-
meter fields (for currently implemented cylinder-shaped particles those are: 3
spatial coordinates of the center point, 3 directional cosines, length and radius)
and methods to evaluate particle volume (for volume fraction estimation) and
interparticle shortest distance (for intersection correction). Additional methods
could be defined for custom post processing.

For faster global and shared memory access data fields of all models are
grouped into a single array where the element I + NinclJ stores the value of the
field number J of I-th model. Probability density map, provided in external file,
is stored on GPU as texture to benefit from hardware implemented interpolation
and separate texture cash. Local orientation distribution and local distributions
of sizes and other parameters can also be provided in the same form to induce
non-uniform alignment or size/property dependent segregation.

Within CUDA GPGPU approach [170] two levels of parallelism could be
defined: fine-grained – tasks executed by single threads, - and coarse-grained
– tasks carried out by blocks of threads, executed on the same multiprocessor
and thus having access to the same shared memory. To better exploit this two-
level scheme the whole system volume is divided into domains processed by blocks
of threads, while each thread only handles single inclusion model.

As a good load balancing is required to achieve best performance, dealing
with non-uniform distribution of objects requires a special data arrangement for
faster processing. In 3D scene rendering it is common use tree-like structures to
divide space according to the number of objects [171]. In addition to that specif-
ics of GPU organization requires coalesced memory access and keeping common
execution path within warps (groups of threads that are executed simultaneously
on the same thread blocks) to prevent branching and serialization for optimal
device utilization. While a tree-like space partition can indeed improve the work
sharing for highly non-uniform distributions, neighbour cell search in such struc-
ture implies recursive check of tree leaves from top down to the corresponding
level. For randomly oriented particles it would induce additional computational
load and multiple branching while checking intersections for particles belonging
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to neighbouring domains.

To avoid such complication a “tree of cells” scheme is adopted in our code.
First the whole system volume is represented as a regular 3D grid of rectangular
cells and the total number of inclusion models to be created in each cell is eval-
uated from probability density integration (plus some adjustable margin). The
cell edge is defined in a way so that the maximum amount of inclusion models in
any cell is not higher than the maximum number of threads per block (1024 for
“Fermi” architecture GPU). As the particle data is stored in global memory in
one continuous block, three additional arrays are needed for correct data access.
The first one (ADDR) stores in element number I the total value of inclusions to
be created in cells with numbers from 0 to I. Thus for cell J the displacement
from the beginning of the array to the space allocated for this particular cell is
given by the J − 1-th element of the array (or 0 for the first cell). Two more
arrays store the number of inclusions stored from the previous iterations (OCC)
and the number of the inclusions created on current iteration (NEW).

For better load balancing cells are grouped by tree-like structure (figure 4.3):
initially all system volume belongs to the root of the tree, then the root is split in
two so that the nodes carry approximately equal load and the area of separating
plane is smallest. This procedure is repeated recursively until the maximum load
of each leave is again not higher than can be processed by single block. Each
node is characterized by 6 integer values representing the coordinates of its origin
cell and the sizes of its sides (in cells). “Leaves” of the tree structure form a
non-uniform (in case of non-uniform inclusion distribution) approximately equal
load domain structure.

During Monte Carlo generation of new inclusion models and checking inter-
sections within the cells each thread block is assigned to process single domain of
cells. While intersections are checked with neighbouring cells each thread block
processes single cell. Since different symmetrical multiprocessors work asynchron-
ously, errors or excessive inclusion elimination can occur when one thread block
reads from the memory which the other block is rewriting. There are different
mechanisms to prevent this, for example “locking” is widely used in parallel pro-
gramming [172]: processes have to check the lock-variable value before accessing
the data, the first process to capture the data “locks” the data for other pro-
cesses until it is safe to access it. However in this code we avoid using of locks
by splitting the cell grid in three parts and run kernel to check for intersections
between particles of different cells on each part of the grid consequently so that
no active block is checking intersections with the inclusions belonging to another
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active block. This way we completely avoid the stated above error without atomic
operations and storing additional values needed for locking. We also avoid excess-
ive inclusion elimination in cases where one thread block eliminates an inclusion
due to intersection with another one that would also be eliminated by its thread
block. Preventing this with locks causes a noticeable performance drop as one
part of multiprocessors always have to wait before the other one completes.

4.1.3 MD simulation

Figure 4.3: 2D representation of
system volume divided into equal
cells, grouped into tree-like struc-
ture according to probability dens-
ity (colour map)

To investigate the effect of nanotube’s shape
on the composite’s elastic properties series of
molecular dynamics simulations were conduc-
ted using the LAMMPS molecular dynamics
package [173]. A DREIDING force field [130]
was used to describe interatomic forces. Com-
posite models were prepared by random alloc-
ation of initial polymer molecules in a sparse
box, which was reduced during the MD simu-
lation of the evolution of the polymer chains at
T=500 K in the course of 1–3 · 106 timesteps
(1 timestep equaled to 0.2 fs) under periodic
boundary conditions until the experimentally
observed polymer density was reached, fol-
lowed by box relaxation at 300 K. After initial preparation each sample was
subjected to simulated expansion and contraction in each direction at an effect-
ive rate of 2% per 105 timesteps during which the stress, experienced by simula-
tion sample, was calculated every 500 time steps as pressure, acting on the box
boundary in the direction of strain. After collecting the strain-stress data, aver-
aged over 105 timesteps were fitted with linear relations was used for extracting
the Young’s modulus (or elasticity modulus E).

4.2 Results and discussion

4.2.1 Performance evaluation

The reported code was tested on NVIDIA GeForce GTX 480 (peak float perform-
ance – 1345 Gflops, total memory – 1503 MB) and Tesla C2050 (peak performance
1027.7 Gflops, total memory – 2687 MB). The typical times of simulation is sum-
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marized in Table 4.1. In all cases cubic sample with the side length 168 µm
was filled with cylindrical, spherically capped inclusions. Length of cylindrical
part was 4 µm and diameter was 20 nm – comparable to those of commercial
nanotubes [174]. The non-uniform probability density map was generated us-
ing Gaussian distribution of the agglomerate’s diameters with 〈D〉 = 5µm and
σD = 5µm, ratio of agglomerated to background CNTs fA was set to 0.25.

Although dividing the work according to the number of inclusions to be cre-
ated makes the work distribution better, still much longer times are required for
non-uniform distribution as in the cells with higher than average concentration of
inclusions larger fraction is eliminated at each step as well. To speed up the gen-
eration process orientation distribution map with local alignment in those cells
or complex inclusions representing a number of coalesced inclusions can be used.

φvol,% Nincl p( ~X) GPU t, min
0.5 18 · 106 uniform GTX 480 5.0
0.5 18 · 106 nonuniform GTX 480 9.2
1.0 35 · 106 uniform Tesla C2050 33.5
1.0 35 · 106 nonuniform Tesla C2050 155.0

Table 4.1: Typical running times

4.2.2 Validation: percolation threshold in uniform distri-
bution

At first the uniform spatial distribution of CNTs was used to assess the CNT
content dependence of composite conductivity. The results are presented on figure
4.4.

In agreement with percolation theory the numerical model exhibits a drop
below 0.2 vol. % and power dependence above. Formula 2.1.8 predicts percolation
threshold value in the range 0.3− 0.7 vol.% which is quite close.

The effect of nanotube alignment on conductivity was also studied by assigning
orientation according to Gaussian distribution, the dispersion parameter of which
was used to control the degree of alignment. The results for a model sample with
1.5 vol. % content are summarized on the figure 4.5.

Orientation dispersion of 30 radian corresponds to almost uniform distribu-
tion. Nonlinear character of conductivity-alignment dependence is attributed to
interplay of the two processes: alignment of CNTs perpendicular to electrode de-
creases the number of CNTs requires to form a conductive path, however it also
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Figure 4.4: Uniform sample conduct-
ivity dependence on volume fraction of
CNT

Figure 4.5: The effect of alignment on
the conductivity of 1.5 vol. % sample

decreases the probability of intertube contacts. The later results in an order of
magnitude decrease of conductivity for highly aligned samples.

4.2.3 Comparison with experiment: the agglomerated dis-
tribution

The suggested method was used in the combined experimental-theoretical study
in collaboration with Anna Y. Matveeva (Institute of Polymers and Composites)
and Juri Tiusanen (Promolding). The aim of this study was to analyse the ag-
glomerates’ size distribution in series of PC-CNT composite samples produced
with varying parameters of processing and to compare the variations of the con-
ductivity with the results of simulation.

4.2.3.1 Experimental and characterization results

The composite material was produced by Juri Tiusanen by tween screw extrusion
process using the Nanocyl’s polycarbonate master batch with 15 wt. % of CNTs.
The nanotubes (commercial name NC7000) had the average diameter of 9.5 nm
and length 1.5. The final CNT weight fraction φw in the resulting composite
equaled to 3.0 wt.% (corresponding to φvol = φw · ρMB/ρCNT using ρMB = 1.175
g/cm3 [175] for master batch density and ρCNT = 1.3 − 2.0 g/cm3 for CNT
density [176]). The final samples for resistivity measurements were prepared
by injection molding. The temperature of the composite melt (Tmelt) and the
injection speed (Vinject) of the composite material into mold were varied during
the injection to obtain different final morphology (table 4.2).

After volume resistivity measurements, 5µm thick slices were cut form the
same samples and analyzed with optical microphotography by Anna Y. Matveeva.
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During this characterization the agglomerates’ area distribution and the total
fraction of agglomerates’ surface area (relative to the whole image area) φAsurf
were calculated. Assuming the spherical shape of agglomerates the average dia-
meter 〈D〉 and its standard deviation were evaluated. As the slices for optical
characterization are very thin, the agglomerates’ volume fraction φAvol can be es-
timated as:

φAvol ≈
2 〈D〉

3b φAsurf , (4.2.1)

where b = 5µm is the slice thickness.

Sample
Processing Agglomerates

ρexpTmelt Vinject φAvol 〈D〉 σD
◦C mm/s % µm µm Ω · cm

1 280 18 0.41 0.28 1.55 78.9± 4.0
2 280 42 0.32 0.40 1.47 6171.0± 2205.5
3 300 6 0.68 0.41 0.85 27.9± 2.0
4 300 30 1.11 0.10 0.66 46.5± 7.0
5 300 42 1.40 0.14 0.53 156.9± 28.6
6 320 42 1.69 0.10 0.76 23.3± 4.2

Table 4.2: PC-CNT samples’ production parameters and characterization results

The DC volume resistivity ρexp, measured by Juri Tiusanen, and the agglom-
erates’ diameter distribution parameters from optical microscopy studies by Anna
Y. Matveeva are summarized in the table 4.2 along with injection parameters.
The results of the optical characterization suggest that two groups could be spot-
ted according to CNT distribution: the first group is formed by the samples 1 and
2 with average agglomerate size ∼ 0.3 − 0.4µm with large deviation ∼ 1.5µm,
but smaller total area fraction of agglomerates, while the second, formed by the
samples 4-6, has smaller agglomerate size ∼ 0.1µm with deviation ∼ 0.6−0.7µm,
but larger total area of agglomerates, i.e. “less, but larger agglomerates” and
“smaller agglomerates, but more”. The sample 3 resides in between the two
groups with intermediate values. It is interesting that measured resistivity have
huge variation even within the group.

4.2.3.2 Modeling results

Based on the results of the above analysis the two types of probability density
functions were generated:

1. 〈D〉 = 0.4µm, σD = 1.47µm, total agglomerate φAvol = 0.32 % (correspond-
ing to F2 sample);
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2. 〈D〉 = 0.1µm, σD = 0.66µm, φAvol = 1.1 % (corresponding to F4 sample).

In the first set of simulations uniform orientation distribution and CNT con-
tent of 2 vol. % was used ( 2 vol. % this was found to be the upper limit for
CNTs of given size to be distributed with uniform orientation distribution). The
results are summarized on figure 4.6 (left) and compared to uniform spatial dis-
tribution of CNTs. The simulated samples’ conductivities (S) for the two selected
distributions were found to be a bit higher than that of the ideal uniform distri-
bution of CNTs (S0), however, this effect is quite small (the difference of mean
conductivities is comparable with the confidence interval, estimated to be ∼ 10%)
when compared to the orders of magnitude difference between the experimental
measurements for samples 1 and 2 or 4 and 5.

In the second set of simulations Gaussian distribution of directional vectors
was used. This time the samples were filled up to 3 vol. % and the orientation
distribution width σθ was varied from 9 to 0.5 radian. The results for aligned
nanotubes are presented on figure 4.6 (right). It becomes clear that, for the ag-
glomerates’ size and volume fraction, used in the experimental measurements, the
alignment of nanotubes plays much more important role than the agglomeration
itself.

Figure 4.6: Variation of the electric conductivity of the simulated samples with uniform
(left) and aligned (right) orientational distribution

As expected, the agglomerated distributions can provide better DC conduct-
ivity (S) than the uniform one (S0). However in this test case the agglomerate’s
volume fraction was too small for the size of agglomerate to be the determin-
ing factor of the samples resistivity. As was seen in the experiments, the lowest
resistivities, obtained in each group are comparable to each other. The large
difference of the measured resistivities within each group must be attributed to
different degree of CNT’s alignment.

57



4.3 The effect of the nanotube’s flexibility on
the composite’s mechanical properties

It follows from the reported results of calculations and experimental observa-
tions, mentioned previously, that, although theoretically the electric conductivity
can be achieved at very low CNT content, in practice the stable electric prop-
erties for such composites are hard to obtain at small loadings due to the high
impact of CNT’s alignment, emerging during the processing stage. It was also
observed during the numerical MC calculations in this chapter that the hard limit
of the CNT content, up to which the simulation box can be filled with straight
sphero-cylinderical models of the nanotubes, lies within several volume percent
(∼ 2 vol.% for the CNTs used in the referenced experiment). Separately, to
explain the saturation character of CNT-polymer composite’s mechanical prop-
erties with CNT concentration it was proposed by our collaborators, Dr. Anna Y.
Matveeva and Dr. Ferrie W.J. van Hattum, that nanotubes’ shape deviates from
the straight more significantly as the CNT loadings increases [1]. An independent
experimental observation, reported recently [166], supports this speculation. To
validate the effect of nanotubes’ shape on the composite’s mechanical properties
molecular dynamic study was conducted and compared with analytical predic-
tions and finite element modelling (FEM) calculations by the aforementioned
colleagues.

Figure 4.7: Examples of curved CNT geometries, used in simulation, embedded in PC
matrix: sine-shaped (left) and spiral-like (right), - scale bar’s length equal to 10 Å

To investigate the effects of curved CNT on the composites’ mechanical prop-
erties via molecular dynamics, CNTs in the shape of sine-like waves or spirals
(figure 4.7) of different curvature were embedded in a polymer matrix. In all
cases a 13.2 nm long section of a (9, 0) CNT (diameter 0.7 nm) was used. The
bisphenol-A (BPA) polycarbonate (PC) matrix was modeled by some 50-300
BPA-PC molecules 5-60 BPA blocks in length, resulting in a CNT volume frac-
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tion of approximately 0.4 vol.%. The overall number of atoms in the model was
kept at some 50,000 due to computational limitations. The initial sparse random
distribution of PC molecules was compressed until the target density of density
of 1.2 g/cm3 [177] was reached and equilibrated with Nose-Hoover NPT barostat
for 4 · 105 timesteps.

As expected, a linear strain-stress relation was observed for all simulated cases
(figure 4.8, ε is stress and LX is the sample length in X direction). For pure PC
a Young’s modulus of 2.33 ± 0.13 GPa was obtained, which is in good agreement
with typical experimental values of 2.1–2.4 GPa [177]. For single straight carbon
nanotubes the Young’s modulus along the tube axis was evaluated as 2 TPa,
which is within range of experimentally observed values [178].

To characterize the shape of the CNT a “curviness parameter” was introduced:

ω = A/h, (4.3.1)

where A - is the amplitude of sine-wave or the spiral’s radius, while h - is the
period for the former and step for the later. The normalized variation of the com-
posite’s Young’s modulus with such defined ω is shown on the figure 4.9 along
with results of FEM calculations and analytical modelling by our colleagues. All
the methods are in qualitative agreement and predict a rapid almost hyperbolic
decrease of the composites mechanical strength as shape of the nanotubes be-
comes non-straight. This is expected, as the CNT are highly flexible and, being
curved, can easily react on stress by change of conformation, while the stress,
applied to a straight nanotube, immediately leads to stretching of large number
of covalent bonds.

4.4 Conclusions and future directions

An iterative Monte Carlo approach with intersection correction was implemen-
ted in the reported code to enable generation of large systems of non-overlapping
complex shaped particles using NVIDIA CUDA GPGPU approach. Systems con-
taining the number of particles as high as 107 can be generated within minutes
using modern consumer class GPUs. The results can be outputted directly in text
or binary format for post processing, visualization or molecular dynamic simula-
tions. A number of procedures for statistics collection and tiff-image generation
are also implemented.

The simple numerical procedure adopted to estimate the effect of morphology
on CNT-based composites’ electrical properties was validated against known ana-
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Figure 4.8: Example of the linear fit of
the straining simulation results: dots
designate the instantaneous measure-
ments, diamonds - average result for
the fixed elongation, line - linear fit

Figure 4.9: Variation of the compos-
ite’s Young’s modulus (E) with CNT’s
curvyness parameter (ω): open sym-
bols designate the results of this work,
lines with filled symbols - the results of
continuous models [179]

lytic relations of percolation theory and a number of experimental results. With
the given data it was shown that the difference in CNT agglomerates’ size in
the compared samples has only minor effect on the samples’ resistivity and the
variations in measured conductivity more likely must be described with the effect
of alignment.

Further development of the model would be focused on incorporation the
results of abinitial calculations for better quantitative agreement with experiment.
The code will be also expanded to include various filler particle shapes, capability
to combine particles of different shapes, interparticle forces evaluation, equivalent
resistance network construction, evaluation of equivalent continuum distribution
of mechanical properties.

Although the model developed in this work seems to offer the potential to
predict optimized morphology leading to the desired composite properties, further
analysis and understanding of the nanocomposites’ behavior are still essential,
especially focused on processing-morphology relationships, which is outside of
the scope of the present work.

Another important outcome of the calculations, reported in this chapter, is
that, in agreement with other theoretical estimates, deviation of the nanotubes’
shape form straight decreases their effect on the composite’s mechanical prop-
erties. As such bending of CNTs is stronger at higher filler concentrations an
attempt to achieve stable electric properties by increasing the CNT content res-
ults in lower value of the added fillers and, thus, suboptimal cost-property ratio.
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Chapter 5

Study of percolation behavior of
self-assembled “rings-and-rods”
networks

Figure 5.1: Electron microscopy images of “rings-and-rods” networks self-assembled
from tetrakis-Schiff-zinc complex (referred as 4a) reprinted from [2]: pristine (left,
scale-bar 5 µm) and intercalated with CNT (right, scale-bar 1 µm)

This chapter summarizes the results of numerical studies of the conductive
properties of “rings-and-rods” molecular networks, resembling those produced by
solvent evaporation of twinned salphen-zinc complexes as was reported in [2]. The
remarkable capability of such molecular assemblies to incorporate carbon nan-
otubes from solution makes them potential dispersing agents for preparation of
CNT-containing films and composites. As was discussed in the previous chapter,
due to the percolation nature of the electric properties of the CNT-reinforced
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composites, their electric conductivity can emerge even at low filler concentra-
tion in otherwise insulating polymer matrix. However, growing tendency of the
nanotubes to agglomerate and bend with increasing concentration prevents the
achievement of metal-like conductivity in composites. The deteriorating impact
of those factors can be avoided if the nanotubes are incorporated into a self-
assembled molecular network. In this case, however, the electrical properties of
the composite are not anymore described by the percolation law of randomly
distributed CNTs. Instead, the percolation characteristics of the networks them-
selves must be determined. Namely, how the network sparsity, characterized in
2D case by the average surface per ring SR or average volume per ring VR in 3D,
and the number of rods (Nr/R), connecting the rings1, combined with the rings’
dimensions and mutual orientation (in 3D case) determine the resistivity of a flat
film or a bulk composite.

Since little is yet known about how the rings and rods network emerges from
solution and the experimental data is limited, it is hard to suggest a physically
sound model describing the morphology of such networks. An attempt to explain
this phenomenon with the help of molecular dynamics will be done in the next
chapter. The task of this part of work was to provide a modelling tool, capable
to simulate random “rings-and-rods”-like networks in 2D and 3D using ring’s
diameter and rim thickness from experimental estimates for thin films drop-casted
from solution and to estimate relative change of sample resistance due to varying
SR (or VR), Nr/R and rings’ orientational distribution. Its algorithm is briefly
described in section 5.1.

With Its help, a set of network models were generated, filling flat square (2D),
cubic and thin film (3D) samples, and their resistances were compared across the
range of values of SR(VR), Nr/R, film thickness (hfilm) and rings alignment (in
bulk composite). The results of these calculations are summarized in section 5.2.
The aim of these studies was to figure out, what characteristics of “rings-and-rods”
networks mainly determine the total resistivity of the sample and what results
potentially can be achieved. It will be shown that there is a clear percolation like
dependence of network connectivity on the number of rods per ring and, through
it, on the network’s sparsity. However only weak impact of alignment was found,
indicating that experimentally observed difference between surface conductivity

1One can imagine a point contact between the intersecting rings as a rod of zero length.
Such point connections occur mostly in case of high density networks far from percolation
threshold. For this reason hear and after the term “rods per ring” and more general expressions
“connections per ring” or “links per ring” are used as synonyms, unless the opposite is clearly
stated.
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enhancement and Its bulk counterpart can only be explained by different density
and size distribution for the rings on surface and in the bulk of the composite.

5.1 Methods

As the details of such network’s assembly process is yet to be understood, in
this study the molecular network was represented with a set of randomly placed
toroidal rings connected with conical rods. The diameters of the endpoint cross
sections of each rod were equal to the diameters of the cross sections of the rings,
the rod was connecting. Both rings and rods consisted of the same material with
uniform volume resistivity ρR = 1 a.u. The experimental parameters used in the
simulations are summarized in the paragraph 5.1.1. The paragraph 5.1.2 briefly
describes general procedure of “rings-and-rods” network sample simulation and
evaluation of Its resistance. The paragraph 5.1.3 covers several strategies used in
this study to keep the average number of rods per ring Nr/Rat the desired level.
Finally, the paragraph 5.1.4 describes the estimation of the percolation threshold
for “rings-and-rods” networks and the network’s parameters at percolation. The
suggested algorithm was implemented as a tool written in C++ [180,181]. Visu-
alization Toolkit (VTK version 6.0) was used for plotting [182].

5.1.1 Parameters taken from experimental source

The parameters of the experimentally observed networks are summarized in table
5.1. These parameters were provided by the co-authors of [2]. “Pristine” column
refer to pure tetrakis-Schiff zinc complex networks, self-assembled by drop-casting
from solution, while “CNT-filled” contains the parameters of the networks with
intercalated nanotubes, produced with the same method. Application of these
parameters, especially of rings’ diameters and thicknesses distributions, to the
case of polymer composite samples requires caution. However, experimental char-
acterization of such composite samples is a nontrivial task and, so far, drop-casted
films remain the only viable source of statistically solid information.

For a system of intersecting sticks randomly distributed on a surface Pike and
Seager have obtained the estimation for percolation threshold [34] given by the
equation 2.1.7 of the literature review section 2.1. Defining the surface fraction
as φsurf = NCNTSCNT

Sbox
= NSlCNTdCNT , where NCNT and SCNT = lCNTdCNT is

correspondingly the number of nanotubes in the sample and the area of their
projection on the sample’s surface, Sbox - is the surface area of the sample itself
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pristine CNT-filled
Ring diameter (DR),µm 2.100± 0.180 5.514± 1.974
Rim thickness (tR),µm 0.138± 0.011 0.110± 0.008
Surface per ring (SR), µm2 27.69− 79.37 75.56
Number of rods per ring (Nr/R) 2.840± 0.729
Film thickness (hfilm), µm 50.0
CNT length (lCNT ), µm 1.04
CNT diameter (dCNT ), nm 16.0
CNT aspect ratio (αCNT ) 65.0

Table 5.1: “Rings-and-rods” network parameters from experimental source

and NS - is the sticks density (in sticks per unit square), one can estimate the
percolation threshold of nanotubes in 2D as:

φ2D ≈ 5.7/αCNT ; (5.1.1)

where αCNT = lCNT/dCNT is called “aspect ratio”.

For 3D case the percolation threshold could be estimated from excluded
volume theory as 2.1.8. Here it is accompanied by the expression for CNT’s
average excluded volume [183,184]:

1− exp
(
−1.4VCNT
〈Vex〉

)
≤ φ3D ≤ 1− exp

(
−2.8VCNT
〈Vex〉

)
;

〈Vex〉 = 4π
3 d3

CNT + 2πd2
CNT lCNT + dCNT l

2
CNT 〈sin(γ)〉 ;

(5.1.2)

where φ2D(3D) - surface (or bulk) percolation threshold, VCNT - nanotube’s average
volume and 〈Vex〉 is the average excluded volume, or the part of the system’s
volume around any nanotube, inaccessible to the other nanotubes to prevent
their overlap, 〈sin(γ)〉 - average value of sin of angle between nanotubes’ axes (in
the idealized uniform case 〈sin(γ)〉 = π

4 ).

Based on the data of table 5.1 the theoretical estimates for percolation thresholds
for the CNTs, used in the experiment, are: φ2D = 8.8 surf.% and φ3D ∈ [1.02; 2.02] vol.%.
Here surf.% and vol.% are consequently the percent of the film surface area (in
2D) or of sample volume (in 3D).

64



Figure 5.2: Electrostatic potential change (color) in the simulated “rings-and-rods”
networks: connected (left) and disconnected (right)

5.1.2 Network generation and processing

Each simulation sample was prepared as follows:
First, a predefined number of rings was distributed randomly over the volume

(across the surface in 2D case) using a von Neumann acceptance-rejection al-
gorithm, as described in the section 3.1 of the Methods chapter. The diameter
of the rings was assigned according to Gaussian distribution with the paramet-
ers taken from experimental data. In this case, however, a ring was allowed to
intersect with any of the rings created before, if their center-to-center distance
was greater, than the radius of the largest of them. In other words: no ring could
enclose the center of the other ring. This reflects the expected physical picture
that the molecules, present in the volume of such pair, would rather merge into
a single ring.

In 3D case the alignment of the rings was characterized by the angle between
a ring axis and z-axis of the simulation cell. The angle is taken as random value
with either uniform (no alignment) or Gaussian distribution. In the later case,
the width of distribution σRθ is the parameter controlling the alignment.

On the second stage, the rings were connected with rods to their direct neigh-
bors: the space was separated into polyhedral cells, representing the part of space
that was closer to current ring center, and only those rings, whose cells had com-
mon face (or edge in 2D) were connected if the length of the rod was smaller than
limit (taken to be equal to the circumference of the largest ring). To bring the
average number of rods per ring to a desired value certain percent of the remain-
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ing rods were randomly chosen and deleted according to one of the algorithms
described in 5.1.3.

After a sample is generated, Its connectivity is verified by Dijkstra-like al-
gorithm [185]: vertexes (points where rod or ring segments connect) a visited
first starting from any selected plane of the box (left electrode), then starting
from the opposite plane (right electrode). Vertexes, not connected to either of
planes, are disregarded in future. If no vertexes could be achieved both from left
and right electrode, network is disconnected (figure 5.2).

For a connected network, a linear system of Kirchhoff current laws [168] is
solved to identify vertexes’ voltages and currents, flowing along the segments.
The resistances of rod and ring segments are taken to be

´ t2
t1 ρRs(t)dt, where

s(t) is the cross sectional area of the segment at coordinate t. The total sample
resistance is calculated as the ratio of the applied voltage to the total current
flowing into negative electrode;

For each parameter combination a set of 50 independent calculations were
carried out. The samples’ resistances were averaged over the subset of realiza-
tions, for which the network was connected, and confidence intervals with the
probability of 95% were calculated. Similar to the previous chapter the percol-
ation threshold of the network (at given Nr/R, σRθ and hfilm, if applicable) was
defined as the network’s sparsity at which the probability to obtain a connected
network was 50%. This can be translated into CNTs’ surface or volume fraction,
required to fill the generated network (if connected) with one nanotube thick
string of nanotubes (lower estimate) or the total volume (or surface) fraction of
the network (upper estimate). During fitting of percolation equation the data
points were weighted by their connectivity rate to decrease the importance of the
points beyond percolation, were resistivity of accidentialy connected networks has
large fluctuations.

5.1.3 Ring connection strategies

As the detailed mechanism of the formation of the rods is yet to be determined,
several algorithms of rings connection were compared. These strategies were
introduced to provoke slightly different network morphology during elimination
of excessive connections (figure 5.3):

• "FULL": all the rods connecting direct neighbors were kept if the rod length
is less than maximum allowed distance. Tends to "overconnect" networks,
but was used as the base for comparison and as an absolute lower estimate of
percolation threshold: if the network with certain volume/surface fraction
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Figure 5.3: Examples of the structures of “rings-and-rods” networks, simulated from
the same distribution of rings but with different connection strategies: “FULL”
(a), “STAT_RND” (b), “STAT_N” (c), “STAT_N_NZ” (d), “STAT_N_L” (e),
“STAT_ALN” (f), “COMP_ALN” (g), “STRETCH” (h), “CRIT_RAD” (i)
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is disconnected when all the possible rods are included, than the network
is too sparse.

• "STAT_RND": rods were eliminated randomly with uniform probability
until the target average number of connections per ring was reached. The
easiest for implementation method, but lacks any physical meaning. Used
mainly for comparison with other methods.

• "STAT_N": Rods were removed until the target rods-per-ring ratio was
reached in a following fashion: on each iteration one ring was selected ran-
domly with the probability of selection being proportional to the number
of connections to this ring (including finite length rods and direct ring-ring
connections) and the rod, connecting the selected ring to the ring with
highest number of connections among the ring’s first order neighbors (i.e.
rings directly connected to it) was erased.

• "STAT_N_NZ": Similar to the previous one (STAT_N) but the probability
of selecting a ring was proportional only to the number of finite length rods
regardless the number of direct point contacts.

• "STAT_N_L": on each iteration the ring was selected as in "STAT_N"
method, but this time the longest rod was deleted.

• "STAT_ALN": sophistication of the previous line of methods: for each rod
of the selected ring "weight" was estimated based on combination of factors:
number of connections for both rings that were connected by the rod (Ni

and Nj), the rod’s length (Lij) and sector angles (αi and αj) that the rod’s
endpoint made with the closest endpoint of another rod of the same ring
(or point contact). The "weight" of the rod connecting rings i and j (Wij)
was calculated as follows:

Wij = WL(Lij)WN(Ni)WN(Nj)Wα(αi)Wα(αj);

WL(l) = exp
(
− l
〈L〉

)
; 〈L〉 =

 2
(

3 3√
V/4π − 〈RR〉

)
in 3D

2
(√

S/π − 〈RR〉
)

in 2D
;

WN(n) = exp

−
(
n−NR&R

r/R

)
2σ2
r/R

 ; Wα(α) = exp
(
− (α−〈α〉)

2σ2
α

)
;

(5.1.3)
where 〈L〉 is the average distance between rings with average radius 〈RR〉,
uniformly distributed in simulation cubic box of volume V or a flat square
of surface S; Nr/R and σr/R - are the target average number of rods per
ring and its standard deviation; 〈α〉 = 2π/Nr/R is the average sector angle
and σα = 2πσr/R/Nr/R - Its standard deviation. On each iteration the rod
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with the smallest weight out of all rods connected to the selected ring was
deleted. Such approach was intended to empirically reproduce the expected
uniform distribution of the rods around the current ring.

• "COMP_ALN": generalization of the previous method, however unlike
"STAT_ALN" where weights were calculated on each iteration only for rods
connected to randomly selected ring, here weights were calculated for all
the rods present in simulation and the rod with the smallest weight among
all was deleted, after which weights of the affected rods were recalculated.

• "STRETCH": this method exploits the hypothesis that rods - were formed
from the rings that have collapsed and stretched by their shrinking neigh-
bors. Within this model the length of the rods should follow the distribution
of the rings’ circumferences. For this reason, the rods weights were estim-
ated using the given average ring diameters and their standard deviations
as the probability to find a ring with given circumference. A particular
feature of this method is that extremely short rods are just as uncommon
as extremely long.

• "CRIT_RAD": the method exploits another hypothesis: that the rings were
formed from bubble-like globules that collapsed into rings when solvent
evaporated. The rods remained between the rings, whose globules were
in direct contact in the initial foam of globules. The algorithm estimates
maximum radius that the globule, representing the current ring, could have
without absorbing the closest neighbors (center of globule remains con-
stant). If any two connected rings could be represented by touching glob-
ules, the rod between them remained, otherwise it was deleted. Apart from
"FULL", this is the only method that doesn’t exploit average number of
contacts per ring as an external parameter and should reproduce the ex-
pected behavior that the number of contacts increases with the networks
density.

If the rings had a point of intersection - this connection is maintained no matter
what algorithm was used.

5.1.4 Percolation threshold calculations

To estimate the percolation threshold of the “Rings-and-rods” networks in 2D
and 3D as the function of both network sparsity and average number of rods
per ring series of calculations were conducted with increasing sparsity for a set
of predefined values of Nr/R. It is convenient to characterize the sparsity of a
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Figure 5.4: Profiles of connectivity rate (left) and sheet resistance (right): numerical
results (dots), averages (diamonds) and fit (red line)

“rings-and-rods”-like network with a scaling parameter η, defined as:

η =


2
√
SR/π/DR, in 2D;

2 3
√

3VR/4π/DR, in 3D;
(5.1.4)

where SR, VR and DR are correspondingly the average surface and volume per
ring and the average diameter of ring as defined before.

A set of 50 independent calculations was conducted for each scaling parameter
value and the probability P to obtain the connected network at given values of
η and Nr/R was estimated. For each value of Nr/R the profile of P (η) was fitted
with sigmoid function as shown on figure 5.4 (left):

P (η) = A (1− tanh (α(η − η0))) , (5.1.5)

where A, α and η0 are the fitting parameters. The critical value of the scaling
parameter ηC was estimated as the solution of P (ηC) = 0.5.
At each point

(
η,Nr/R

)
the sample’s resistance was estimated as the average

among the connected realizations and the profile of R(η) for each target value of
Nr/R was fitted with the percolation-like equation [184] as shown on the figure
5.4 (right):

ρ(η) = ρ0 (η − ηC)δ (5.1.6)

where ρ(η) - is the sample’s resistance characteristic (sheet resistance in 2D or
resistivity in 3D), ηC - the critical value of scaling parameter at which the per-
colation threshold occurs, ρ0 and δ - the fitting parameters.

The fitting and parameter variance estimation was done using the non-linear
least squares algorithm [186] as implemented in SciPy numerical methods library
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[187]. Other network’s parameters, namely the average number of connections
per ring and the average surface (or volume) per ring , was estimated by linear
interpolation between the closest numerical values. Another important value - the
surface (or volume) fraction of CNTs, required to fill the network - was estimated
from the combined length Lnet of all the rods and rings’ circumferences according
to:

φsurf = SCNT
Lnet
lCNT/Sbox; φvol = VCNT

Lnet
lCNT/Vbox; (5.1.7)

where Sbox and Vbox - are the surface and volume of the simulation sample cor-
respondingly in 2D and 3D case, SCNT = dCNT lCNT - the average surface of a
nanotube projection on the network’s plane and and VCNT = lCNTπd

2
CNT/4 is the

average volume of a nanotube.

5.2 Results and discussion

Analysis of “rings-and-rods”-like network is a non-trivial task as, although Its
basic constituting components - ring-like assemblies - do behave as randomly
scattered particles, the probability of connection between them is not defined
by the presence of a direct contact, but by presence of a rod-like link that very
well can exist between the two rings that are far apart while absent between
another pair that is much closer. In these studies this task was decomposed into
several parts according to parameter range and acting factor. Paragraph 5.2.1
covers the preliminary comparison of the strategies introduced in the methods
subsection of this chapter on the set of parameters, corresponding to the known
experimental data (table 5.1) to get their first interpretation from geometrical
point of view and to identify the potential drawback of the chosen methods.
In the next paragraph 5.2.2 the selected methods are applied to a wider range
of network densities and varied number of rods per ring to estimate theoretical
percolation threshold. Finally, the effect of the orientation of the rings and finite
thickness of the composite film is introduced in the paragraph 5.2.3.

5.2.1 Connectivity strategy comparison

To compare the morphology effect on the network’s connectivity (and, through it,
on sample’s resistance) several sets of “ring-and-rod” networks were simulated in
2D using the parameters for both the pristine and CNT-filled molecular networks.
Within each set the simulation box side was varied from 50 to 300 microns while
the concentration of rings (surface per ring) was kept fixed. As the simulated
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sample represents a flat square, Its resistance beyond percolation threshold should
not depend on the side of the square. In all cases (where applies) target number
of tubes per ring was equal to 2.84 ± 0.729. As experimentally the connected
networks were observed in the range 27.7−79.4 µm2 per ring for empty networks
and about 75.6 µm2 for networks containing CNTs, in this part of work SR was
varied in the range [25.0; 85.1] µm2 per ring.
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Figure 5.5: Sheet resistance of simulated 2D “rings-and-rods” networks: left - pristine,
right - intercalated with CNT

The calculated sheet resistances for both sets of parameters (pristine networks
and CNT-intercalated) are presented on the figure 5.5. Here each point represents
the average over those samples, where a connected network was obtained. It is
clear that the two data sets have strikingly different behavior: while the results for
pristine networks show growing resistance, approaching the percolation threshold,
the results for CNT-filed networks looks counter-intuitive with most strategies
giving raising resistance at denser end of range. This seemingly contradiction
can be explained if instead of average surface per ring SR, directly obtained from
experiment, sparsity is characterized by the scaling parameter η, as defined by
equation 5.1.4. Plotting the probability to obtain the connected network against
the scaling parameter η one can see (figure 5.6) that, due to more than twice larger
diameter, CNT-intercalated networks with the studied densities fall into the range
of small scaling ratios approaching the critical value ηR = 1.22 corresponding to
circle surface fraction 0.676 - the percolation threshold for fully penetrable disks
in 2D [188]. Given the fact, that unlike in the system studied by Quintanilla
and coworkers, rings’ overlap is restricted by the rings centers, it is clear that for
such “soft” disks the percolation is achieved at smaller surface fraction (larger
scaling parameter η). The effect of this on the network morphology is seen on
the figure 5.7: as the scaling parameter η approaches ηR the contacts between
the rings are dominated by direct intersections rather than by finite rods and
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the strategies that try to keep the number of finite rods around the predefined
value cut the longer links between the clusters, thus leaving fewer paths across
the whole sample. “STRETCH” and “STAT_N_NZ” are the two exceptions
from this trend as they do not give the shorter rods priority over the longer ones.
The same trend could be seen in the case of "CRIT_RAD" method but for other
reason: due to high packing density of rings the growth of initial "globules" is
blocked by closest neighbors, preventing "touching" with those somewhat more
distant.
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On the contrary, it is clear that for pristine networks the percolation threshold
lies within the selected range: resistance trend for networks sparser than 55 per
ring diverges with box size (as can be seen in more details in appendix A.1),
while for denser networks sheet resistance saturates with box side. Overall devi-
ation between the strategies, based on random rod elimination until, is not quite
significant. "STAT_ALN" method produces the most optimal networks: lowest
resistance very close to "FULL" with lower number of rods and, hence, surface
fraction. "CRIT_RAD" method looks completely off there with the lowest num-
ber of connections and fast deterioration of conductivity with increasing sparsity
of network. From the figure 5.7 it is clear, that the loss of percolation with in-
creasing sparsity correlates with the decrease of the average number of contacts
per ring below ∼ 2.5, which for “CRIT_RAD” strategy happens much faster
than for random methods.
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5.2.2 Percolation threshold calculation

As was shown previously, strategies based on random elimination of rods give
close results in the region of interest, so in this part only the “STAT_ALN”
strategy was used to study the effect of the number of connections per ring. The
average of the results calculated with the “FULL” strategy applied to the same
networks is used as asymptotic. Besides the critical value of scaling parameter ηC
and resistance fitting parameters ρ0 and δ, for each target number of rods per ring
(N T

r/R) the values of Nr/R, SR and φsurf (or VR and φvol in 3D) actually achieved
at η = ηC were estimated by linear interpolation (designated by superscript C).

5.2.2.1 2D networks

A square sample with uniform random distribution of 1000 rings was used for the
percolation threshold study of the flat networks. The fitting parameter ρ0 in 2D
case corresponds to the sample’s sheet resistance. From the results of the previous
section it is clear, that the percolation threshold for a 2D network occurs in the
region η ≥ 3. So the sample side length was varied from 70 to 500 µm for pristine
networks and from 200 to 1600 µm for CNT-intercalated. This corresponds to η
varying from 3 to 11. The target average number of rods per ring N T

r/Rwas varied
in the interval [2.0; 3.0].

The resulting profiles of the connectivity rate and sheet resistance as the
function of η are shown at the figure 5.8. Here dots designate the results of single
simulations, while diamonds correspond to the average value for the fixed η, thin
dashed lines designate the fit with the percolation equation, vertical dashed lines
indicate the critical value of the scaling parameter ηC , at which the percolation
threshold occurs. The values of the fitting parameters for different N T

r/R are
summarized in the tables A.19 (pristine) and A.20 (CNT-intercalated) in the
appendix section A.2 The change of ηC , ρ0 and δ together with NC

r/R (the number
of rods per ring, actually achieved at percolation) for CNT-intercalated networks
are shown on the figure 5.9 (the results for pristine networks follow the same
trends with the exception of scale).

For both pristine and CNT-intercalated networks no percolation was found for
N T
r/R = 2, the probability to obtain a connected network was below 45%. Starting

from N T
r/R = 2.2 the calculated profiles of P (η) and R(η) have a clear percolation-

like behavior with the percolation threshold value dependent on average number
of connections allowed. The mechanism of percolation is, however different. For
N T
r/R ≤ 2.6 the percolation threshold is achieved before the limit of total number

of connections is reached, so for those series networks get disconnected because
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of low probability to have connected cluster stretching over the whole sample.
For the average number of contacts higher than 2.6 in the observed region the
conductivity disappears with decreasing ring density not because the probability
to have connected network with the target number of connections per ring is low,
but because the target number of contacts can’t be achieved at such density as
the rings are spread beyond the maximum allowed distance from their closest
neighbors. This trend is clearly shown at figure 5.9: all parameters approach
their asymptotic values as N T

r/R gets over 2.6.
The table 5.2 summarizes network’s characteristics, corresponding to percol-

ation threshold. From the table it is clear, that the critical surface density of
rings (for contacts per ring > 2.6) lies in the range of ∼ 60 − 70 µm2 per ring
for pristine networks, which complies with the experimental observation of con-
nected networks of tetrakis-Schiff zinc complexes with the surface ring density
27.69-79.37 µm2 per ring and on average 2.8 rods per ring. In the view of the res-
ults of this section, it can be suggested that at higher densities (η < 2) the rings of
the same size would have to overlap with each other too much. As the molecules,
constituting the network, interact with only weak Coulomb and van der Waals
forces, they could relatively easy rearrange at high density form interconnected
rings into a more uniform agglomeration. Sparser networks (η > 5) are beyond
the percolation threshold, thus the probability to obtain a large interconnected
network is negligible.

Extrapolating the same tendency on CNT-intercalated networks one can ex-
pect the interconnected networks as sparse as ∼1000 µm2 per ring (ηC ∼ 7). Such
network can be filled with CNT content as low as ∼0.06 surf. % which is 2 orders
of magnitude smaller than the theoretical prediction of 8.8 surf. % for the CNTs
used in the experiment according to expression 5.1.1.
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Figure 5.8: Variation of the 2D network’s connectivity (left) and sheet resistance (right)
with target number of rods per ring Nr/R (shown with color)
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N T
r/R

Pristine CNT-intercalated
ηC NC

r/R SCR φCsurf ηC NC
r/R SCR φCsurf

- - µm2 surf. % - - 103µm2 surf. %
2.0 - - - - - - - -
2.2 4.04±0.34 2.2±0.1 56.7±4.7 0.3±0.2 6.53±0.20 2.2±0.1 1.018±0.033 0.06±0.06
2.4 4.38±0.02 2.4±0.1 66.4±0.4 0.3±0.2 7.05±0.02 2.4±0.1 1.188±0.004 0.06±0.04
2.6 4.47±0.02 2.6±0.2 69.4±0.3 0.3±0.3 7.20±0.02 2.6±0.1 1.237±0.004 0.06±0.05
2.8 4.51±0.02 2.7±0.2 70.5±0.2 0.3±0.3 7.21±0.02 2.7±0.2 1.240±0.003 0.06±0.05
3.0 4.50±0.00 2.7±0.2 70.1±0.1 0.3±0.3 7.16±0.02 2.7±0.1 1.224±0.004 0.06±0.04

Table 5.2: “Rings-and-rods” network’s sparsity characteristics at percolation threshold
in 2D

5.2.2.2 3D networks

A cubic sample with uniform random distribution of 1000 rings was used for the
percolation threshold study of the “rings-and-rods” networks in 3D. The sample
side length was varied from 16 to 135 µm for pristine networks and from 80 to 663
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µm for CNT-intercalated. This corresponds to η varying from 1 to 8 for pristine
networks and from 1.8 to 15 for CNT-intercalated. The target average number
of rods per ring N T

r/R was varied in the interval [1.2; 4.0].

The resulting profiles of the connectivity rate and volume resistivity as the
function of η are shown at the figure 5.10. As previously, dots designate the results
of a single simulations, while diamonds correspond to the average value for the
fixed η, thin dashed lines designate the fit with the percolation equation, vertical
dashed lines indicate the critical value of the scaling parameter ηC , at which the
percolation threshold occurs. The values of the fitting parameters for different
N T
r/R are summarized in the tables A.21 (pristine) and A.22 (CNT-intercalated)

in the appendix section A.2 The change of ηC , ρ0 and δ together with NC
r/R (the

number of rods per ring, actually achieved at percolation) for CNT-intercalated
networks are shown on the figure 5.11 (the results for pristine networks follow the
same trends with the exception of scale).

Overall, the observations made in the previous section for flat networks stay
valid in bulk case. The only exception that in 3D space the percolation cluster
is possible for networks with fewer connections per ring as can be seen from the
data presented on the figure 5.11 and in the table 5.3: successful fits for both
pristine and CNT-intercalated networks were obtained already for N T

r/R = 2 and
the estimated network’s parameters reached the saturation for N T

r/R ≥ 2.4. In
the same time the critical scaling parameter ηC increases from 4.5 to 6.5 for
pristine networks and from ∼ 7 to 10.5 for CNT-intercalated. In other words:
in bulk case the rings can be connected at much larger distance then on a flat
surface. These observations can be explained purely from geometrical point of
view: in 3D space each ring is surrounded with more neighbors than in 2D, thus
it is more likely that the two rings, having a common neighbour, will be further
apart; it is also less likely that a direct connection between the two rings will be
obstructed by another ring, so the longer rods can exist without intersection with
other network’s components.

The increased ηC and decreased N T
r/R for 3D networks results in very small

CNT content required to fill such network: the values as law as 10−4 − 10−5 vol.
% can be achieved which is much lower then the estimate 1-2 vol. % accord-
ing to expression 5.1.2. Comparable theoretical estimate is only achievable for
millimeter-long nanotubes. Such extraordinary effect emerges from the fact that
being intercalated into “rings-and-rods” network the nanotubes act as parts of an
object of higher aspect ratio, which also preserves the contacts due to stronger
interaction.
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Figure 5.10: Variation of the 3D network’s connectivity (left) and volume resistivity
(right) with target number of rods per ring Nr/R (shown with color)
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with target number of rods per ring Nr/R (red line) and the asymptotic value (black
horizontal line)

5.2.3 The effect of finite thickness and orientation

As it was reported in [2], the addition of 0.07 weight % of tetrakis-Schiff zinc
compounds to a polycarbonate matrix with 2-3 vol. % of CNTs increased the
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N T
r/R

Pristine CNT-intercalated
ηC NC

r/R VCR φCvol ηC NC
r/R VCR φCvol

- - 103µm3 10−3vol. % - - 103µm3 10−3vol. %
1.2 - - - - - - - -
1.4 - - - - - - - -
1.6 - - - - - - - -
1.8 - - - - - - - -
2.0 6.0±0.1 2.0±0.2 1.03±0.02 1.06±1.04 9.4±0.1 2.0±0.2 73.5±0.8 0.05±0.05
2.2 6.5±0.1 2.2±0.2 1.34±0.02 0.87±0.73 10.2±0.0 2.2±0.2 93.3±0.2 0.04±0.04
2.4 - - - - 10.4±0.0 2.3±0.2 97.2±0.1 0.04±0.03
2.6 - - - - 10.3±0.0 2.4±0.2 96.8±0.1 0.05±0.03
2.8 6.6±0.1 2.3±0.2 1.37±0.02 0.87±0.77 10.4±0.0 2.3±0.2 98.0±0.1 0.04±0.03
3.0 - - - - 10.4±0.0 2.3±0.2 97.7±0.3 0.04±0.03
3.2 6.5±0.7 2.3±0.3 1.34±0.15 0.90±0.75 10.4±0.0 2.4±0.2 97.9±0.1 0.04±0.03
3.4 6.5±0.5 2.4±0.2 1.33±0.10 0.91±0.74 10.4±0.0 2.4±0.2 97.3±0.1 0.04±0.03
3.6 6.5±0.1 2.3±0.2 1.35±0.02 0.88±0.75 10.4±0.0 2.3±0.2 99.4±0.0 0.04±0.03
3.8 6.6±0.1 2.3±0.2 1.36±0.01 0.88±0.76 10.4±0.0 2.3±0.2 99.9±0.0 0.04±0.03
4.0 6.5±0.1 2.3±0.2 1.34±0.03 0.89±0.74 10.4±0.0 2.3±0.2 99.0±0.2 0.04±0.03

Table 5.3: “Rings-and-rods” network’s sparsity characteristics at percolation threshold
in 3D

composite’s surface conductivity by 7 orders of magnitude and bulk conductivity
by 2 in comparison with polycarbonate composite with the same CNT content.
This may indicate, that the effect of the “rings-and-rods” networks on the final
resistivity is more pronounced for the surface, then for the bulk of the material.
This might be attributed to several reasons, such as segregation of compound to
the surface or difference in the ring’s diameter and rod’s length distribution on
the surface and in the bulk or difference in alignment of the rings in the near-
surface layer and in the bulk. The first two factors rely on the physical nature of
the self-assembly of “rings-and-rods” like networks and their investigation is out
of the scope of this study. In this section the impact of only the last factor will
be estimated.

In the previous section the orientation of ring’s axis was chosen uniformly in
space. In this section, to study the effect of the rings alignment, the axis vector of
the ring (the vector, normal to the plane of the ring) was chosen in such a way, that
the angle θ between the vector and the selected axis has Gaussian distribution
with the width σRθ. A cubic sample with uniform random distribution of 1000
rings was used. The sample side length was varied from 370 to 510 µm for pristine
networks and from 80 to 663 µm for CNT-intercalated. This corresponds to η
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varying from 5 to 8 for pristine networks and from 9 to 12.6 for CNT-intercalated.
The target average number of rods per ringN T

r/Rwas fixed at 2.6. The width of the
angle distribution was varied in the interval [0◦; 90◦] with the step 15◦. The two
separate series of calculations were conducted: with the alignment axis parallel
to the gradient of voltage and perpendicular to it. the results are presented on
the figure 5.12.
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Figure 5.12: Variation of 3D network parameters with the ring’s axis alignment

In contrast with the expectation, no visible change for either of the estimated
parameter was found. This means that even when the rings are aligned perpen-
dicular to the voltage gradient, the rods still provide connections along the field
and the overall effect is negligible. Partially, this can be attributed to the limit-
ation of the used methodology: in a real system the ring orientation may not be
independent of Its neighbors, rather it could be rotated to minimize the stress
in the rods, connecting the rings. Whether this takes place in the tetrakis-Schiff
compound networks in a polymer matrix is yet unclear.

Figure 5.13: “Rings-and-rods” 3D networks in thin film geometry

Until here the box geometry was assumed periodic in all dimensions during
network generation. In the second part of the investigation of surface vs. bulk
effect of “rings-and-rods” networks on the composite’s conductivity the effect
of finite volume was introduced by replacing the periodic boundaries in one of
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the directions, perpendicular to the electric field, with impenetrable surfaces.
Rings, created near one of the surfaces were still oriented uniformly, but this
time not in entire 4π spherical angle, but in a sector, such that no part of the
ring would stretch outside of the surface. The thickness hfilm of such thin film was
varied separately from the box side length in the two other dimensions. Sample’s
resistivity in such geometry was, as in 2D case, characterized by sheet resistance
ρ = Rsamplehfilm, where Rsample - is the sample’s resistance. The box side length
was varied from 115 to 240 µm for pristine networks and from 300 to 1080 µm
for CNT-intercalated. The number of rings per sample was varied proportionally
to hfilm so that η varied from 5 to 9 for pristine networks and from 5 to 12.6 for
CNT-intercalated. The thickness of the film varied from 2 to 5 maximum lengths
of the rod (or maximum ring’s circumference), which gives hfilm ∈ [17.4; 87.0]
µm for pristine and hfilm ∈ [45.6; 288.0] µm for CNT-intercalated networks. The
target number of rods per ring was fixed at 2.5.

The estimated critical scaling factor ηC and sheet resistance fitting parameter
ρ0 for pristine networks are shown on figure 5.14. It is clear that for very small film
thickness ηC decreases from its bulk value 6.5 closer to 4.5 - Its value in 2D. The
parameter ρ0, which can be interpreted as the sheet resistance far from percolation
threshold, decreases by half as hfilm changes from 87 to 34 µm (the thinnest film
appeared to be disconnected within the studied region of η). This observation
supports the expected trend that the surface layer has better conductivity then
the bulk of the composite. In the view of the previous results for the orientation
effect in 3D periodic box, the last observation must be explained not only by the
orientation effect of the surface, but also by the limited number of neighbors for
the rings close to it. While the rings in the bulk can form links in all directions,
the rings in the surface layer are restricted by the impenetrable surface and thus
they more likely to form rods within the surface layer. It, however, requires quite
small film thickness to make a difference. No noticeable effect was found for
CNT-intercalated networks, where minimum thickness was 45.6 µm. Still even
the observed difference is very far from 4 orders of magnitude relative difference
between surface and bulk conductivity improvement reported in the experiment
[2].

5.3 Conclusion and future directions

In this chapter it was shown using MC modeling based on simple geometrical con-
siderations and data available from experiments that the percolation behavior of
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Figure 5.14: Variation of 3D network parameters with the film thickness

“rings-and-rods” networks strongly depends on the average number of rods per
ring Nr/R and the density of the rings, more conveniently characterized by the
scaling parameter η defined by equation 5.1.4. Furthermore, the network’s beha-
vior around the percolation threshold (sparse network region) weakly depends on
method to choose which of the possible connections between rings to maintain.

In case of flat networks it was shown, that the percolation threshold occurs
in the region ηC ∼ 4 − 4.5, which corresponds to the average surface per ring
SCR ∼ 56 − 70 µm2 for pristine tetrakis-Schiff compound rings. The condition
of extended network formation is Nr/R ≥ 2.4. For the most sparse networks
Nr/R saturates around the value 2.7. On the other side the region of clearly
distinguishable networks is limited by the critical value ηR = 1.22 - the percolation
threshold of penetrable circles in 2D - close to which the rings overlap too much
and weakly bonded tetrakis-Schiff compounds may rearrange into a more uniform
structure. This matches the experimental observation of the large interconnected
networks in the region 27.69 − 79.37 µm2 per ring and ratio of rods per ring
∼ 2.8± 0.7.

Experimentally observed CNT-intercalated networks with the average surface
per ring ∼ 75.56 µm2 belong to the dense side of the of connected networks’
region. Due to more than twice larger diameter of the rings with CNTs the
scaling factor of such network is η ∼ 1.8 far from the percolation threshold value
ηC ∼ 6.5− 7, corresponding to the surface density SCR ∼ 1.0− 1.2 103 µm2. The
critical surface fraction in this case was found ∼ 0.06 surf.%, which is 2 orders of
magnitude smaller, than the theoretical estimation of 8.8 surf.% for intersecting
sticks.

Applying the same methodology in 3D even sparser connected networks were
obtained: ηC ∼ 6.5 for pristine networks and ηC ∼ 10−10.5 for CNT-intercalated.
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The number of rods per ring also saturated at smaller value 2.3-2.4. The CNT
content required to fill such network can be as low as 10−4− 10−5 vol. % - orders
of magnitude smaller then for randomly distributed nanotubes of the same aspect
ratio.

As the detailed mechanism of tetrakis-Schiff compounds self-assembly into
“rings-and-rods” networks is yet to be investigated as well as to what extent
such model, based on the experimental data for flat networks, can be applied to
the networks, self-assembled in polymer matrix, the last theoretical prediction
needs to be taken with caution. Still, it shows the high potential of the self-
assembled molecular networks for creation of thin films and composite materials
with advanced microstructure.

The clear limitation of the method used in this chapter is the assumption of
the same ring’s and rod’s sizes distribution both for the surface and bulk of the
composite and lack of physical relations between ring’s and rod’s orientation. As
was shown in the last section, within this approach it is impossible to explain
∼ 104 difference between the improvement of the surface and bulk resistivity of
the CNT-polycarbonate by addition of tetrakis-Schiff compounds. Adaptation of
the model to capture this effect requires deeper understanding of the mechanism
of rings and rods formation and interaction of the compound with nanotubes and
polymer matrix.
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Chapter 6

Self-assembly of tetrakis-Schiff
molecular networks

Figure 6.1: Tetrakis-Schiff metal complex molecular structure (left) and its self-
assembled structures, obtained by drop-casting from various solvents (right) [2], the
scale bars equal to 1 Å on the left image and 5 µm on the right

As was mentioned in the Introduction (1), the remarkable possibility of tetrakis-
Schiff based metal complexes1 to self-assemble into extended networks was re-
cently discovered by the group of Dr. Kleij and investigated both experimentally
and theoretically by an international group of collaborators including the author
of present study [?]. Analysing the electron micro-photographic images of the
micro-structures left on the support after solvent evaporation our colleagues have
shown that metal ion substituted symmetrical double tetrakis-Schiff base ligands
functionalized with phenyl groups, shown on the figure 6.1, can form molecular
networks, composed of micrometer-sized rings, connected with molecular strings,
when drop-casted from dichloromethane (DCM). This self-arranging structure

1There is a certain ambiguity in the literature concerning the naming of such molecules. As
the molecule shown on figure 6.1 (left) is the main object of study in this chapter, the terms
tetrakis-Schiff complex or bis-salphen compound are used throughout this chapter as synonyms.
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has a high potential as a guiding dispersing agent for carbon nanotubes [189].
No network of rings and rods was observed for other solvents: drop-casting from
tetrathydrofuran (THF) produced only short strings, while star-like aggregates of
needle-like nanocrystalls condensed from toluene (TOL). Replacement of phenyl
side chain by methyl group resulted in well separated spherical globules in di-
chloromethane with no detectable agglomerates for the other solvents. Similar,
however weaker defined, interconnected networks were formed from Ni-centered
and metal-free ligands. The diffusion ordered spectroscopy estimated the dia-
meter of the compound molecule in DCM as 19.68 nm. The dynamic light scat-
tering (DLS) study indicated that molecular assemblies with the average radius
10-40 nm, 80-400 nm and 4.2-5.6 µm are present in DCM solution and their ratios
are not affected by filtration through 50 nm sized pores. These experimental evid-
ences led authors to conclusion, that π− π interactions, mediated by phenyl side
rings have the key role for formation of extended structures rather than cation-
oxygen interaction, typically found in similar systems. To explain the process
of the network self-assembly, the authors have suggested a model according to
which the ligands or metal ion complexes fist agglomerate into vesicles that shrink
and collapse into donut-like shape as the solvent evaporates. The molecular rods,
connecting the rings, are presumably formed at the points, where vesicles contac-
ted each other. The solvent was regarded only as environment mediating solute
molecules non-bonding interactions. This was supported by cryo-environmental
scanning electron microscopy images where interconnected globular structures
were clearly visible.

This explanation, however, left a lot of questions without answer, namely:
what is the internal structure of the vesicles, how they assume a donut-like shape
in DCM and why this does not happens in THF and TOL. Using of cryogenic
freezing to get time-resolved evolution of self-assembling structures is also tricky:
as was mentioned in the literature review chapter, folding of extended molecular
systems is a multi-well problem and rapid cooling may alter the trajectory and
kinetically confine the system to one of local minima.

In this chapter a detailed computational study is reported, aiming to close
the aforementioned white spots. For this purpose a combined density functional
theory (DFT) level and all-atom molecular dynamics (MD) study was performed
to investigate in details of the Schiff-base complexes self-assembly and behaviour
various environments, such as vacuum and DCM, THF and TOL, used in the
experimental studies. The structure of this chapter is as follows. Section 6.1
provides a concise summary of the computational methods used in this chapter.
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Section 6.2 summarizes preliminary calculations with simplified four-rigid-parts
model of the compound, demonstrating the ability of such molecular complexes to
form a stable donut-like structure. The aim of calculations, described in section
6.3, is to verify the all-atom parametrization of the tetrakis-Schiff zinc-complex
chosen for more in-depth MD simulations against the quantum chemistry level
calculations of single compound, its dimer and between compound and solvent
molecule, as well as the experimentally available crystallographic data for similar
compound. The conformational stability of a single molecule and its diffusion
in explicit solvents are studied in section 6.4. The relative stability of multi-
molecular assemblies in different possible conformations in explicit solvents is in-
vestigated in section 6.5. Finally, section 6.6 describes the proposed mechanism
of the “rings-and-rods” like network self-assembly, linking it to a coil-to-toroidal
globule transition phenomenon, already known for semi-flexible polymer systems,
as described in the literature review chapter. To support the proposed mechan-
ism, free energy perturbation calculations were preformed to compare the stability
of the proposed structure in the three aforementioned solvents, explaining the role
of metal cation and phenyl groups in the self-assembly process. The results of
these calculations are presented in the section 6.7.

6.1 Methods

Throughout this chapter a number of molecular modelling approaches were ap-
plied to study the behaviour of the tetrakis-Schiff zinc-complexes from molecular
perspective. The theory behind these methods and state of the art examples
of their application to similar molecular systems were outlined previously in the
section 3.2 of the Methods chapter. This section enumerates the software tools
used for each type of calculations and describes the general technical details of
the calculations and procedures used.

6.1.1 Density functional calculations

The three quantum chemical software packages were used for DFT calculations:
SIESTA [190], ONETEP [191] and GAUSSIAN [192]. While the last one is the
most mature and widely used due to its large range of functionalities, it has
limited optimization for massively parallel calculations, where the first two excel.
This becomes especially important when large molecular associations are under
study. For this reason the most intensive task of the optimal molecular geometry
search was done at the first step using the more robust SIESTA and then fine-
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tuned with the more precise ONETEP. GAUSSIAN calculations were applied to
derive the atomic charges in the discovered geometries.

Within SIESTA method valence electrons were expanded in double zeta plus
polarization (DZP) basis set of numerical atomic orbitals, generated using the
split-valence method [153] with energy shift of 50 meV. Popular for its efficiency
and sufficient accuracy in most cases, this basis allows quite robust geometry
optimization. In dimer binding energy calculations basis set superposition error
(BSSE) was corrected using the counterpoise method [193]. Core electrons were
replaced by Troullier-Martins pseudo-potentials [155] for faster computation. A
cutoff of 300 Ry was used for grid integration.

ONETEP package represents electronic orbitals using non-orthogonal gener-
alized Wannier functions (NGWFs), which are in turn expanded in periodic sinc
functions [154, 194]. Due to such choice of basis, no BSSE correction is needed
and very accurate atomic forces and geometry optimization can be achieved [195],
however much more intensive computation is required than in SIESTA case. NG-
WFs’ radii was set to 8 rB (Bohr radius). Pseudo-potentials, generated by OPUIM
package [196], were used to replace core electrons. For fully converged energies
plain wave cutoff was set to 1000 eV.

Single point k-space sampling and local density approximation (LDA) in Per-
dew & Zanger parametrization [197] were used for electron exchange and correl-
ation functional for the binding energy calculations in these two packages. While
the geometry optimization was done using the generalized gradient approximation
(GGA) in Perdew-Burke-Ernzerhof form (PBE). Iterative self-consistent calcula-
tions were conducted until energy convergence below 50 meV and maximum forces
below 50 meV/atom for single molecule and 100 meV/atom for molecular dimer
were achieved.

In GAUSSIAN the final geometry optimization was done using the standard
6-31g* (5d) orbital basis along with hybrid Becke 3 parameter Lee-Yang-Parr
(B3LYP) functional for exchange and correlation energy. Molecule’s electrostatic
potential map in the optimized geometry was calculated using the same basis
and Hartree-Fock exchange. The potential values were sampled according Merz-
Singh-Kollman scheme [164].

6.1.2 Parametrization of the tetrakis-Schiff zinc-complex
model

For the preliminary calculations the atomic charges were calculated using nat-
ural bond orbital (NBO) approach as implemented in ONETEP [198]. The
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DREIDING force field was used for bonded and van der Waals interactions’ para-
meters [130].

For more accurate molecular dynamics calculation the atomic charges were
fitted to electrostatic potential from GAUSSIAN calculations according to the
“RESP” method using Red Tools software package [132]. The covalent and van
der Waals parameters for the compound and solvent molecules were assigned
according to all-atom general AMBER force field (GAFF) [199] using ANTE-
CHAMBER program form AmberTools package [200]. Zinc ions were treated
as free charged centers. This approach was chosen to allow cations to occupy
the optimal position under the effect of electrostatic interactions with other ionic
centers avoiding any influence of the explicit virtual bonds.

6.1.3 Input structure preparation

Initial idealized atomic structures of the compound molecules were prepared and
visualized using TopoTools and Molefacture packages of the VMD molecular visu-
alization program [201]. For the simulations, basing on the experimental X-ray
resolved structures, the initial ligand and complex coordinate files were processed
and rendered with Mercury molecular visualization software [202]. Initial co-
ordinates of the solvent molecules in the liquid state were obtained from Virtual-
Chemistry online database [203]. Input structures for explicit solvent simulations
were prepared by merging coordinates of solvent and compound molecules taken
from random snapshots of separate simulations and deleting solvent molecules
within van der Waals distance from the atoms of the solute compounds. MOL-
TEMPLATE package [204] was used to create the input files for MD simulation
storing the parameters and initial coordinates.

To remove the initial stress while keeping the solute structure close to initial,
each simulation started with a relaxation procedure similar to described in [205].
The atoms of the compound were restrained to their initial positions with virtual
strings, the strength of which decreased exponentially from 600 to 1 kcal/mole/Å
during a set of 4-10 50 ps long runs (depending on the number of solute mo-
lecules in association) with the timestep of 0.5 fs. Additional virtual springs with
the spring constant 5.0 kcal/mole/Å were attached to prevent non-covalently in-
teracting parts of adjacent compounds (for example, oxygen atoms and metal
cations) from moving initially too far apart during another 100 ps.
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6.1.4 Molecular Dynamics simulation

Molecular dynamics (MD) simulations were performed using LAMMPS software
package [173] under normal conditions, i.e. 293.15 K temperature and 1 atm.
pressure (in the explicit solvent). The temperature of the tetrakis-Schiff mo-
lecules was controlled by Langevin thermostat [127]. In case of explicit solvent,
the temperature and pressure of the solvent molecules were controlled by a sep-
arate Nose-Hoover barostat and thermostat. All bonds with hydrogen atoms
were constrained after the initial relaxation stage by SHAKE algorithm [135]
to increase time step to 2.0 fs. The “particle-particle particle-mesh” algorithm
(PPPM) [206] was used to treat long range Coulombic interactions. Cutoff radius
of 12 Å was used for van der Waals and short-range electrostatic potentials. Van
der Waals interactions were modelled using Lennard-Jones 6-12 potential with a
switching function to smooth down the potential profile between 10 and 12 Å as
proposed in [207].

The stability of thus formed structures was studied by performing 1-5 nano-
second long equilibration run during which the conformation of the multi-molecular
assembly as well as the change of complex-to-complex and complex-to-solvent in-
teraction energy were monitored. The final data was accumulated during the last
nanosecond run after monitored parameters stabilized around equilibrium values.
Instantaneous thermodynamics quantities: temperature, pressure, solvent dens-
ity, total and interaction energy components, - were sampled every 100 timesteps.
Every 1000 time steps (or 2 ps) the average over the last 20 samples was collec-
ted. At the same timestep the atomic coordinates were dumped to inspect the
structure evolution.

6.1.5 Free energy calculations

Free energy of conformational change

To study the free energy changes associated with the conformational change of the
tetrakis-Schiff based zinc-complexes in vacuum the umbrella sampling technique
(US) was used as described in 3.2.3. The restraining potential had quadratic
form Uk = K (ζ − ζk)2, where ζ is the reaction coordinate to be constrained (one
of the two dihedral angles, as will be defined further in section 6.4.1) and ζk -
is the value of that coordinate around which the molecular behaviour is studied.
For each value of ζk 8-16 simulations in vacuum were performed, each starting
from a different initial structure, selected from a preceding “nudged elastic band”
simulation (NEB) of the transition from one configuration to another.
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Each US simulation consisted of the two parts: during the first 500 ps the
system was driven to the target value of the reaction coordinate by gradually
changing either the spring constant K of the biasing potential from 0 to 128
kcal/mole/Å2, or by gradual changing the value of the reaction coordinate at
which the biasing potential has it’s minimum from initial to the target value.
During the consequent 500 ps the value of the reaction coordinate was sampled
every 500 timesteps (or 0.25 ps) while the spring constant was kept at its fi-
nal value. The weighted histogram analysis (WHAM) of the collected data was
performed using the utility with the same name by Alan Grossfield [208].

Free energy of association

Association free energies for selected multi-molecular assemblies in solvent were
estimated as the difference between the solvation free energy change (∆Gsol) of the
associated and separated molecules. Following [144] the free energy perturbation
method (FEP) was used to evaluate the individual fee energies of solvation as
described earlier in 3.2.3. Within this approach the interaction between tetrakis-
Schiff complexes and solvent molecules was gradually scaled form fully interacting
system to the two completely isolated subsystems. Similar approach, but with
scaling down the interactions between the compound molecules, was used for the
free energy of dissociation in vacuum. For better stability of results van der Waals
and Coulomb interactions were scaled separately as proposed in [209]. Within
the FEP method, the full system’s potential energy is decomposed into:

UAB = UA + UB + λvdWU
vdW
AB + λCoulU

Coul
AB , (6.1.1)

where the subscripts A and B refer to the two subsystems (solute-solvent or
parts of multi-molecular association), UAB is the potential energy of the full
system, UA(B) - potential energy of the interaction between the atoms of one of the
subsystems (covalent and non-bonding), U vdW

AB - the potential energy of the van
der Waals interactions between the subsystems and UCoul

AB - the potential energy
of the Coulomb interactions between them. λvdW and λCoul are the corresponding
scaling parameter (also called “the coupling parameter”) for van der Waals and
Coulomb interactions between the subsystems correspondingly.

Van der Waals and electrostatic interactions between solvent and tetrakis-
Schiff complex were modelled with “soft-core” versions of the Lennard-Jones and
Coulomb potential, as implemented in LAMMPS [210]:
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Coul = − QiQj

4πε0ε
√
αC (1− λ)2 + r2

, (6.1.3)

where U soft
LJ is the potential energy of a soft-core van der Waals interaction, ε and

σ correspond to their mining for standard Lennard-Jones potential, defined by
equation 3.2.15, λ - the scaling parameter (λ ∈ [0; 1]), αLJ and αC - parameters,
controlling the change of shape of the potentials as λ approaches 0. In current
studies αLJ = 0.5 and αC = 10 Å2.

After the initial equilibration as described earlier in section 6.1.3, the inter-
action potentials between subsystems were gradually scaled, changing the cor-
responding parameter λ in the expression 6.1.1 according to a set of predefined
values, called λ-schedule. The profiles of the λ-schedules used in each calculation
were chosen after a set of preliminary simulations and will be described in the cor-
responding section of the results discussion. At each point λi after the relaxation
period the perturbation of the potential energy was calculated for both forward
( δUFWD(λi) = U(λi+i) − U(λi)) and backward (δUBWD(λi) = U(λi−i) − U(λi))
directions every 10 timesteps. The ParseFEP plugin to VMD [211] was used to
estimate the change of the free energy, corresponding to each transition using
Bennett acceptance ratio method (BAR) [145], as well as to compare the distri-
butions of backward and forward potential perturbations as suggested in [147].

6.2 Preliminary calculations

As was discussed in the literature review section, ring-like structures can emerge
due to different processes, starting from the “coffee-ring” and “pin-whole opening”
effects, spontaneously arising in evaporating solvent, to the Marangoni flows and
template approaches, created deliberately. The aim of this section was to verify
that emergence of the “rings-and-rods” networks can indeed be attributed to
molecular self-assembly, i.e. that the tetrakis-Schiff zinc-complexes are able to
form ring-like assemblies, stabilized by inter-molecular forces.

On the first step systems, containing a single tetrakis-Schiff molecule or its
dimer, were studied using electron density functional (DFT) calculations to ac-
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Figure 6.2: The crystal structure of unsubstituted tetrakis-Schiff ligand, reconstruc-
ted from X-ray scattering [?] (left) and the DFT optimized molecular structures of a
zinc-complex dimer (right), hydrogen atoms are omitted for clarity, while the carbon
backbones are drawn as tubes. Grey and cyan on the X-ray based structure outline the
two stacked chains, facing in the opposite directions. Red, blue and grey balls designate
oxygen, nitrogen and zinc respectively.

curately evaluate their lowest energy state, the most favourable geometry, charge
distribution and the dimers’ binding energies. Single and double molecular com-
plexes were placed in a 50x50x50 Å simulation box and their geometries were op-
timized first using more robust SIESTA code, than using more precise ONETEP.
The initial wedge-like atomic configuration was based on the result of X-ray scat-
tering study of unsubstituted (metal free) tetrakis-Schiff ligand crystals (figure
6.2 left), reported in [?]. The calculated binding energy of molecular dimer is es-
timated to be ~-0.5 eV: -0,48 eV (SIESTA) and -0.50 eV (ONETEP), - equivalent
to about -11,5 kcal/mole (negative sign designates attraction).

On the second stage series of MD simulations of molecular complex dimers
were performed using a simplified model of the molecule consisting of four rigid
parts (as shown on the figure 6.3 right, flexible bonds are shown in yellow).
Covalent and van der Waals interactions were parametrized using DREIDING
force field. The atomic charges for these calculations were estimated from the
previous calculations using NBO method as implemented in ONETEP (the charge
distribution is shown on figure 6.3 left). In these simulations one molecule was
fixed in the center of the periodic box and initial position and orientation of the
other were chosen randomly. Molecular system evolution was simulated during
105 time steps (~100 ps). From the pool of final structures those, where stabilized
dimeric complexes had formed, were selected and analysed. The distribution of
their binding energies is shown on the figure 6.5.

Due to their wedge-like geometry tetrakis-Schiff zinc-complexes have aniso-
tropic binding ability. Simplistically, one can imagine the complex’s geometry
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Figure 6.3: The NBO charge distribution in a single tetrakis-Schiff molecule (left) and
a simplified “four-rigid-parts” model (right)

as a wedge, the ends of which originate on zinc ions and the tip at the center
of C-C bond connecting the two symmetric halves (figure 6.4a). For clarity, the
side into which tip points will be designated as "face" and the opposite side as
"back". Then the following most stable mutual orientations could be outlined
(figure 6.4b):

• "back-to-back" is the most stable of all configurations as almost flat "backs"
of the tetrakis-Schiff complexes allow a good contact to be established by
van der Waals forces even at the cost of some electrostatic repulsion. How-
ever, strongly attached to each other, such molecular pairs weakly interact
with other molecules so they are mostly encountered on opened ends of
multi-molecular assemblies;

• "face-to-face" configuration, on the contrary, favours Coulomb interaction
as the oppositely charged ions are placed closer and aromatic rings attached
to the "face" sides help to stabilize molecules. As their "backs", capable of
the strongest van der Waals attraction, stay opened, such pairs often link
molecular changes with different orientation;

• "stacked" molecules form the most ordered structures. As in "stacked" con-
figuration molecules are biased relatively to each other (because of electro-
static interaction and presence of side groups) chains composed of "stacked"
molecules easily bend as it is energetically more favourable for molecules to
flip to the same side which improves interaction with second-order neigh-
bours and lowers total system energy;

• "side contact" configurations are weaker than all other due to small surface
of contact and only weak π − π interactions. Single molecule thick chains
composed of zinc-complexes in such initial configuration quickly fold to form
more stable contacts. In thicker molecular strings "side contacts" however
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Dimer type
EvdW
b ECoul

b Eb

kcal/mole kcal/mole kcal/mole
“Back-to-back” ~-40 +6 - +7 >30
“Face-to-face” ~-20 -6 - -7 ~30
“Stacked” ~-30 -4 - 0 ~30

“Side contact” ~-20 -7 - 0 ~15-30

Table 6.1: Contributions to tetrakis-Schiff dimer’s binding energy

play supportive role as they link molecular chains together.

The decomposition of the dimer binding energy (Eb) into electrostatic (ECoul
b )

and van der Waals (EvdW
b ) contributions for the outlined structures is shown in

the table 6.1. As the result of such anisotropic dependence of binding energy on
mutual orientation of molecules it is kinetically favourable for the tetrakis-Schiff
zinc-complexes to form chain-like structures. However small value of binding en-
ergy and tiny difference between binding energies of various molecular configura-
tions allow multi-molecular structures to keep significant flexibility as molecular
chains can easily relax stress by local "flip" of orientation and, therefore, develop
non-uniform structures. It is important to note here that as electrostatic in-
teraction plays an important role in binding energy configurations, it might be
possible to control the structure of tetrakis-Schiff molecular systems in solution
by changing dielectric properties of solvent or application of external electric field.

On the final step the evolution of systems containing up to 450 tetrakis-Schiff
molecular models were studied with MD simulations using same simplified “semi-
rigid” parametrization as in previous simulations of dimer formation. Several
periodic structures were taken as the starting point for further simulation. In each
simulation molecular system was initiated as a string with free ends 9-64 molecules
long, 1 to 9 molecules in cross-section and left at constant volume box under the
temperature of 300 K. The main driving force of observed structural changes is
the tendency of molecules to form maximally closed configuration, especially at
opened ends of the chain and in surface layer. As the result of binding energy
anisotropy of the tetrakis-Schiff molecules, spontaneous fluctuations of molecular
orientation cause local ordering, leading to bending of entire sections to one side.
Starting from end points chains tend to fold to close the ends with the body of
the chain and form a circle-like structure. Monomolecular chains quickly break
into segments of small curvature, where initial "stacked" orientation is preserved,
connected with "kinks" formed by more stable but non-periodic configurations
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like "face-to-face" or "back-to-back" (figure 6.4).
Thicker molecular chains are more rigid as their molecules have better contact

with their neighbours and more resistant to structure changes, which results in
larger curvature of bending, dependent on the thickness of molecular string. A
frequent event observed in multi-molecular strings is orientation of surface mo-
lecules with their "tip" a bit inclined outside. Such molecules preserve a good
contact with interior of the string with their most strongly binding "backs" and
with other surface molecules through "stacked" and "side" contacts. This beha-
viour also improves the string bending resistance and helps to preserve arc-like
structure without collapsing into a droplet. The half-circular segment, the evol-
ution of which is shown on the figure 6.7, was mirrored to form a full ring, which
was further simulated as a single object during additional 107 time steps (~10 ns).
No structural changes were observed with system’s kinetic and potential energies
fluctuating around equilibrium. This observation indicates that zinc-substituted
tetrakis-Schiff complexes are indeed capable of assembling into elongated rod- and
donut-like structures that can maintain their shape, stabilized by the interplay
of van der Waals and electrostatic inter-molecular forces.

6.3 Validation of molecular model parameters

As was discussed in chapter ??, the appropriate choice of the molecular modelling
parameters (i.e. force field and charges) is crucial for the predictive power of the
simulation. The choice of electric charge for cation in metal-ligand complex is not
trivial. As the interaction of tetrakis-Schiff compounds is the result of a balance
between electrostatic and van der Waals interactions, accurate description of Zn-
O is of great importance to the current work. What is even more important is
that variations of charge with the geometry variation during molecular dynamic
run must be small so that a fixed charge approach is valid.

In chemistry such complexes are usually defined as Zn(II) compounds, cor-
responding to +2 charge (in the units of elementary charge |e−|) [?]. Previously
various groups have successfully employed zinc-cation charges varying from +2
down to +1 [212]. However, the standard RESP procedure (as was described
in the Methods section), suggests for the complex of interest the charge of zinc
cations equal to QZn~+0.98.

To verify the validity of the RESP derived set of charges molecular structures,
optimized using GAFF force field parameters in LAMMPS, were compared for
four selected charge sets and the result of DFT optimization in GAUSSIAN. The
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Figure 6.4: “Wedge” representation of tetrakis-
Schiff zinc-complex (a) and the main dimeric
motives, observed in semi-rigid MD calculation
(b) (The scale bars’ length is 10 Å)

Figure 6.5: Binding energy distri-
bution of semi-rigid dimer models
from DREIDING MD calculations

Figure 6.6: The evolution of a single molecule thick chain (The scale bars’ length is 10
Å)

Figure 6.7: The evolution of a two molecules thick chain and the donut-like structure,
obtained from it (The scale bars’ length is 10 Å)
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Figure 6.8: Comparison of the molecular structure of a single (left) and dimer (right)
tetrakis-Schiff compound obtained with DFT (blue) and GAFF for zinc charges +1.0
(iceblue), +1.2 (green), +1.5 (orange) and +2.0 (red)

charge sets were obtained with RESP method restricting the value of zinc charge
correspondingly to +1.0, +1.2, +1.5, +2.0. The optimized atomic structures of
a single tetrakis-Schiff compound and its dimer are shown on figure 6.8. It can
be seen with the naked eyes that while the geometry, obtained with the charges
of zinc cations +1.0 and +1.2 follow the DFT-optimized geometry closely, the
molecular structure for the charges +1.5 and +2.0 deviates from the reference
structure. This deviation is especially striking for dimer structure, were the
increased electrostatic interactions force Zn and O atoms closer, distorting the
initial geometry.

As the second test, the same procedure was repeated for a single salphen-
based zinc-complex, for which the crystallographic structure is known [?]. A
4x4x4 supercell was created by translation of the experimentally derived coordin-
ates and optimized in LAMMPS using the same parameter sets as previously
and equilibrated during 50 ps under Nose-Hoover NPT barostat (T=293.15 K,
P=1 atm.). The estimated lattice vectors of the resulting crystal structures
are summarized in the table 6.2 together with the root mean square deviations
RMSD =

√∑
i (~ri(t)− ~riexp) of the atomic positions (~ri(t)) from experimental

result (~riexp). Although the lattice vectors, obtained with the last two charge sets
(QZn = +1.5 and QZn = +2.0), maintain the right angles of the initial cell, the
lattice parameters of QZn = +1.0 charge are closer to the experimental which is
also supported by RMSD value. Here a, b and c are the lengths of the lattice
vectors ~a, ~b and ~c , the angles between which are: α = ∠(~b,~c), β = ∠(~c,~a) and
γ = ∠(~a,~b).

To assess the stability of atomic charges ESP charge fitting were conducted in
Gaussian for a set of 90 snapshots, extracted from molecular dynamics traject-
ories for a single tetrakis-Schiff zinc-complex in all three solvents under study.
Opened, closed and inverse configurations of the complex were equally repres-
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RMSD a b c α β γ

Å Å Å Å deg deg deg
experiment 11.362 12.263 17.973 90.0 80.1 90.0
QZn = +1.0 0.947 12.000 12.859 16.521 90.0 86.1 90.0
QZn = +1.2 1.653 11.960 13.847 15.387 90.0 81.0 90.0
QZn = +1.5 1.672 11.891 13.735 15.481 90.0 80.1 90.0
QZn = +2.0 1.729 11.763 13.468 15.708 90.0 80.2 90.0

Table 6.2: Comparison of primitive cell parameters and RMSD of atomic coordinates
form the reference positions for the experimental and simulated crystal structures

ented. The effect of the solvent atoms was included as a potential from frozen
point charges with ONIOM method [213, 214] as implemented in Gaussian. The
estimated charges of Zn ions are summarized on 6.9. Here ESP “Snapshot”
lines/circles correspond to the charges fitted for the complex geometry restricted
to the coordinates from MD trajectory. Additionally, the complex geometry was
optimized using DFT and B3LYP exchange-correlation functional in the environ-
ment of “frozen” solvent molecules, which resulted only in a negligible correction.
As expected ESP charges are a bit higher then computed with RESP [132], how-
ever both ESP methods produced zinc ion charges, varying around +1.1 with 0.1
standard deviation with their average remaining within 10% deviation from the
result of the standard RESP fitting method for a complex geometry optimized in
vacuum.
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As the last test, the interaction energy between a single salphen-based zinc-
complex and a single THF molecule was calculated for a set of fixed distances
(rCS) between the solvent’s oxygen and the initial position of zinc cation in
ONETEP and in LAMMPS using GAFF and the RESP-derived charge set. In
both cases the carbon backbone of zinc-complex and solvent’s oxygen were con-
strained to their redefined positions, while the rest atoms were allowed to re-
lax. The distance dependent interaction energy between complex and solvent
molecules (∆UCS(rCS)) in LAMMPS were estimated directly as the sum of pair
energies of non-bonding interactions between atoms form the two molecules, while
in case of ONETEP it was evaluated as:

∆UCS(rCS) = ECS(rCS)−
(
E0
C + E0

S

)
; (6.3.1)

where ECS(rCS) - is the total system’s energy, evaluated after coordinate relax-
ation at the distance rCS, and E0

C and E0
S are the ground state energies of the

standalone complex and solvent molecules respectively. The resulting plots are
shown on the figure 6.10 (zero level of the potential energy was set to the value
estimated at the largest separation in both cases). It is clear that, despite the
fixed charge model is used in force field based calculation, the deviation from
quantum chemical calculation is marginal.

6.4 MD study of a single tetrakis-Schiff molecule

6.4.1 Conformational free energy change

Before going on to investigate the self-assembly of the selected multi-molecular
chains in various solvents it is important to investigate possible conformations of
a single molecule. Due to the relative rigidity of cation-N2O2 sites, the conform-
ational space of a tetrakis-Schiff compound can be reduced to the two dihedral
angles shown on picture 6.11. The first one is the angle between the planes of
the two central phenolic rings, linked with the single C-C bond, here and after
designated by Θ. The second angle is the angle between one of the side phenolic
rings and the closest to it side group (methyl or phenyl in the current work), here
and after called Φ. There are two such angles: one per each symmetrical half, -
however, only one of them needs to be studied, since any conformation, obtained
by change of the other can be represented by corresponding changes of the first
one and Θ with subsequent inversion of the molecule. For clarity, in what follows
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Figure 6.11: Conformational angles of a single tetrakis-Schiff compound

the conformation, in which both Φ angles have the same sign (side groups point
in the same directions) will be designated with the letter “W ”, while the opposite
case will be addressed as “S” conformation.

To sample the free energy profiles (or the potentials of mean field, PMF)
profile during the conformational change the umbrella sampling approach was
used, where the angles Φ and Θ were used as the reaction coordinates. Pre-
liminary NEB calculations supported that such choice of transition coordinates
indeed closely approximates minimum energy paths. In this study Θ was varied
in range [15◦; 345◦], Φ in [−120◦; 120◦], angle values outside of this range are only
possible with strong deformation of the molecule and are unlikely to occur. The
step was chosen to be 2◦ and the spring constant of the biasing potential was 128
kcal/mole/degree2 to ensure good sampling of the peak of the potential surface.
To observe the effect of the phenyl side groups, the same calculations were con-
ducted for the same compound with the side groups replaced by methyl groups.
It is known from the experiments that the later compound does not form ring-like
structures, collapsing into a droplet instead.

The free energy profiles and angle Θ probability distributions (P ) are shown
on the figures 6.12 and 6.13 for the phenyl- and methyl-terminated tetrakis-Schiff
complexes respectively. As the calculations are only conducted in vacuum, the
Helmholtz free energy ∆F is used here. The major motif, present on all the
figures, is the ~7 kcal/mole peak of the free energy in the middle, while the
conformational probability peaks around 50◦ and 250◦ − 310◦ where the PMF
has basins before different parts of the molecule begin to overlap. A metastable
conformation can be observed near Θ ∼ 150◦ where PMF has a plateau before
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the main peak. This plateau corresponds to the situation, when the two zinc-
centers are far apart and the central aromatic rings form a close to equilibrium
dihedral angle of 120◦. For clarity, in what follows these three distinct cases will be
referred as “closed” (Θ ∼ 50◦), “opened” (Θ ∼ 150◦) and “inverted” (Θ ∼ 250◦)
conformations. Since S -shaped conformation is completely symmetrical, unlike
theW -shaped, it does not possess a special “inverted” conformation, as transition
over the central peak is equivalent to mirror transformation.

It is interesting that, unlike phenyl-functionalized compound, the complex
with methyl groups has one clearly preferred stable conformation - the “closed”
one. The “inverted” conformation, although stable, is clearly less favourable and
the transition barrier is much higher in this case. Such difference in PMF of
almost similar compounds must be attributed to the role of side groups: besides
increasing the conformational entropy, after a certain angle (Θ ∼ 100◦ − 120◦

according to 6.12), when Zn-O attraction is already weak, the π − π interaction
between the two phenyl groups or between side groups and aromatic rings of the
salphen bases lowers the potential energy growth due to electrostatic and covalent
contributions. On the other hand, methyl groups do not possess such ability and
only add repulsion for “inverted” conformer potential energy.

Thermal energy at 300 K is only about 0.5 kcal/mole, so the probability of
transition from one basin to another in vacuum is only about 10-6. This behaviour
is expected for vacuum, as the two metal-NO sites attract each other strongly and
in the absence of screening by solvent the molecule collapse to one or other side,
while the “opened” configuration with Θ ∼ 150◦ (or 210◦ for S -shaped conformer)
is highly unstable.

Figure 6.14 shows the free energy profile for Φ angle for both side groups.
Again there are two basins around the values of ±55o with 6-8 kcal/mole high
peak between them.

6.4.2 Diffusion in the selected solvents

To further investigate the behaviour of tetrakis-Schiff zinc-complex molecules and
the effect of solvent series of MD simulations were conducted. The single com-
pound molecule in one of the two W -shaped conformations: “closed” or “opened”
- was inserted into the periodic cubic box of DCM, THF or toluene molecules.
After the initial relaxation, as described in the methods section, the systems dy-
namics was modelled in LAMMPS under the normal conditions (T=293.15 K,
P=1 atm) using AMBER force field and charges derived as described above. The
systems dynamics was governed by the Nose-Hoover NPT barostat and thermo-
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Figure 6.12: Free energy difference (∆G) and probability (P) profiles for angle Θ for a
phenyl functionalized compound. Left - alpha configuration, right - beta configuration

Figure 6.13: Free energy difference (∆G) and probability (P) profiles for angle Θ for a
methyl functionalized compound. Left - alpha configuration, right - beta configuration

Figure 6.14: Free energy difference (∆G) and probability (P) profiles for angle Φ for
phenyl (left) and methyl (right) functionalized compounds
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Solvent Ddiff , 10−5 Å/fs
“closed” “opened” total

DCM 8.29± 0.08 6.39± 0.06 7.34± 0.04
THF 4.14± 0.04 3.59± 0.04 3.86± 0.02
TOL 4.18± 0.04 4.25± 0.06 4.22± 0.02

Table 6.3: The estimated diffusion coefficients

stat with the 0.5 fs timestep. 20 independent 2 ns simulations were conducted
for each starting conformation in each solvent, during which the solute molecule
displacement (d), the absolute value of dipole moment (p) and complex-solvent
pair interaction energy (UCS) was evaluated.

The average diffusion coefficients were estimated according the method sug-
gested in [125]. The collected displacements are shown on the figures presented
in B.1. The average diffusion coefficients (Ddiff ), estimated for all trajectories as
well as separately for those starting from “closed” and “opened” conformations,
are summarised in table 6.3.

The interesting detail of the zinc-complex behaviour in various solvents is most
strikingly seen on the plots of the dipole moment variation during simulation (a
typical example is shown on figure 6.15). Here the blue and red lines correspond to
the dipole moments of each of the two symmetrical halves of the molecule (pL(R)),
that remain almost constant along the simulation, while the total dipole moment
(pT , black line) has a two distinct levels that correspond to either “opened”
configuration, where the vectors of dipole moments of the symmetrical halves
face and almost neutralize each other, or “closed” and “inverted”, where the
~pLand ~pR are almost parallel, hence the total dipole moment is higher. Frequent
transitions from the “opened” to “closed” state were observed in DCM, such as
the one shown on the lower left plot of the figure 6.15. In THF and toluene such
transitions are rare.

This difference in behaviour can be explained by the plots of radial pair dis-
tributions (g(r)) between the selected atom types (figure 6.16). Here the most
striking feature is observed for “opened” zinc-complex in THF: a sharp peak at
zinc - THF oxygen distance ∼ 2.1 Å. This feature is the result of a strong at-
traction between Zn+ cation and negatively charged oxygen of THF molecule,
leading to a stable association of the solvent molecule and the cation center in
the “opened” complex (figure 6.16 left). A similar, however quite weaker, peaks
can be observed for cation-π and π−π interactions between zinc ion and aromatic
rings of the tetrakis-Schiff complex and the aromatic ring of toluene (figure 6.16
center and right). These interactions improve the solute-solvent interactions for
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Figure 6.15: Variation of the dipole moment of a single tertakis-Schiff zinc-complex in
DCM, THF and TOL correspondingly: upper row - starting from “closed” conforma-
tion, lower - from “opened”, black line - total dipole moment, blue and red - left and
right halves

Figure 6.16: Radial pair distributions for zinc cation and oxygen of THF molecule (left)
or aromatic carbons of toluene (center) and for aromatic carbons of salphen complex
and toluene (right)

the “opened” complex, making such configuration relatively stable in THF and
toluene. Somewhat similar interaction exists between hydrogen atoms of DCM
and the oxygens of tertakis-Schiff complex, but obviously they are too weak to
overcome Zn-O attraction in the solute. As the result, a polar “closed” conform-
ation becomes dominant in DCM, increasing the rate of diffusion, while increased
average radius and solute-solvent interactions additionally slow down diffusion in
TOL and especially in THF (table 6.3).

6.5 Multi-molecular assembly in vacuum and ex-
plicit solvent

In section 6.2 it was shown using a simplistic 4-rigid part model in vacuum that,
due to competing Coulomb, π−π and van der Waals interactions, tetrakis-Schiff
zinc-complex molecules can self-assemble into nanosized linear chain-like struc-
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tures. Such chains could bend due to thermal fluctuations and rearrange to main-
tain a stable curved string or closed ring shape without collapsing into droplet.
However, the spontaneously formed structures, observed there, contain many de-
fects and disordered segments which made analysis of their structural motifs quite
difficult. To investigate in details how the building blocks of “rings-and-rods” net-
works appear and how the choice of solvent affects their formation and behaviour,
an approach from different perspective was used here. Basing on the results of
the preliminary simulations of random dimer formation, reported in section 6.2,
several dimer samples were selected that, taking into consideration the flexible
structure of twinned salphen-based zinc-complex, can support periodic repetition
in one dimension, i.e. from which potentially infinite chains can be constructed.
The four selected arrangements are shown on the figure 6.17.

• The arrangement 6.17a is a periodic repetition of the “stack” arrangement
of the W -shaped conformation reported in section 6.2. It is the most com-
pact structure, stabilized by combined Coulomb and π−π interactions and
the only one where initially neighbouring molecules have the full surface
contact;

• The arrangement 6.17b can be viewed as a result of outstretching of 6.17a,
in which monomers are only bonded together at one side in an alternating
“left-right” order. Deformation into S -like conformer allows the creation of
the pockets where solvent molecules can enter;

• The arrangements 6.17c and 6.17d are based on the dimer structures pro-
posed for single-base salphen-type zinc compounds as was discussed earlier
in section ??. The only difference between the two is that while 6.17d is
obtained by consequent displacement and rotation of a monomer creating a
ring- or spiral-like chain, the building block of 6.17c is a dimer with inver-
sion symmetry which enables, in an idealised case, a linear structure with
the highest aspect ratio.

Obviously the experimental realisations of molecular chains would be a random
combination of those idealised structures. This simplification, however, allows to
study relative stability of the selected segments in solvent and thus the rate of
their appearance.

6.5.1 Association free energies for selected dimer struc-
tures in solvent

One reason why different self-assembled structures may emerge from different
solvent is that the solvent molecules interact with different parts of the solute
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Figure 6.17: Possible 8-molecular chain-like arrangements, scale bar is 10 Å

Figure 6.18: Selected dimeric structures (hydrogens are omitted for clarity)

molecules, affecting which conformation the solute molecules assume and strength
of their interaction with each other. It was shown previously (section 6.4.2) that
“opened” and “closed” conformations of the tetrakis-Schiff zinc complex apart of
different gyration radius, affecting their speed of diffusion, but also different total
dipole moment, thus different interaction with polar and non-polar solvents can
be expected for the two conformations and, hence, different structure of multi-
molecular arrangement, emerging from solvents with different dipole moment of
solvent molecules.

To test this hypothesis series of calculations were carried out to estimate the
free energy of formation of dimeric structures, serving the building blocks of the
molecular arrangements, shown on figure 6.17. The selected dimer structures are
shown on the figure 6.18. Here dimers a1 and a2 both refer to arrangement,
designated on the figure 6.17 with the letter a, with one difference: while a1 has
both Zn-O sites of each symmetric complex interacting with its counterpart from
the other complex, in a2 the second molecule is rotated so that only one ionic
bond is present leaving the other cation centers of both molecules free to form
bonds with subsequent molecules, thus forming a some-what twisted version of
the arrangement a with alternating Zn2O2 bridges. Dimers b1, b2 and c1, c2
refer two the two subsequent conformations, present in the arrangements b and
c correspondingly. The last coil-like arrangement d is formed by a single dimer

107



 20

 22

 24

 26

 28

 30

 32

 34

 36

 38

a1 a2 b1 b2 c1 c2 d1

dimer type

|∆G
v
dim|, kcal/mole

Figure 6.19: ∆Gvdim for the selected dimers in vacuum

d1, translated and rotated by a constant amount.

6.5.1.1 Dimerization in vacuum

As the first stage, the free energy calculations in vacuum environment were es-
timated for all dimeric structures, shown on figure 6.18. The dimerization free
energy ∆Gv

dim was estimated as the negative of the free energy change during dis-
sociation of a dimer in vacuum ∆Gv

diss. After initial testing, the FEP method was
selected from the free energy methods, described in Methods section as giving the
most stable results. For each dimer type a set of 10 independent calculations were
conducted during which both Coulomb and van der Waals interactions, modelled
with soft-core versions of potentials 6.1.2 and 6.1.3, were scaled down simultan-
eously with the coupling parameter λ changing linearly with the step 0.05. For
each λ-point the system dynamics was simulated in LAMMPS with Langevin
thermostat during 106 timesteps (~0.5 ns) from which only the last quarter was
used for FEP calculations, resulting in total 10 ns simulation per each sample.
The interaction potential energy change in both forward δUFWD and backward
δUBWD directions was sampled every 10 timesteps. δG between each pair of
consequent λ-point were calculated using the Bennet acceptance ratio method.

From the results, presented on the figure 6.19, it is clear that in the model va-
cuum environment all dimeric structures are thermodynamically stable ( |∆Gv

dim| >
20 kcal/mole) with the arrangement a having the lowest formation energy with
both conformations a1 and a2 having dimerization energies −32.6 ± 2.8 and
−31.8 ± 5.6 kcal/mole correspondingly, while the arrangements b and c both
have one of the dimers with formation energy in the same range (−32.7± 1.1 for
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Figure 6.20: Thermodynamic cycle for the dimerization in solvent: direct transform-
ation (yellow arrow) and the “alchemical transformation”, corresponding to equation
6.5.1 (blue arrow)

b1 and −29.4± 1.8 for c2 ), their counterparts, needed for periodic structure, are
a bit weaker (−24.4± 2.8 for b2 and −23.3± 1.3 for c1 ). The dimer d1 has the
intermediate free energy value of −27.8± 1.0.

6.5.1.2 Dimerization in solvent

Calculation of the free energy of dissociation in solvent via the same route turned
out to be quite unstable, since, as the interaction between the two solute molecules
weakens, it becomes easier for the solvent molecules to enter the emerging gaps.
This accelerates the dissociation process up and leads to unstable results. For
this reason, the dimerization free energy in solvent ∆Gs

dim was estimated in the
“roundabout” way of “alchemical transformations” (figure 6.20):

∆Gs
dim = ∆Gd

solv + ∆Gv
dim − 2 ·∆G1

solv; (6.5.1)

where ∆Gd
solv and ∆G1

solv are, correspondingly, the free energy of solvation of
a dimer and a single tetrakis-Schiff molecule, estimated using FEP method by
gradually coupling the solute molecules from solvent by scaling up the strength of
non-bonding interactions between them. Since the solute molecules are quite large
and simultaneous decoupling of the whole molecule would induce a large stress
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∆Gd
solv ∆Gv

dim ∆Gs
dim

Dimer DCM THF TOL DCM THF TOL DCM THF TOL
a1 -58.53 -51.45 -48.27 -39.01 -35.50 -49.66 -24.46 9.29 -23.24
a2 -60.68 -61.76 -52.37 -24.38 -32.18 -27.82 -11.98 2.30 -5.50
b1 -52.62 -57.74 -47.23 -32.97 -32.54 -39.59 -12.52 5.97 -12.14
b2 -53.18 -59.69 -49.28 -24.70 -32.32 -30.11 -4.81 4.23 -4.71
c1 -57.99 -61.01 -51.99 -24.61 -29.39 -25.94 -9.53 5.84 -3.25
c2 -63.88 -69.63 -56.63 -29.31 -38.50 -41.14 -20.11 -11.89 -23.09
d1 -59.54 -67.97 -51.97 -26.29 -37.96 -28.47 -12.75 -9.69 -5.76

Table 6.4: Free energy change during the dimer transformations for the selected dimers

on the system, in these simulations the following 3-parameter decomposition for
the pair-interaction potential energy (equation 6.1.1) was used:

USC = US + UC + λAvdWU
vdW
SC,A + λNvdWU

vdW
SC,N + λCoulU

Coul
SC ; (6.5.2)

here USC , UC , US, UCoul
SC are, correspondingly, the full pair interaction of the

solvent-complex (solute) system, the energies of pair interaction between only
the atoms belonging to either complex or solvent and Coulomb interaction energy
between complex and solvent, as were defined earlier in Methods section. However
the potential energy of van der Waals interaction U vdW

SC is additionally decomposed
into U vdW

SC,A and U vdW
SC,N - corresponding to the impact of aromatic and non-aromatic

atoms of the solute molecules. Hence, the 3 coupling parameters: λCoul, λAvdW and
λNvdW . In the attempt to minimize large fluctuations of δUFWD and δUBWD at
the beginning and the end of scaling of each coupling parameter, the non-linear
λ-schedule was used, as shown on figure 6.21. Each λ-point corresponds to a 600
fs long simulation, from which only the last 200 were used to sample data for
FEP calculation.

The initial system was prepared by inserting the dimer structure into a cubic
block of solvent molecules and relaxation as described in Methods section. As
previously, the solvent dynamics was governed by Nose-Hoover NPT thermostat,
while the solute dynamics was controlled by Langevin thermostat. Solvation
simulation for each sample lasted 39.6 ns. During the preliminary runs, such
solvation calculations proved to be more stable than dissociation, so a single
simulation was conducted for each sample. After the solvation cycle was complete,
the dissociation simulation, as described in the previous section, was conducted
for the dimeric structure, as it remained at the end of solvation simulation.
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Figure 6.21: Variation of coupling parameters during solvation FEP simulation

The results of the calculations are summarized in the table 6.4. Here the most
favorable dimer configurations are outlined with bold values of the correspond-
ing free energy change during dimerization in solvent, while the red font marks
the calculations, where dimerization in solvent was found unfavorable (positive
∆Gs

dim). From the results summarized in the table it becomes clear that, al-
though all the selected dimeric structures can exist in DCM and toluene, a1 and
c2 dimer are clearly the most stable out of all with

∣∣∣∆GS
dim

∣∣∣ > 20 kcal/mole. In
THF all dimerization free energies turn out to be much lower, leaving only c2
and d1 dimers thermodynamically stable. These results bring to the conclusion
that the self-assembly most likely starts from the association of single molecules
into one of these dimers.

6.5.2 Evolution of selected molecular chain structures in
solvent

To further investigate role of the solvent in the self-assembly of tetrakis-Schiff
compound’s networks series of all-atom molecular dynamic simulations of chains,
containing several tetrakis-Schiff complexes were conducted in explicit solvent for
the selected structures. The simulation in explicit solvent consisted of the initial
relaxation as described earlier in Methods section followed by a 1 nanosecond long
runs in each environment under room conditions (300 K temperature and 1 atm.
pressure) with 1 fs timestep, during which the components of solute-solute and
solute-solvent interaction energy and the chain conformation were monitored. 5
independent simulations were conducted for each arrangement in each solvent.

The collected data for all four selected strictures are summarised in the ap-
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Figure 6.22: Variation of chain surface area for chains of type a (left) and c (right)
averaged over 50 ps

pendix section B.2. The most important observation here is shown on the figure
6.22 - the surface area of the chain in solvent (Aslv), defined as the boundary of
the volume around the solute, into which an atom with van der Waals radius of
1 Å cannot penetrate. From the results, presented here, it is clear, that although
in model vacuum environment the arrangement a is the most thermodynamically
stable, it becomes quite fragile in the explicit solvent: starting from the compact
~4000 Å2, its values diverge abruptly after ~0.5 ns independently on the solvent.
The reason for this can be seen on the figure 6.23: the initial chain structure
breaks down into smaller parts containing 2-3 molecules. This most probably
occurs because the metal centers, sandwiched between the other two alike, are in
a metastable state, where the idealized configuration 6.24, in which zinc in of the
intermediate molecule forms a Zn-O bond with one of the neighbour molecules,
while the oxygen of the outer, mobile phenol-like ring, participates in ionic bond
with the other neighbour molecule, turns out to be unstable against torsional de-
formations induced by surrounding molecules. The spontaneous displacement of
either the phenol oxygen or zinc ion to form a more stable Zn2O2bridge with just
one of the neighbour molecules results in breaking of the initial structure. As the
arrangement a resembles a helix, another type of simulation was attempted: the
two helix-like strings (shown in red and blue on the figure 6.25) wrapped around
each other into a single rod were subjected to the same procedure. Although
the torsional deformations are compensated in this way, another weakness of the
arrangement a becomes clear: poor side-to-side interaction, originating only form
van der Waals forces and not allowing a stable contact. Due to such weak in-
teraction between the strings, the double helix arrangement rapidly decomposes
in solvent into two separate strings that continue to break as in single helix sim-
ulations as indicated by continuous increase of solute-solvent attraction (figure
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6.26).

On the other hand, the arrangement c proved to be quite stable both in va-
cuum and the explicit solvent: although immediately after relaxation, its solvent
accessible surface area begin to grow, simulations do not diverge and arrive to a
saturation within the first ~0.5 ns. Its remarkable stability arises from the com-
bination of the strong Zn2O2links between the molecules and flexibility of rotation
around the central bond of symmetric tetrakis-Schiff molecules, thanks to which it
maintains integrity under stresses, induced by solvent molecules. The behaviour
of the phenyl side rings in such arrangement is of particular interest: although
they are not needed for the formation of the chain, they are playing an important
role in the conformational change of the chain. Figure 6.27 shows the examples
of the typical configurations the chain of this arrangement assumes in solvent. It
can be seen that in DCM and THF the chain bends, so that on the one side the
phenyl chains stick to each other due to π−π interaction, while on the other they
leave wide pockets opened for interaction with solvent. Thus the curved shape is
assumed spontaneously in these two solvents improving solute-solvent interaction.
On the other hand, this may also serve the increased rigidity of such structure, as
covalently bonded core would resist further folding. In toluene, however the chain
is straighter, with some of phenyl groups stretching aside at both sides, while the
other stretch along the axis of the chain. The reason of such difference in beha-
viour becomes clear form the right-most plot on the figure 6.27: polar solvents
interact more strongly with the ionic center of the salphen-based zinc complexes
and the pockets, opening due to bending, result in a significant improvement of
such interaction, resulting into lower solute-solvent interaction energy. Toluene
on the other hand interacts with tetrakis-Schiff molecules through weaker π − π
and cation-π interactions, so the gain in solute-solvent interaction is countered
by decrease of solute-solute interaction and stresses arising in covalently bonded
backbone.

Another important role of the stretched aside phenyl groups in the arrange-
ment c are bonding of the long strings together into a thicker rod. Although the
π − π interaction is weaker than ionic, as the chain grows longer, it becomes less
and less probable that the ends of different chains would meet and the potential
gain of free energy of bonding remains constant. At the same time, gain from
binding the two strings side-by-side via π−π grows proportionally to their length
and the probability of such contact increases exponentially with the aspect ratio
of the chain, as was shown in the second chapter.
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Figure 6.23: Single chain of type a in DCM (blue), THF (red) and TOL (yellow) after
a 1 ns simulation (hydrogens are omitted for clarity, grey shows the surface as defined
in text)

Figure 6.24: Zn-O ionic bonds in idealized (left) and broken (right) helix-like arrange-
ment of type a

Figure 6.25: Double chain of type a in
DCM: idealized (left) and relaxed after 1
ns simulation (right)
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Figure 6.27: The shape variation of type c chain in DCM , THF and TOL (hydrogens
are omitted for clarity, grey shows the surface as defined in text)

Figure 6.28: Possible types of π − π interaction between strings of type c: “pincer”
(left) and “sandwich” (right)

6.6 Proposed mechanism of “rings-and-rods” like
networks self-assembly

Based on the observations of the zinc-substituted tetrakis-Schiff complex beha-
viour in the simulations above, the following explanation of the interconnected
networks self-assembly is proposed:

• On the first step, single compound molecules join in dimer, resembling
aforementioned “back-to-back” configuration through the strong Zn2O2 in-
teraction between one of the two metal centers from each molecules. This
interaction is quite strong ∼ 35 kcal/mole, so must occur quite fast in all
solvents. This interaction should also provoke the change of the molecule
conformations as the zinc and oxygen atoms of both molecules, involved
into inter-molecular bond, weaken the intra-molecular attraction between
ionic centers of the same molecule. On this stage the symmetry between
the minima of PMF, corresponding to the Θ and Φ angles, as defined in
6.4.1, is broken and the change of initial conformation to a dimer, bonded
through Zn2O2 bridge is facilitated. Connection through both centers es-
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Figure 6.29: The idealised model of tetrakis-Schiff assembly of type c forming a ring-
like structure with multiple connections via tangent π−π connection and continuation
of the same chain: hydrogens are omitted for clarity, grey and red spheres show the
Zn2O2 bridges, connecting the linear structure of the chain, while yellow and orange
rings indicate the interlocked phenyl side groups, holding different chains together
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pecially in case of W -shaped conformer is possible as well, however, it puts
significant stress on the C-backbone and must relax relatively easy to the
single center interaction upon collision with another dimer or interaction
with solvent molecules. Such dimer has the diameter of ∼ 2 nm, so it must
correspond to the smallest fraction with the diameter of 19.68 Å as was
observed by DLS and DOSY measurements in [?]. As was already noted, a
single tetrakis-Schiff molecule appears to maintain the closed form in DCM
with the approximate diameter of ∼ 9Å.

• Such dimers serve as the primary building blocks of the higher order supra-
molecular structure. There are two ways, through which dimers interact
with each other: formation of Zn2O2 bridge between the free halves of the
adjacent dimers, leading to formation of long ionic bonded chain (figure
6.17c), or π− π interaction via phenyl groups. Since each side of dimer has
the two phenyl rings, interacting with each other in a standalone dimer,
the two distinct types can be seen in the π − π bonding: a “sandwich-
like” arrangement with interleaved phenyl groups (figure 6.28 right) or a
“pincer-like”, where the phenyl rings of the same dimer primarily interact
with each other, but are inserted into space between the like groups of
another chain as pincer cogs (figure 6.28 left). The former type is stronger,
but might be more rear to find as the interaction of the adjacent rings
must be interrupted first (which can occur due to interaction with solvent).
Unlike was initially suggested in [?], here it is suggested that both Zn-O and
π − π interaction are equally important for the self-assembling structure.
In vacuum ionic interaction is stronger at first, promoting the formation
of elongated supra-molecular chains, bonded with Zn2O2 bridges, leaving
the phenyl groups stretching aside, supporting ionic bonds and providing
rigidity to the chain. However, as the chains grow longer, the strength of
each ionic bond remains constant, while the probability that the endpoints
of long chains will meet each other decreases, as the elastic stress reduces
the mobility of the dimers, residing on the ends of such chain. On the
contrary, the importance of the π − π bonding increases proportionally to
the chain length as more phenyl groups participate in it and the probability
of side to side contact of long linear chains growth by the power law with
the aspect ratio, as was mentioned previously (equation 5.1.2).

• Due to the two types of interaction, the initial dimers assemble into long
semi-flexible chains that are rigid enough on a nanometer scale, but bend
freely on micron scale. Similar to the behaviour observed in covalently bon-
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ded semi-flexible polymers (discussed in the literature review section 2.2),
upon evaporation of solvent such supra-molecular chains undergo transition
first from coil to spherical globule (the experimentally observed “vesicles”)
and then, depending on the rigidity and aspect ratio of the chains formed by
that moment, from spherical to rod-like or toroidal globule. The important
feature of self-assembled networks, setting them apart from the well invest-
igated covalently bonded polymers, is their ability to form new connections
with the chains from other coils. Thus for a certain range of concentra-
tions an interconnected network is possible, arranged due to the integration
of separate coils into higher order structure with the same non-bonding
interactions that connect the chains of the same coil.

It is easy now to imagine a molecular arrangement such as shown on figure
6.29. Although such structure can in principle exist (and probably does on a tens
of nm scale) it is, of course, idealised demonstration of concept, illustrating how
such chain of ionically bonded dimers can form a network of interconnected coils,
resembling the experimentally observed “rings-and-rods” networks. In the reality,
the micrometer-sized rings and rods must be composed of shorter strings arranged
in a beards-nest or threads-in-a-rope like fashion. The molecular “threads” are
internally bonded by ionic Zn-O like interaction and hold together with π − π

bonds.

As well, the real coils may, and most likely do, contain the fragments cor-
responding to the other conformers of the studied tetrakis-Schiff complex. This
increases the complexity of the chains’ internal structure and introduces more
randomness into the distribution of rings’ diameters and rods’ lengths. Further-
more, when solvent evaporates, the structure transition can take place from the
arrangement shown on figure 6.17c as more open to solvent, to the arrangement
on figure 6.17a as more dense. Such transition can induce stress in the rods, con-
necting the rings, causing a kink feature, seen on the micro-photographic images.
However, it is proposed in this study, that it is the described mechanism of forma-
tion of the arrangement 6.17c dominates in the solution and is responsible for the
formation of the “rings-and-rods” like networks as the other arrangements cannot
on their own explain all the experimental observations, including the effects of
metal center, the functional group and solvent in a way the selected arrangement
can.

Within the proposed mechanism the role of both Zn-cations and phenyl func-
tional groups becomes clear: while the same looking structures were observed
even for unsubstituted ligands, the hydrogen bond, capable of formation similar
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dimers and connecting them into strings, is weaker than interaction via Zn2O2

bridge, thus the structures of unsubstituted ligands are less distinct and disrup-
ted. Replacing phenyl side group with methyl termination not only prevents
π − π linking of ionically bonded chains into larger assemblies, but also reduced
the chains’ rigidity. Thus the coils of methyl terminated complexes do not un-
dergo coil - toroidal globule transition, but instead remain in the form of shrinking
spherical globule.

Finally the strong effect of the solvent can be interpreted as the result of the
solvent molecules intervention into one of the two types of dimer-dimer interac-
tion, crucial for the extended network formation. If a non-coordinating and non-
aromatic solvent is used, such as DCM, the self-assembly follows as described
with the formation first of elongated dimer chains, followed by π − π bonding
of separate chains into longer semi-flexible strings, which folds as the solvent
evaporates into coils, followed by transition into interconnected toroidal globules.
However, if instead a coordinating solvent is used, such as THF, its molecules
interact with the metal center, thus reducing the probability of dimer association
into longer chains. For this reason only short, small aspect ratio strings can be
obtained from THF. This effect is similar to the effect of pyridine on other zinc-
substituted compounds [215]. Toluene, on the other hand, interacts much weaker
with tetrakis-Schiff molecules, thus it is possible for them to stay aggregated on
nanoscale, which, together with slow diffusion, prevents emergence of long flexible
chains and leads to formation of collections of needle like crystals.

6.7 Molecular dynamics study of the free en-
ergies of association of tetrakis-Schiff zinc-
complexes in solvent

To verify the proposed mechanism of formation of “rings-and-rods” like networks,
free energies of association of zinc-substituted tetrakis-Schiff molecules into di-
mers and tetramers in each of the solvents. Preliminary calculations have shown
that direct estimation of PMF during dissociation process via steered molecular
dynamics method (SMD) face a certain difficulties: the free energy profile changes
rapidly when the ionic Zn-O bond is broken and solvent molecules actively fill
the emerging gap between the disjoint monomers. This creates an abrupt change
in PMF that violates the condition of applicability of such method: near equilib-
rium transition. Hence, a large number of independent simulations are needed so
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that the exponential average of non-equilibrium work functions would be close to
the transition free energy change.

For this reason, a roundabout approach of alchemical transformations com-
bined with free energy perturbation (FEP) method was chosen. Within this
approach instead of simulating dissociation of the molecular cluster in solvent
under external force, the transformation was spited in the two parts: estima-
tion of free energy of dissociation in vacuum by scaling gradually the strength of
non-bonding interactions between the associated molecules and estimation of the
solvation free energies of both initial and final molecular structures. This allowed
to circumvent the difficulties connected with a rapid PMF change by smoothing
on the transition speed with careful selection of the scaling parameter sched-
ule (λ-schedule) and separating the interaction between the compound molecules
from the influence of solvent. The potential energy of pair interactions 6.1.1 in
this case was decomposed as follows:

USC = US + UC + λAvdWU
vdW
SC,A + λBvdWU

vdW
SC,B + λCoulU

Coul
SC ; (6.7.1)

here USC , UC , US, UCoul
SC are, again, the full pair interaction of the solvent-complex

(solute) system, the energies of pair interaction between only the atoms belonging
to either complex or solvent and Coulomb interaction energy between complex
and solvent, as were defined earlier in Methods section. However the potential
energy of van der Waals interaction U vdW

SC is additionally decomposed into U vdW
SC,A

and U vdW
SC,B - corresponding to the impact of phenyl side groups (subsystem A) and

bis-salphen base of the complex (subsystem B). This separation allows the parts
of calculations to be reused for the complexes with different functional groups.

Five independent samples were prepared for each of the selected association
type and subjected to the same two stage procedure: the initial system, relaxed
inside the periodic solvent box, as described in the Methods section of this chapter
(section 6.1.3), was first decoupled from solvent, then dissociated in vacuum by
switching off the interaction between its parts. The total free energy change
during such process was averaged over those simulations, where the molecules
remained associated during the first part.

The solvation free energy was estimated as the negative of the free energy
change accumulated while scaling down the coupling parameter of solvent - com-
pound interactions λ = (λAvdW + λBvdW + λCoul)/3 from 1 to 0. For all simulations
involving the explicit solvent molecules the list of values the coupling parameter
consequently assumes (λ-schedule) consisted of 71 points in total (figure 6.30,
left), where Coulomb interactions were gradually decoupled during the first 20
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Figure 6.30: Variation of coupling parameters during solvation (left) and dissociation
(right) simulations

points (λCoul), van der Waals interactions between solvent and phenyl side groups
(λAvdW ) - during the next 20 points and between solvent and the rest of the com-
plex (λBvdW ) - during the last 31 (figure 6.30, left). All interactions were scaled
down linearly. At each λ-point the system behaviour was modelled during 600
ps, from which the first 400 were used for equilibration and the last 200 - for
data collection, resulting in 42.6 ns long calculations. The potential energy, as-
sociated with solvent-compound interaction, was sampled every 10 iterations (20
fs). Such schedule was chosen after a number of preliminary calculations as giv-
ing the most stable results. The evolution of different components of interaction
potential energy between the two halves of tetrakis-Schiff molecular association
during simulation are summarised in appendix B.3.

A similar approach was used for dissociation energy in vacuum. This time,
however, λ-schedule consisted of 66 points for Coulomb interaction (λCoul), fol-
lowed by 67 for the van der Waals attraction (λvdW ), separated from repulsion
with WCA decomposition (figure 6.30, right). The combined coupling parameter,
used as the reaction coordinate, in this case is λ = (λvdW +λCoul)/2. Each λ-point
was equal to 300 ps, from which only the last 100 were used for data collection,
resulting in 39.9 ns long runs.

6.7.1 “Opening” free energy

Structures on figure 6.31 both represent a single S -shaped conformation of phenyl
terminated tetrakis-Schiff complex in “closed” and “opened” states respectively.
The difference of their solvation free energy (∆Gc

solv and ∆Go
solv correspond-

ingly), combined with the free energy of “opening” in vacuum ∆Gv
open = 5.4±0.1

kcal/mole (estimated earlier with WHAM method in 6.4.1), represent an estim-
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ation of the free energy of closed-to-opened transition in solvent:

∆Gs
open = ∆Go

solv −∆Gc
solv + ∆Gv

open; (6.7.2)

where superscript “s” may refer to DCM, THF or TOL. ∆Gs
open serve as the

indicator, which conformation is more stable in each solvent. Almost matching
profiles of the PMF over the set of five simulations show good convergence of the
calculations (figure 6.32). Even the “unsuccessful” runs, where the conformation
changed yet in the first λ-point (shown with doted lines), follow the general trend
closely. The estimated free energies of solvation are summarised in the table 6.5.
Red color designates “unsuccessful” simulations. These results were excluded
when calculating average.

Substituting the data from the last column of the table 6.5 into equation 6.7.2
one obtains:

• ∆GDCM
open = +5.2± 0.7 kcal/mole;

• ∆GTHF
open = −5.6± 0.7 kcal/mole;

• ∆GTOL
open = +3.7± 1.7 kcal/mole.

As expected, despite the twice increased surface, the “opened” configuration of
a single tetrakis-Schiff zinc-complex is thermodynamically unstable in DCM due
to strong attraction between zinc and oxygen ions of the two symmetric halves.
On the contrary, the strong ability of THF’s oxygen to interact with zinc cation
of the complex makes the “opened” configuration more energetically favoured in
this solvent. Toluene’s π − π interaction with aromatic rings of the compound
decreases somewhat the transition barrier making the “opening” more easy in
comparison with DCM, but for the molecule studied here it is still too weak to
counter ionic attraction.

6.7.2 Dimerization free energy

Figure 6.33 demonstrates the thermodynamic cycle, corresponding to the calcula-
tion of the dimerization free energy in solvent: the red arrow indicates the direct
transition, while the black one - the alchemical transformation route taken here.
Depending on whether “opened” or “closed” conformation is more stable for a
single solvated tetrakis-Schiff molecule, the dimerization free energy in solvent
can be estimated as:
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Figure 6.31: S-shaped tetrakis-Schiff complex in “closed” (left) and “opened” (right)
conformations
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Figure 6.32: Dispersion of the calculated PMFs for “closed” (left) and “opened” (right)
conformations

∆Gsolv, kcal/mole
Solvent 1 2 3 4 5 〈∆Gsolv〉 δ

Closed
DCM -35.98 -36.11 -35.69 -36.21 -36.06 -36.01 0.20
THF -33.34 -32.37 -33.51 -32.42 -31.91 -32.23 0.28
TOL -29.96 -30.02 -30.32 -30.48 -29.70 -30.09 0.31

Opened
DCM -36.73 -35.50 -36.78 -36.33 -36.73 -36.20 0.65
THF -43.47 -42.36 -43.88 -43.77 -42.67 -43.23 0.68
TOL -32.88 -30.10 -33.31 -32.56 -30.03 -31.78 1.59

Table 6.5: Solvation free energies of S-shaped tetrakis-Schiff complex in “closed” and
“opened” conformations
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∆Gs
dim =

∆Gd
solv + ∆Gv

dim − 2 · (∆Gv
open −∆Gc

solv), if ∆Gs
open > 0;

∆Gd
solv + ∆Gv

dim − 2 ·∆Go
solv, if ∆Gs

open < 0.
(6.7.3)

Again here superscript “s” may refer to DCM, THF or TOL. Quantity ∆Gv
dim -

the free energy of dimerization in vacuum - is estimated as the negative of the
free energy change of dimer dissociation in vacuum (∆Gv

diss). Values of ∆Gs
open,

∆Go
solv and ∆Gc

solv were taken from the previous calculation (section 6.7.1) and
the same value of ∆Gv

open = 5.4± 0.1 kcal/mole from WHAM calculation (6.4.1)
was used.

The calculated profiles of PMF during dimer solvation and dissociation in va-
cuum are shown on the figure 6.34. Again solvation simulations are well converged
and a narrow overlapping deviation occurs for dissociation transition indicating
no significant difference between dimers extracted from different solvents. Table
6.6 summarises the estimated free energy changes during the two transformations.
Substituting the data from the table 6.6 into equations 6.7.3 one obtains:

• ∆GDCM
dim = −8.61± 1.8 kcal/mole;

• ∆GTHF
dim = −9.9± 1.7 kcal/mole;

• ∆GTOL
dim = −13.1± 2.2 kcal/mole.

As expected, association of single molecules in dimers, like the one presented
on the figure 6.33, is thermodynamically preferred for all solvents. It is interesting
that, in spite of additional “opening” transformation needed for tetrakis-Schiff
molecules in DCM, the dimerization free energies in DCM and THF are quite
close, as the solvent molecules associated with the “opened” complex slow down
dimerization through Zn-O ionic interaction in THF. In toluene dimerization goes
faster than in the other two solvents due to decreased barrier of “opening” and
weak interaction with the surrounding molecules.

6.7.3 Free energy of dimer association via ionic interac-
tion

The thermodynamic cycle, corresponding to the association of tetrakis-Schiff com-
plexes’ dimers into tetrameric chain is shown on figure 6.35. Again the red arrow
shows the direct transition. while the black ones mark the route used for the
calculation. The final free energy of association can be estimated as:

∆Gs
tetr = ∆Gt

solv − 2 ·∆Gd
solv + ∆Gv

tetr; (6.7.4)
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Figure 6.33: Association of tetrakis-Schiff complexes into dimer through ionic bond
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Figure 6.34: Dispersion of the calculated PMFs for solvation (left) and dissociation
(right) transformations

∆G, kcal/mole
Solvent 1 2 3 4 5 〈∆G〉 δ

∆Gd
solv

DCM -64.31 -62.84 -63.52 -63.79 -63.52 -63.60 0.53
THF -66.36 -66.76 -69.48 -66.00 -67.99 -67.32 1.42
TOL -55.78 -55.22 -55.40 -57.10 -56.35 -55.97 0.77

∆Gv
dim

DCM -30.54 -26.31 -27.4 -26.66 -27.99 -27.78 1.68
THF -29.1 -30.15 -29.08 -28.77 -30.41 -29.50 0.73
TOL -27.2 -30.59 -27.73 -29.5 -25.45 -28.09 2.01

Table 6.6: Solvation free energies of tetrakis-Schiff complexes’ dimers (∆Gdsolv) and
their dimerization free energies in vacuum (∆Gvdim)
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Here ∆Gs
tetr and ∆Gv

tetr represent the free energies of tetramer association in
solvent and in vacuum correspondingly. As previously, the former is estimated
as the negative of dissociation free energy of tetramer into two free dimers in
vacuum. ∆Gt

solv - is the free energy of tetramer solvation, estimated here. Values
of ∆Gd

solv for the three solvents were defined in the previous section.
The calculated profiles of PMF during tetramer solvation and dissociation in

vacuum are shown on the figure 6.36. As previously, the solvation simulations
are well converged, although a wide spread was found for tetramer dissociation
in DCM. Table 6.7 summarises the estimated free energy changes during the two
transformations. Substituting the data from the table 6.7 into equations 6.7.4
one obtains:

• ∆GDCM
dim = −18.0± 4.0 kcal/mole;

• ∆GTHF
dim = −5.4± 2.6 kcal/mole;

• ∆GTOL
dim = −14.7± 1.8 kcal/mole.

As expected, while dimer association via ionic bonding of the free metal cen-
ters of the two dimers is strongly thermodynamically favourable in DCM and
toluene, in THF free energy gain from such association is quite small. This should
be attributed to the solvent molecules associated with the free zinc centers (that
do not participate in dimer bonding): the attraction of zinc cation to the oxygen
of THF needs to be overcome before tetramer association can take place. This
slows down the association process significantly and prevents the formation of
long polymer-like chains with relatively strong ionic bonds that serve the basis
for the proposed mechanism of “rings-and-rods” networks formation.

In DCM the free energy gain is the highest, so the association of dimers must
go more rapidly yet before the solvent starts to evaporate. Relatively large error
in this case is explained by higher flexibility of the compound molecules in this
solvent, which can also be seen in the large deviation of association free energies
in vacuum, much higher then for the other two solvents, while the solvation free
energies in all calculations are quite close for the same solvent.

The average association free energy in toluene is somewhat smaller than that
in DCM, although still within the confidence interval. The deviation of free
energy changes during both transformations is the smallest in this case out of
all solvents. This indicates that the association of the tetrakis-Schiff molecules
in toluene behaves more rigidly, than in the DCM or THF, which can be the
effect of higher viscosity of toluene or the π − π interactions of aromatic rings in
salphen bases and phenyl groups with surrounding solvent molecules, stabilizing
a straight shape of tetramer.
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Figure 6.35: Association of tetrakis-Schiff complexes’ dimers through ionic bond
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Figure 6.36: Dispersion of the calculated PMFs for solvation (left) and dissociation
(right) transformations of tetrakis-Schiff complexes’ tetramers, bonded through ionic
interaction

∆G, kcal/mole
Solvent 1 2 3 4 5 〈∆G〉 δ

∆Gt
solv

DCM -111.92 -108.98 -111.32 -111.12 -111.26 -110.92 1.13
THF -106.20 -109.53 -109.38 -107.82 -108.09 -108.20 1.35
TOL -94.04 -94.78 -94.99 -95.92 -94.15 -94.78 0.76

∆Gv
tetr

DCM -35.92 -40.12 -32.76 -31.82 -30.59 -34.24 3.83
THF -33.34 -31.76 -33.37 -31.23 -29.18 -31.78 1.73
TOL -30.27 -30.74 -33.03 -33.55 -31.74 -31.87 1.42

Table 6.7: Solvation free energies of tetrakis-Schiff complexes’ tetramers, bonded
through ionic interaction (∆Gtsolv) and their association free energies in vacuum
(∆Gvtetr)
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6.7.4 Free energy of dimer association via π−π interaction

The two types of structures, corresponding to the association of tetrakis-Schiff
complexes’ dimers into tetramer via π − π interaction between are shown on
figure 6.37. The same thermodynamic cycle as in the section 6.7.3 was used here,
with the only difference in the tetramer arrangement. The final free energy of
association can be estimated with the same equation 6.7.4 as for ionic bond.

From the results, presented in the table 6.8 it becomes clear that bonding via
π − π interactions is quite weak and association of two dimer turns out to be
a too small system for stable bonding. In all simulations of “pincer” type, the
initial structure lost initial configuration and either fell in two parts or rearranged
into another structure up to tetramer chain with ionic bonding like those studied
in the previous section. For this reason, no reliable data could be obtained on
the free energy change during such transformation. “Sandwich” like arrangement
proved to be a bit more stable, providing several samples where the initial relative
positions of the two associated dimers was maintained throughout all the length
of the simulation.

Unlike the three previous cases, the calculated PMF profiles, presented on
the figure 6.38, are grouped into several stratified bands, indicating poor stabil-
ity of this type of arrangement. The few “successful” runs, where the desired
configuration of associated molecules was preserved, are shown with solid lines,
while for simulations, where initial configuration rearranged, PMF is shown with
dotted lines. As no stable configurations were observed for “pincer” arrangement,
therefore only PMFs for “sandwich” arrangements were plotted.

Substituting the free energy changes for such successful samples from the table
6.7 into equations 6.7.4 one obtains:

• ∆GDCM
dim = −9.8 kcal/mole;

• ∆GTHF
dim = −7.2± 1.8 kcal/mole;

• ∆GTOL
dim = −7.9± 2.4 kcal/mole.

It is interesting that, although only one sample finished successfully for DCM,
it is also the one with the highest free energy of dissociation in vacuum thanks
to the three phenyl rings remaining in contact (out of initial four). For the other
two solvents only the “internal” pair of rings remained in contact. Toluene is
the only solvent in which the success ratio (fraction of successful simulations)
> 50% in this computer experiment. Even in the two simulations excluded from
the averaging tetramer lost integrity only temporary, thus the values of ∆G for
these trajectories are quite close to the average. Yet all the estimated association
free energies are quite close. Maintaining the associated form in toluene despite
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losing the contact between half of phenyl groups may simply be the result of week
interaction between solvent and the compound molecule, and thus poor ability of
toluene to dissolve such system, as was suggested by our co-authors in [?].

One can assume from the results of this section that the free energy of π − π
bonding due to phenyl side-groups is of the order of ∼ 8−10 kcal/mole per dimer
pair. This is approximately half of the ionic bonding free energy, for which all
the simulations completed successfully. Thus the expected impact of the π − π
interaction with solvent might yet be found for a larger system, such as tetramer-
tetramer association.

6.8 Conclusion and future directions

In this chapter an attempt was made to take a closer look at the behaviour
of zinc-substituted tetrakis-Schiff complex molecules with the help of modern
computer simulation of molecular systems. The results, summarized here, support
the hypothesis that the experimentally observed emergence of the “rings-and-
rods” networks can indeed be attributed to the self-assembling properties of the
compound molecules without the need of “coffee-ring” or “pin-whole opening”
effects, usually observed in evaporating solvents.

It was shown with the help of molecular dynamic calculations that the sym-
metric zinc-complexes, studied here, can assume a number of conformations and
form a variety of supra-molecular structures due to the two equally important
non-bonding interaction types: electrostatic attraction between zinc and oxygen
ions and π− π and cation-π attraction due to the aromatic rings of salphen-type
ligand bases and phenyl side groups.

It was also shown both with quantum chemical calculations and molecular
dynamic simulations that the role of the solvent is not restricted simply to me-
diating the strength of long-range Coulomb interaction and the diffusion speed
of the solute molecules. Such assumption would lead to an incorrect result that
the stable ring-like structures are more easily formed in toluene, than in DCM
or THF. The solvent molecules interact actively with the compound molecules
affecting the conformation the solute molecule assumes in this solvent. “Closed”
form is the most thermodynamically stable for the tetrakis-Schiff zinc-complex in
DCM. Such conformation has a higher diffusion rate and a total dipole moment,
due to which standalone molecules, spread apart, can interact and join faster
than in the other solvents. On the contrary, in THF “opened” conformation is
more stable due to attraction between zinc cation and negatively charged oxy-
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Figure 6.37: The types of tetramer association through π−π bond: “pincer” (left) and
“sandwich” (right)
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Figure 6.38: Dispersion of the calculated PMFs for solvation (left) and dissociation
(right) transformations of tetrakis-Schiff complexes’ tetramers, bonded through π − π
interaction in “sandwich” like arrangement

∆G, kcal/mole
Solvent 1 2 3 4 5 〈∆G〉 δ

∆Gpin
solv

DCM -109.74 -111.18 -107.78 -103.01 -105.09 - -
THF -65.62 -111.99 -118.72 -123.58 -114.15 - -
TOL -46.36 -92.01 -98.15 -106.23 -96.83 - -

∆Gsand
tetr

DCM -105.25 -112.71 -114.57 -112.91 -106.94 -105.25 -
THF -116.76 -115.59 -124.08 -125.56 -111.59 -116.18 0.83
TOL -92.91 -94.59 -93.84 -95.83 -99.85 -94.76 1.00

∆Gv
sand

DCM -31.75 -27.61 -18.32 -25.91 -13.86 -31.75 -
THF -25.23 -26.06 -32.17 -17.06 -18.54 -25.65 0.59
TOL -18.00 -27.22 -24.05 -24.06 -15.65 -25.11 1.83

Table 6.8: Solvation free energies of tetrakis-Schiff complexes’ tetramers, bonded
through π − π interaction in “pincer” (∆Gpinsolv) and “sandwich” (∆Gsandsolv ) and the
association free energies in vacuum for the later (∆Gvsand)
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gen of the solvent molecules, resulting in the formation of stable associates. In
toluene, again. the “closed” conformation of the tetrakis-Schiff zinc-complex is
more stable, than the “opened”, however due to weak interaction with the solvent
the difference between the two conformations is smaller than in DCM and the
compound molecule may reside in the “opened” form for a quite a long time.

Based on these findings a mechanism of “rings-and-rods” networks formation
was suggested in this chapter that allows to explain all the experimental ob-
servations available so far. Within the suggested model, zinc-complex dimers,
connected via strong Zn-O ionic bond between one metal center from each side,
are the primary building blocks of the higher level supra-molecular arrangements.
To form extended structures the dimers continue to aggregate via ionic interac-
tion between the free cation centers into long polymer-like chains. As the length
of the chain increases the free energy gain from association of several chains via
π−π interaction between the stretched aside phenyl groups and aromatic rings of
the salphen base of the ligand becomes large enough so the chains keep growing
through attaching other chains via side-to-side contacts. Thus a system of long
flexible strings is formed that can behave similarly to the semi-flexible polymers,
such as DNA, for which the formation of donut-like structures and even multiple
connected rings is known as “coil to toroidal globule transition”. The key differ-
ence of the molecules studied here is that all connections are achieved through
non-bonding interactions, so multiple coils keep connecting to each other forming
a network of interconnected rings, spanning over hundreds of microns.

The suggested picture was supported by the calculations of free energy changes,
corresponding to the described transitions: dimerization of single molecules and
subsequent dimer association via ionic and π − π interaction - in all the three
solvents, used in experiments. These findings support that in DCM association of
tetrakis-Schiff zinc-complexes into multi-molecular chains bonded through ionic
interaction is thermodynamically stable. In THF this mechanism appears to be
blocked due to aforementioned association of solvent molecules with zinc-complex
through the same Zn-O ionic interaction. This decreases the free energy gain of
dimer-dimer association to ∼ 5 kcal/mole, compared to ∼ 18 for DCM, resulting
in a slower association of chains and large probability of coil to rod-like glob-
ule transition, as breaking of ionically bonded chain in THF is easier and may
be compensated by the gain in π − π interaction. The calculations for π − π

bonded associates resulted in approximately similar binding free energies in the
three solvents. However the four-molecular systems modelled so far appeared
to be too small for π − π interaction to become significant, and its impact may
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yet be seen in further simulations. Slow diffusion and poor ability of toluene to
dissolve the initial aggregates of tetrakis-Schiff zinc-complexes so far remain the
most probable explanation for the emergence of nanocrystals observed in toluene.
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Chapter 7

Conclusion

7.1 Results summary

During the studies, reported in this thesis, three different approaches were applied
to investigate the potential to improve the stability of electric properties of the
CNT-polymer composites. The special focus of this work was to investigate the
potential of the novel metal-organic compounds to assemble into “rings-and-rods”
like networks and to serve the guiding agents for CNTs in highly transparent and
conductive films and advanced composite materials. The key findings of this work
are summarized here.

7.1.1 Statistical modelling of CNT reinforced composites

On the first place, the effect of CNT agglomerates on the polymer composites’
electrical conductivity (DC) was studied in close collaboration with experimental
researchers. The aim of this work was to model the agglomerated CNT distribu-
tion on the length scale of the order of hundreds of microns, on which collections
of agglomerates are routinely observed by optical microscopic techniques. This
goal was achieved by combining the popular Monte Carlo simulation technique,
extensively applied in the literature to study such composites on a smaller scale
and with uniform distribution, with von Neumann rejection-acceptance sampling
method to model the predefined agglomerated distribution of CNTs. The al-
gorithm was implemented with the help of NVIDIA CUDA GPGPU technology
to benefit from the recent advances in the field of high performance computing.
This software tool allowed to generate ∼ 106 sphero-cylindrical models of CNTs
with non-uniform distribution within ∼ 1 hour time, sufficient to model resistiv-
ity of CNT network inside cubic volume with the side in ∼ 100µm scale range
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with filler content up to several vol. %.

Using such implementation of the method, statistical simulations were con-
ducted to model electric conductivity of the three groups of samples with different
probability distribution of CNTs. The first group had the perfect uniform dis-
tribution, while for the other two the distribution densities were derived from
the agglomerates’ distribution observed experimentally by our collaborators in
the CNT-PC composite parts, prepared by injection moulding. The calculated
relative differences in the samples’ conductivities were compared to the experi-
mental measurements. Although, as was expected from the previous works, the
samples with agglomerated distribution of CNTs indeed had a slightly better av-
erage conductivity than the uniform distribution, however order of magnitude
deviations, observed in experiments even for the parts with similar agglomerates’
distribution, was not found in simulations. Subsequent simulations of the same
agglomerated samples, but with non-uniform directional angles distribution, have
shown that, depending on the degree of alignment, the conductivity difference can
grow significantly.

It follows from these observations that on the current level of industrial pro-
cessing, the agglomerates sizes can be reduced to the limit, where their impact on
composite’s conductivity is small compared to the influence of CNT alignment.
The latter factor, in combination with CNT flexibility dominates large variations
in experimental resistivity, so the future studies must focus on better control over
CNTs alignment and shape in polymer matrix. The influence of agglomeration
must be studied as a factor complementary to them and not as sole effect as it
only becomes significant for large agglomerates.

Additionally, a molecular dynamics study of a sine-like and helical curved
CNT inserted into PC matrix was conducted. The aim of this study was to
investigate the effect of the filler waviness on the composite’s elastic properties.
The simulations have shown that as the amplitude of CNT profile deviation from
straining axis increases, the sample’s Young’s modulus decreases hyperbolically.
This trend was also confirmed in a parallel finite element study of the same
systems by our co-workers. Combined with the rise of CNT curvature, expected
for composites with high CNT loadings, this result indicates that the higher
the CNT content in composite is, the smaller the added value of superfluous
CNTs becomes both for electrical and mechanical properties, which results in
suboptimal cost-property ratio for such composites.
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7.1.2 Percolation studied of “rings-and-rods” networks

Percolation characteristics of “rings-and-rods” like networks was studied with a
simple Monte Carlo model, based on the experimentally available statistics of
rings’ diameter distribution and rings density for pristine networks as well as for
networks intercalated with CNTs [#NatComm]. On a flat surface in all cases con-
nected model networks were obtained in simulations in the same density range as
in experiments. A clear percolation transition was observed in all cases with rapid
growth of simulated samples’ resistance as networks density approached percola-
tion threshold, defined as the point, where the probability to observe connected
network decreased to 50%.

It was shown that the differences between the networks simulated with the
diameter distribution of pristine and CNT-intercalated networks at the same
density can be easily explained if network’s morphology is characterized in terms
of scaling factor η that can be interpreted as the ratio of average distance between
rings’ centers to average ring’s diameter. In terms of such parameter pristine
networks, observed in the experiment in the range 20-80µm2 per ring, reside in
the region close to percolation transition that in simulations occurs at ∼ 56− 70
µm2 per ring (η ∼ 4−4.5). It was also shown that average number of connections
≥ 2.4 is required to form extended connected network on a flat surface. This
also is in a good agreement with experimental observation that interconnected
networks had ∼ 2.8± 0.7 rods per ring.

In contrast, CNT-intercalated networks within the same density range in
terms of scaling factor fall in the range of small η values, very close to the per-
colation of circles in 2D (ηR ∼ 1.22). This explains why in experiment resolvable
network was only observed at density ∼ 75.56 µm2 per ring (η ∼ 1.8). Applying
the same procedure as for pristine case to CNT-intercalated networks, their per-
colation transition should occur at ∼ 1.0− 1.2 103µm2 per ring, corresponding to
CNT density ∼ 0.06 surf.%. In comparison, theoretical estimation for percolation
of random sticks with the same length is 8.8 surf.%.

Even more striking effect is achieved in a model bulk composite. Unfortu-
nately, no statistical data are available on the parameters of networks of tetrakis-
Schiff complexes formed in polymer matrix. However, if the same trend is applied
here, even sparser networks could be obtained in experiment: the CNT content
required to fill such network can be as low as 10−4 − 10−5 vol. % - orders of
magnitude smaller then for randomly distributed nanotubes of the same aspect
ratio.

This is, of course, a very vague assumption and better understanding of the
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mechanism behind tetrakis-Schiff self-assembly is needed before reliable calcu-
lations can be performed. However this estimation shows how significant the
impact of self-assembling guiding agents, such as the one studied here, can be.

7.1.3 MD study of tetrakis-Schiff zinc-complex self-assembly

To improve the understanding of tetrakis-Schiff behaviour in different environ-
ments and uncover the mechanism of their self-assembly in “rings-and-rods” net-
works extensive studies with molecular dynamics were conducted both in model
vacuum environment as well as in the three solvents, compared in experiment [2]:
DCM, THF and toluene.

On the first step it was shown using a crude “four rigid parts” model that
such molecules can indeed form donut-like associations, which stay stable over
simulation time due to anisotropy of interaction between such molecules.

Using a more detailed all-atom GAFF simulations it was shown that, stand-
alone or solvated, tetrakis-Schiff zinc-complex has a number of conformations
apart from the one, obtained in [2] from X-ray experiments for unsubstituted
ligand. Furthermore, it was shown that the three solvents, used in experiment,
interact differently with the zinc-complex, provoking different configurations for
a single solvated molecule. In DCM single molecule adopts “closed” configura-
tion with ionic centers of the two symmetric halves bonded to each other with
electrostatic attraction. In THF, on the contrary, “opened” configuration is more
preferred due to electrostatic attraction between zinc cation and oxygen atom
of THF molecule. Toluene showed no preference and was interacting with the
complex via weaker π − π and cation-π interactions. Furthermore basing on the
dimer binding energies for tetrakis-Schiff molecules in a different mutual posi-
tion a number of chain-like structures were proposed. Their behaviour in explicit
solvents was observed during 1-2 ns.

Basing on these observations and on the review of previous publications for
similar compounds and other ring-like structures, the following mechanism was
proposed for the formation of “rings-and-rods” like networks of tetrakis-Schiff
zinc-complexes was suggested. Single solvated molecules form chain-like asso-
ciations, bonded via strong electrostatic interaction between Zn and O atoms
of different monomers. This association most likely starts with the formation
of dimers, bonded via Zn-O interaction of one half of each monomer, leaving
the other capable to associate with other dimers. As the chains grow in length,
they begin to associate with other chains via π − π interaction between the side
groups, the strength of which is proportional to the chain length. Thus semi-
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flexible strings are formed in solvent that are capable to fold ring-like structures
via the “coil - toroidal globule” transition, known for semi-flexible polymers. One
important difference of tetrakis-Schiff complexes form the polymeric systems is
that all interactions involved are not covalent. Therefore, the coils can bind to
each other and, thus, an interconnected “rings-and-rods” network can be formed.
This would explain the formation of extended networks, not observed previously,
as well as the necessity of the phenyl side groups, observed in experiment: methyl
functionalized complexes would not be unable to associate monomolecular chains
into thicker strings by π − π interaction.

This process occurs seamlessly in DCM. Almost two times difference in the
diffusion speed for tetrakis-Schiff compounds in DCM in comparison with THF
and toluene may also help to explain, why the structures self-assembled in DCM
exceed in size those, formed in THF and toluene, so strongly. Apart from diffu-
sion rate, in THF the growth of the chains is slowed down significantly by the
aforementioned interaction between zinc cations and oxygens of THF molecules.
Therefore only short strings could be obtained in THF, in agreement with experi-
ment. In toluene this effect also takes place via cation-π interaction between zinc
ion and aromatic ring of toluene molecule, however, its influence is much smaller
then in THF. What is, probably, more important, is that toluene in general inter-
acts with tetrakis-Schiff compounds weaker than DCM and THF, so zinc-organic
complexes should tend to aggregate in it rather than to spread. Together with
slower diffusion this leads to formation of bunches of needle-like crystals.

The suggested mechanism was supported with the calculation of free energies
of association in the three solvents. In all solvents the formation of dimer of the
selected type was found thermodynamically favourable. However, the association
of dimers into tetramers via ionic bond, preferred in DCM and toluene (although
a somewhat weaker), was found least preferable in THF: average association free
energy in the later 5.4 kcal/mole in comparison with 14.7 in toluene and 18.0 in
DCM. Thus chain growth should go much slower in THF. Similar calculations
for free energies of association via π − π interaction, unfortunately, were less
stable: half of the π−π bonded tetramers dissociated prematurely so the binding
free energy could be estimated only by a few successful runs. This happened,
obviously, because π − π bonding of such chain is proportional to the length
of the chain and a pair of dimers turned out to be a too small system to bind
stably. Free energy of association of such tetramers was estimated to be around
7-10 kcal/mole, i.e. twice weaker than that of ionically bonded chains in DCM,
so simulations of a larger systems may help to get more reliable estimate. It
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must be noted, however, that, unlike DCM and THF, most tetramers remained
associated via π − π bonding in toluene and in 3 out of 5 runs even the initial
structure was partially preserved. This might indicate that, indeed, toluene is
poor solvent for tetrakis-Schiff compounds and the complex molecules tend to
aggregate in it. Although further studies are needed to confirm this.

7.2 Future directions

Basing on the findings of the reported work the following directions can be out-
lined for the future work:

• To reach the current level of composite processing, Monte Carlo stimula-
tion algorithm should be adopted to combine the effects of alignment and
waviness of CNTs along the agglomeration;

• Association of single ionically bonded chains of tetrakis-Schiff metal-organic
complexes into thicker rods via van der Waals and π−π interactions should
be studied on a larger length scale to check for potential effect of solvent
on the stability of such associate;

• A coarse-grained, ideally multilevel, model must be fitted to all-atom mo-
lecular dynamics simulation data to extend the studies of such associates
on the micrometer length scale to observe the coil-to-globule transition and
the formation of interconnected networks;

• The backbone, functional groups and cation type of tetrakis-Schiff metal-
organic complexes should be varied to investigate the effect on the micro-
meter scale chain dynamics and therefore to be able to control the morpho-
logy of “rings-and-rods” networks via molecular engineering;

• The interaction of tetrakis-Schiff metal-organic complexes with CNTs should
be studied to understand the effect of CNTs on the “rings-and-rods” net-
works’ morphology as well as the effect of metal-organic complexes on
CNT’s electrical properties, such as internal conductivity and work func-
tion.

7.3 Publications

The results obtained in this work were published in the following peer-reviewed
publications:

1. Matveeva, A. Y., Pyrlin, S. V., Ramos, M. M. D., Böhm, H. J., & van
Hattum, F. W. J. (2014). Influence of waviness and curliness of fibres on
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mechanical properties of composites. Computational Materials Science, 87,
1–11. http://doi.org/ 10.1016/j.commatsci.2014.01.061;

2. Escárcega-Bobadilla, M.V, Zelada-Guillén, G.A, Pyrlin, S.V, Wegrzyn,
M., Ramos, M.M.D., Giménez, E., Kleij, A.W. (2013). Nanorings and rods
interconnected by self-assembly mimicking an artificial network of neurons.
Nature Communications, 4(May), 2648. http://doi.org/10.1038/ncomms3648.

They were also presented on the following international conferences:

1. Matveeva A.Y., van Hattum F.W.J., Pyrlin S.V. (2012). Orientation
and dispersion influences on elastic properties of CNT/CNF polymer nano-
composites. Proceedings of SAMPE Tech 2012 Conference and Exhibition,
North Charleston, USA (co-author);

2. Pyrlin S.V., Ramos M.M.D., Anna Matveeva A.Y., van Hattum F.W.J.
(2012) GPGPU-assisted polymer nanocomposite modelling and character-
isation. E-MRS Spring Meeting, Strasbourg, France (poster);

3. Pyrlin S.V., Ramos M.M.D., Haynes P.D., Hine N. (2012) The effect
of carbon nanotube tip functionalization on electronic tunneling. E-MRS
Spring Meeting, Strasbourg, France (oral);

4. Matveeva A.Y., Tiusanen J.M., Pyrlin S.V., van Hattum F.W.J. (2013).
Investigation of the mechanical properties of injection moulded CNT rein-
forced thermoplastic polymer parts. Proceedings of SAMPE 2013 Confer-
ence and Exhibition, Long Beach, USA (co-author);

5. Pyrlin S.V., & Ramos M.M.D. (2013). Multiscale modelling of electron
transport in carbon nanotube reinforced composites. In International Con-
ference on Computational Modelling of Nanostructured Materials, Frankfurt-
am-Main, Germany (poster);

6. Pyrlin S.V., Ramos, M.M.D. (2013) The influence of polymer matrix-
nanotube interaction on the composites’ electrical properties: from atom-
istic calculations to Monte Carlo Simulation. NANOSMAT, Granada, Spain
(poster);

7. Pyrlin S.V., Ramos, M.M.D. (2013) Multiscale modeling of composite
structure-property relations: application to electron transport in carbon
nanotube reinforced polymer nanocomposites. EUROMAT, Sevilla, Spain
(oral);

8. Pyrlin S.V., Ramos, M.M.D. (2014) Multiscale modeling of composite
structure-property relations: application to electron transport in carbon
nanotube reinforced polymer nanocomposites. Nano Portugal, Porto, Por-
tugal (oral);
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9. Pyrlin S.V., Hine N., Ramos, M.M.D., Escárcega-Bobadilla M., Zelada-
Guillén G. (2014) Interaction of tetrakis-Schiff base compounds with car-
bon nanostructures from DFT: implications for charge transfer. Condensed
matter in Paris, Paris, France (oral).

140



Bibliography

[1] A. Y. Matveeva, J. M. Tiusanen, S. V. Pyrlin, and F. W. J. Van Hattum,
“Investigation of the mechanical properties of injection moulded CNT
reinforced thermoplastic polymer parts,” in International SAMPE Technical
Conference, 2013, pp. 1714–1725. [Online]. Available: http://www.scopus.
com/inward/record.url?eid=2-s2.0-84881164663{\&}partnerID=tZOtx3y1

[2] M. V. Escárcega-Bobadilla, G. a. Zelada-Guillén, S. V. Pyrlin,
M. Wegrzyn et al., “Nanorings and rods interconnected by self-assembly
mimicking an artificial network of neurons.” Nature communications,
vol. 4, no. May, p. 2648, jan 2013. [Online]. Available: http:
//www.ncbi.nlm.nih.gov/pubmed/24177669

[3] M. Monthioux and V. L. Kuznetsov, “Who should be given the credit for
the discovery of carbon nanotubes?” Carbon, vol. 44, no. 9, pp. 1621–1623,
2006.

[4] S. Iijima, “Helical microtubules of graphitic carbon,” Nature, vol.
354, no. 6348, pp. 56–58, nov 1991. [Online]. Available: http:
//dx.doi.org/10.1038/354056a0

[5] S. Iijima, P. Ajayan, and T. Ichihashi, “Growth model for carbon
nanotubes.” Physical review letters, vol. 69, no. 21, pp. 3100–3103, nov
1992. [Online]. Available: http://journals.aps.org/prl/abstract/10.1103/
PhysRevLett.69.3100

[6] S. Iijima and T. Ichihashi, “Single-shell carbon nanotubes of 1-nm
diameter,” Nature, vol. 363, no. 6430, pp. 603–605, jun 1993. [Online].
Available: http://dx.doi.org/10.1038/363603a0

[7] D. S. Bethune, C. H. Klang, M. S. de Vries, G. Gorman et al.,
“Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer
walls,” Nature, vol. 363, no. 6430, pp. 605–607, jun 1993. [Online].
Available: http://dx.doi.org/10.1038/363605a0

141



[8] S. Iijima, C. Brabec, A. Maiti, and J. Bernholc, “Structural
flexibility of carbon nanotubes,” The Journal of Chemical Physics,
vol. 104, no. 5, p. 2089, feb 1996. [Online]. Available: http:
//scitation.aip.org/content/aip/journal/jcp/104/5/10.1063/1.470966

[9] P. M. Ajayan, T. W. Ebbesen, T. Ichihashi, S. Iijima et al.,
“Opening carbon nanotubes with oxygen and implications for filling,”
Nature, vol. 362, no. 6420, pp. 522–525, apr 1993. [Online]. Available:
http://dx.doi.org/10.1038/362522a0

[10] J. W. G. Wilder, L. C. Venema, A. G. Rinzler, R. E. Smalley
et al., “Electronic structure of atomically resolved carbon nanotubes,”
vol. 391, no. 6662, pp. 59–62, jan 1998. [Online]. Available: http:
//dx.doi.org/10.1038/34139

[11] M. S. Dresselhaus, G. Dresselhaus, and P. Avouris, Carbon Nanotubes:
Synthesis, Structure, Properties and Applications, ser. Topics in
Applied Physics. Springer, 2001, vol. 81. [Online]. Available: http:
//books.google.co.uk/books?id=dkvDhZJnafgC

[12] J. Nygard, D. Cobden, M. Bockrath, P. McEuen et al., “Electrical
transport measurements on single-walled carbon nanotubes,” Applied
Physics A: Materials Science & Processing, vol. 69, no. 3, pp. 297–304, sep
1999. [Online]. Available: http://link.springer.com/10.1007/s003390051004

[13] C. Zhou, J. Kong, and H. Dai, “Electrical measurements of individual
semiconducting single-walled carbon nanotubes of various diameters,”
Applied Physics Letters, vol. 76, no. 12, p. 1597, mar 2000.
[Online]. Available: http://scitation.aip.org/content/aip/journal/apl/76/
12/10.1063/1.126107

[14] S. J. Tans, A. R. M. Verschueren, and C. Dekker, “Room-temperature
transistor based on a single carbon nanotube,” vol. 393, no. 6680, pp.
49–52, may 1998. [Online]. Available: http://dx.doi.org/10.1038/29954

[15] R. Martel, T. Schmidt, H. R. Shea, T. Hertel et al., “Single- and
multi-wall carbon nanotube field-effect transistors,” Applied Physics
Letters, vol. 73, no. 17, p. 2447, oct 1998. [Online]. Available:
http://scitation.aip.org/content/aip/journal/apl/73/17/10.1063/1.122477

[16] K. Liu, M. Burghard, S. Roth, and P. Bernier, “Conductance spikes
in single-walled carbon nanotube field-effect transistor,” Applied Physics

142



Letters, vol. 75, no. 16, p. 2494, oct 1999. [Online]. Available:
http://scitation.aip.org/content/aip/journal/apl/75/16/10.1063/1.125059

[17] H. Shea, R. Martel, T. Hertel, T. Schmidt et al., “Manipulation of
carbon nanotubes and properties of nanotube field-effect transistors and
rings,” Microelectronic Engineering, vol. 46, no. 1-4, pp. 101–104, may
1999. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0167931799000258

[18] J. Hu, M. Ouyang, P. Yang, and C. M. Lieber, “Controlled growth and
electrical properties of heterojunctions of carbon nanotubes and silicon
nanowires,” vol. 399, no. 6731, pp. 48–51, may 1999. [Online]. Available:
http://dx.doi.org/10.1038/19941

[19] C. Dekker, Z. Yao, H. W. C. Postma, and L. Balents, “Carbon
nanotube intramolecular junctions,” Nature, vol. 402, no. 6759, pp.
273–276, nov 1999. [Online]. Available: http://stacks.iop.org/0957-4484/
18/i=39/a=395205?key=crossref.3821c254d4c837cf99ca03f1478f0545http:
//www.nature.com/doifinder/10.1038/46241

[20] A. A. Farajian, K. Esfarjani, and Y. Kawazoe, “Nonlinear Coherent
Transport Through Doped Nanotube Junctions,” Physical Review
Letters, vol. 82, no. 25, pp. 5084–5087, jun 1999. [Online]. Available:
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.82.5084

[21] S. Heinze, J. Tersoff, R. Martel, V. Derycke et al., “Carbon
nanotubes as schottky barrier transistors.” Physical review letters,
vol. 89, no. 10, p. 106801, sep 2002. [Online]. Available: http:
//journals.aps.org/prl/abstract/10.1103/PhysRevLett.89.106801

[22] M. Fuhrer, A. K. Lim, L. Shih, U. Varadarajan et al., “Transport
through crossed nanotubes,” Physica E: Low-dimensional Systems and
Nanostructures, vol. 6, no. 1-4, pp. 868–871, feb 2000. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1386947799002283

[23] P. N. Nirmalraj, P. E. Lyons, S. De, J. N. Coleman
et al., “Electrical Connectivity in Single-Walled Carbon Nan-
otube Networks,” Nano Letters, vol. 9, pp. 3890–3895, 2009.
[Online]. Available: <GotoISI>://000271566400039$\backslash$nhttp:
//pubs.acs.org/doi/pdfplus/10.1021/nl9020914

143



[24] S. Paulson, “Tunable Resistance of a Carbon Nanotube-Graphite
Interface,” Science, vol. 290, no. 5497, pp. 1742–1744, dec 2000. [Online].
Available: http://science.sciencemag.org/content/290/5497/1742.abstract

[25] A. Buldum and J. P. Lu, “Contact resistance between carbon nanotubes,”
Physical Review B, vol. 63, no. 16, p. 161403, apr 2001. [Online]. Available:
http://journals.aps.org/prb/abstract/10.1103/PhysRevB.63.161403

[26] J. W. Do, D. Estrada, X. Xie, N. N. Chang et al., “Nanosoldering carbon
nanotube junctions by local chemical vapor deposition for improved device
performance,” Nano Letters, vol. 13, no. 12, pp. 5844–5850, 2013.

[27] V. Skákalová, A. B. Kaiser, Y.-S. Woo, and S. Roth, “Electronic
transport in carbon nanotubes: From individual nanotubes to thin and
thick networks,” Physical Review B, vol. 74, no. 8, p. 085403, aug
2006. [Online]. Available: http://journals.aps.org/prb/abstract/10.1103/
PhysRevB.74.085403

[28] C. Koechlin, S. Maine, S. Rennesson, R. Haidar et al., “Opto-electrical char-
acterization of infrared sensors based on carbon nanotube films,” Comptes
Rendus Physique, vol. 11, no. 5-6, pp. 405–410, 2010.

[29] P. Sheng, “Fluctuation-induced tunneling conduction in disordered
materials,” Physical Review B, vol. 21, no. 6, pp. 2180–2195, mar
1980. [Online]. Available: http://journals.aps.org/prb/abstract/10.1103/
PhysRevB.21.2180

[30] H.-L. Zhang, J.-F. Li, B.-P. Zhang, K.-F. Yao et al., “Electrical and thermal
properties of carbon nanotube bulk materials: Experimental studies for the
328–958K temperature range,” Physical Review B, vol. 75, no. 20, pp. 1–9,
2007.

[31] N. Lett., “Percolation in Transparent and Conducting Carbon Nanotube
Networks,” Hu, L. Heclht, D.S. Gruner, G, vol. 4, no. 12, pp. 2513–2517,
2004. [Online]. Available: http://dx.doi.org/10.1021/nl048435y

[32] H. E. Unalan, G. Fanchini, a. Kanwal, a. Du Pasquier et al.,
“Design criteria for transparent single-wall carbon nanotube thin-film
transistors.” Nano Lett., vol. 6, pp. 677–682, 2006. [Online]. Available:
http://www.ncbi.nlm.nih.gov/pubmed/16608263

144



[33] M. Nakamura, “Two-dimensional continuum percolation and conduction.
II,” Journal of Applied Physics, vol. 58, no. 9, pp. 3499–3503, 1985.

[34] G. E. Pike and C. H. Seager, “Percolation and conductivity: A computer
study. I,” Physical Review B, vol. 10, no. 4, pp. 1421–1434, aug 1974.
[Online]. Available: http://link.aps.org/doi/10.1103/PhysRevB.10.1421

[35] M. Y. Timmermans, D. Estrada, A. G. Nasibulin, J. D. Wood et al., “Effect
of carbon nanotube network morphology on thin film transistor perform-
ance,” Nano Research, vol. 5, no. 5, pp. 307–319, 2012.

[36] Z. Spitalsky, D. Tasis, K. Papagelis, and C. Galiotis, “Carbon
nanotube-polymer composites: Chemistry, processing, mechanical and
electrical properties,” Progress in Polymer Science (Oxford), vol. 35,
no. 3, pp. 357–401, 2010. [Online]. Available: http://dx.doi.org/10.1016/j.
progpolymsci.2009.09.003

[37] A. V. Eletskii, A. a. Knizhnik, B. Potapkin, and J. Kenny, “Electrical
characteristics of carbon nanotube doped composites,” Uspekhi Fizicheskih
Nauk, vol. 185, no. 3, pp. 225–270, 2015. [Online]. Available:
http://ufn.ru/ru/articles/2015/3/a/

[38] M. Park, H. Kim, and J. P. Youngblood, “Strain-dependent elec-
trical resistance of multi-walled carbon nanotube/polymer composite
films,” Nanotechnology, vol. 19, no. 5, p. 055705, 2008. [On-
line]. Available: http://stacks.iop.org/0957-4484/19/i=5/a=055705?key=
crossref.7552299efe97f1782622bc92fef35409

[39] I. Balberg, C. H. Anderson, S. Alexander, and N. Wagner, “Excluded
volume and its realtion to the onset of percolation,” Phsical Review B,
vol. 30, no. 7, pp. 3933–3943, 1984.

[40] Y. Simsek, L. Ozyuzer, A. T. Seyhan, M. Tanoglu et al., “Temperature
dependence of electrical conductivity in double-wall and multi-wall carbon
nanotube/polyester nanocomposites,” Journal of Materials Science, vol. 42,
no. 23, pp. 9689–9695, 2007.

[41] P. Cardoso, J. Silva, A. J. Paleo, F. W. J. Van Hattum et al., “The dom-
inant role of tunneling in the conductivity of carbon nanofiber-epoxy com-
posites,” Physica Status Solidi (A) Applications and Materials Science, vol.
207, no. 2, pp. 407–410, 2010.

145



[42] K. Schulte, F. H. Gojny, B. Fiedler, and W. Bauhofer, “Carbon
Nanotube-Reinforced Polymers: a State of the Art Review,” Polymer
Composites From Nano- to Macro-Scale, pp. 3–23, 2005. [Online]. Available:
http://www.springerlink.com/index/10.1007/b137162

[43] D. M. Delozier, K. A. Watson, J. G. Smith, T. C. Clancy et al., “Invest-
igation of Aromatic / Aliphatic Polyimides as Dispersants for Single Wall
Carbon Nanotubes,” Macromolecules, pp. 1731–1739, 2006.

[44] J. Sandler, M. Shaffer, T. Prasse, W. Bauhofer et al., “Development of a
dispersion process for carbon nanotubes in an epoxy matrix and the result-
ing electrical properties,” Polymer, vol. 40, no. 21, pp. 5967–5971, 1999.

[45] P. Costa, J. Silva, V. Sencadas, R. Simoes et al., “Mechanical, electrical and
electro-mechanical properties of thermoplastic elastomer styrene-butadiene-
styrene/multiwall carbon nanotubes composites,” Journal of Materials Sci-
ence, vol. 48, no. 3, pp. 1172–1179, 2013.

[46] N. G. Sahoo, S. Rana, J. W. Cho, L. Li et al., “Polymer
nanocomposites based on functionalized carbon nanotubes,” Progress in
Polymer Science, vol. 35, no. 7, pp. 837–867, 2010. [Online]. Available:
http://dx.doi.org/10.1016/j.progpolymsci.2010.03.002

[47] N. Chehata, “Charge Transfer Properties in MEH-PPV/PS:MWCNTs
Nanocomposites,” Journal of Surface Engineered Materials and Advanced
Technology, vol. 02, no. 03, pp. 174–181, 2012.

[48] M. Palma, W. Wang, E. Penzo, J. Brathwaite et al., “Controlled formation
of carbon nanotube junctions via linker induced assembly in aqueous
solution.” Journal of the American Chemical Society, pp. 1–6, 2013.
[Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/23656193

[49] S. K. Samanta, M. Fritsch, U. Scherf, W. Gomulya et al., “Conjugated
polymer-assisted dispersion of single-wall carbon nanotubes: the power of
polymer wrapping.” Accounts of chemical research, vol. 47, no. 8, pp. 2446–
56, aug 2014. [Online]. Available: http://dx.doi.org/10.1021/ar500141j

[50] J. O. Aguilar, J. R. Bautista-Quijano, and F. Avilés, “Influence of carbon
nanotube clustering on the electrical conductivity of polymer composite
films,” Express Polymer Letters, vol. 4, no. 5, pp. 292–299, 2010.

146



[51] X. Wang, P. D. Bradford, W. Liu, H. Zhao et al., “Mechanical
and electrical property improvement in CNT/Nylon composites through
drawing and stretching,” Composites Science and Technology, vol. 71,
no. 14, pp. 1677–1683, 2011. [Online]. Available: http://dx.doi.org/10.
1016/j.compscitech.2011.07.023

[52] F. Du, J. E. Fischer, and K. I. Winey, “Effect of nanotube alignment on
percolation conductivity in carbon nanotube/polymer composites,” Phys-
ical Review B - Condensed Matter and Materials Physics, vol. 72, no. 12,
pp. 1–4, 2005.

[53] M. C. Lensen, K. Takazawa, J. A. A. W. Elemans, C. R. L. P. N.
Jeukens et al., “Aided self-assembly of porphyrin nanoaggregates into
ring-shaped architectures.” Chemistry (Weinheim an der Bergstrasse,
Germany), vol. 10, no. 4, pp. 831–9, feb 2004. [Online]. Available:
http://www.ncbi.nlm.nih.gov/pubmed/14978810

[54] R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber et al., “Capillary flow
as the cause of ring stains from dried liquid drops,” vol. 389, no. 6653, pp.
827–829, oct 1997. [Online]. Available: http://dx.doi.org/10.1038/39827

[55] M. Majumder, C. S. Rendall, J. A. Eukel, J. Y. L. Wang et al., “Overcoming
the "coffee-stain" effect by compositional Marangoni-flow-assisted drop-
drying.” The journal of physical chemistry. B, vol. 116, no. 22, pp. 6536–42,
jun 2012. [Online]. Available: http://dx.doi.org/10.1021/jp3009628

[56] K. Sai Krishna and M. Eswaramoorthy, “Novel synthesis of carbon
nanorings and their characterization,” Chemical Physics Letters, vol.
433, no. 4-6, pp. 327–330, jan 2007. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0009261406017222

[57] S. B. Son, Q. Miao, J.-Y. Shin, D. Dolphin et al., “Ring and Volcano
Structures Formed by a Metal Dipyrromethene Complex,” Bulletin of
the Korean Chemical Society, vol. 35, no. 6, pp. 1727–1731, jun 2014.
[Online]. Available: http://koreascience.or.kr/article/ArticleFullRecord.
jsp?cn=JCGMCS{\_}2014{\_}v35n6{\_}1727

[58] A. Shimoni, S. Azoubel, and S. Magdassi, “Inkjet printing of flexible high-
performance carbon nanotube transparent conductive films by "coffee ring
effect".” Nanoscale, vol. 6, no. 19, pp. 11 084–9, oct 2014. [Online]. Available:
http://pubs.rsc.org/en/content/articlehtml/2014/nr/c4nr02133a

147



[59] P. C. Ohara and W. M. Gelbart, “Interplay between Hole Instability
and Nanoparticle Array Formation in Ultrathin Liquid Films,” Langmuir,
vol. 14, no. 12, pp. 3418–3424, jun 1998. [Online]. Available:
http://dx.doi.org/10.1021/la971147f

[60] A. P. H. J. Schenning, F. B. G. Benneker, H. P. M. Geurts, X. Y.
Liu et al., “Porphyrin Wheels,” Journal of the American Chemical
Society, vol. 118, no. 36, pp. 8549–8552, jan 1996. [Online]. Available:
http://dx.doi.org/10.1021/ja961234e

[61] J. Hofkens, L. Latterini, P. Vanoppen, H. Faes et al., “Mesostructure
of Evaporated Porphyrin Thin Films: Porphyrin Wheel Formation,” The
Journal of Physical Chemistry B, vol. 101, no. 49, pp. 10 588–10 598, dec
1997. [Online]. Available: http://dx.doi.org/10.1021/jp972305e

[62] C. R. L. P. N. Jeukens, M. C. Lensen, F. J. P. Wijnen, J. A. A. W. Elemans
et al., “Polarized Absorption and Emission of Ordered Self-Assembled
Porphyrin Rings,” Nano Letters, vol. 4, no. 8, pp. 1401–1406, aug 2004.
[Online]. Available: http://dx.doi.org/10.1021/nl049363d

[63] K. Takazawa, “Micrometer-Sized Rings Self-assembled from Thiacyanine
Dye Molecules and Their Waveguiding Properties,” Chemistry of
Materials, vol. 19, no. 22, pp. 5293–5301, oct 2007. [Online]. Available:
http://dx.doi.org/10.1021/cm071762x

[64] Y. Liu, H. Ma, Y. Tian, F. Xie et al., “Fabrication of Durable
Honeycomb-Patterned Films of Poly(ether sulfone)s via Breath Figures,”
Macromolecular Chemistry and Physics, vol. 215, no. 15, pp. 1446–1455, aug
2014. [Online]. Available: http://doi.wiley.com/10.1002/macp.201400137

[65] Q. Liu, H. Liu, Y. Bian, X. Wang et al., “Two-dimensional
"nano-ring and nano-crystal" morphologies in Langmuir monolayer of
phthalocyaninato nickel complexes.” Journal of colloid and interface
science, vol. 300, no. 1, pp. 298–303, aug 2006. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S002197970600244X

[66] S. V. S. V. Bhosale, S. V. Nalage, J. M. Booth, A. Gupta et al., “Solvent in-
duced ordered-supramolecular assembly of highly branched protoporphyrin
IX derivative,” Supramolecular Chemistry, vol. 24, no. 11, pp. 779–786, nov
2012. [Online]. Available: http://www.tandfonline.com/doi/abs/10.1080/
10610278.2012.716841http://dx.doi.org/10.1080/10610278.2012.716841

148



[67] G. T. Carroll, M. G. M. Jongejan, D. Pijper, and B. L. Feringa,
“Spontaneous generation and patterning of chiral polymeric surface
toroids,” Chemical Science, vol. 1, no. 4, p. 469, sep 2010.
[Online]. Available: http://pubs.rsc.org/en/content/articlehtml/2010/sc/
c0sc00159g

[68] Y.-F. Wei and P.-Y. Hsiao, “Role of chain stiffness on the conformation of
single polyelectrolytes in salt solutions.” The Journal of chemical physics,
vol. 127, no. 6, p. 064901, aug 2007. [Online]. Available: http://www.scopus.
com/inward/record.url?eid=2-s2.0-34547912942{\&}partnerID=tZOtx3y1

[69] T. Iwaki, N. Makita, and K. Yoshikawa, “Folding transition of a
single semiflexible polyelectrolyte chain through toroidal bundling of loop
structures.” The Journal of chemical physics, vol. 129, no. 6, p. 065103,
aug 2008. [Online]. Available: http://www.scopus.com/inward/record.url?
eid=2-s2.0-49749086533{\&}partnerID=tZOtx3y1

[70] G. Maurstad, “Metastable and Stable States of Xanthan Polyelectrolyte
Complexes Studied by Atomic Force Microscopy,” 2004.

[71] V. V. Vasilevskaya, A. R. Khokhlov, S. Kidoaki, and K. Yoshikawa, “Struc-
ture of Collapsed Persistent Macromolecule : Toroid vs . Spherical Globule,”
vol. 41, 1997.

[72] T. H. Eickbush and E. N. Moudrianakis, “The compaction of DNA
helices into either continuous supercoils or folded-fiber rods and toroids,”
Cell, vol. 13, no. 2, pp. 295–306, feb 1978. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0092867478901988

[73] A. Leforestier, A. Siber, F. Livolant, and R. Podgornik, “Protein-DNA
interactions determine the shapes of DNA toroids condensed in virus
capsids.” Biophysical journal, vol. 100, no. 9, pp. 2209–16, may 2011.
[Online]. Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?
artid=3149266{\&}tool=pmcentrez{\&}rendertype=abstract

[74] M. X. Tang, W. Li, and F. C. Szoka, “Toroid formation in charge neutralized
flexible or semi-flexible biopolymers: potential pathway for assembly of
DNA carriers.” The journal of gene medicine, vol. 7, no. 3, pp. 334–42, mar
2005. [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/15515145

149



[75] S. Y. Park, D. Harries, and W. M. Gelbart, “Topological defects and the
optimum size of DNA condensates.” Biophysical journal, vol. 75, no. 2, pp.
714–720, 1998.

[76] S. Danielsen and K. M. Va, “Structural Analysis of Chitosan Mediated DNA
Condensation by AFM : Influence of Chitosan Molecular Parameters,” pp.
928–936, 2004.

[77] G. G. Pereira, “Charged, semi-flexible polymers under incompatible solvent
conditions,” Current Applied Physics, vol. 8, pp. 347–350, 2008.

[78] J. Jeon and A. V. Dobrynin, “Necklace Globule and Counterion Condens-
ation,” pp. 7695–7706, 2007.

[79] N. Miyazawa, T. Sakaue, K. Yoshikawa, and R. Zana, “Rings-on-a-string
chain structure in DNA Rings-on-a-string chain structure in DNA,” vol.
044902, no. 2005, 2011.

[80] T. Iwaki, “Association-dissociation equilibrium of loop structures in single-
chain folding into a toroidal condensate,” Journal of Chemical Physics, vol.
125, no. 2006, 2006.

[81] T. Sakaue and K. Yoshikawa, “On the formation of rings-on-a-string con-
formations in a single polyelectrolyte chain : A On the formation of rings-
on-a-string conformations in a single polyelectrolyte chain : A possible
scenario,” vol. 074904, no. 2006, 2010.

[82] O. Shoji, H. Tanaka, T. Kawai, and Y. Kobuke, “Single molecule
visualization of coordination-assembled porphyrin macrocycles reinforced
with covalent linkings.” Journal of the American Chemical Society,
vol. 127, no. 24, pp. 8598–9, jun 2005. [Online]. Available: http:
//dx.doi.org/10.1021/ja051344y

[83] F. Balzer, J. Beermann, S. I. Bozhevolnyi, A. C. Simonsen et al., “Optically
Active Organic Microrings,” Nano Letters, vol. 3, no. 9, pp. 1311–1314,
sep 2003. [Online]. Available: http://dx.doi.org/10.1021/nl034457t

[84] R. Takahashi and Y. Kobuke, “Hexameric macroring of gable-porphyrins
as a light-harvesting antenna mimic.” Journal of the American Chemical
Society, vol. 125, no. 9, pp. 2372–3, mar 2003. [Online]. Available:
http://dx.doi.org/10.1021/ja028325y

150



[85] Y. Kuramochi, A. Satake, and Y. Kobuke, “Light-harvesting macroring
accommodating a tetrapodal ligand based on complementary and
cooperative coordinations.” Journal of the American Chemical Society,
vol. 126, no. 28, pp. 8668–9, jul 2004. [Online]. Available: http:
//dx.doi.org/10.1021/ja048118t

[86] “Schiff bases (Schiff’s bases),” in IUPAC Compendium of Chem-
ical Terminology. Research Triagle Park, NC: IUPAC, jun 2009.
[Online]. Available: http://dx.doi.org/10.1351/goldbook.S05498http:
//goldbook.iupac.org/S05498.html

[87] W.-K. Dong, X.-N. He, H.-B. Yan, Z.-W. Lv et al., “Synthesis,
structural characterization and solvent effect of copper(II) complexes
with a variational multidentate Salen-type ligand with bisoxime groups,”
Polyhedron, vol. 28, no. 8, pp. 1419–1428, jun 2009. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0277538709001715

[88] M. V. Escárcega-Bobadilla, D. Anselmo, S. J. Wezenberg, E. C.
Escudero-Adán et al., “Metal-directed assembly of chiral bis-Zn(II)
Schiff base structures.” Dalton transactions (Cambridge, England :
2003), vol. 41, no. 32, pp. 9766–72, aug 2012. [Online]. Available:
http://pubs.rsc.org/en/content/articlehtml/2012/dt/c2dt30642e

[89] N. Kielland, E. C. Escudero-Adán, M. Martínez Belmonte, and A. W.
Kleij, “Unsymmetrical octanuclear Schiff base clusters: synthesis,
characterization and catalysis.” Dalton transactions (Cambridge, England
: 2003), vol. 42, no. 5, pp. 1427–36, feb 2013. [Online]. Available:
http://pubs.rsc.org/en/content/articlehtml/2013/dt/c2dt31723k

[90] S. J. Wezenberg, E. C. Escudero-Adán, J. Benet-Buchholz, and
A. W. Kleij, “Anion-templated formation of supramolecular multinuclear
assemblies.” Chemistry (Weinheim an der Bergstrasse, Germany),
vol. 15, no. 23, pp. 5695–700, jun 2009. [Online]. Available: http:
//www.ncbi.nlm.nih.gov/pubmed/19388037

[91] M. Martínez Belmonte, E. C. Escudero-Adán, E. Martin, and
A. W. Kleij, “Isolation and characterization of unusual multinuclear
Schiff base complexes: rearrangements reactions and octanuclear
cluster formation.” Dalton transactions (Cambridge, England : 2003),
vol. 41, no. 17, pp. 5193–200, may 2012. [Online]. Available:
http://pubs.rsc.org/en/content/articlehtml/2012/dt/c2dt30201b

151



[92] N. K. Al Rasbi, H. Adams, I. AlShabibi, and F. AlAmri, “Structure,
aggregation and spectroscopic properties of self-assembled Zn(II) Schiff
base complexes,” Journal of Photochemistry and Photobiology A:
Chemistry, vol. 285, pp. 37–43, jul 2014. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S1010603014001105

[93] F. Dumur, L. Beouch, M.-A. Tehfe, E. Contal et al., “Low-
cost zinc complexes for white organic light-emitting devices,” Thin
Solid Films, vol. 564, pp. 351–360, aug 2014. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0040609014006506

[94] K. I. Ansari, S. Kasiri, J. D. Grant, and S. S. Mandal, “Fe(III)-salen
and salphen complexes induce caspase activation and apoptosis in human
cells.” Journal of biomolecular screening, vol. 16, no. 1, pp. 26–35, jan
2011. [Online]. Available: http://jbx.sagepub.com/content/16/1/26.long

[95] R. M. Clarke and T. Storr, “The chemistry and applications of
multimetallic salen complexes.” Dalton transactions (Cambridge, England
: 2003), vol. 43, no. 25, pp. 9380–91, 2014. [Online]. Available:
http://www.ncbi.nlm.nih.gov/pubmed/24722684

[96] A. W. Kleij, “Zinc-centred salen complexes: versatile and accessible
supramolecular building motifs.” Dalton transactions (Cambridge, England
: 2003), no. 24, pp. 4635–9, jun 2009. [Online]. Available: http:
//pubs.rsc.org/en/content/articlehtml/2009/dt/b902866h

[97] J. K.-H. Hui, Z. Yu, and M. J. MacLachlan, “Supramolecular
assembly of zinc salphen complexes: access to metal-containing gels
and nanofibers.” Angewandte Chemie (International ed. in English),
vol. 46, no. 42, pp. 7980–3, jan 2007. [Online]. Available: http:
//www.ncbi.nlm.nih.gov/pubmed/17849495

[98] M. Martínez Belmonte, S. J. Wezenberg, R. M. Haak, D. Anselmo
et al., “Self-assembly of Zn(salphen) complexes: steric regulation, stability
studies and crystallographic analysis revealing an unexpected dimeric 3,3’-
t-Bu-substituted Zn(salphen) complex.” Dalton transactions (Cambridge,
England : 2003), vol. 39, no. 19, pp. 4541–50, may 2010. [Online].
Available: http://pubs.rsc.org/en/content/articlehtml/2010/dt/b925560e

[99] G. Salassa, A. M. Castilla, and A. W. Kleij, “Cooperative self-assembly
of a macrocyclic Schiff base complex.” Dalton transactions (Cambridge,

152



England : 2003), vol. 40, no. 19, pp. 5236–43, may 2011. [Online]. Available:
http://pubs.rsc.org/en/content/articlehtml/2011/dt/c1dt10069f

[100] I. P. Oliveri, G. Malandrino, S. D. Bella, S. Chimiche et al., “Phase Trans-
ition and Vapochromism in Molecular Assemblies of a Polymorphic Zinc(II)
Schi ff -Base Complex,” Inorg. Chem., vol. 53, no. Ii, pp. 9771–9777, 2014.

[101] I. P. Oliveri, S. Failla, G. Malandrino, S. Di Bella et al., “Controlling
the Molecular Self-Assembly into Nanofibers of Amphiphilic Zinc(II)
Salophen Complexes,” The Journal of Physical Chemistry C, vol.
117, no. 29, pp. 15 335–15 341, jul 2013. [Online]. Available: http:
//dx.doi.org/10.1021/jp4038182

[102] A. Biancardi, A. Burgalassi, A. Terenzi, A. Spinello et al., “A Theoretical
and Experimental Investigation of the Spectroscopic Properties of a
DNA-Intercalator Salphen-Type Zn II Complex,” Chemistry - A European
Journal, vol. 20, no. 24, pp. 7439–7447, 2014. [Online]. Available:
http://doi.wiley.com/10.1002/chem.201304876

[103] N. H. Campbell, N. H. A. Karim, G. N. Parkinson, M. Gunaratnam et al.,
“Molecular basis of structure-activity relationships between salphen metal
complexes and human telomeric DNA quadruplexes.” Journal of medicinal
chemistry, vol. 55, no. 1, pp. 209–22, jan 2012. [Online]. Available:
http://dx.doi.org/10.1021/jm201140v

[104] A. K. Asatkar, S. P. Senanayak, A. Bedi, S. Panda et al., “Zn(II)
and Cu(II) complexes of a new thiophene-based salphen-type ligand:
solution-processable high-performance field-effect transistor materials.”
Chemical communications (Cambridge, England), vol. 50, no. 53, pp.
7036–9, jul 2014. [Online]. Available: http://pubs.rsc.org/en/Content/
ArticleHTML/2014/CC/C4CC01360C

[105] S. K. Saha, A. Dutta, P. Ghosh, D. Sukul et al., “Adsorption and corrosion
inhibition effect of Schiff base molecules on the mild steel surface in 1
M HCl medium: a combined experimental and theoretical approach,”
Phys. Chem. Chem. Phys., vol. 17, no. 8, pp. 5679–5690, 2015. [Online].
Available: http://xlink.rsc.org/?DOI=C4CP05614K

[106] R. P. Feynman, R. B. Leighton, and M. Sands, “The Feynman Lectures
on Physics, Vol. I: The New Millennium Edition: Mainly Mechanics, Radi-
ation, and Heat,” European Journal of Physics, vol. 24, 2011.

153



[107] “Scopus.” [Online]. Available: http://www.scopus.com

[108] W. Zhang, A. R. Oganov, A. F. Goncharov, Q. Zhu et al.,
“Unexpected stable stoichiometries of sodium chlorides.” Science
(New York, N.Y.), vol. 342, no. 6165, pp. 1502–5, dec 2013.
[Online]. Available: http://www.scopus.com/inward/record.url?eid=2-s2.
0-84890841921{\&}partnerID=tZOtx3y1

[109] J. R. Perilla, B. C. Goh, C. K. Cassidy, B. Liu et al., “Mo-
lecular dynamics simulations of large macromolecular complexes,”
Current Opinion in Structural Biology, vol. 31, pp. 64–74, apr 2015.
[Online]. Available: http://www.scopus.com/inward/record.url?eid=2-s2.
0-84926161673{\&}partnerID=tZOtx3y1

[110] R. Y. Rubinstein and D. P. Kroese, Simulation and the Monte
Carlo Method, ser. Wiley Series in Probability and Mathematical
Statistics, Wiley Series In Probability And Statistics, Ed. Wiley-
Interscience, 2008, vol. 707, no. November. [Online]. Available: http:
//books.google.de/books?id=1-ffZVmazvwC

[111] L.-P. Simoneau, J. Villeneuve, and A. Rochefort, “Electron percolation
in realistic models of carbon nanotube networks,” Journal of Applied
Physics, vol. 118, no. 12, p. 124309, sep 2015. [Online]. Available: http:
//scitation.aip.org/content/aip/journal/jap/118/12/10.1063/1.4931676

[112] S. S. Rahatekar, M. S. Shaffer, and J. A. Elliott, “Modelling percolation
in fibre and sphere mixtures: Routes to more efficient network formation,”
Composites Science and Technology, vol. 70, no. 2, pp. 356–362, feb
2010. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0266353809003935

[113] J. Silva, S. Ribeiro, S. Lanceros-Mendez, and R. Simões, “The
influence of matrix mediated hopping conductivity, filler concentration,
aspect ratio and orientation on the electrical response of carbon
nanotube/polymer nanocomposites,” Composites Science and Technology,
vol. 71, no. 5, pp. 643–646, mar 2011. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0266353811000339

[114] J. Silva, S. Lanceros-Mendez, and R. Simoes, “Effect of cylindrical
filler aggregation on the electrical conductivity of composites,” Physics

154



Letters A, vol. 378, no. 40, pp. 2985–2988, aug 2014. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S037596011400824X

[115] S. I. White, B. A. DiDonna, M. Mu, T. C. Lubensky et al.,
“Simulations and electrical conductivity of percolated networks of
finite rods with various degrees of axial alignment,” Physical Review
B, vol. 79, no. 2, p. 024301, jan 2009. [Online]. Available: http:
//journals.aps.org/prb/abstract/10.1103/PhysRevB.79.024301

[116] A. Dani and A. Ogale, “Percolation in short-fiber composites: Cluster
statistics and critical exponents,” Composites Science and Technology,
vol. 57, no. 9-10, pp. 1355–1361, jan 1997. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0266353897000626

[117] D. C. Lee, G. Kwon, H. Kim, H.-J. Lee et al., “Three-Dimensional
Monte Carlo Simulation of the Electrical Conductivity of Carbon
Nanotube/Polymer Composites,” Applied Physics Express, vol. 5, no. 4,
p. 045101, mar 2012. [Online]. Available: http://iopscience.iop.org/article/
10.1143/APEX.5.045101

[118] B. J. Alder and T. E. Wainwright, “Phase transition for a hard sphere
system,” The Journal of Chemical Physics, vol. 27, no. 5, pp. 1208–1209,
1957. [Online]. Available: http://www.scopus.com/inward/record.url?eid=
2-s2.0-34548717559{\&}partnerID=tZOtx3y1

[119] D. E. Shaw, K. J. Bowers, E. Chow, M. P. Eastwood et al., “Millisecond-
scale molecular dynamics simulations on Anton,” in Proceedings of the
Conference on High Performance Computing Networking, Storage and
Analysis - SC ’09. New York, New York, USA: ACM Press, 2009, p. 1.
[Online]. Available: http://www.scopus.com/inward/record.url?eid=2-s2.
0-74049112717{\&}partnerID=tZOtx3y1

[120] W. Eckhardt, A. Heinecke, R. Bader, M. Brehm et al., Supercomputing,
ser. Lecture Notes in Computer Science, J. M. Kunkel, T. Ludwig, and
H. W. Meuer, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013,
vol. 7905. [Online]. Available: http://www.scopus.com/inward/record.url?
eid=2-s2.0-84884487938{\&}partnerID=tZOtx3y1

[121] J. A. Zimmerman, E. B. WebbIII, J. J. Hoyt, R. E. Jones et al.,
“Calculation of stress in atomistic simulation,” Modelling and Simulation
in Materials Science and Engineering, vol. 12, no. 4, pp. S319–S332, jul

155



2004. [Online]. Available: http://www.scopus.com/inward/record.url?eid=
2-s2.0-3142605093{\&}partnerID=tZOtx3y1

[122] M. Zamponi, A. Wischnewski, M. Monkenbusch, L. Willner et al.,
“Cooperative dynamics in homopolymer melts: a comparison of
theoretical predictions with neutron spin echo experiments.” The journal
of physical chemistry. B, vol. 112, no. 50, pp. 16 220–9, dec 2008.
[Online]. Available: http://www.scopus.com/inward/record.url?eid=2-s2.
0-58049163209{\&}partnerID=tZOtx3y1

[123] D. Frenkel and B. Smit, “Understanding molecular simula-
tion: from algorithms to applications,” Academic Press, vol.
New York„ 2002. [Online]. Available: http://books.google.com/
books?hl=en{\&}lr={\&}ie=UTF-8{\&}id=XmyO2oRUg0cC{\&}oi=
fnd{\&}pg=PR13{\&}dq="Understanding+Molecular+Simulation:
+From+Algorithms+to+Applications"{\&}ots=Zw2B2{\_}j5yT{\&
}sig=M-ipI-NcSM93bV3DW0pfxY2{\_}3iI$\backslash$npapers:
//8d0de5a1-e8b7-4a12-aaa3-152761650b49/Paper/p9

[124] D. Rapaport, The art of molecular dynamics simulation. Cambridge Univ
Pr, 2004, vol. 1, no. 11. [Online]. Available: http://onlinelibrary.wiley.
com/doi/10.1002/cbdv.200490137/abstract$\backslash$nhttp://books.
google.com/books?hl=en{\&}amp;lr={\&}amp;id=iqDJ2hjqBMEC{\&
}amp;oi=fnd{\&}amp;pg=PR9{\&}amp;dq=The+art+of+molecular+
dynamics+simulation{\&}amp;ots=krKNuyen{\_}N{\&}amp;sig=
g1-T6{\_}{\_}a1yRWCS-iURxWrZ{\_}IcY

[125] J. Wang and T. Hou, “Application of molecular dynamics simulations
in molecular property prediction II: diffusion coefficient.” Journal of
computational chemistry, vol. 32, no. 16, pp. 3505–19, dec 2011.
[Online]. Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?
artid=3193570{\&}tool=pmcentrez{\&}rendertype=abstract

[126] S. Melchionna, G. Ciccotti, and B. Lee Holian, “Hoover NPT
Dynamics for Systems Varying in Shape and Size,” Molecular Physics,
vol. 78, no. 3, pp. 533–544, 1993. [Online]. Available: http:
//www.tandfonline.com/doi/abs/10.1080/00268979300100371

[127] R. L. Davidchack, R. Handel, and M. V. Tretyakov, “Langevin thermostat
for rigid body dynamics,” Journal of Chemical Physics, vol. 130, no. 23,
2009.

156



[128] J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman et al., “Junmei
Wang, Romain M. Wolf, James W. Caldwell, Peter A. Kollman,
and David A. Case, "Development and testing of a general amber
force field"Journal of Computational Chemistry(2004) 25(9) 1157-1174,”
Journal of Computational Chemistry, vol. 25, no. 9, pp. 1157–74, jul 2004.
[Online]. Available: http://www.scopus.com/inward/record.url?eid=2-s2.
0-2942532422{\&}partnerID=tZOtx3y1http://www.scopus.com/inward/
record.url?eid=2-s2.0-11144347566{\&}partnerID=tZOtx3y1

[129] C. Oostenbrink, A. Villa, A. E. Mark, and W. F. van Gunsteren, “A
biomolecular force field based on the free enthalpy of hydration and
solvation: the GROMOS force-field parameter sets 53A5 and 53A6.”
Journal of computational chemistry, vol. 25, no. 13, pp. 1656–76, oct 2004.
[Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/15264259

[130] S. L. Mayo, B. D. Olafson, and W. A. Goddard, “DREIDING: a
generic force field for molecular simulations,” The Journal of Physical
Chemistry, vol. 94, no. 26, pp. 8897–8909, dec 1990. [Online]. Available:
http://dx.doi.org/10.1021/j100389a010

[131] J. Gasteiger and M. Marsili, “A new model for calculating atomic charges
in molecules,” Tetrahedron Letters, vol. 19, no. 34, pp. 3181–3184, jan
1978. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0040403901949779

[132] F.-Y. Dupradeau, A. Pigache, T. Zaffran, C. Savineau et al.,
“The R.E.D. tools: advances in RESP and ESP charge derivation
and force field library building.” Physical chemistry chemical phys-
ics : PCCP, vol. 12, no. 28, pp. 7821–39, jul 2010. [Online].
Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=
2918240{\&}tool=pmcentrez{\&}rendertype=abstract

[133] U. Ryde, “Molecular dynamics simulations of alcohol dehydrogenase with
a four- or five-coordinate catalytic zinc ion.” Proteins, vol. 21, no. 1,
pp. 40–56, jan 1995. [Online]. Available: http://www.ncbi.nlm.nih.gov/
pubmed/7716168

[134] R. H. Stote and M. Karplus, “Zinc binding in proteins and
solution: a simple but accurate nonbonded representation.” Proteins,
vol. 23, no. 1, pp. 12–31, sep 1995. [Online]. Available: http:
//www.ncbi.nlm.nih.gov/pubmed/8539245

157



[135] J.-P. Ryckaert, G. Ciccotti, and H. J. Berendsen, “Numerical
integration of the cartesian equations of motion of a system with
constraints: molecular dynamics of n-alkanes,” Journal of Computational
Physics, vol. 23, no. 3, pp. 327–341, mar 1977. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0021999177900985

[136] C.-Y. Lin, N.-Y. Chen, and C. Y. Mou, “Folding a pro-
tein with equal probability of being helix or hairpin.” Biophys-
ical journal, vol. 103, no. 1, pp. 99–108, jul 2012. [Online].
Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=
3388226{\&}tool=pmcentrez{\&}rendertype=abstract

[137] R. W. Zwanzig, “High-Temperature Equation of State by a Perturbation
Method. I. Nonpolar Gases,” The Journal of Chemical Physics,
vol. 22, no. 8, p. 1420, dec 1954. [Online]. Available: http:
//scitation.aip.org/content/aip/journal/jcp/22/8/10.1063/1.1740409

[138] M. Feig, W. Im, and C. L. Brooks, “Implicit solvation based on generalized
Born theory in different dielectric environments,” The Journal of Chemical
Physics, vol. 120, no. 2, p. 903, dec 2004. [Online]. Available: http:
//scitation.aip.org/content/aip/journal/jcp/120/2/10.1063/1.1631258

[139] L. David, R. Luo, and M. K. Gilson, “Comparison of generalized
born and poisson models: Energetics and dynamics of HIV protease,”
Journal of Computational Chemistry, vol. 21, no. 4, pp. 295–309, mar
2000. [Online]. Available: http://doi.wiley.com/10.1002/{\%}28SICI{\%
}291096-987X{\%}28200003{\%}2921{\%}3A4{\%}3C295{\%}3A{\%
}3AAID-JCC5{\%}3E3.0.CO{\%}3B2-8

[140] J. B. Abrams, L. Rosso, and M. E. Tuckerman, “Efficient and precise
solvation free energies via alchemical adiabatic molecular dynamics.”
The Journal of chemical physics, vol. 125, no. 7, p. 074115, aug 2006.
[Online]. Available: http://scitation.aip.org/content/aip/journal/jcp/125/
7/10.1063/1.2232082

[141] P. Virnau and M. Mueller, “Calculation of free energy through
successive umbrella sampling,” The Journal of Chemical Physics,
vol. 120, no. 23, p. 10925, may 2004. [Online]. Available: http:
//scitation.aip.org/content/aip/journal/jcp/120/23/10.1063/1.1739216

158



[142] S. Kumar, J. M. Rosenberg, D. Bouzida, R. H. Swendsen et al.,
“THE weighted histogram analysis method for free-energy calculations
on biomolecules. I. The method,” Journal of Computational Chemistry,
vol. 13, no. 8, pp. 1011–1021, oct 1992. [Online]. Available: http:
//doi.wiley.com/10.1002/jcc.540130812

[143] G. Henkelman, B. P. Uberuaga, and H. Jonsson, “A climbing image
nudged elastic band method for finding saddle points and minimum
energy paths,” The Journal of Chemical Physics, vol. 113, no. 22, p.
9901, dec 2000. [Online]. Available: http://scitation.aip.org/content/aip/
journal/jcp/113/22/10.1063/1.1329672

[144] D. Shivakumar, J. Williams, Y. Wu, W. Damm et al., “Prediction of abso-
lute solvation free energies using molecular dynamics free energy perturba-
tion and the opls force field,” Journal of Chemical Theory and Computation,
vol. 6, no. 5, pp. 1509–1519, 2010.

[145] C. H. Bennett, “Efficient estimation of free energy differences from Monte
Carlo data,” Journal of Computational Physics, vol. 22, no. 2, pp. 245–268,
oct 1976. [Online]. Available: http://www.scopus.com/inward/record.url?
eid=2-s2.0-5244304444{\&}partnerID=tZOtx3y1

[146] M. R. Shirts and V. S. Pande, “Comparison of efficiency and bias of free
energies computed by exponential averaging, the Bennett acceptance ratio,
and thermodynamic integration.” The Journal of chemical physics, vol.
122, no. 14, p. 144107, apr 2005. [Online]. Available: http://www.scopus.
com/inward/record.url?eid=2-s2.0-23944432199{\&}partnerID=tZOtx3y1

[147] A. Pohorille, C. Jarzynski, and C. Chipot, “Good practices in free-energy
calculations,” Journal of Physical Chemistry B, vol. 114, no. 32, pp. 10 235–
10 253, 2010.

[148] C. Jarzynski, “Nonequilibrium equality for free energy differences,”
Physical Review Letters, vol. 78, no. 14, pp. 2690–2693, 1997.
[Online]. Available: http://www.scopus.com/inward/record.url?eid=2-s2.
0-4243754128{\&}partnerID=tZOtx3y1

[149] S. Park, F. Khalili-Araghi, E. Tajkhorshid, and K. Schulten, “Free energy
calculation from steered molecular dynamics simulations using Jarzynski’s
equality,” The Journal of Chemical Physics, vol. 119, no. 6, p. 3559, 2003.

159



[Online]. Available: http://scitation.aip.org/content/aip/journal/jcp/119/
6/10.1063/1.1590311

[150] S. Park and K. Schulten, “Calculating potentials of mean force from
steered molecular dynamics simulations.” The Journal of chemical physics,
vol. 120, no. 13, pp. 5946–61, apr 2004. [Online]. Available: http:
//scitation.aip.org/content/aip/journal/jcp/120/13/10.1063/1.1651473

[151] R. M. Martin, “Electronic Structure: Basic Theory and Practical
Methods,” Cambridge, p. 624, 2004. [Online]. Available: http:
//books.google.com/books?id=dmRTFLpSGNsC

[152] P. M. Gill, “Molecular integrals Over Gaussian Basis Functions,” Advances
in Quantum Chemistry, vol. 25, pp. 141–205, 1994. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0065327608600192

[153] J. Junquera, O. Paz, D. Sanchez-Portal, and E. Artacho, “Numerical
atomic orbitals for linear-scaling calculations,” Physical Review B -
Condensed Matter and Materials Physics, vol. 64, no. 23, pp. 2 351 111–
2 351 119, 2001. [Online]. Available: http://www.scopus.com/inward/
record.url?eid=2-s2.0-0035894201{\&}partnerID=tZOtx3y1

[154] P. D. Haynes, C.-K. Skylaris, A. A. Mostofi, and M. C. Payne, “ONETEP:
linear-scaling density-functional theory with local orbitals and plane
waves,” physica status solidi (b), vol. 243, no. 11, pp. 2489–2499, sep 2006.
[Online]. Available: http://www.scopus.com/inward/record.url?eid=2-s2.
0-33748565991{\&}partnerID=tZOtx3y1

[155] N. Troullier and J. L. Martins, “Efficient pseudopotentials for plane-wave
calculations,” Physical Review B, vol. 43, no. 3, pp. 1993–2006, jan 1991.
[Online]. Available: http://www.scopus.com/inward/record.url?eid=2-s2.
0-33645426115{\&}partnerID=tZOtx3y1

[156] W. Kohn and L. J. Sham, “Self-Consistent Equations Including Exchange
and Correlation Effects,” Physical Review, vol. 140, no. 4A, pp. A1133–
A1138, nov 1965. [Online]. Available: http://www.scopus.com/inward/
record.url?eid=2-s2.0-0042113153{\&}partnerID=tZOtx3y1

[157] J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized Gradient
Approximation Made Simple,” Physical Review Letters, vol. 77, no. 18,
pp. 3865–3868, oct 1996. [Online]. Available: http://journals.aps.org/prl/
abstract/10.1103/PhysRevLett.77.3865

160



[158] J. P. Perdew and Y. Wang, “Accurate and simple analytic representation
of the electron-gas correlation energy,” Physical Review B, vol. 45,
no. 23, pp. 13 244–13 249, jun 1992. [Online]. Available: http:
//journals.aps.org/prb/abstract/10.1103/PhysRevB.45.13244

[159] A. D. Becke, “Density-functional exchange-energy approximation with
correct asymptotic behavior,” Physical Review A, vol. 38, no. 6, pp.
3098–3100, sep 1988. [Online]. Available: http://journals.aps.org/pra/
abstract/10.1103/PhysRevA.38.3098

[160] M. Dion, H. Rydberg, E. Schröder, D. C. Langreth et al., “van
der Waals density functional for general geometries.” Physical review
letters, vol. 92, no. 24, p. 246401, jun 2004. [Online]. Available:
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.92.246401

[161] C. Lee, W. Yang, and R. G. Parr, “Development of the Colle-Salvetti
correlation-energy formula into a functional of the electron density,”
Physical Review B, vol. 37, no. 2, pp. 785–789, jan 1988. [Online]. Available:
http://journals.aps.org/prb/abstract/10.1103/PhysRevB.37.785

[162] A. D. Becke, “Density-functional thermochemistry. III. The role of exact
exchange,” The Journal of Chemical Physics, vol. 98, no. 7, p. 5648, apr
1993. [Online]. Available: http://scitation.aip.org/content/aip/journal/
jcp/98/7/10.1063/1.464913

[163] L. P. Lee, D. J. Cole, M. C. Payne, and C.-K. Skylaris, “Natural bond
orbital analysis in the ONETEP code: applications to large protein
systems.” Journal of computational chemistry, vol. 34, no. 6, pp. 429–44,
mar 2013. [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/
23065758

[164] U. C. Singh and P. A. Kollman, “An approach to computing
electrostatic charges for molecules,” Journal of Computational Chemistry,
vol. 5, no. 2, pp. 129–145, apr 1984. [Online]. Available: http:
//doi.wiley.com/10.1002/jcc.540050204

[165] Heiko Hocke, “Baytubes: carbon nanotubes at Bayer,” 2010. [On-
line]. Available: http://www.lidorr.com/{\_}uploads/dbsattachedfiles/
baytubesseminartechnicalpresentation2010.pdf

[166] S. Sathyanarayana, “Multiwalled carbon nanotubes incorporated into
a miscible blend of poly(phenylenether)/polystyrene – Processing and

161



characterization,” Express Polymer Letters, vol. 7, no. 7, pp. 621–635, may
2013. [Online]. Available: http://www.scopus.com/inward/record.url?eid=
2-s2.0-84877312275{\&}partnerID=tZOtx3y1

[167] A. Y. Matveeva, F. W. J. Van Hattum, and S. V. Pyrlin, “Orientation
and dispersion influences on elastic properties of CnT/CNF polymer
nanocomposites,” in International SAMPE Technical Conference, 2012.
[Online]. Available: http://www.scopus.com/inward/record.url?eid=2-s2.
0-84875882581{\&}partnerID=tZOtx3y1

[168] G. Strang, Computational Science and Engineering. Wellesley-Cambridge
Press, 2007, vol. 1. [Online]. Available: https://books.google.com/books?
id=GQ9pQgAACAAJ{\&}pgis=1

[169] E. Anderson, Z. Bai, J. Dongarra, A. Greenbaum et al., “LAPACK: A
Portable Linear Algebra Library for High-performance Computers,” in
Proceedings of the 1990 ACM/IEEE Conference on Supercomputing, ser.
Supercomputing ’90. IEEE Computer Society Press, 1990, pp. 2–11.
[Online]. Available: http://portal.acm.org/citation.cfm?id=110385

[170] W. Nvidia, N. Generation, and C. Compute, “Whitepaper
NVIDIA’s Next Generation CUDA Compute Architecture,” Re-
Vision, vol. 23, no. 6, pp. 1–22, 2009. [Online]. Avail-
able: http://www.nvidia.com/content/PDF/fermi{\_}white{\_}papers/
NVIDIA{\_}Fermi{\_}Compute{\_}Architecture{\_}Whitepaper.pdf

[171] T. Foley and J. Sugerman, “KD-tree acceleration structures for a
GPU raytracer,” Proceedings of the ACM SIGGRAPH/EUROGRAPHICS
conference on Graphics hardware - HWWS ’05, vol. 45, p. 15, 2005. [Online].
Available: http://portal.acm.org/citation.cfm?doid=1071866.1071869

[172] L. Lamport, “A fast mutual exclusion algorithm,” ACM Transactions on
Computer Systems, vol. 5, no. 1, pp. 1–11, 1987.

[173] S. Plimpton, “Fast Parallel Algorithms for Short-Range Molecular
Dynamics,” Journal of Computational Physics, vol. 117, no. 1, pp. 1–19,
mar 1995. [Online]. Available: http://www.scopus.com/inward/record.url?
eid=2-s2.0-0002467378{\&}partnerID=tZOtx3y1

[174] S. M. J. Schulz Mark J. , Kelkar Ajit D., Nanoengineering of Structural,
Functional and Smart Materials. Boca Raton: CRC Press, 2005.

162



[175] Nanocyl, “Nanocyl PLASTICYL™ PC1501 Polycarbonate - Carbon
Nanotube Masterbatch.” [Online]. Available: http://www.matweb.com

[176] ——, “Nanocyl NANOCYL™ NC7000 Thin Multi-Wall Carbon Nan-
otubes.” [Online]. Available: http://www.matweb.com

[177] J. E. Mark, Physical properties of polymers handbook, 2nd ed.
New York: Springer-Verlag, 1997. [Online]. Available: http://books.
google.com/books?id=fZl7q7UgEXkC{\&}pgis=1$\backslash$nhttp:
//linkinghub.elsevier.com/retrieve/pii/S0039914097800379

[178] A. Sears and R. C. Batra, “Macroscopic properties of carbon
nanotubes from molecular-mechanics simulations,” Physical Review
B, vol. 69, no. 23, p. 235406, jun 2004. [Online]. Available:
http://journals.aps.org/prb/abstract/10.1103/PhysRevB.69.235406

[179] A. Y. Matveeva, S. V. Pyrlin, M. M. Ramos, H. J. Böhm et al., “Influence
of waviness and curliness of fibres on mechanical properties of composites,”
Computational Materials Science, vol. 87, pp. 1–11, may 2014. [Online].
Available: http://linkinghub.elsevier.com/retrieve/pii/S0927025614000792

[180] B. Stroustrup, “The C++ Programming Language,” Imprint, vol.
923, 1997. [Online]. Available: http://www.mendeley.com/catalog/
c-programming-language-41/

[181] ISO, ISO/IEC 14882:2011 Information technology — Program-
ming languages — C++. Geneva, Switzerland: Interna-
tional Organization for Standardization, feb 2012. [Online].
Available: http://www.iso.org/iso/iso{\_}catalogue/catalogue{\_}tc/
catalogue{\_}detail.htm?csnumber=50372

[182] W. J. Schroeder and K. M. Martin, Visualization Handbook. El-
sevier, 2005. [Online]. Available: http://www.mendeley.com/catalog/
visualization-toolkit-1/

[183] I. Balberg, C. H. Anderson, S. Alexander, and N. Wagner, “Excluded
volume and its relation to the onset of percolation,” pp. 3933–3943, 1984.

[184] H. Deng, R. Zhang, E. Bilotti, J. Loos et al., “Conductive polymer
tape containing highly oriented carbon nanofillers,” Journal of Applied
Polymer Science, vol. 113, no. 2, pp. 742–751, 2009. [Online]. Available:
http://doi.wiley.com/10.1002/app.29624

163



[185] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische Mathematik, vol. 1, no. 1, pp. 269–271, dec 1959. [Online].
Available: http://link.springer.com/10.1007/BF01386390

[186] D. W. Marquardt, “An Algorithm for Least-Squares Estimation of
Nonlinear Parameters,” Journal of the Society for Industrial and Applied
Mathematics, vol. 11, no. 2, pp. 431–441, jun 1963. [Online]. Available:
http://epubs.siam.org/doi/abs/10.1137/0111030

[187] T. E. Oliphant, “SciPy: Open source scientific tools for Py-
thon,” Computing in Science and Engineering, vol. 9, pp. 10–
20, 2007. [Online]. Available: http://www.mendeley.com/catalog/
scipy-open-source-scientific-tools-python/

[188] J. Quintanilla, S. Torquato, and R. M. Ziff, “Efficient measurement of
the percolation threshold for fully penetrable discs,” Journal of Physics
A: Mathematical and General, vol. 33, no. 42, pp. L399–L407, oct 2000.
[Online]. Available: http://iopscience.iop.org/article/10.1088/0305-4470/
33/42/104

[189] A. W. Kleij, M. V. Escárcega-Bobadilla, G. A. Zelada-Guillén, and
G. Maier, “Bis-salphen compounds and carbonaceous material composites
comprising them,” 2015. [Online]. Available: https://www.lens.org/lens/
patent/WO{\_}2015{\_}018940{\_}A1

[190] J. M. Soler, E. Artacho, J. D. Gale, A. García et al., “The SIESTA
method for ab initio order- N materials simulation,” Journal of
Physics: Condensed Matter, vol. 14, no. 11, pp. 2745–2779, mar 2002.
[Online]. Available: http://www.scopus.com/inward/record.url?eid=2-s2.
0-0037171091{\&}partnerID=tZOtx3y1

[191] C.-K. Skylaris, P. D. Haynes, A. A. Mostofi, and M. C. Payne,
“Introducing ONETEP: linear-scaling density functional simulations on
parallel computers.” The Journal of chemical physics, vol. 122, no. 8,
p. 84119, feb 2005. [Online]. Available: http://www.scopus.com/inward/
record.url?eid=2-s2.0-22944446425{\&}partnerID=tZOtx3y1

[192] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria
et al., Gaussian 03, Revision C.02, 2004, vol. 24, no. 14. [On-
line]. Available: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?
cmd=prlinks{\&}dbfrom=pubmed{\&}retmode=ref{\&}id=12964193

164



[193] S. Boys and F. Bernardi, “The calculation of small molecular interactions
by the differences of separate total energies. Some procedures with
reduced errors,” Molecular Physics, vol. 19, no. 4, pp. 553–566, oct
1970. [Online]. Available: http://www.tandfonline.com/doi/abs/10.1080/
00268977000101561

[194] A. A. Mostofi, P. D. Haynes, C. K. Skylaris, and M. C. Payne,
“ONETEP: Linear-scaling density-functional theory with plane-waves,”
in 2006 NSTI Nanotechnology Conference and Trade Show - NSTI
Nanotech 2006 Technical Proceedings, vol. 1, 2006, pp. 633–636.
[Online]. Available: http://www.scopus.com/inward/record.url?eid=2-s2.
0-33845189918{\&}partnerID=tZOtx3y1

[195] N. D. M. Hine, M. Robinson, P. D. Haynes, C.-K. Skylaris et al., “Accurate
ionic forces and geometry optimization in linear-scaling density-functional
theory with local orbitals,” Physical Review B, vol. 83, no. 19, p. 195102,
may 2011. [Online]. Available: http://www.scopus.com/inward/record.url?
eid=2-s2.0-79961102800{\&}partnerID=tZOtx3y1

[196] “OPIUM pseudopotential generation package.” [Online]. Available: http:
//opium.sourceforge.net/

[197] J. P. Perdew, “Self-interaction correction to density-functional approxim-
ations for many-electron systems,” Physical Review B, vol. 23, no. 10,
pp. 5048–5079, may 1981. [Online]. Available: http://www.scopus.com/
inward/record.url?eid=2-s2.0-26144450583{\&}partnerID=tZOtx3y1

[198] L. P. Lee, D. J. Cole, M. C. Payne, and C.-K. Skylaris, “Natural bond
orbital analysis in the ONETEP code: applications to large protein
systems.” Journal of computational chemistry, vol. 34, no. 6, pp. 429–44,
mar 2013. [Online]. Available: http://www.scopus.com/inward/record.url?
eid=2-s2.0-84873450915{\&}partnerID=tZOtx3y1

[199] J. Wang, R. R. M. Wolf, J. W. Caldwell, P. a. Kollman et al.,
“Development and testing of a general amber force field.” Journal
of computational chemistry, vol. 25, no. 9, pp. 1157–74, 2004.
[Online]. Available: http://onlinelibrary.wiley.com/doi/10.1002/jcc.20035/
full$\backslash$nhttp://www.ncbi.nlm.nih.gov/pubmed/15116359

165



[200] J. Wang, W. Wang, P. a. Kollman, and D. a. Case, “Antechamber, An Ac-
cessory Software Package For Molecular Mechanical Calculations,” Journal
of computational chemistry, vol. 25, no. 2, pp. 1157–1174, 2005.

[201] W. Humphrey, A. Dalke, and K. Schulten, “VMD: Visual molecular dy-
namics,” Journal of Molecular Graphics, vol. 14, no. 1, pp. 33–38, 1996.

[202] C. F. Macrae, P. R. Edgington, P. McCabe, E. Pidcock et al., “Mercury:
Visualization and analysis of crystal structures,” pp. 453–457, 2006.

[203] “VirtualChemistry.org.” [Online]. Available: http://virtualchemistry.org/

[204] “Moltemplate.” [Online]. Available: http://www.moltemplate.org/

[205] L. Ruiz and S. Keten, “Multi Scale Modeling of Elasticity and Fracture in
Organic Nanotubes,” Journal of Engineering Mechanics, no. March, p. 371,
2012.

[206] B. a. Luty, M. E. Davis, I. G. Tironi, and W. F. Van Gunsteren, “A Com-
parison of Particle-Particle, Particle-Mesh and Ewald Methods for Calcu-
lating Electrostatic Interactions in Periodic Molecular Systems,” Molecular
Simulation, vol. 14, no. 1, pp. 11–20, 1994.

[207] J. Norberg and L. Nilsson, “On the truncation of long-range electrostatic
interactions in DNA.” Biophysical journal, vol. 79, no. 3, pp. 1537–53, sep
2000. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0006349500764058

[208] A. Grossfield, “WHAM: the weighted histogram analysis method.” [Online].
Available: http://membrane.urmc.rochester.edu/content/wham

[209] Y. Deng and B. Roux, “Hydration of Amino Acid Side Chains: Nonpolar
and Electrostatic Contributions Calculated from Staged Molecular
Dynamics Free Energy Simulations with Explicit Water Molecules,” The
Journal of Physical Chemistry B, vol. 108, no. 42, pp. 16 567–16 576, oct
2004. [Online]. Available: http://www.scopus.com/inward/record.url?eid=
2-s2.0-7544232432{\&}partnerID=tZOtx3y1

[210] T. C. Beutler, A. E. Mark, R. C. van Schaik, P. R. Gerber et al., “Avoiding
singularities and numerical instabilities in free energy calculations based
on molecular simulations,” Chemical Physics Letters, vol. 222, no. 6, pp.
529–539, 1994.

166



[211] P. Liu, F. Dehez, W. Cai, and C. Chipot, “A Toolkit for the Analysis of
Free-Energy Perturbation Calculations,” Journal of Chemical Theory and
Computation, vol. 8, no. 8, pp. 2606–2616, aug 2012. [Online]. Available:
http://pubs.acs.org/doi/full/10.1021/ct300242f{\#}notes-1

[212] J. Koca, C.-G. Zhan, R. C. Rittenhouse, and R. L. Ornstein,
“Coordination number of zinc ions in the phosphotriesterase active site by
molecular dynamics and quantum mechanics.” Journal of computational
chemistry, vol. 24, no. 3, pp. 368–78, feb 2003. [Online]. Available:
http://www.ncbi.nlm.nih.gov/pubmed/12548728

[213] L. W. Chung, H. Hirao, X. Li, and K. Morokuma, “The ONIOM method:
Its foundation and applications to metalloenzymes and photobiology,” pp.
327–350, 2012.

[214] A. Lauria, R. Bonsignore, A. Terenzi, A. Spinello et al., “Nickel(II),
copper(II) and zinc(II) metallo-intercalators: structural details of
the DNA-binding by a combined experimental and computational
investigation.” Dalton transactions (Cambridge, England : 2003),
vol. 43, no. 16, pp. 6108–19, apr 2014. [Online]. Available: http:
//pubs.rsc.org/en/content/articlehtml/2014/dt/c3dt53066c

[215] A. W. Kleij, M. Kuil, M. Lutz, D. M. Tooke et al., “Supramolecular
zinc(II)salphen motifs: Reversible dimerization and templated dimeric
structures,” Inorganica Chimica Acta, vol. 359, no. 6, pp. 1807–1814, apr
2006. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0020169305003774

167



168



Appendix A

“Rings-and-rods” networks
simulation data

A.1 Connectivity strategy comparison

This section covers the data collected during the comparison of rod elimination
strategies. Each method is described by a table and two figures. The table
contains the averaged data, used in the main text:
η - scaling parameter, η = 2

√
S/π/DR;

SR - average surface per ring;
Pconnect - probability to get connected network;
Nc/R - full number of connections per ring (including rods and point con-

tacts);
NNZ
r/R - number of non-zero long rods per ring;

φLsurf - lower estimate for CNT surface fraction, calculated as φLsurf = SCNT
Lnet
lCNT/Sbox,

where SCNT = lCNTdCNT - average area of nanotube’s projection on
the sample’s plane, Lnet - total length of the simulated network, Sbox -
the surface area of a simulation box;

φVsurf - upper estimate for CNT surface fraction, calculated as φVsurf = SCNT
Vnet
VCNT/Sbox,

where Vnet - total volume of the simulated network, VCNT = lCNT
πd2
CNT

4

- average volume of a nanotube.
The first of the two pictures represent the convergence of sample sheet resist-

ance with simulation box size (colour refer to average surface per ring, SR):
points - results of single calculations (with random horizontal displacement

for better visibility);
circles - average sheet resistance at fixed box size and SR;
bars - confidence interval with 95% probability;
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lines - average sheet resistance at fixed SR (where it converged with box
size).

The convergence was checked as follows: after all means mSR,b and standard
deviations sSR,b were calculated for each pair of SR and simulation box length
b where PCNT ≥ 45%, a 2-tailed Welch’s t-test was conducted for each pair of
adjacent points (SR; bi) and (SR; bi−1). If the means were found to belong to the
same distribution with 90% probability at least for the last two box sizes, the
calculation was considered converged. In this case the result for the largest box
length ( equal to 300 µm) was used as the sheet resistance for fixed SR.

The last picture shows change of the sheet resistance with the ring’s density
(characterized by the average surface per ring SR):

points - results of single calculations (with random horizontal displacement
for better visibility);

circles - average sheet resistance at SR calculated at the largest box size;
line - connect the circles, where convergence was achieved.

Method: “FULL”

η SR, µm2 Pconnect,% R, a.u. Nc/R NNZ
r/R φLsurf ,surf. % φVsurf ,surf. %

2.69 25.00 100 336±25 4.28±0.19 3.89±0.25 0.80±0.20 13.80±4.10

3.18 35.01 100 593±28 3.87±0.21 3.60±0.22 0.60±0.20 10.20±2.90

3.60 45.00 100 1,078±45 3.49±0.20 3.28±0.22 0.50±0.10 7.90±2.20

3.99 55.01 100 2,375±157 3.16±0.22 2.99±0.24 0.40±0.10 6.30±1.80

4.33 64.98 86 8,090±881 2.86±0.23 2.72±0.22 0.30±0.10 5.20±1.50

4.65 75.00 16 - 2.62±0.21 2.49±0.21 0.30±0.10 4.40±1.20

4.95 84.99 4 - 2.41±0.21 2.30±0.21 0.20±0.10 3.70±1.10

Table A.1: Method: “FULL” Parameter set: Pristine
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Figure A.1: Convergence of sample res-
istance with size for different SR, method
“FULL” pristine
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Figure A.2: Variation of the sheet resist-
ance with ring’s density, method “FULL”
pristine

η SR, µm2 Pconnect,% R, a.u. Nc/R NNZ
r/R φLsurf ,surf. % φVsurf ,surf. %

1.02 25.00 100.00 405±21 5.41±0.24 3.98±0.29 1.00±0.30 10.70±3.10

1.21 35.01 100.00 486±22 5.34±0.23 4.06±0.28 0.90±0.30 9.00±2.60

1.37 45.00 100.00 585±10 5.24±0.22 4.10±0.27 0.80±0.20 7.90±2.20

1.52 55.01 100.00 642±22 5.11±0.22 4.13±0.27 0.70±0.20 7.00±2.00

1.65 64.98 100.00 706±29 5.00±0.22 4.16±0.26 0.60±0.20 6.40±1.80

1.77 75.00 100.00 803±14 4.90±0.21 4.16±0.25 0.60±0.20 5.90±1.70

1.89 84.99 100.00 869±16 4.82±0.20 4.17±0.25 0.50±0.10 5.40±1.50

Table A.2: Method: “FULL” Parameter set: CNT-filled
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Figure A.3: Convergence of sample res-
istance with size for different SR, method
“FULL” CNT-filled
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Method: “STAT_RND”

η SR, µm2 Pconnect,% R, a.u. Nc/R NNZ
r/R φLsurf ,surf. % φVsurf ,surf. %

2.69 25.00 100 1,477±82 2.84±0.25 2.45±0.24 0.70±0.20 11.50±3.30

3.18 35.01 100 2,095±92 2.84±0.24 2.57±0.23 0.50±0.20 8.80±2.50

3.60 45.00 100 3,377±251 2.84±0.24 2.63±0.23 0.40±0.10 7.10±2.00

3.99 55.01 96 5,623±530 2.84±0.23 2.67±0.22 0.40±0.10 6.00±1.70

4.33 64.98 80 8,876±980 2.83±0.23 2.69±0.22 0.30±0.10 5.10±1.50

4.65 75.00 20 - 2.62±0.21 2.50±0.21 0.30±0.10 4.40±1.20

4.95 84.99 2 - 2.41±0.21 2.30±0.21 0.20±0.10 3.70±1.10

Table A.3: Method: “STAT_RND” Parameter set: Pristine
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Figure A.5: Convergence of sample res-
istance with size for different SR, method
“STAT_RND” pristine
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Figure A.6: Variation of the sheet
resistance with ring’s density, method
“STAT_RND” pristine

η SR, µm2 Pconnect,% R, a.u. Nc/R NNZ
r/R φLsurf ,surf. % φVsurf ,surf. %

1.02 25.00 94 10,174±1,083 2.84±0.36 1.40±0.20 0.90±0.20 8.90±2.50

1.21 35.01 96 8,272±794 2.84±0.35 1.55±0.21 0.70±0.20 7.50±2.10

1.37 45.00 98 7,263±730 2.84±0.33 1.71±0.22 0.60±0.20 6.50±1.90

1.52 55.01 100 5,717±409 2.84±0.32 1.88±0.24 0.60±0.20 5.80±1.70

1.65 64.98 100 5,057±391 2.84±0.31 2.00±0.26 0.50±0.10 5.30±1.50

1.77 75.00 100 5,057±309 2.84±0.29 2.10±0.25 0.50±0.10 4.80±1.40

1.89 84.99 100 5,014±319 2.84±0.29 2.17±0.25 0.40±0.10 4.40±1.30

Table A.4: Method: “STAT_RND” Parameter set: CNT-filled
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Figure A.7: Convergence of sample res-
istance with size for different SR, method
“STAT_RND” CNT-filled
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Figure A.8: Variation of the sheet
resistance with ring’s density, method
“STAT_RND” CNT-filled

Method: “STAT_N”

η SR, µm2 Pconnect,% R, a.u. Nc/R NNZ
r/R φLsurf ,surf. % φVsurf ,surf. %

2.69 25.00 100 1,299±56 2.84±0.23 2.44±0.22 0.70±0.20 11.40±3.20

3.18 35.01 100 1,795±69 2.84±0.22 2.57±0.22 0.50±0.20 8.80±2.50

3.60 45.00 100 2,877±325 2.84±0.22 2.63±0.21 0.40±0.10 7.10±2.00

3.99 55.01 100 4,947±344 2.84±0.22 2.67±0.21 0.40±0.10 6.00±1.70

4.33 64.98 84 9,369±950 2.84±0.22 2.69±0.22 0.30±0.10 5.20±1.50

4.65 75.00 14 - 2.62±0.21 2.49±0.21 0.30±0.10 4.40±1.20

4.95 84.99 4 - 2.41±0.21 2.30±0.21 0.20±0.10 3.80±1.10

Table A.5: Method: “STAT_N” Parameter set: Pristine
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Figure A.9: Convergence of sample res-
istance with size for different SR, method
“STAT_N” pristine
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Figure A.10: Variation of the sheet
resistance with ring’s density, method
“STAT_N” pristine

η SR, µm2 Pconnect,% R, a.u. Nc/R NNZ
r/R φLsurf ,surf. % φVsurf ,surf. %

1.02 25.00 100 5,950±490 2.84±0.34 1.40±0.20 0.90±0.20 8.90±2.50

1.21 35.01 100 5,356±337 2.84±0.33 1.54±0.21 0.70±0.20 7.50±2.10

1.37 45.00 100 4,584±385 2.84±0.31 1.70±0.22 0.60±0.20 6.50±1.90

1.52 55.01 100 4,285±213 2.84±0.30 1.87±0.24 0.60±0.20 5.80±1.70

1.65 64.98 100 4,290±256 2.84±0.28 1.99±0.25 0.50±0.10 5.30±1.50

1.77 75.00 100 3,981±123 2.84±0.27 2.10±0.25 0.50±0.10 4.80±1.40

1.89 84.99 100 3,926±174 2.84±0.26 2.19±0.24 0.40±0.10 4.40±1.30

Table A.6: Method: “STAT_N” Parameter set: CNT-filled
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Figure A.11: Convergence of sample res-
istance with size for different SR, method
“STAT_N” CNT-filled
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Figure A.12: Variation of the sheet
resistance with ring’s density, method
“STAT_N” CNT-filled
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Method: “STAT_N_NZ”

η SR, µm2 Pconnect,% R, a.u. Nc/R NNZ
r/R φLsurf ,surf. % φVsurf ,surf. %

2.69 25.00 100 724±40 3.23±0.22 2.84±0.24 0.70±0.20 12.00±3.40

3.18 35.01 100 1,018±88 3.11±0.23 2.84±0.23 0.60±0.20 9.10±2.60

3.60 45.00 100 1,823±79 3.04±0.23 2.84±0.22 0.50±0.10 7.40±2.10

3.99 55.01 100 3,127±238 3.01±0.23 2.84±0.23 0.40±0.10 6.20±1.70

4.33 64.98 86 7,551±714 2.87±0.23 2.74±0.22 0.30±0.10 5.20±1.50

4.65 75.00 18 - 2.62±0.21 2.49±0.21 0.30±0.10 4.40±1.20

4.95 84.99 0 - 2.41±0.21 2.30±0.21 0.20±0.10 3.70±1.10

Table A.7: Method: “STAT_N_NZ” Parameter set: Pristine
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Figure A.13: Convergence of sample res-
istance with size for different SR, method
“STAT_N_NZ” pristine
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Figure A.14: Variation of the sheet
resistance with ring’s density, method
“STAT_N_NZ” pristine

η SR, µm2 Pconnect,% R, a.u. Nc/R NNZ
r/R φLsurf ,surf. % φVsurf ,surf. %

1.02 25.00 100 646±27 4.27±0.31 2.84±0.26 1.00±0.30 9.90±2.80

1.21 35.01 100 818±27 4.14±0.30 2.84±0.25 0.80±0.20 8.30±2.40

1.37 45.00 100 976±41 3.97±0.30 2.84±0.25 0.70±0.20 7.20±2.00

1.52 55.01 100 1,176±39 3.82±0.28 2.84±0.25 0.60±0.20 6.30±1.80

1.65 64.98 100 1,371±39 3.69±0.27 2.84±0.24 0.50±0.20 5.70±1.60

1.77 75.00 100 1,601±36 3.57±0.25 2.84±0.24 0.50±0.10 5.20±1.50

1.89 84.99 100 1,746±37 3.49±0.24 2.84±0.24 0.50±0.10 4.70±1.30

Table A.8: Method: “STAT_N_NZ” Parameter set: CNT-filled
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Figure A.15: Convergence of sample res-
istance with size for different SR, method
“STAT_N_NZ” CNT-filled
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Figure A.16: Variation of the sheet
resistance with ring’s density, method
“STAT_N_NZ” CNT-filled

Method: “STAT_N_L”

η SR, µm2 Pconnect,% R, a.u. Nc/R NNZ
r/R φLsurf ,surf. % φVsurf ,surf. %

2.69 25.00 100 1,258±59 2.84±0.12 2.44±0.16 0.60±0.20 10.40±3.00

3.18 35.01 100 1,493±96 2.84±0.13 2.57±0.15 0.50±0.10 8.20±2.30

3.60 45.00 100 2,170±116 2.84±0.15 2.63±0.16 0.40±0.10 6.80±1.90

3.99 55.01 100 3,795±232 2.84±0.18 2.67±0.18 0.40±0.10 5.80±1.70

4.33 64.98 86 8,039±885 2.83±0.22 2.69±0.22 0.30±0.10 5.10±1.50

4.65 75.00 18 - 2.62±0.21 2.50±0.21 0.30±0.10 4.40±1.20

4.95 84.99 2 - 2.40±0.21 2.29±0.22 0.20±0.10 3.70±1.10

Table A.9: Method: “STAT_N_L” Parameter set: Pristine
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Figure A.17: Convergence of sample res-
istance with size for different SR, method
“STAT_N_L” pristine
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Figure A.18: Variation of the sheet
resistance with ring’s density, method
“STAT_N_L” pristine

η SR, µm2 Pconnect,% R, a.u. Nc/R NNZ
r/R φLsurf ,surf. % φVsurf ,surf. %

1.02 25.00 76 15,505±1,673 2.84±0.22 1.40±0.19 0.80±0.20 8.50±2.40

1.21 35.01 98 11,066±884 2.84±0.20 1.54±0.20 0.70±0.20 7.10±2.00

1.37 45.00 96 8,185±733 2.84±0.19 1.71±0.20 0.60±0.20 6.20±1.80

1.52 55.01 98 6,087±457 2.84±0.17 1.87±0.21 0.50±0.10 5.40±1.50

1.65 64.98 100 5,372±295 2.84±0.16 2.00±0.22 0.50±0.10 4.90±1.40

1.77 75.00 100 4,787±260 2.84±0.15 2.09±0.21 0.40±0.10 4.40±1.30

1.89 84.99 100 4,705±256 2.84±0.15 2.19±0.20 0.40±0.10 4.10±1.20

Table A.10: Method: “STAT_N_L” Parameter set: CNT-filled
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Figure A.19: Convergence of sample res-
istance with size for different SR, method
“STAT_N_L” CNT-filled
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Figure A.20: Variation of the sheet
resistance with ring’s density, method
“STAT_N_L” CNT-filled
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Method: “STAT_ALN”

η SR, µm2 Pconnect,% R, a.u. Nc/R NNZ
r/R φLsurf ,surf. % φVsurf ,surf. %

2.69 25.00 100 809±48 2.84±0.10 2.44±0.13 0.60±0.20 10.60±3.00

3.18 35.01 100 1,027±55 2.84±0.09 2.57±0.11 0.50±0.10 8.40±2.40

3.60 45.00 100 1,485±77 2.84±0.12 2.63±0.12 0.40±0.10 6.90±2.00

3.99 55.01 100 2,860±187 2.84±0.16 2.67±0.16 0.40±0.10 5.90±1.70

4.33 64.98 90 8,079±693 2.84±0.22 2.69±0.21 0.30±0.10 5.10±1.50

4.65 75.00 20 - 2.62±0.21 2.50±0.21 0.30±0.10 4.40±1.20

4.95 84.99 2 - 2.41±0.21 2.30±0.21 0.20±0.10 3.70±1.10

Table A.11: Method: “STAT_ALN” Parameter set: Pristine
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Figure A.21: Convergence of sample res-
istance with size for different SR, method
“STAT_ALN” pristine
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Figure A.22: Variation of the sheet
resistance with ring’s density, method
“STAT_ALN” pristine

η SR, µm2 Pconnect,% R, a.u. Nc/R NNZ
r/R φLsurf ,surf. % φVsurf ,surf. %

1.02 25.00 98 9,367±1,079 2.84±0.27 1.40±0.14 0.90±0.20 9.00±2.50

1.21 35.01 100 6,230±507 2.84±0.25 1.55±0.14 0.70±0.20 7.60±2.20

1.37 45.00 100 4,976±340 2.84±0.24 1.71±0.14 0.60±0.20 6.70±1.90

1.52 55.01 100 4,957±302 2.84±0.24 1.86±0.15 0.60±0.20 6.10±1.70

1.65 64.98 100 5,366±295 2.84±0.26 1.99±0.17 0.50±0.20 5.60±1.60

1.77 75.00 100 5,144±388 2.84±0.32 2.09±0.16 0.50±0.10 4.80±1.40

1.89 84.99 100 3,808±152 2.84±0.14 2.19±0.19 0.40±0.10 4.10±1.20

Table A.12: Method: “STAT_ALN” Parameter set: CNT-filled
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Figure A.23: Convergence of sample res-
istance with size for different SR, method
“STAT_ALN” CNT-filled
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Figure A.24: Variation of the sheet
resistance with ring’s density, method
“STAT_ALN” CNT-filled

Method: “COMP_ALN”

η SR, µm2 Pconnect,% R, a.u. Nc/R NNZ
r/R φLsurf ,surf. % φVsurf ,surf. %

2.69 25.00 100 4,118±390 2.84±0.20 2.44±0.19 0.60±0.20 9.90±2.80

3.18 35.01 100 3,246±263 2.84±0.19 2.57±0.18 0.50±0.10 7.80±2.20

3.60 45.00 100 3,384±241 2.84±0.18 2.62±0.17 0.40±0.10 6.60±1.90

3.99 55.01 100 3,470±182 2.84±0.18 2.67±0.17 0.40±0.10 5.80±1.60

4.33 64.98 90 7,832±784 2.83±0.21 2.69±0.21 0.30±0.10 5.10±1.50

4.65 75.00 10 - 2.62±0.21 2.50±0.21 0.30±0.10 4.40±1.20

4.95 84.99 0 - 2.41±0.21 2.30±0.21 0.20±0.10 3.80±1.10

Table A.13: Method: “COMP_ALN” Parameter set: Pristine
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Figure A.25: Convergence of sample res-
istance with size for different SR, method
“COMP_ALN” pristine
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Figure A.26: Variation of the sheet
resistance with ring’s density, method
“COMP_ALN” pristine

η SR, µm2 Pconnect,% R, a.u. Nc/R NNZ
r/R φLsurf ,surf. % φVsurf ,surf. %

1.02 25.00 100 4,320±258 2.84±0.19 1.41±0.17 0.80±0.20 8.60±2.40

1.21 35.01 100 3,570±182 2.84±0.17 1.55±0.17 0.70±0.20 7.20±2.00

1.37 45.00 100 3,006±127 2.84±0.16 1.71±0.17 0.60±0.20 6.20±1.70

1.52 55.01 100 2,710±64 2.84±0.15 1.86±0.18 0.50±0.10 5.40±1.50

1.65 64.98 100 2,651±102 2.84±0.15 2.00±0.18 0.50±0.10 4.80±1.40

1.77 75.00 100 5,001±328 2.84±0.20 2.09±0.19 0.40±0.10 4.30±1.20

1.89 84.99 100 2,674±74 2.84±0.14 2.18±0.16 0.40±0.10 4.00±1.10

Table A.14: Method: “COMP_ALN” Parameter set: CNT-filled
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Figure A.27: Convergence of sample res-
istance with size for different SR, method
“COMP_ALN” CNT-filled
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Figure A.28: Variation of the sheet
resistance with ring’s density, method
“COMP_ALN” CNT-filled
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Method: “STRETCH”

η SR, µm2 Pconnect,% R, a.u. Nc/R NNZ
r/R φLsurf ,surf. % φVsurf ,surf. %

2.69 25.00 100 1,608±97 2.84±0.30 2.84±0.30 0.70±0.20 12.20±3.50

3.18 35.01 100 3,083±210 2.84±0.26 2.84±0.26 0.50±0.20 8.90±2.50

3.60 45.00 100 5,229±427 2.84±0.24 2.84±0.24 0.40±0.10 7.00±2.00

3.99 55.01 86 8,765±872 2.84±0.23 2.69±0.22 0.40±0.10 5.80±1.60

4.33 64.98 82 8,321±776 2.83±0.22 2.70±0.22 0.30±0.10 5.10±1.50

4.65 75.00 20 - 2.61±0.21 2.49±0.21 0.30±0.10 4.40±1.20

4.95 84.99 2 - 2.41±0.21 2.30±0.21 0.20±0.10 3.70±1.10

Table A.15: Method: “STRETCH” Parameter set: Pristine
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Figure A.29: Convergence of sample res-
istance with size for different SR, method
“STRETCH” pristine
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Figure A.30: Variation of the sheet
resistance with ring’s density, method
“STRETCH” pristine

η SR, µm2 Pconnect,% R, a.u. Nc/R NNZ
r/R φLsurf ,surf. % φVsurf ,surf. %

1.02 25.00 100 1,546±54 2.84±0.33 2.84±0.33 1.00±0.30 10.50±3.00

1.21 35.01 100 1,797±83 2.84±0.33 2.84±0.33 0.90±0.20 8.80±2.50

1.37 45.00 100 2,064±76 2.84±0.33 2.84±0.33 0.70±0.20 7.70±2.20

1.52 55.01 100 2,328±79 2.84±0.34 2.84±0.34 0.70±0.20 6.80±1.90

1.65 64.98 100 2,511±97 2.84±0.34 2.84±0.34 0.60±0.20 6.20±1.80

1.77 75.00 100 2,795±79 2.84±0.34 2.84±0.34 0.50±0.20 5.60±1.60

1.89 84.99 100 2,991±63 2.84±0.34 2.84±0.34 0.50±0.10 5.20±1.50

Table A.16: Method: “STRETCH” Parameter set: CNT-filled
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Figure A.31: Convergence of sample res-
istance with size for different SR, method
“STRETCH” CNT-filled
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Figure A.32: Variation of the sheet
resistance with ring’s density, method
“STRETCH” CNT-filled

Method: “CRIT_RAD”

η SR, µm2 Pconnect,% R, a.u. Nc/R Nr/R φLsurf ,surf. % φVsurf ,surf. %
2.69 25.00 84 7,466±814 2.72±0.21 2.34±0.25 0.60±0.20 10.10±2.90

3.18 35.01 48 9,624±1,374 2.62±0.20 2.34±0.24 0.50±0.10 7.70±2.20

3.60 45.00 34 - 2.52±0.19 2.31±0.22 0.40±0.10 6.30±1.80

3.99 55.01 2 - 2.42±0.18 2.25±0.21 0.30±0.10 5.30±1.50

4.33 64.98 2 - 2.30±0.18 2.15±0.21 0.30±0.10 4.50±1.30

4.65 75.00 4 - 2.18±0.19 2.05±0.22 0.20±0.10 3.90±1.10

4.95 84.99 2 - 2.06±0.20 1.95±0.21 0.20±0.10 3.40±1.00

Table A.17: Method: “CRIT_RAD” Parameter set: Pristine
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Figure A.33: Convergence of sample res-
istance with size for different SR, method
“CRIT_RAD” pristine
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Figure A.34: Variation of the sheet
resistance with ring’s density, method
“CRIT_RAD” pristine

η SR, µm2 Pconnect,% R, a.u. Nc/R NNZ
r/R φLsurf ,surf. % φVsurf ,surf. %

1.02 25.00 100 2,088±109 3.39±0.28 1.95±0.29 0.80±0.20 8.70±2.50

1.21 35.01 100 2,820±158 3.31±0.26 2.01±0.30 0.70±0.20 7.20±2.10

1.37 45.00 100 3,666±213 3.19±0.25 2.07±0.29 0.60±0.20 6.20±1.80

1.52 55.01 100 5,213±293 3.08±0.25 2.11±0.28 0.50±0.10 5.50±1.60

1.65 64.98 98 6,582±414 3.00±0.25 2.15±0.27 0.50±0.10 4.90±1.40

1.77 75.00 94 9,062±975 2.93±0.24 2.19±0.27 0.40±0.10 4.40±1.20

1.89 84.99 90 11,635±1,394 2.86±0.23 2.21±0.26 0.40±0.10 4.00±1.10

Table A.18: Method: “CRIT_RAD” Parameter set: CNT-filled
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Figure A.35: Convergence of sample res-
istance with size for different SR, method
“CRIT_RAD” CNT-filled
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Figure A.36: Variation of the sheet
resistance with ring’s density, method
“CRIT_RAD” CNT-filled
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A.2 Percolation threshold calculations

As was explained in section 5.1.4 of main text, the network’s connectivity rate
and sheet resistance (or volume resistivity in 3D) were fitted to expressions 5.1.5
and 5.1.6:

P (η) = A (1− tanh (α(η − η0))) ;

ρ(η) = ρ0 (η − ηC)δ .

For each target average number of rods per ring (N T
r/R) the following para-

meters were estimated by non-linear least squares algorithm:
A normalization constant of sigmoid function (ideally equal to 0.5 for

P (0) = 1.0);
α slope parameter of sigmoid function (α→∞ for a abrupt transition);
η0 inflection point of sigmoid function (in ideal case equal to ηC);
ηC is the critical scaling parameter, corresponding to percolation threshold;
ρ0 and δ are the fitting parameters for equation 5.1.6;
r2 is r-squared characteristic of the fitting ρ(η) with equation 5.1.6.

N T
r/R

P (η) ρ(η)
A α η0 ηC ρ0,103 a.u. δ r2

2.0 - - - - - - -

2.2 0.28±0.04 5.0±5.0 4.27±0.11 4.04±0.34 10.9±0.2 -0.20±0.01 0.77

2.4 0.49±0.01 3.3±0.5 4.38±0.02 4.38±0.02 4.4±0.1 -0.40±0.01 0.88

2.6 0.50±0.01 4.3±0.5 4.47±0.02 4.47±0.02 2.2±0.0 -0.78±0.02 0.95

2.8 0.50±0.00 4.7±0.3 4.51±0.01 4.51±0.02 1.7±0.0 -0.63±0.02 0.83

3.0 0.50±0.00 5.9±0.4 4.50±0.01 4.50±0.00 1.5±0.0 -0.53±0.02 0.74

Table A.19: Variation of the fitting parameters with target number of connections per
ring Nr/R for pristine networks in 2D
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N T
r/R

P (η) ρ(η)
A α η0 ηC ρ0,106 a.u. δ r2

2.0 - - - - - - -

2.2 0.41±0.04 1.7±0.8 6.65±0.15 6.53±0.20 0.064±0.000 -0.20±0.01 0.71

2.4 0.50±0.01 2.2±0.2 7.06±0.02 7.05±0.02 0.031±0.000 -0.63±0.01 0.93

2.6 0.50±0.01 2.8±0.3 7.20±0.02 7.20±0.02 0.021±0.000 -0.84±0.01 0.97

2.8 0.50±0.01 3.0±0.2 7.21±0.02 7.21±0.02 0.016±0.000 -0.94±0.01 0.97

3.0 0.50±0.01 2.6±0.2 7.16±0.02 7.16±0.02 0.013±0.000 -0.95±0.01 0.96

Table A.20: Variation of the fitting parameters with target number of connections per
ring Nr/R for CNT-intercalated networks in 2D

N T
r/R

P (η) ρ(η)
A α η0 ηC ρ0,103 a.u. δ r2

1.2 - - - - - - -

1.4 - - - - - - -

1.6 - - - - - - -

1.8 - - - - - - -

2.0 0.48±0.02 1.4±0.3 5.99±0.09 6.0±0.1 290.6±25.2 -0.35±0.05 0.41

2.2 0.50±0.01 3.1±1.5 6.51±0.07 6.5±0.1 242.6±21.5 -1.64±0.10 0.97

2.4 - - - - - - -

2.6 - - - - - - -

2.8 0.50±0.01 4.2±4.7 6.56±0.09 6.6±0.1 63.0±3.2 -1.61±0.05 0.99

3.0 - - - - - - -

3.2 0.50±0.01 5.9±33.6 6.51±0.72 6.5±0.7 47.3±1.4 -1.69±0.03 1.00

3.4 0.50±0.01 5.5±19.8 6.50±0.51 6.5±0.5 43.5±1.3 -1.80±0.03 1.00

3.6 0.50±0.01 4.0±2.7 6.53±0.07 6.5±0.1 43.4±0.8 -1.87±0.02 1.00

3.8 0.50±0.01 3.7±2.0 6.55±0.05 6.6±0.1 41.4±1.0 -1.91±0.03 1.00

4.0 0.50±0.01 4.6±5.0 6.52±0.13 6.5±0.1 39.1±1.3 -1.97±0.04 1.00

Table A.21: Variation of the fitting parameters with target number of connections per
ring Nr/R for pristine networks in 3D
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N T
r/R

P (η) ρ(η)
A α η0 ηC ρ0,103 a.u. δ r2

1.2 - - - - - - -

1.4 - - - - - - -

1.6 - - - - - - -

1.8 - - - - - - -

2.0 0.48±0.01 0.9±0.1 9.47±0.09 9.4±0.1 9.4±0.6 -0.57±0.04 0.53

2.2 0.50±0.00 2.5±0.3 10.21±0.02 10.2±0.0 5.5±0.3 -1.06±0.04 0.83

2.4 0.50±0.00 2.8±0.1 10.35±0.01 10.4±0.0 4.7±0.3 -1.39±0.04 0.93

2.6 0.50±0.00 2.7±0.1 10.33±0.01 10.3±0.0 3.2±0.1 -1.41±0.03 0.95

2.8 0.50±0.00 3.0±0.1 10.38±0.01 10.4±0.0 3.2±0.1 -1.58±0.02 0.98

3.0 0.50±0.00 3.7±0.3 10.36±0.03 10.4±0.0 2.7±0.1 -1.62±0.03 0.97

3.2 0.50±0.00 3.3±0.1 10.37±0.01 10.4±0.0 2.6±0.1 -1.69±0.02 0.98

3.4 0.50±0.00 2.3±0.1 10.35±0.01 10.4±0.0 2.4±0.1 -1.71±0.02 0.98

3.6 0.50±0.00 2.8±0.0 10.43±0.00 10.4±0.0 2.6±0.1 -1.84±0.03 0.98

3.8 0.50±0.00 2.6±0.0 10.44±0.00 10.4±0.0 2.7±0.1 -1.92±0.02 0.99

4.0 0.50±0.00 2.4±0.1 10.41±0.02 10.4±0.0 2.6±0.1 -1.95±0.02 0.99

Table A.22: Variation of the fitting parameters with target number of connections per
ring Nr/R for CNT-intercalated networks in 3D
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Appendix B

MD simulation of tetrakis-Schiff
complex

B.1 Diffusion of a single molecule in solvent

Figure B.1: Displacement of the single tetrakis-Schiff complex in DCM: light grey - the
results of independent simulations, dark grey - “one-off” averages, blue an red lines are
correspondingly the averages of the simulations, starting from “closed” and “opened”
conformations, black - average over all trajectories.
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Figure B.2: Displacement of the single tetrakis-Schiff complex in THF: light grey - the
results of independent simulations, dark grey - “one-off” averages, blue an red lines are
correspondingly the averages of the simulations, starting from “closed” and “opened”
conformations, black - average over all trajectories.
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Figure B.3: Displacement of the single tetrakis-Schiff complex in toluene: light grey
- the results of independent simulations, dark grey - “one-off” averages, blue an red
lines are correspondingly the averages of the simulations, starting from “closed” and
“opened” conformations, black - average over all trajectories.
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B.2 Evolution of 8-molecular chains in solvent

Figure B.4: Evolution of the 8-molecular tetrakis-Schiff chains in explicit solvent:
complex-to-complex pair interaction (UCC), complex-to-solvent pair interaction (UCS)
and the chain’s surface area (Aslv) - averaged over 50 ps
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B.3 Variation of tetrakis-Schiff self-interaction
during solvation FEP calculation

Figure B.5: Variation of complex-to-complex interaction in tetrakis-Schiff zinc-complex
closed monomer during solution FEP simulations.
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Figure B.6: Variation of complex-to-complex interaction in tetrakis-Schiff zinc-complex
opened monomer during solution FEP simulations.
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Figure B.7: Variation of complex-to-complex interaction in tetrakis-Schiff zinc-complex
dimer during solution FEP simulations.
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Figure B.8: Variation of complex-to-complex interaction in tetrakis-Schiff zinc-complex
pi-pi bonded bi-dimer during solution FEP simulations.
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Figure B.9: Variation of complex-to-complex interaction in tetrakis-Schiff zinc-complex
sandwitch-like bi-dimer during solution FEP simulations.
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Figure B.10: Variation of complex-to-complex interaction in tetrakis-Schiff zinc-
complex chain-like bi-dimer during solution FEP simulations.
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